mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-05-24 10:39:52 +00:00

Compilers optimize conditional operators at will, but often bpf programmers want to force compilers to keep the same operator in asm as it's written in C. Introduce bpf_cmp_likely/unlikely(var1, conditional_op, var2) macros that can be used as: - if (seen >= 1000) + if (bpf_cmp_unlikely(seen, >=, 1000)) The macros take advantage of BPF assembly that is C like. The macros check the sign of variable 'seen' and emits either signed or unsigned compare. For example: int a; bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX s> 0 goto' in BPF assembly. unsigned int a; bpf_cmp_unlikely(a, >, 0) will be translated to 'if rX > 0 goto' in BPF assembly. C type conversions coupled with comparison operator are tricky. int i = -1; unsigned int j = 1; if (i < j) // this is false. long i = -1; unsigned int j = 1; if (i < j) // this is true. Make sure BPF program is compiled with -Wsign-compare then the macros will catch the mistake. The macros check LHS (left hand side) only to figure out the sign of compare. 'if 0 < rX goto' is not allowed in the assembly, so the users have to use a variable on LHS anyway. The patch updates few tests to demonstrate the use of the macros. The macro allows to use BPF_JSET in C code, since LLVM doesn't generate it at present. For example: if (i & j) compiles into r0 &= r1; if r0 == 0 goto while if (bpf_cmp_unlikely(i, &, j)) compiles into if r0 & r1 goto Note that the macros has to be careful with RHS assembly predicate. Since: u64 __rhs = 1ull << 42; asm goto("if r0 < %[rhs] goto +1" :: [rhs] "ri" (__rhs)); LLVM will silently truncate 64-bit constant into s32 imm. Note that [lhs] "r"((short)LHS) the type cast is a workaround for LLVM issue. When LHS is exactly 32-bit LLVM emits redundant <<=32, >>=32 to zero upper 32-bits. When LHS is 64 or 16 or 8-bit variable there are no shifts. When LHS is 32-bit the (u64) cast doesn't help. Hence use (short) cast. It does _not_ truncate the variable before it's assigned to a register. Traditional likely()/unlikely() macros that use __builtin_expect(!!(x), 1 or 0) have no effect on these macros, hence macros implement the logic manually. bpf_cmp_unlikely() macro preserves compare operator as-is while bpf_cmp_likely() macro flips the compare. Consider two cases: A. for() { if (foo >= 10) { bar += foo; } other code; } B. for() { if (foo >= 10) break; other code; } It's ok to use either bpf_cmp_likely or bpf_cmp_unlikely macros in both cases, but consider that 'break' is effectively 'goto out_of_the_loop'. Hence it's better to use bpf_cmp_unlikely in the B case. While 'bar += foo' is better to keep as 'fallthrough' == likely code path in the A case. When it's written as: A. for() { if (bpf_cmp_likely(foo, >=, 10)) { bar += foo; } other code; } B. for() { if (bpf_cmp_unlikely(foo, >=, 10)) break; other code; } The assembly will look like: A. for() { if r1 < 10 goto L1; bar += foo; L1: other code; } B. for() { if r1 >= 10 goto L2; other code; } L2: The bpf_cmp_likely vs bpf_cmp_unlikely changes basic block layout, hence it will greatly influence the verification process. The number of processed instructions will be different, since the verifier walks the fallthrough first. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/bpf/20231226191148.48536-3-alexei.starovoitov@gmail.com
368 lines
7.1 KiB
C
368 lines
7.1 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <vmlinux.h>
|
|
#include <bpf/bpf_tracing.h>
|
|
#include <bpf/bpf_helpers.h>
|
|
#include <bpf/bpf_core_read.h>
|
|
#include <bpf/bpf_endian.h>
|
|
#include "bpf_misc.h"
|
|
#include "bpf_experimental.h"
|
|
|
|
#ifndef ETH_P_IP
|
|
#define ETH_P_IP 0x0800
|
|
#endif
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_PROG_ARRAY);
|
|
__uint(max_entries, 4);
|
|
__uint(key_size, sizeof(__u32));
|
|
__uint(value_size, sizeof(__u32));
|
|
} jmp_table SEC(".maps");
|
|
|
|
static __noinline int static_func(u64 i)
|
|
{
|
|
bpf_throw(32);
|
|
return i;
|
|
}
|
|
|
|
__noinline int global2static_simple(u64 i)
|
|
{
|
|
static_func(i + 2);
|
|
return i - 1;
|
|
}
|
|
|
|
__noinline int global2static(u64 i)
|
|
{
|
|
if (i == ETH_P_IP)
|
|
bpf_throw(16);
|
|
return static_func(i);
|
|
}
|
|
|
|
static __noinline int static2global(u64 i)
|
|
{
|
|
return global2static(i) + i;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_always_1(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(64);
|
|
return 0;
|
|
}
|
|
|
|
/* In this case, the global func will never be seen executing after call to
|
|
* static subprog, hence verifier will DCE the remaining instructions. Ensure we
|
|
* are resilient to that.
|
|
*/
|
|
SEC("tc")
|
|
int exception_throw_always_2(struct __sk_buff *ctx)
|
|
{
|
|
return global2static_simple(ctx->protocol);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_unwind_1(struct __sk_buff *ctx)
|
|
{
|
|
return static2global(bpf_ntohs(ctx->protocol));
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_unwind_2(struct __sk_buff *ctx)
|
|
{
|
|
return static2global(bpf_ntohs(ctx->protocol) - 1);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_default(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(0);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_default_value(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(5);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_tail_call_target(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(16);
|
|
return 0;
|
|
}
|
|
|
|
static __noinline
|
|
int exception_tail_call_subprog(struct __sk_buff *ctx)
|
|
{
|
|
volatile int ret = 10;
|
|
|
|
bpf_tail_call_static(ctx, &jmp_table, 0);
|
|
return ret;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_tail_call(struct __sk_buff *ctx) {
|
|
volatile int ret = 0;
|
|
|
|
ret = exception_tail_call_subprog(ctx);
|
|
return ret + 8;
|
|
}
|
|
|
|
__noinline int exception_ext_global(struct __sk_buff *ctx)
|
|
{
|
|
volatile int ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __noinline int exception_ext_static(struct __sk_buff *ctx)
|
|
{
|
|
return exception_ext_global(ctx);
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_ext(struct __sk_buff *ctx)
|
|
{
|
|
return exception_ext_static(ctx);
|
|
}
|
|
|
|
__noinline int exception_cb_mod_global(u64 cookie)
|
|
{
|
|
volatile int ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Example of how the exception callback supplied during verification can still
|
|
* introduce extensions by calling to dummy global functions, and alter runtime
|
|
* behavior.
|
|
*
|
|
* Right now we don't allow freplace attachment to exception callback itself,
|
|
* but if the need arises this restriction is technically feasible to relax in
|
|
* the future.
|
|
*/
|
|
__noinline int exception_cb_mod(u64 cookie)
|
|
{
|
|
return exception_cb_mod_global(cookie) + cookie + 10;
|
|
}
|
|
|
|
SEC("tc")
|
|
__exception_cb(exception_cb_mod)
|
|
int exception_ext_mod_cb_runtime(struct __sk_buff *ctx)
|
|
{
|
|
bpf_throw(25);
|
|
return 0;
|
|
}
|
|
|
|
__noinline static int subprog(struct __sk_buff *ctx)
|
|
{
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline static int throwing_subprog(struct __sk_buff *ctx)
|
|
{
|
|
if (ctx->tstamp)
|
|
bpf_throw(0);
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline int global_subprog(struct __sk_buff *ctx)
|
|
{
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
__noinline int throwing_global_subprog(struct __sk_buff *ctx)
|
|
{
|
|
if (ctx->tstamp)
|
|
bpf_throw(0);
|
|
return bpf_ktime_get_ns();
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_throw_subprog(struct __sk_buff *ctx)
|
|
{
|
|
switch (ctx->protocol) {
|
|
case 1:
|
|
return subprog(ctx);
|
|
case 2:
|
|
return global_subprog(ctx);
|
|
case 3:
|
|
return throwing_subprog(ctx);
|
|
case 4:
|
|
return throwing_global_subprog(ctx);
|
|
default:
|
|
break;
|
|
}
|
|
bpf_throw(1);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_nz_gfunc(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert(cookie != 0);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_zero_gfunc(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, ==, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_neg_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, <, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_pos_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, >, 0));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_negeq_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, <=, -1));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_poseq_gfunc(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert(bpf_cmp_unlikely(cookie, >=, 1));
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_nz_gfunc_with(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert_with(cookie != 0, cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_zero_gfunc_with(u64 c)
|
|
{
|
|
volatile u64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, ==, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_neg_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, <, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_pos_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, >, 0), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_negeq_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, <=, -1), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
__noinline int assert_poseq_gfunc_with(s64 c)
|
|
{
|
|
volatile s64 cookie = c;
|
|
|
|
bpf_assert_with(bpf_cmp_unlikely(cookie, >=, 1), cookie + 100);
|
|
return 0;
|
|
}
|
|
|
|
#define check_assert(name, cookie, tag) \
|
|
SEC("tc") \
|
|
int exception##tag##name(struct __sk_buff *ctx) \
|
|
{ \
|
|
return name(cookie) + 1; \
|
|
}
|
|
|
|
check_assert(assert_nz_gfunc, 5, _);
|
|
check_assert(assert_zero_gfunc, 0, _);
|
|
check_assert(assert_neg_gfunc, -100, _);
|
|
check_assert(assert_pos_gfunc, 100, _);
|
|
check_assert(assert_negeq_gfunc, -1, _);
|
|
check_assert(assert_poseq_gfunc, 1, _);
|
|
|
|
check_assert(assert_nz_gfunc_with, 5, _);
|
|
check_assert(assert_zero_gfunc_with, 0, _);
|
|
check_assert(assert_neg_gfunc_with, -100, _);
|
|
check_assert(assert_pos_gfunc_with, 100, _);
|
|
check_assert(assert_negeq_gfunc_with, -1, _);
|
|
check_assert(assert_poseq_gfunc_with, 1, _);
|
|
|
|
check_assert(assert_nz_gfunc, 0, _bad_);
|
|
check_assert(assert_zero_gfunc, 5, _bad_);
|
|
check_assert(assert_neg_gfunc, 100, _bad_);
|
|
check_assert(assert_pos_gfunc, -100, _bad_);
|
|
check_assert(assert_negeq_gfunc, 1, _bad_);
|
|
check_assert(assert_poseq_gfunc, -1, _bad_);
|
|
|
|
check_assert(assert_nz_gfunc_with, 0, _bad_);
|
|
check_assert(assert_zero_gfunc_with, 5, _bad_);
|
|
check_assert(assert_neg_gfunc_with, 100, _bad_);
|
|
check_assert(assert_pos_gfunc_with, -100, _bad_);
|
|
check_assert(assert_negeq_gfunc_with, 1, _bad_);
|
|
check_assert(assert_poseq_gfunc_with, -1, _bad_);
|
|
|
|
SEC("tc")
|
|
int exception_assert_range(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range(time, 0, ~0ULL);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_assert_range_with(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range_with(time, 0, ~0ULL, 10);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_bad_assert_range(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range(time, -100, 100);
|
|
return 1;
|
|
}
|
|
|
|
SEC("tc")
|
|
int exception_bad_assert_range_with(struct __sk_buff *ctx)
|
|
{
|
|
u64 time = bpf_ktime_get_ns();
|
|
|
|
bpf_assert_range_with(time, -1000, 1000, 10);
|
|
return 1;
|
|
}
|
|
|
|
char _license[] SEC("license") = "GPL";
|