mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 266cf658ef
			
		
	
	
		266cf658ef
		
	
	
	
	
		
			
			Recruit a page flag to aid in cache management.  The following extra flag is
defined:
 (1) PG_fscache (PG_private_2)
     The marked page is backed by a local cache and is pinning resources in the
     cache driver.
If PG_fscache is set, then things that checked for PG_private will now also
check for that.  This includes things like truncation and page invalidation.
The function page_has_private() had been added to make the checks for both
PG_private and PG_private_2 at the same time.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
		
	
			
		
			
				
	
	
		
			1141 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1141 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Memory Migration functionality - linux/mm/migration.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 | |
|  *
 | |
|  * Page migration was first developed in the context of the memory hotplug
 | |
|  * project. The main authors of the migration code are:
 | |
|  *
 | |
|  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 | |
|  * Hirokazu Takahashi <taka@valinux.co.jp>
 | |
|  * Dave Hansen <haveblue@us.ibm.com>
 | |
|  * Christoph Lameter
 | |
|  */
 | |
| 
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/nsproxy.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/topology.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/syscalls.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 | |
| 
 | |
| /*
 | |
|  * migrate_prep() needs to be called before we start compiling a list of pages
 | |
|  * to be migrated using isolate_lru_page().
 | |
|  */
 | |
| int migrate_prep(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Clear the LRU lists so pages can be isolated.
 | |
| 	 * Note that pages may be moved off the LRU after we have
 | |
| 	 * drained them. Those pages will fail to migrate like other
 | |
| 	 * pages that may be busy.
 | |
| 	 */
 | |
| 	lru_add_drain_all();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add isolated pages on the list back to the LRU under page lock
 | |
|  * to avoid leaking evictable pages back onto unevictable list.
 | |
|  *
 | |
|  * returns the number of pages put back.
 | |
|  */
 | |
| int putback_lru_pages(struct list_head *l)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(page, page2, l, lru) {
 | |
| 		list_del(&page->lru);
 | |
| 		putback_lru_page(page);
 | |
| 		count++;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore a potential migration pte to a working pte entry
 | |
|  */
 | |
| static void remove_migration_pte(struct vm_area_struct *vma,
 | |
| 		struct page *old, struct page *new)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	swp_entry_t entry;
 | |
|  	pgd_t *pgd;
 | |
|  	pud_t *pud;
 | |
|  	pmd_t *pmd;
 | |
| 	pte_t *ptep, pte;
 | |
|  	spinlock_t *ptl;
 | |
| 	unsigned long addr = page_address_in_vma(new, vma);
 | |
| 
 | |
| 	if (addr == -EFAULT)
 | |
| 		return;
 | |
| 
 | |
|  	pgd = pgd_offset(mm, addr);
 | |
| 	if (!pgd_present(*pgd))
 | |
|                 return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (!pud_present(*pud))
 | |
|                 return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return;
 | |
| 
 | |
| 	ptep = pte_offset_map(pmd, addr);
 | |
| 
 | |
| 	if (!is_swap_pte(*ptep)) {
 | |
| 		pte_unmap(ptep);
 | |
|  		return;
 | |
|  	}
 | |
| 
 | |
|  	ptl = pte_lockptr(mm, pmd);
 | |
|  	spin_lock(ptl);
 | |
| 	pte = *ptep;
 | |
| 	if (!is_swap_pte(pte))
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = pte_to_swp_entry(pte);
 | |
| 
 | |
| 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
 | |
| 		goto out;
 | |
| 
 | |
| 	get_page(new);
 | |
| 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 | |
| 	if (is_write_migration_entry(entry))
 | |
| 		pte = pte_mkwrite(pte);
 | |
| 	flush_cache_page(vma, addr, pte_pfn(pte));
 | |
| 	set_pte_at(mm, addr, ptep, pte);
 | |
| 
 | |
| 	if (PageAnon(new))
 | |
| 		page_add_anon_rmap(new, vma, addr);
 | |
| 	else
 | |
| 		page_add_file_rmap(new);
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(vma, addr, pte);
 | |
| 
 | |
| out:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that remove_file_migration_ptes will only work on regular mappings,
 | |
|  * Nonlinear mappings do not use migration entries.
 | |
|  */
 | |
| static void remove_file_migration_ptes(struct page *old, struct page *new)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct address_space *mapping = page_mapping(new);
 | |
| 	struct prio_tree_iter iter;
 | |
| 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 | |
| 
 | |
| 	if (!mapping)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&mapping->i_mmap_lock);
 | |
| 
 | |
| 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
 | |
| 		remove_migration_pte(vma, old, new);
 | |
| 
 | |
| 	spin_unlock(&mapping->i_mmap_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must hold mmap_sem lock on at least one of the vmas containing
 | |
|  * the page so that the anon_vma cannot vanish.
 | |
|  */
 | |
| static void remove_anon_migration_ptes(struct page *old, struct page *new)
 | |
| {
 | |
| 	struct anon_vma *anon_vma;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long mapping;
 | |
| 
 | |
| 	mapping = (unsigned long)new->mapping;
 | |
| 
 | |
| 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
 | |
| 	 */
 | |
| 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
 | |
| 	spin_lock(&anon_vma->lock);
 | |
| 
 | |
| 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
 | |
| 		remove_migration_pte(vma, old, new);
 | |
| 
 | |
| 	spin_unlock(&anon_vma->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get rid of all migration entries and replace them by
 | |
|  * references to the indicated page.
 | |
|  */
 | |
| static void remove_migration_ptes(struct page *old, struct page *new)
 | |
| {
 | |
| 	if (PageAnon(new))
 | |
| 		remove_anon_migration_ptes(old, new);
 | |
| 	else
 | |
| 		remove_file_migration_ptes(old, new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Something used the pte of a page under migration. We need to
 | |
|  * get to the page and wait until migration is finished.
 | |
|  * When we return from this function the fault will be retried.
 | |
|  *
 | |
|  * This function is called from do_swap_page().
 | |
|  */
 | |
| void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long address)
 | |
| {
 | |
| 	pte_t *ptep, pte;
 | |
| 	spinlock_t *ptl;
 | |
| 	swp_entry_t entry;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 | |
| 	pte = *ptep;
 | |
| 	if (!is_swap_pte(pte))
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = pte_to_swp_entry(pte);
 | |
| 	if (!is_migration_entry(entry))
 | |
| 		goto out;
 | |
| 
 | |
| 	page = migration_entry_to_page(entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * Once radix-tree replacement of page migration started, page_count
 | |
| 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 | |
| 	 * against a page without get_page().
 | |
| 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 | |
| 	 * will occur again.
 | |
| 	 */
 | |
| 	if (!get_page_unless_zero(page))
 | |
| 		goto out;
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| 	wait_on_page_locked(page);
 | |
| 	put_page(page);
 | |
| 	return;
 | |
| out:
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Replace the page in the mapping.
 | |
|  *
 | |
|  * The number of remaining references must be:
 | |
|  * 1 for anonymous pages without a mapping
 | |
|  * 2 for pages with a mapping
 | |
|  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 | |
|  */
 | |
| static int migrate_page_move_mapping(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page)
 | |
| {
 | |
| 	int expected_count;
 | |
| 	void **pslot;
 | |
| 
 | |
| 	if (!mapping) {
 | |
| 		/* Anonymous page without mapping */
 | |
| 		if (page_count(page) != 1)
 | |
| 			return -EAGAIN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 | |
|  					page_index(page));
 | |
| 
 | |
| 	expected_count = 2 + !!page_has_private(page);
 | |
| 	if (page_count(page) != expected_count ||
 | |
| 			(struct page *)radix_tree_deref_slot(pslot) != page) {
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_freeze_refs(page, expected_count)) {
 | |
| 		spin_unlock_irq(&mapping->tree_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we know that no one else is looking at the page.
 | |
| 	 */
 | |
| 	get_page(newpage);	/* add cache reference */
 | |
| 	if (PageSwapCache(page)) {
 | |
| 		SetPageSwapCache(newpage);
 | |
| 		set_page_private(newpage, page_private(page));
 | |
| 	}
 | |
| 
 | |
| 	radix_tree_replace_slot(pslot, newpage);
 | |
| 
 | |
| 	page_unfreeze_refs(page, expected_count);
 | |
| 	/*
 | |
| 	 * Drop cache reference from old page.
 | |
| 	 * We know this isn't the last reference.
 | |
| 	 */
 | |
| 	__put_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * If moved to a different zone then also account
 | |
| 	 * the page for that zone. Other VM counters will be
 | |
| 	 * taken care of when we establish references to the
 | |
| 	 * new page and drop references to the old page.
 | |
| 	 *
 | |
| 	 * Note that anonymous pages are accounted for
 | |
| 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 | |
| 	 * are mapped to swap space.
 | |
| 	 */
 | |
| 	__dec_zone_page_state(page, NR_FILE_PAGES);
 | |
| 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 | |
| 
 | |
| 	spin_unlock_irq(&mapping->tree_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the page to its new location
 | |
|  */
 | |
| static void migrate_page_copy(struct page *newpage, struct page *page)
 | |
| {
 | |
| 	int anon;
 | |
| 
 | |
| 	copy_highpage(newpage, page);
 | |
| 
 | |
| 	if (PageError(page))
 | |
| 		SetPageError(newpage);
 | |
| 	if (PageReferenced(page))
 | |
| 		SetPageReferenced(newpage);
 | |
| 	if (PageUptodate(page))
 | |
| 		SetPageUptodate(newpage);
 | |
| 	if (TestClearPageActive(page)) {
 | |
| 		VM_BUG_ON(PageUnevictable(page));
 | |
| 		SetPageActive(newpage);
 | |
| 	} else
 | |
| 		unevictable_migrate_page(newpage, page);
 | |
| 	if (PageChecked(page))
 | |
| 		SetPageChecked(newpage);
 | |
| 	if (PageMappedToDisk(page))
 | |
| 		SetPageMappedToDisk(newpage);
 | |
| 
 | |
| 	if (PageDirty(page)) {
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 		/*
 | |
| 		 * Want to mark the page and the radix tree as dirty, and
 | |
| 		 * redo the accounting that clear_page_dirty_for_io undid,
 | |
| 		 * but we can't use set_page_dirty because that function
 | |
| 		 * is actually a signal that all of the page has become dirty.
 | |
| 		 * Wheras only part of our page may be dirty.
 | |
| 		 */
 | |
| 		__set_page_dirty_nobuffers(newpage);
 | |
|  	}
 | |
| 
 | |
| 	mlock_migrate_page(newpage, page);
 | |
| 
 | |
| 	ClearPageSwapCache(page);
 | |
| 	ClearPagePrivate(page);
 | |
| 	set_page_private(page, 0);
 | |
| 	/* page->mapping contains a flag for PageAnon() */
 | |
| 	anon = PageAnon(page);
 | |
| 	page->mapping = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If any waiters have accumulated on the new page then
 | |
| 	 * wake them up.
 | |
| 	 */
 | |
| 	if (PageWriteback(newpage))
 | |
| 		end_page_writeback(newpage);
 | |
| }
 | |
| 
 | |
| /************************************************************
 | |
|  *                    Migration functions
 | |
|  ***********************************************************/
 | |
| 
 | |
| /* Always fail migration. Used for mappings that are not movable */
 | |
| int fail_migrate_page(struct address_space *mapping,
 | |
| 			struct page *newpage, struct page *page)
 | |
| {
 | |
| 	return -EIO;
 | |
| }
 | |
| EXPORT_SYMBOL(fail_migrate_page);
 | |
| 
 | |
| /*
 | |
|  * Common logic to directly migrate a single page suitable for
 | |
|  * pages that do not use PagePrivate/PagePrivate2.
 | |
|  *
 | |
|  * Pages are locked upon entry and exit.
 | |
|  */
 | |
| int migrate_page(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 | |
| 
 | |
| 	rc = migrate_page_move_mapping(mapping, newpage, page);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	migrate_page_copy(newpage, page);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(migrate_page);
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| /*
 | |
|  * Migration function for pages with buffers. This function can only be used
 | |
|  * if the underlying filesystem guarantees that no other references to "page"
 | |
|  * exist.
 | |
|  */
 | |
| int buffer_migrate_page(struct address_space *mapping,
 | |
| 		struct page *newpage, struct page *page)
 | |
| {
 | |
| 	struct buffer_head *bh, *head;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return migrate_page(mapping, newpage, page);
 | |
| 
 | |
| 	head = page_buffers(page);
 | |
| 
 | |
| 	rc = migrate_page_move_mapping(mapping, newpage, page);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		get_bh(bh);
 | |
| 		lock_buffer(bh);
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	ClearPagePrivate(page);
 | |
| 	set_page_private(newpage, page_private(page));
 | |
| 	set_page_private(page, 0);
 | |
| 	put_page(page);
 | |
| 	get_page(newpage);
 | |
| 
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		set_bh_page(bh, newpage, bh_offset(bh));
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	SetPagePrivate(newpage);
 | |
| 
 | |
| 	migrate_page_copy(newpage, page);
 | |
| 
 | |
| 	bh = head;
 | |
| 	do {
 | |
| 		unlock_buffer(bh);
 | |
|  		put_bh(bh);
 | |
| 		bh = bh->b_this_page;
 | |
| 
 | |
| 	} while (bh != head);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(buffer_migrate_page);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Writeback a page to clean the dirty state
 | |
|  */
 | |
| static int writeout(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_NONE,
 | |
| 		.nr_to_write = 1,
 | |
| 		.range_start = 0,
 | |
| 		.range_end = LLONG_MAX,
 | |
| 		.nonblocking = 1,
 | |
| 		.for_reclaim = 1
 | |
| 	};
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!mapping->a_ops->writepage)
 | |
| 		/* No write method for the address space */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!clear_page_dirty_for_io(page))
 | |
| 		/* Someone else already triggered a write */
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * A dirty page may imply that the underlying filesystem has
 | |
| 	 * the page on some queue. So the page must be clean for
 | |
| 	 * migration. Writeout may mean we loose the lock and the
 | |
| 	 * page state is no longer what we checked for earlier.
 | |
| 	 * At this point we know that the migration attempt cannot
 | |
| 	 * be successful.
 | |
| 	 */
 | |
| 	remove_migration_ptes(page, page);
 | |
| 
 | |
| 	rc = mapping->a_ops->writepage(page, &wbc);
 | |
| 
 | |
| 	if (rc != AOP_WRITEPAGE_ACTIVATE)
 | |
| 		/* unlocked. Relock */
 | |
| 		lock_page(page);
 | |
| 
 | |
| 	return (rc < 0) ? -EIO : -EAGAIN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default handling if a filesystem does not provide a migration function.
 | |
|  */
 | |
| static int fallback_migrate_page(struct address_space *mapping,
 | |
| 	struct page *newpage, struct page *page)
 | |
| {
 | |
| 	if (PageDirty(page))
 | |
| 		return writeout(mapping, page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Buffers may be managed in a filesystem specific way.
 | |
| 	 * We must have no buffers or drop them.
 | |
| 	 */
 | |
| 	if (page_has_private(page) &&
 | |
| 	    !try_to_release_page(page, GFP_KERNEL))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return migrate_page(mapping, newpage, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a page to a newly allocated page
 | |
|  * The page is locked and all ptes have been successfully removed.
 | |
|  *
 | |
|  * The new page will have replaced the old page if this function
 | |
|  * is successful.
 | |
|  *
 | |
|  * Return value:
 | |
|  *   < 0 - error code
 | |
|  *  == 0 - success
 | |
|  */
 | |
| static int move_to_new_page(struct page *newpage, struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Block others from accessing the page when we get around to
 | |
| 	 * establishing additional references. We are the only one
 | |
| 	 * holding a reference to the new page at this point.
 | |
| 	 */
 | |
| 	if (!trylock_page(newpage))
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Prepare mapping for the new page.*/
 | |
| 	newpage->index = page->index;
 | |
| 	newpage->mapping = page->mapping;
 | |
| 	if (PageSwapBacked(page))
 | |
| 		SetPageSwapBacked(newpage);
 | |
| 
 | |
| 	mapping = page_mapping(page);
 | |
| 	if (!mapping)
 | |
| 		rc = migrate_page(mapping, newpage, page);
 | |
| 	else if (mapping->a_ops->migratepage)
 | |
| 		/*
 | |
| 		 * Most pages have a mapping and most filesystems
 | |
| 		 * should provide a migration function. Anonymous
 | |
| 		 * pages are part of swap space which also has its
 | |
| 		 * own migration function. This is the most common
 | |
| 		 * path for page migration.
 | |
| 		 */
 | |
| 		rc = mapping->a_ops->migratepage(mapping,
 | |
| 						newpage, page);
 | |
| 	else
 | |
| 		rc = fallback_migrate_page(mapping, newpage, page);
 | |
| 
 | |
| 	if (!rc) {
 | |
| 		remove_migration_ptes(page, newpage);
 | |
| 	} else
 | |
| 		newpage->mapping = NULL;
 | |
| 
 | |
| 	unlock_page(newpage);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Obtain the lock on page, remove all ptes and migrate the page
 | |
|  * to the newly allocated page in newpage.
 | |
|  */
 | |
| static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 | |
| 			struct page *page, int force)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	int *result = NULL;
 | |
| 	struct page *newpage = get_new_page(page, private, &result);
 | |
| 	int rcu_locked = 0;
 | |
| 	int charge = 0;
 | |
| 	struct mem_cgroup *mem;
 | |
| 
 | |
| 	if (!newpage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (page_count(page) == 1) {
 | |
| 		/* page was freed from under us. So we are done. */
 | |
| 		goto move_newpage;
 | |
| 	}
 | |
| 
 | |
| 	/* prepare cgroup just returns 0 or -ENOMEM */
 | |
| 	rc = -EAGAIN;
 | |
| 
 | |
| 	if (!trylock_page(page)) {
 | |
| 		if (!force)
 | |
| 			goto move_newpage;
 | |
| 		lock_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/* charge against new page */
 | |
| 	charge = mem_cgroup_prepare_migration(page, &mem);
 | |
| 	if (charge == -ENOMEM) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	BUG_ON(charge);
 | |
| 
 | |
| 	if (PageWriteback(page)) {
 | |
| 		if (!force)
 | |
| 			goto uncharge;
 | |
| 		wait_on_page_writeback(page);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 | |
| 	 * we cannot notice that anon_vma is freed while we migrates a page.
 | |
| 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
 | |
| 	 * of migration. File cache pages are no problem because of page_lock()
 | |
| 	 * File Caches may use write_page() or lock_page() in migration, then,
 | |
| 	 * just care Anon page here.
 | |
| 	 */
 | |
| 	if (PageAnon(page)) {
 | |
| 		rcu_read_lock();
 | |
| 		rcu_locked = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Corner case handling:
 | |
| 	 * 1. When a new swap-cache page is read into, it is added to the LRU
 | |
| 	 * and treated as swapcache but it has no rmap yet.
 | |
| 	 * Calling try_to_unmap() against a page->mapping==NULL page will
 | |
| 	 * trigger a BUG.  So handle it here.
 | |
| 	 * 2. An orphaned page (see truncate_complete_page) might have
 | |
| 	 * fs-private metadata. The page can be picked up due to memory
 | |
| 	 * offlining.  Everywhere else except page reclaim, the page is
 | |
| 	 * invisible to the vm, so the page can not be migrated.  So try to
 | |
| 	 * free the metadata, so the page can be freed.
 | |
| 	 */
 | |
| 	if (!page->mapping) {
 | |
| 		if (!PageAnon(page) && page_has_private(page)) {
 | |
| 			/*
 | |
| 			 * Go direct to try_to_free_buffers() here because
 | |
| 			 * a) that's what try_to_release_page() would do anyway
 | |
| 			 * b) we may be under rcu_read_lock() here, so we can't
 | |
| 			 *    use GFP_KERNEL which is what try_to_release_page()
 | |
| 			 *    needs to be effective.
 | |
| 			 */
 | |
| 			try_to_free_buffers(page);
 | |
| 		}
 | |
| 		goto rcu_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Establish migration ptes or remove ptes */
 | |
| 	try_to_unmap(page, 1);
 | |
| 
 | |
| 	if (!page_mapped(page))
 | |
| 		rc = move_to_new_page(newpage, page);
 | |
| 
 | |
| 	if (rc)
 | |
| 		remove_migration_ptes(page, page);
 | |
| rcu_unlock:
 | |
| 	if (rcu_locked)
 | |
| 		rcu_read_unlock();
 | |
| uncharge:
 | |
| 	if (!charge)
 | |
| 		mem_cgroup_end_migration(mem, page, newpage);
 | |
| unlock:
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	if (rc != -EAGAIN) {
 | |
|  		/*
 | |
|  		 * A page that has been migrated has all references
 | |
|  		 * removed and will be freed. A page that has not been
 | |
|  		 * migrated will have kepts its references and be
 | |
|  		 * restored.
 | |
|  		 */
 | |
|  		list_del(&page->lru);
 | |
| 		putback_lru_page(page);
 | |
| 	}
 | |
| 
 | |
| move_newpage:
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the new page to the LRU. If migration was not successful
 | |
| 	 * then this will free the page.
 | |
| 	 */
 | |
| 	putback_lru_page(newpage);
 | |
| 
 | |
| 	if (result) {
 | |
| 		if (rc)
 | |
| 			*result = rc;
 | |
| 		else
 | |
| 			*result = page_to_nid(newpage);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * migrate_pages
 | |
|  *
 | |
|  * The function takes one list of pages to migrate and a function
 | |
|  * that determines from the page to be migrated and the private data
 | |
|  * the target of the move and allocates the page.
 | |
|  *
 | |
|  * The function returns after 10 attempts or if no pages
 | |
|  * are movable anymore because to has become empty
 | |
|  * or no retryable pages exist anymore. All pages will be
 | |
|  * returned to the LRU or freed.
 | |
|  *
 | |
|  * Return: Number of pages not migrated or error code.
 | |
|  */
 | |
| int migrate_pages(struct list_head *from,
 | |
| 		new_page_t get_new_page, unsigned long private)
 | |
| {
 | |
| 	int retry = 1;
 | |
| 	int nr_failed = 0;
 | |
| 	int pass = 0;
 | |
| 	struct page *page;
 | |
| 	struct page *page2;
 | |
| 	int swapwrite = current->flags & PF_SWAPWRITE;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!swapwrite)
 | |
| 		current->flags |= PF_SWAPWRITE;
 | |
| 
 | |
| 	for(pass = 0; pass < 10 && retry; pass++) {
 | |
| 		retry = 0;
 | |
| 
 | |
| 		list_for_each_entry_safe(page, page2, from, lru) {
 | |
| 			cond_resched();
 | |
| 
 | |
| 			rc = unmap_and_move(get_new_page, private,
 | |
| 						page, pass > 2);
 | |
| 
 | |
| 			switch(rc) {
 | |
| 			case -ENOMEM:
 | |
| 				goto out;
 | |
| 			case -EAGAIN:
 | |
| 				retry++;
 | |
| 				break;
 | |
| 			case 0:
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* Permanent failure */
 | |
| 				nr_failed++;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	if (!swapwrite)
 | |
| 		current->flags &= ~PF_SWAPWRITE;
 | |
| 
 | |
| 	putback_lru_pages(from);
 | |
| 
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	return nr_failed + retry;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Move a list of individual pages
 | |
|  */
 | |
| struct page_to_node {
 | |
| 	unsigned long addr;
 | |
| 	struct page *page;
 | |
| 	int node;
 | |
| 	int status;
 | |
| };
 | |
| 
 | |
| static struct page *new_page_node(struct page *p, unsigned long private,
 | |
| 		int **result)
 | |
| {
 | |
| 	struct page_to_node *pm = (struct page_to_node *)private;
 | |
| 
 | |
| 	while (pm->node != MAX_NUMNODES && pm->page != p)
 | |
| 		pm++;
 | |
| 
 | |
| 	if (pm->node == MAX_NUMNODES)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*result = &pm->status;
 | |
| 
 | |
| 	return alloc_pages_node(pm->node,
 | |
| 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a set of pages as indicated in the pm array. The addr
 | |
|  * field must be set to the virtual address of the page to be moved
 | |
|  * and the node number must contain a valid target node.
 | |
|  * The pm array ends with node = MAX_NUMNODES.
 | |
|  */
 | |
| static int do_move_page_to_node_array(struct mm_struct *mm,
 | |
| 				      struct page_to_node *pm,
 | |
| 				      int migrate_all)
 | |
| {
 | |
| 	int err;
 | |
| 	struct page_to_node *pp;
 | |
| 	LIST_HEAD(pagelist);
 | |
| 
 | |
| 	migrate_prep();
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * Build a list of pages to migrate
 | |
| 	 */
 | |
| 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		err = -EFAULT;
 | |
| 		vma = find_vma(mm, pp->addr);
 | |
| 		if (!vma || !vma_migratable(vma))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		page = follow_page(vma, pp->addr, FOLL_GET);
 | |
| 
 | |
| 		err = PTR_ERR(page);
 | |
| 		if (IS_ERR(page))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		err = -ENOENT;
 | |
| 		if (!page)
 | |
| 			goto set_status;
 | |
| 
 | |
| 		if (PageReserved(page))		/* Check for zero page */
 | |
| 			goto put_and_set;
 | |
| 
 | |
| 		pp->page = page;
 | |
| 		err = page_to_nid(page);
 | |
| 
 | |
| 		if (err == pp->node)
 | |
| 			/*
 | |
| 			 * Node already in the right place
 | |
| 			 */
 | |
| 			goto put_and_set;
 | |
| 
 | |
| 		err = -EACCES;
 | |
| 		if (page_mapcount(page) > 1 &&
 | |
| 				!migrate_all)
 | |
| 			goto put_and_set;
 | |
| 
 | |
| 		err = isolate_lru_page(page);
 | |
| 		if (!err)
 | |
| 			list_add_tail(&page->lru, &pagelist);
 | |
| put_and_set:
 | |
| 		/*
 | |
| 		 * Either remove the duplicate refcount from
 | |
| 		 * isolate_lru_page() or drop the page ref if it was
 | |
| 		 * not isolated.
 | |
| 		 */
 | |
| 		put_page(page);
 | |
| set_status:
 | |
| 		pp->status = err;
 | |
| 	}
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (!list_empty(&pagelist))
 | |
| 		err = migrate_pages(&pagelist, new_page_node,
 | |
| 				(unsigned long)pm);
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Migrate an array of page address onto an array of nodes and fill
 | |
|  * the corresponding array of status.
 | |
|  */
 | |
| static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
 | |
| 			 unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 const int __user *nodes,
 | |
| 			 int __user *status, int flags)
 | |
| {
 | |
| 	struct page_to_node *pm;
 | |
| 	nodemask_t task_nodes;
 | |
| 	unsigned long chunk_nr_pages;
 | |
| 	unsigned long chunk_start;
 | |
| 	int err;
 | |
| 
 | |
| 	task_nodes = cpuset_mems_allowed(task);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!pm)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Store a chunk of page_to_node array in a page,
 | |
| 	 * but keep the last one as a marker
 | |
| 	 */
 | |
| 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
 | |
| 
 | |
| 	for (chunk_start = 0;
 | |
| 	     chunk_start < nr_pages;
 | |
| 	     chunk_start += chunk_nr_pages) {
 | |
| 		int j;
 | |
| 
 | |
| 		if (chunk_start + chunk_nr_pages > nr_pages)
 | |
| 			chunk_nr_pages = nr_pages - chunk_start;
 | |
| 
 | |
| 		/* fill the chunk pm with addrs and nodes from user-space */
 | |
| 		for (j = 0; j < chunk_nr_pages; j++) {
 | |
| 			const void __user *p;
 | |
| 			int node;
 | |
| 
 | |
| 			err = -EFAULT;
 | |
| 			if (get_user(p, pages + j + chunk_start))
 | |
| 				goto out_pm;
 | |
| 			pm[j].addr = (unsigned long) p;
 | |
| 
 | |
| 			if (get_user(node, nodes + j + chunk_start))
 | |
| 				goto out_pm;
 | |
| 
 | |
| 			err = -ENODEV;
 | |
| 			if (!node_state(node, N_HIGH_MEMORY))
 | |
| 				goto out_pm;
 | |
| 
 | |
| 			err = -EACCES;
 | |
| 			if (!node_isset(node, task_nodes))
 | |
| 				goto out_pm;
 | |
| 
 | |
| 			pm[j].node = node;
 | |
| 		}
 | |
| 
 | |
| 		/* End marker for this chunk */
 | |
| 		pm[chunk_nr_pages].node = MAX_NUMNODES;
 | |
| 
 | |
| 		/* Migrate this chunk */
 | |
| 		err = do_move_page_to_node_array(mm, pm,
 | |
| 						 flags & MPOL_MF_MOVE_ALL);
 | |
| 		if (err < 0)
 | |
| 			goto out_pm;
 | |
| 
 | |
| 		/* Return status information */
 | |
| 		for (j = 0; j < chunk_nr_pages; j++)
 | |
| 			if (put_user(pm[j].status, status + j + chunk_start)) {
 | |
| 				err = -EFAULT;
 | |
| 				goto out_pm;
 | |
| 			}
 | |
| 	}
 | |
| 	err = 0;
 | |
| 
 | |
| out_pm:
 | |
| 	free_page((unsigned long)pm);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of an array of pages and store it in an array of status.
 | |
|  */
 | |
| static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 				const void __user **pages, int *status)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		unsigned long addr = (unsigned long)(*pages);
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct page *page;
 | |
| 		int err = -EFAULT;
 | |
| 
 | |
| 		vma = find_vma(mm, addr);
 | |
| 		if (!vma)
 | |
| 			goto set_status;
 | |
| 
 | |
| 		page = follow_page(vma, addr, 0);
 | |
| 
 | |
| 		err = PTR_ERR(page);
 | |
| 		if (IS_ERR(page))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		err = -ENOENT;
 | |
| 		/* Use PageReserved to check for zero page */
 | |
| 		if (!page || PageReserved(page))
 | |
| 			goto set_status;
 | |
| 
 | |
| 		err = page_to_nid(page);
 | |
| set_status:
 | |
| 		*status = err;
 | |
| 
 | |
| 		pages++;
 | |
| 		status++;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the nodes of a user array of pages and store it in
 | |
|  * a user array of status.
 | |
|  */
 | |
| static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
 | |
| 			 const void __user * __user *pages,
 | |
| 			 int __user *status)
 | |
| {
 | |
| #define DO_PAGES_STAT_CHUNK_NR 16
 | |
| 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
 | |
| 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
 | |
| 	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
 | |
| 	int err;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i += chunk_nr) {
 | |
| 		if (chunk_nr + i > nr_pages)
 | |
| 			chunk_nr = nr_pages - i;
 | |
| 
 | |
| 		err = copy_from_user(chunk_pages, &pages[i],
 | |
| 				     chunk_nr * sizeof(*chunk_pages));
 | |
| 		if (err) {
 | |
| 			err = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
 | |
| 
 | |
| 		err = copy_to_user(&status[i], chunk_status,
 | |
| 				   chunk_nr * sizeof(*chunk_status));
 | |
| 		if (err) {
 | |
| 			err = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a list of pages in the address space of the currently executing
 | |
|  * process.
 | |
|  */
 | |
| SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
 | |
| 		const void __user * __user *, pages,
 | |
| 		const int __user *, nodes,
 | |
| 		int __user *, status, int, flags)
 | |
| {
 | |
| 	const struct cred *cred = current_cred(), *tcred;
 | |
| 	struct task_struct *task;
 | |
| 	struct mm_struct *mm;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Check flags */
 | |
| 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Find the mm_struct */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	task = pid ? find_task_by_vpid(pid) : current;
 | |
| 	if (!task) {
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	mm = get_task_mm(task);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (!mm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this process has the right to modify the specified
 | |
| 	 * process. The right exists if the process has administrative
 | |
| 	 * capabilities, superuser privileges or the same
 | |
| 	 * userid as the target process.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	tcred = __task_cred(task);
 | |
| 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
 | |
| 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
 | |
| 	    !capable(CAP_SYS_NICE)) {
 | |
| 		rcu_read_unlock();
 | |
| 		err = -EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
|  	err = security_task_movememory(task);
 | |
|  	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (nodes) {
 | |
| 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
 | |
| 				    flags);
 | |
| 	} else {
 | |
| 		err = do_pages_stat(mm, nr_pages, pages, status);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mmput(mm);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Call migration functions in the vma_ops that may prepare
 | |
|  * memory in a vm for migration. migration functions may perform
 | |
|  * the migration for vmas that do not have an underlying page struct.
 | |
|  */
 | |
| int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
 | |
| 	const nodemask_t *from, unsigned long flags)
 | |
| {
 | |
|  	struct vm_area_struct *vma;
 | |
|  	int err = 0;
 | |
| 
 | |
| 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
 | |
|  		if (vma->vm_ops && vma->vm_ops->migrate) {
 | |
|  			err = vma->vm_ops->migrate(vma, to, from, flags);
 | |
|  			if (err)
 | |
|  				break;
 | |
|  		}
 | |
|  	}
 | |
|  	return err;
 | |
| }
 | |
| #endif
 |