linux/drivers/net/dsa/microchip/ksz8795.c
Michael Grzeschik ec4b94f9b3 net: phy: micrel: move phy reg offsets to common header
Some micrel devices share the same PHY register defines. This patch
moves them to one common header so other drivers can reuse them.
And reuse generic MII_* defines where possible.

Signed-off-by: Michael Grzeschik <m.grzeschik@pengutronix.de>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-14 12:54:43 -07:00

1661 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ8795 switch driver
*
* Copyright (C) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/micrel_phy.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz_common.h"
#include "ksz8795_reg.h"
#include "ksz8.h"
static const u8 ksz8795_regs[] = {
[REG_IND_CTRL_0] = 0x6E,
[REG_IND_DATA_8] = 0x70,
[REG_IND_DATA_CHECK] = 0x72,
[REG_IND_DATA_HI] = 0x71,
[REG_IND_DATA_LO] = 0x75,
[REG_IND_MIB_CHECK] = 0x74,
[P_FORCE_CTRL] = 0x0C,
[P_LINK_STATUS] = 0x0E,
[P_LOCAL_CTRL] = 0x07,
[P_NEG_RESTART_CTRL] = 0x0D,
[P_REMOTE_STATUS] = 0x08,
[P_SPEED_STATUS] = 0x09,
[S_TAIL_TAG_CTRL] = 0x0C,
};
static const u32 ksz8795_masks[] = {
[PORT_802_1P_REMAPPING] = BIT(7),
[SW_TAIL_TAG_ENABLE] = BIT(1),
[MIB_COUNTER_OVERFLOW] = BIT(6),
[MIB_COUNTER_VALID] = BIT(5),
[VLAN_TABLE_FID] = GENMASK(6, 0),
[VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7),
[VLAN_TABLE_VALID] = BIT(12),
[STATIC_MAC_TABLE_VALID] = BIT(21),
[STATIC_MAC_TABLE_USE_FID] = BIT(23),
[STATIC_MAC_TABLE_FID] = GENMASK(30, 24),
[STATIC_MAC_TABLE_OVERRIDE] = BIT(26),
[STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(24, 20),
[DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0),
[DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(8),
[DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
[DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29),
[DYNAMIC_MAC_TABLE_FID] = GENMASK(26, 20),
[DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24),
[DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27),
};
static const u8 ksz8795_shifts[] = {
[VLAN_TABLE_MEMBERSHIP_S] = 7,
[VLAN_TABLE] = 16,
[STATIC_MAC_FWD_PORTS] = 16,
[STATIC_MAC_FID] = 24,
[DYNAMIC_MAC_ENTRIES_H] = 3,
[DYNAMIC_MAC_ENTRIES] = 29,
[DYNAMIC_MAC_FID] = 16,
[DYNAMIC_MAC_TIMESTAMP] = 27,
[DYNAMIC_MAC_SRC_PORT] = 24,
};
static const u8 ksz8863_regs[] = {
[REG_IND_CTRL_0] = 0x79,
[REG_IND_DATA_8] = 0x7B,
[REG_IND_DATA_CHECK] = 0x7B,
[REG_IND_DATA_HI] = 0x7C,
[REG_IND_DATA_LO] = 0x80,
[REG_IND_MIB_CHECK] = 0x80,
[P_FORCE_CTRL] = 0x0C,
[P_LINK_STATUS] = 0x0E,
[P_LOCAL_CTRL] = 0x0C,
[P_NEG_RESTART_CTRL] = 0x0D,
[P_REMOTE_STATUS] = 0x0E,
[P_SPEED_STATUS] = 0x0F,
[S_TAIL_TAG_CTRL] = 0x03,
};
static const u32 ksz8863_masks[] = {
[PORT_802_1P_REMAPPING] = BIT(3),
[SW_TAIL_TAG_ENABLE] = BIT(6),
[MIB_COUNTER_OVERFLOW] = BIT(7),
[MIB_COUNTER_VALID] = BIT(6),
[VLAN_TABLE_FID] = GENMASK(15, 12),
[VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16),
[VLAN_TABLE_VALID] = BIT(19),
[STATIC_MAC_TABLE_VALID] = BIT(19),
[STATIC_MAC_TABLE_USE_FID] = BIT(21),
[STATIC_MAC_TABLE_FID] = GENMASK(29, 26),
[STATIC_MAC_TABLE_OVERRIDE] = BIT(20),
[STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16),
[DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(5, 0),
[DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7),
[DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7),
[DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 28),
[DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16),
[DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20),
[DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22),
};
static u8 ksz8863_shifts[] = {
[VLAN_TABLE_MEMBERSHIP_S] = 16,
[STATIC_MAC_FWD_PORTS] = 16,
[STATIC_MAC_FID] = 22,
[DYNAMIC_MAC_ENTRIES_H] = 3,
[DYNAMIC_MAC_ENTRIES] = 24,
[DYNAMIC_MAC_FID] = 16,
[DYNAMIC_MAC_TIMESTAMP] = 24,
[DYNAMIC_MAC_SRC_PORT] = 20,
};
struct mib_names {
char string[ETH_GSTRING_LEN];
};
static const struct mib_names ksz87xx_mib_names[] = {
{ "rx_hi" },
{ "rx_undersize" },
{ "rx_fragments" },
{ "rx_oversize" },
{ "rx_jabbers" },
{ "rx_symbol_err" },
{ "rx_crc_err" },
{ "rx_align_err" },
{ "rx_mac_ctrl" },
{ "rx_pause" },
{ "rx_bcast" },
{ "rx_mcast" },
{ "rx_ucast" },
{ "rx_64_or_less" },
{ "rx_65_127" },
{ "rx_128_255" },
{ "rx_256_511" },
{ "rx_512_1023" },
{ "rx_1024_1522" },
{ "rx_1523_2000" },
{ "rx_2001" },
{ "tx_hi" },
{ "tx_late_col" },
{ "tx_pause" },
{ "tx_bcast" },
{ "tx_mcast" },
{ "tx_ucast" },
{ "tx_deferred" },
{ "tx_total_col" },
{ "tx_exc_col" },
{ "tx_single_col" },
{ "tx_mult_col" },
{ "rx_total" },
{ "tx_total" },
{ "rx_discards" },
{ "tx_discards" },
};
static const struct mib_names ksz88xx_mib_names[] = {
{ "rx" },
{ "rx_hi" },
{ "rx_undersize" },
{ "rx_fragments" },
{ "rx_oversize" },
{ "rx_jabbers" },
{ "rx_symbol_err" },
{ "rx_crc_err" },
{ "rx_align_err" },
{ "rx_mac_ctrl" },
{ "rx_pause" },
{ "rx_bcast" },
{ "rx_mcast" },
{ "rx_ucast" },
{ "rx_64_or_less" },
{ "rx_65_127" },
{ "rx_128_255" },
{ "rx_256_511" },
{ "rx_512_1023" },
{ "rx_1024_1522" },
{ "tx" },
{ "tx_hi" },
{ "tx_late_col" },
{ "tx_pause" },
{ "tx_bcast" },
{ "tx_mcast" },
{ "tx_ucast" },
{ "tx_deferred" },
{ "tx_total_col" },
{ "tx_exc_col" },
{ "tx_single_col" },
{ "tx_mult_col" },
{ "rx_discards" },
{ "tx_discards" },
};
static bool ksz_is_ksz88x3(struct ksz_device *dev)
{
return dev->chip_id == 0x8830;
}
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int ksz8_reset_switch(struct ksz_device *dev)
{
if (ksz_is_ksz88x3(dev)) {
/* reset switch */
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
} else {
/* reset switch */
ksz_write8(dev, REG_POWER_MANAGEMENT_1,
SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
}
return 0;
}
static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
{
u8 hi, lo;
/* Number of queues can only be 1, 2, or 4. */
switch (queue) {
case 4:
case 3:
queue = PORT_QUEUE_SPLIT_4;
break;
case 2:
queue = PORT_QUEUE_SPLIT_2;
break;
default:
queue = PORT_QUEUE_SPLIT_1;
}
ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
lo &= ~PORT_QUEUE_SPLIT_L;
if (queue & PORT_QUEUE_SPLIT_2)
lo |= PORT_QUEUE_SPLIT_L;
hi &= ~PORT_QUEUE_SPLIT_H;
if (queue & PORT_QUEUE_SPLIT_4)
hi |= PORT_QUEUE_SPLIT_H;
ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
/* Default is port based for egress rate limit. */
if (queue != PORT_QUEUE_SPLIT_1)
ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
true);
}
static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
{
struct ksz8 *ksz8 = dev->priv;
const u32 *masks;
const u8 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = ksz8->masks;
regs = ksz8->regs;
ctrl_addr = addr + dev->reg_mib_cnt * port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_COUNTER_VALUE + 1;
*cnt += data & MIB_COUNTER_VALUE;
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
struct ksz8 *ksz8 = dev->priv;
const u32 *masks;
const u8 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = ksz8->masks;
regs = ksz8->regs;
addr -= dev->reg_mib_cnt;
ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (addr < 2) {
u64 total;
total = check & MIB_TOTAL_BYTES_H;
total <<= 32;
*cnt += total;
*cnt += data;
if (check & masks[MIB_COUNTER_OVERFLOW]) {
total = MIB_TOTAL_BYTES_H + 1;
total <<= 32;
*cnt += total;
}
} else {
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_PACKET_DROPPED + 1;
*cnt += data & MIB_PACKET_DROPPED;
}
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *regs = ksz8->regs;
u32 *last = (u32 *)dropped;
u16 ctrl_addr;
u32 data;
u32 cur;
addr -= dev->reg_mib_cnt;
ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
KSZ8863_MIB_PACKET_DROPPED_RX_0;
ctrl_addr += port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
mutex_unlock(&dev->alu_mutex);
data &= MIB_PACKET_DROPPED;
cur = last[addr];
if (data != cur) {
last[addr] = data;
if (data < cur)
data += MIB_PACKET_DROPPED + 1;
data -= cur;
*cnt += data;
}
}
static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
if (ksz_is_ksz88x3(dev))
ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
else
ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
}
static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
if (ksz_is_ksz88x3(dev))
return;
/* enable the port for flush/freeze function */
if (freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
/* disable the port after freeze is done */
if (!freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
u64 *dropped;
if (!ksz_is_ksz88x3(dev)) {
/* flush all enabled port MIB counters */
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
mib->cnt_ptr = 0;
/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->reg_mib_cnt) {
dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
&mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
/* last one in storage */
dropped = &mib->counters[dev->mib_cnt];
/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->mib_cnt) {
dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
dropped, &mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
mib->cnt_ptr = 0;
memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
}
static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *regs = ksz8->regs;
u16 ctrl_addr;
ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
ksz_read64(dev, regs[REG_IND_DATA_HI], data);
mutex_unlock(&dev->alu_mutex);
}
static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *regs = ksz8->regs;
u16 ctrl_addr;
ctrl_addr = IND_ACC_TABLE(table) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write64(dev, regs[REG_IND_DATA_HI], data);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
mutex_unlock(&dev->alu_mutex);
}
static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
{
struct ksz8 *ksz8 = dev->priv;
int timeout = 100;
const u32 *masks;
const u8 *regs;
masks = ksz8->masks;
regs = ksz8->regs;
do {
ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
timeout--;
} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
/* Entry is not ready for accessing. */
if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
return -EAGAIN;
/* Entry is ready for accessing. */
} else {
ksz_read8(dev, regs[REG_IND_DATA_8], data);
/* There is no valid entry in the table. */
if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
return -ENXIO;
}
return 0;
}
static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
u8 *mac_addr, u8 *fid, u8 *src_port,
u8 *timestamp, u16 *entries)
{
struct ksz8 *ksz8 = dev->priv;
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
const u8 *regs;
u16 ctrl_addr;
u8 data;
int rc;
shifts = ksz8->shifts;
masks = ksz8->masks;
regs = ksz8->regs;
ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
rc = ksz8_valid_dyn_entry(dev, &data);
if (rc == -EAGAIN) {
if (addr == 0)
*entries = 0;
} else if (rc == -ENXIO) {
*entries = 0;
/* At least one valid entry in the table. */
} else {
u64 buf = 0;
int cnt;
ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
data_hi = (u32)(buf >> 32);
data_lo = (u32)buf;
/* Check out how many valid entry in the table. */
cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
shifts[DYNAMIC_MAC_ENTRIES];
*entries = cnt + 1;
*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
shifts[DYNAMIC_MAC_FID];
*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
shifts[DYNAMIC_MAC_SRC_PORT];
*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
shifts[DYNAMIC_MAC_TIMESTAMP];
mac_addr[5] = (u8)data_lo;
mac_addr[4] = (u8)(data_lo >> 8);
mac_addr[3] = (u8)(data_lo >> 16);
mac_addr[2] = (u8)(data_lo >> 24);
mac_addr[1] = (u8)data_hi;
mac_addr[0] = (u8)(data_hi >> 8);
rc = 0;
}
mutex_unlock(&dev->alu_mutex);
return rc;
}
static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
struct ksz8 *ksz8 = dev->priv;
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
shifts = ksz8->shifts;
masks = ksz8->masks;
ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
data_hi = data >> 32;
data_lo = (u32)data;
if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
masks[STATIC_MAC_TABLE_OVERRIDE])) {
alu->mac[5] = (u8)data_lo;
alu->mac[4] = (u8)(data_lo >> 8);
alu->mac[3] = (u8)(data_lo >> 16);
alu->mac[2] = (u8)(data_lo >> 24);
alu->mac[1] = (u8)data_hi;
alu->mac[0] = (u8)(data_hi >> 8);
alu->port_forward =
(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
shifts[STATIC_MAC_FWD_PORTS];
alu->is_override =
(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
data_hi >>= 1;
alu->is_static = true;
alu->is_use_fid =
(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
shifts[STATIC_MAC_FID];
return 0;
}
return -ENXIO;
}
static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
struct ksz8 *ksz8 = dev->priv;
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
shifts = ksz8->shifts;
masks = ksz8->masks;
data_lo = ((u32)alu->mac[2] << 24) |
((u32)alu->mac[3] << 16) |
((u32)alu->mac[4] << 8) | alu->mac[5];
data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
if (alu->is_override)
data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
if (alu->is_use_fid) {
data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
}
if (alu->is_static)
data_hi |= masks[STATIC_MAC_TABLE_VALID];
else
data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
data = (u64)data_hi << 32 | data_lo;
ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
}
static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
u8 *member, u8 *valid)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *shifts;
const u32 *masks;
shifts = ksz8->shifts;
masks = ksz8->masks;
*fid = vlan & masks[VLAN_TABLE_FID];
*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
shifts[VLAN_TABLE_MEMBERSHIP_S];
*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
}
static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
u16 *vlan)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *shifts;
const u32 *masks;
shifts = ksz8->shifts;
masks = ksz8->masks;
*vlan = fid;
*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
if (valid)
*vlan |= masks[VLAN_TABLE_VALID];
}
static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
{
struct ksz8 *ksz8 = dev->priv;
const u8 *shifts;
u64 data;
int i;
shifts = ksz8->shifts;
ksz8_r_table(dev, TABLE_VLAN, addr, &data);
addr *= dev->phy_port_cnt;
for (i = 0; i < dev->phy_port_cnt; i++) {
dev->vlan_cache[addr + i].table[0] = (u16)data;
data >>= shifts[VLAN_TABLE];
}
}
static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / dev->phy_port_cnt;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
*vlan = data[index];
}
static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / dev->phy_port_cnt;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
data[index] = vlan;
dev->vlan_cache[vid].table[0] = vlan;
ksz8_w_table(dev, TABLE_VLAN, addr, buf);
}
static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
{
struct ksz8 *ksz8 = dev->priv;
u8 restart, speed, ctrl, link;
const u8 *regs = ksz8->regs;
int processed = true;
u16 data = 0;
u8 p = phy;
switch (reg) {
case MII_BMCR:
ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
if (restart & PORT_PHY_LOOPBACK)
data |= BMCR_LOOPBACK;
if (ctrl & PORT_FORCE_100_MBIT)
data |= BMCR_SPEED100;
if (ksz_is_ksz88x3(dev)) {
if ((ctrl & PORT_AUTO_NEG_ENABLE))
data |= BMCR_ANENABLE;
} else {
if (!(ctrl & PORT_AUTO_NEG_DISABLE))
data |= BMCR_ANENABLE;
}
if (restart & PORT_POWER_DOWN)
data |= BMCR_PDOWN;
if (restart & PORT_AUTO_NEG_RESTART)
data |= BMCR_ANRESTART;
if (ctrl & PORT_FORCE_FULL_DUPLEX)
data |= BMCR_FULLDPLX;
if (speed & PORT_HP_MDIX)
data |= KSZ886X_BMCR_HP_MDIX;
if (restart & PORT_FORCE_MDIX)
data |= KSZ886X_BMCR_FORCE_MDI;
if (restart & PORT_AUTO_MDIX_DISABLE)
data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
if (restart & PORT_TX_DISABLE)
data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
if (restart & PORT_LED_OFF)
data |= KSZ886X_BMCR_DISABLE_LED;
break;
case MII_BMSR:
ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
data = BMSR_100FULL |
BMSR_100HALF |
BMSR_10FULL |
BMSR_10HALF |
BMSR_ANEGCAPABLE;
if (link & PORT_AUTO_NEG_COMPLETE)
data |= BMSR_ANEGCOMPLETE;
if (link & PORT_STAT_LINK_GOOD)
data |= BMSR_LSTATUS;
break;
case MII_PHYSID1:
data = KSZ8795_ID_HI;
break;
case MII_PHYSID2:
if (ksz_is_ksz88x3(dev))
data = KSZ8863_ID_LO;
else
data = KSZ8795_ID_LO;
break;
case MII_ADVERTISE:
ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
data = ADVERTISE_CSMA;
if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
data |= ADVERTISE_PAUSE_CAP;
if (ctrl & PORT_AUTO_NEG_100BTX_FD)
data |= ADVERTISE_100FULL;
if (ctrl & PORT_AUTO_NEG_100BTX)
data |= ADVERTISE_100HALF;
if (ctrl & PORT_AUTO_NEG_10BT_FD)
data |= ADVERTISE_10FULL;
if (ctrl & PORT_AUTO_NEG_10BT)
data |= ADVERTISE_10HALF;
break;
case MII_LPA:
ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
data = LPA_SLCT;
if (link & PORT_REMOTE_SYM_PAUSE)
data |= LPA_PAUSE_CAP;
if (link & PORT_REMOTE_100BTX_FD)
data |= LPA_100FULL;
if (link & PORT_REMOTE_100BTX)
data |= LPA_100HALF;
if (link & PORT_REMOTE_10BT_FD)
data |= LPA_10FULL;
if (link & PORT_REMOTE_10BT)
data |= LPA_10HALF;
if (data & ~LPA_SLCT)
data |= LPA_LPACK;
break;
default:
processed = false;
break;
}
if (processed)
*val = data;
}
static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
{
struct ksz8 *ksz8 = dev->priv;
u8 restart, speed, ctrl, data;
const u8 *regs = ksz8->regs;
u8 p = phy;
switch (reg) {
case MII_BMCR:
/* Do not support PHY reset function. */
if (val & BMCR_RESET)
break;
ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
data = speed;
if (val & KSZ886X_BMCR_HP_MDIX)
data |= PORT_HP_MDIX;
else
data &= ~PORT_HP_MDIX;
if (data != speed)
ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
data = ctrl;
if (ksz_is_ksz88x3(dev)) {
if ((val & BMCR_ANENABLE))
data |= PORT_AUTO_NEG_ENABLE;
else
data &= ~PORT_AUTO_NEG_ENABLE;
} else {
if (!(val & BMCR_ANENABLE))
data |= PORT_AUTO_NEG_DISABLE;
else
data &= ~PORT_AUTO_NEG_DISABLE;
/* Fiber port does not support auto-negotiation. */
if (dev->ports[p].fiber)
data |= PORT_AUTO_NEG_DISABLE;
}
if (val & BMCR_SPEED100)
data |= PORT_FORCE_100_MBIT;
else
data &= ~PORT_FORCE_100_MBIT;
if (val & BMCR_FULLDPLX)
data |= PORT_FORCE_FULL_DUPLEX;
else
data &= ~PORT_FORCE_FULL_DUPLEX;
if (data != ctrl)
ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
data = restart;
if (val & KSZ886X_BMCR_DISABLE_LED)
data |= PORT_LED_OFF;
else
data &= ~PORT_LED_OFF;
if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
data |= PORT_TX_DISABLE;
else
data &= ~PORT_TX_DISABLE;
if (val & BMCR_ANRESTART)
data |= PORT_AUTO_NEG_RESTART;
else
data &= ~(PORT_AUTO_NEG_RESTART);
if (val & BMCR_PDOWN)
data |= PORT_POWER_DOWN;
else
data &= ~PORT_POWER_DOWN;
if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
data |= PORT_AUTO_MDIX_DISABLE;
else
data &= ~PORT_AUTO_MDIX_DISABLE;
if (val & KSZ886X_BMCR_FORCE_MDI)
data |= PORT_FORCE_MDIX;
else
data &= ~PORT_FORCE_MDIX;
if (val & BMCR_LOOPBACK)
data |= PORT_PHY_LOOPBACK;
else
data &= ~PORT_PHY_LOOPBACK;
if (data != restart)
ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
break;
case MII_ADVERTISE:
ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
data = ctrl;
data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT_FD |
PORT_AUTO_NEG_10BT);
if (val & ADVERTISE_PAUSE_CAP)
data |= PORT_AUTO_NEG_SYM_PAUSE;
if (val & ADVERTISE_100FULL)
data |= PORT_AUTO_NEG_100BTX_FD;
if (val & ADVERTISE_100HALF)
data |= PORT_AUTO_NEG_100BTX;
if (val & ADVERTISE_10FULL)
data |= PORT_AUTO_NEG_10BT_FD;
if (val & ADVERTISE_10HALF)
data |= PORT_AUTO_NEG_10BT;
if (data != ctrl)
ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
break;
default:
break;
}
}
static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
struct ksz_device *dev = ds->priv;
/* ksz88x3 uses the same tag schema as KSZ9893 */
return ksz_is_ksz88x3(dev) ?
DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
}
static void ksz8_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
struct ksz_device *dev = ds->priv;
int i;
for (i = 0; i < dev->mib_cnt; i++) {
memcpy(buf + i * ETH_GSTRING_LEN,
dev->mib_names[i].string, ETH_GSTRING_LEN);
}
}
static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
{
u8 data;
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
data &= ~PORT_VLAN_MEMBERSHIP;
data |= (member & dev->port_mask);
ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
dev->ports[port].member = member;
}
static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct ksz_device *dev = ds->priv;
int forward = dev->member;
struct ksz_port *p;
int member = -1;
u8 data;
p = &dev->ports[port];
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
if (port < dev->phy_port_cnt)
member = 0;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
if (port < dev->phy_port_cnt &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
/* This function is also used internally. */
if (port == dev->cpu_port)
break;
/* Port is a member of a bridge. */
if (dev->br_member & BIT(port)) {
dev->member |= BIT(port);
member = dev->member;
} else {
member = dev->host_mask | p->vid_member;
}
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
if (port < dev->phy_port_cnt &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
p->stp_state = state;
/* Port membership may share register with STP state. */
if (member >= 0 && member != p->member)
ksz8_cfg_port_member(dev, port, (u8)member);
/* Check if forwarding needs to be updated. */
if (state != BR_STATE_FORWARDING) {
if (dev->br_member & BIT(port))
dev->member &= ~BIT(port);
}
/* When topology has changed the function ksz_update_port_member
* should be called to modify port forwarding behavior.
*/
if (forward != dev->member)
ksz_update_port_member(dev, port);
}
static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 learn[DSA_MAX_PORTS];
int first, index, cnt;
struct ksz_port *p;
if ((uint)port < dev->port_cnt) {
first = port;
cnt = port + 1;
} else {
/* Flush all ports. */
first = 0;
cnt = dev->port_cnt;
}
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, P_STP_CTRL,
learn[index] | PORT_LEARN_DISABLE);
}
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
}
}
static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
struct netlink_ext_ack *extack)
{
struct ksz_device *dev = ds->priv;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
return 0;
}
static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_device *dev = ds->priv;
u16 data, new_pvid = 0;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
/* First time to setup the VLAN entry. */
if (!valid) {
/* Need to find a way to map VID to FID. */
fid = 1;
valid = 1;
}
member |= BIT(port);
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
new_pvid = vlan->vid;
if (new_pvid) {
u16 vid;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
vid &= 0xfff;
vid |= new_pvid;
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
}
return 0;
}
static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_device *dev = ds->priv;
u16 data, pvid, new_pvid = 0;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
pvid = pvid & 0xFFF;
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
member &= ~BIT(port);
/* Invalidate the entry if no more member. */
if (!member) {
fid = 0;
valid = 0;
}
if (pvid == vlan->vid)
new_pvid = 1;
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
if (new_pvid != pvid)
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, pvid);
return 0;
}
static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct ksz_device *dev = ds->priv;
if (ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
dev->mirror_rx |= BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
dev->mirror_tx |= BIT(port);
}
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
if (dev->mirror_rx || dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
return 0;
}
static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
dev->mirror_rx &= ~BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
dev->mirror_tx &= ~BIT(port);
}
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!dev->mirror_rx && !dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
{
struct ksz_port *p = &dev->ports[port];
u8 data8;
if (!p->interface && dev->compat_interface) {
dev_warn(dev->dev,
"Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
"Please update your device tree.\n",
port);
p->interface = dev->compat_interface;
}
/* Configure MII interface for proper network communication. */
ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
data8 &= ~PORT_INTERFACE_TYPE;
data8 &= ~PORT_GMII_1GPS_MODE;
switch (p->interface) {
case PHY_INTERFACE_MODE_MII:
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_RMII:
data8 |= PORT_INTERFACE_RMII;
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_GMII:
data8 |= PORT_GMII_1GPS_MODE;
data8 |= PORT_INTERFACE_GMII;
p->phydev.speed = SPEED_1000;
break;
default:
data8 &= ~PORT_RGMII_ID_IN_ENABLE;
data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
data8 |= PORT_RGMII_ID_IN_ENABLE;
if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
data8 |= PORT_RGMII_ID_OUT_ENABLE;
data8 |= PORT_GMII_1GPS_MODE;
data8 |= PORT_INTERFACE_RGMII;
p->phydev.speed = SPEED_1000;
break;
}
ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
p->phydev.duplex = 1;
}
static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct ksz_port *p = &dev->ports[port];
struct ksz8 *ksz8 = dev->priv;
const u32 *masks;
u8 member;
masks = ksz8->masks;
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
if (!ksz_is_ksz88x3(dev))
ksz8795_set_prio_queue(dev, port, 4);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, P_802_1P_CTRL,
masks[PORT_802_1P_REMAPPING], false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
if (cpu_port) {
if (!ksz_is_ksz88x3(dev))
ksz8795_cpu_interface_select(dev, port);
member = dev->port_mask;
} else {
member = dev->host_mask | p->vid_member;
}
ksz8_cfg_port_member(dev, port, member);
}
static void ksz8_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz8 *ksz8 = dev->priv;
const u8 *regs = ksz8->regs;
struct ksz_port *p;
const u32 *masks;
u8 remote;
int i;
masks = ksz8->masks;
/* Switch marks the maximum frame with extra byte as oversize. */
ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
p = &dev->ports[dev->cpu_port];
p->vid_member = dev->port_mask;
p->on = 1;
ksz8_port_setup(dev, dev->cpu_port, true);
dev->member = dev->host_mask;
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
/* Initialize to non-zero so that ksz_cfg_port_member() will
* be called.
*/
p->vid_member = BIT(i);
p->member = dev->port_mask;
ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
/* Last port may be disabled. */
if (i == dev->phy_port_cnt)
break;
p->on = 1;
p->phy = 1;
}
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
if (!p->on)
continue;
if (!ksz_is_ksz88x3(dev)) {
ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
if (remote & PORT_FIBER_MODE)
p->fiber = 1;
}
if (p->fiber)
ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
true);
else
ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
false);
}
}
static int ksz8_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct alu_struct alu;
int i, ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz8_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
/* Enable automatic fast aging when link changed detected. */
ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
/* Enable aggressive back off algorithm in half duplex mode. */
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
/*
* Make sure unicast VLAN boundary is set as default and
* enable no excessive collision drop.
*/
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
ksz8_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
/* set broadcast storm protection 10% rate */
regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
BROADCAST_STORM_RATE,
(BROADCAST_STORM_VALUE *
BROADCAST_STORM_PROT_RATE) / 100);
for (i = 0; i < (dev->num_vlans / 4); i++)
ksz8_r_vlan_entries(dev, i);
/* Setup STP address for STP operation. */
memset(&alu, 0, sizeof(alu));
ether_addr_copy(alu.mac, eth_stp_addr);
alu.is_static = true;
alu.is_override = true;
alu.port_forward = dev->host_mask;
ksz8_w_sta_mac_table(dev, 0, &alu);
ksz_init_mib_timer(dev);
ds->configure_vlan_while_not_filtering = false;
return 0;
}
static const struct dsa_switch_ops ksz8_switch_ops = {
.get_tag_protocol = ksz8_get_tag_protocol,
.setup = ksz8_setup,
.phy_read = ksz_phy_read16,
.phy_write = ksz_phy_write16,
.phylink_mac_link_down = ksz_mac_link_down,
.port_enable = ksz_enable_port,
.get_strings = ksz8_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_bridge_join = ksz_port_bridge_join,
.port_bridge_leave = ksz_port_bridge_leave,
.port_stp_state_set = ksz8_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz8_port_vlan_filtering,
.port_vlan_add = ksz8_port_vlan_add,
.port_vlan_del = ksz8_port_vlan_del,
.port_fdb_dump = ksz_port_fdb_dump,
.port_mdb_add = ksz_port_mdb_add,
.port_mdb_del = ksz_port_mdb_del,
.port_mirror_add = ksz8_port_mirror_add,
.port_mirror_del = ksz8_port_mirror_del,
};
static u32 ksz8_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
static int ksz8_switch_detect(struct ksz_device *dev)
{
u8 id1, id2;
u16 id16;
int ret;
/* read chip id */
ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
if (ret)
return ret;
id1 = id16 >> 8;
id2 = id16 & SW_CHIP_ID_M;
switch (id1) {
case KSZ87_FAMILY_ID:
if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
return -ENODEV;
if (id2 == CHIP_ID_95) {
u8 val;
id2 = 0x95;
ksz_read8(dev, REG_PORT_STATUS_0, &val);
if (val & PORT_FIBER_MODE)
id2 = 0x65;
} else if (id2 == CHIP_ID_94) {
id2 = 0x94;
}
break;
case KSZ88_FAMILY_ID:
if (id2 != CHIP_ID_63)
return -ENODEV;
break;
default:
dev_err(dev->dev, "invalid family id: %d\n", id1);
return -ENODEV;
}
id16 &= ~0xff;
id16 |= id2;
dev->chip_id = id16;
return 0;
}
struct ksz_chip_data {
u16 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
};
static const struct ksz_chip_data ksz8_switch_chips[] = {
{
.chip_id = 0x8795,
.dev_name = "KSZ8795",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total cpu and user ports */
},
{
/*
* WARNING
* =======
* KSZ8794 is similar to KSZ8795, except the port map
* contains a gap between external and CPU ports, the
* port map is NOT continuous. The per-port register
* map is shifted accordingly too, i.e. registers at
* offset 0x40 are NOT used on KSZ8794 and they ARE
* used on KSZ8795 for external port 3.
* external cpu
* KSZ8794 0,1,2 4
* KSZ8795 0,1,2,3 4
* KSZ8765 0,1,2,3 4
*/
.chip_id = 0x8794,
.dev_name = "KSZ8794",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 4, /* total cpu and user ports */
},
{
.chip_id = 0x8765,
.dev_name = "KSZ8765",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 5, /* total cpu and user ports */
},
{
.chip_id = 0x8830,
.dev_name = "KSZ8863/KSZ8873",
.num_vlans = 16,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x4, /* can be configured as cpu port */
.port_cnt = 3,
},
};
static int ksz8_switch_init(struct ksz_device *dev)
{
struct ksz8 *ksz8 = dev->priv;
int i;
dev->ds->ops = &ksz8_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz8_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = fls(chip->cpu_ports);
dev->cpu_port = fls(chip->cpu_ports) - 1;
dev->phy_port_cnt = dev->port_cnt - 1;
dev->cpu_ports = chip->cpu_ports;
dev->host_mask = chip->cpu_ports;
dev->port_mask = (BIT(dev->phy_port_cnt) - 1) |
chip->cpu_ports;
break;
}
}
/* no switch found */
if (!dev->cpu_ports)
return -ENODEV;
if (ksz_is_ksz88x3(dev)) {
ksz8->regs = ksz8863_regs;
ksz8->masks = ksz8863_masks;
ksz8->shifts = ksz8863_shifts;
dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names);
dev->mib_names = ksz88xx_mib_names;
} else {
ksz8->regs = ksz8795_regs;
ksz8->masks = ksz8795_masks;
ksz8->shifts = ksz8795_shifts;
dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names);
dev->mib_names = ksz87xx_mib_names;
}
dev->reg_mib_cnt = MIB_COUNTER_NUM;
dev->ports = devm_kzalloc(dev->dev,
dev->port_cnt * sizeof(struct ksz_port),
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
for (i = 0; i < dev->port_cnt; i++) {
mutex_init(&dev->ports[i].mib.cnt_mutex);
dev->ports[i].mib.counters =
devm_kzalloc(dev->dev,
sizeof(u64) *
(dev->mib_cnt + 1),
GFP_KERNEL);
if (!dev->ports[i].mib.counters)
return -ENOMEM;
}
/* set the real number of ports */
dev->ds->num_ports = dev->port_cnt;
return 0;
}
static void ksz8_switch_exit(struct ksz_device *dev)
{
ksz8_reset_switch(dev);
}
static const struct ksz_dev_ops ksz8_dev_ops = {
.get_port_addr = ksz8_get_port_addr,
.cfg_port_member = ksz8_cfg_port_member,
.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
.port_setup = ksz8_port_setup,
.r_phy = ksz8_r_phy,
.w_phy = ksz8_w_phy,
.r_dyn_mac_table = ksz8_r_dyn_mac_table,
.r_sta_mac_table = ksz8_r_sta_mac_table,
.w_sta_mac_table = ksz8_w_sta_mac_table,
.r_mib_cnt = ksz8_r_mib_cnt,
.r_mib_pkt = ksz8_r_mib_pkt,
.freeze_mib = ksz8_freeze_mib,
.port_init_cnt = ksz8_port_init_cnt,
.shutdown = ksz8_reset_switch,
.detect = ksz8_switch_detect,
.init = ksz8_switch_init,
.exit = ksz8_switch_exit,
};
int ksz8_switch_register(struct ksz_device *dev)
{
return ksz_switch_register(dev, &ksz8_dev_ops);
}
EXPORT_SYMBOL(ksz8_switch_register);
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
MODULE_LICENSE("GPL");