mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 bc81426f5b
			
		
	
	
		bc81426f5b
		
	
	
	
	
		
			
			The commita3b609ef9f("proc read mm's {arg,env}_{start,end} with mmap semaphore taken.") added synchronization of reading argument/environment boundaries under mmap_sem. Later commit88aa7cc688("mm: introduce arg_lock to protect arg_start|end and env_start|end in mm_struct") avoided the coarse use of mmap_sem in similar situations. But there still remained two places that (mis)use mmap_sem. get_cmdline should also use arg_lock instead of mmap_sem when it reads the boundaries. The second place that should use arg_lock is in prctl_set_mm. By protecting the boundaries fields with the arg_lock, we can downgrade mmap_sem to reader lock (analogous to what we already do in prctl_set_mm_map). [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/20190502125203.24014-3-mkoutny@suse.com Fixes:88aa7cc688("mm: introduce arg_lock to protect arg_start|end and env_start|end in mm_struct") Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Co-developed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			757 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			757 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/task_stack.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /**
 | |
|  * kfree_const - conditionally free memory
 | |
|  * @x: pointer to the memory
 | |
|  *
 | |
|  * Function calls kfree only if @x is not in .rodata section.
 | |
|  */
 | |
| void kfree_const(const void *x)
 | |
| {
 | |
| 	if (!is_kernel_rodata((unsigned long)x))
 | |
| 		kfree(x);
 | |
| }
 | |
| EXPORT_SYMBOL(kfree_const);
 | |
| 
 | |
| /**
 | |
|  * kstrdup - allocate space for and copy an existing string
 | |
|  * @s: the string to duplicate
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or %NULL in case of error
 | |
|  */
 | |
| char *kstrdup(const char *s, gfp_t gfp)
 | |
| {
 | |
| 	size_t len;
 | |
| 	char *buf;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return NULL;
 | |
| 
 | |
| 	len = strlen(s) + 1;
 | |
| 	buf = kmalloc_track_caller(len, gfp);
 | |
| 	if (buf)
 | |
| 		memcpy(buf, s, len);
 | |
| 	return buf;
 | |
| }
 | |
| EXPORT_SYMBOL(kstrdup);
 | |
| 
 | |
| /**
 | |
|  * kstrdup_const - conditionally duplicate an existing const string
 | |
|  * @s: the string to duplicate
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
 | |
|  *
 | |
|  * Return: source string if it is in .rodata section otherwise
 | |
|  * fallback to kstrdup.
 | |
|  */
 | |
| const char *kstrdup_const(const char *s, gfp_t gfp)
 | |
| {
 | |
| 	if (is_kernel_rodata((unsigned long)s))
 | |
| 		return s;
 | |
| 
 | |
| 	return kstrdup(s, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(kstrdup_const);
 | |
| 
 | |
| /**
 | |
|  * kstrndup - allocate space for and copy an existing string
 | |
|  * @s: the string to duplicate
 | |
|  * @max: read at most @max chars from @s
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Note: Use kmemdup_nul() instead if the size is known exactly.
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or %NULL in case of error
 | |
|  */
 | |
| char *kstrndup(const char *s, size_t max, gfp_t gfp)
 | |
| {
 | |
| 	size_t len;
 | |
| 	char *buf;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return NULL;
 | |
| 
 | |
| 	len = strnlen(s, max);
 | |
| 	buf = kmalloc_track_caller(len+1, gfp);
 | |
| 	if (buf) {
 | |
| 		memcpy(buf, s, len);
 | |
| 		buf[len] = '\0';
 | |
| 	}
 | |
| 	return buf;
 | |
| }
 | |
| EXPORT_SYMBOL(kstrndup);
 | |
| 
 | |
| /**
 | |
|  * kmemdup - duplicate region of memory
 | |
|  *
 | |
|  * @src: memory region to duplicate
 | |
|  * @len: memory region length
 | |
|  * @gfp: GFP mask to use
 | |
|  *
 | |
|  * Return: newly allocated copy of @src or %NULL in case of error
 | |
|  */
 | |
| void *kmemdup(const void *src, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kmalloc_track_caller(len, gfp);
 | |
| 	if (p)
 | |
| 		memcpy(p, src, len);
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(kmemdup);
 | |
| 
 | |
| /**
 | |
|  * kmemdup_nul - Create a NUL-terminated string from unterminated data
 | |
|  * @s: The data to stringify
 | |
|  * @len: The size of the data
 | |
|  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 | |
|  *
 | |
|  * Return: newly allocated copy of @s with NUL-termination or %NULL in
 | |
|  * case of error
 | |
|  */
 | |
| char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 | |
| {
 | |
| 	char *buf;
 | |
| 
 | |
| 	if (!s)
 | |
| 		return NULL;
 | |
| 
 | |
| 	buf = kmalloc_track_caller(len + 1, gfp);
 | |
| 	if (buf) {
 | |
| 		memcpy(buf, s, len);
 | |
| 		buf[len] = '\0';
 | |
| 	}
 | |
| 	return buf;
 | |
| }
 | |
| EXPORT_SYMBOL(kmemdup_nul);
 | |
| 
 | |
| /**
 | |
|  * memdup_user - duplicate memory region from user space
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.  Result is physically
 | |
|  * contiguous, to be freed by kfree().
 | |
|  */
 | |
| void *memdup_user(const void __user *src, size_t len)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(memdup_user);
 | |
| 
 | |
| /**
 | |
|  * vmemdup_user - duplicate memory region from user space
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.  Result may be not
 | |
|  * physically contiguous.  Use kvfree() to free.
 | |
|  */
 | |
| void *vmemdup_user(const void __user *src, size_t len)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	p = kvmalloc(len, GFP_USER);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kvfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(vmemdup_user);
 | |
| 
 | |
| /**
 | |
|  * strndup_user - duplicate an existing string from user space
 | |
|  * @s: The string to duplicate
 | |
|  * @n: Maximum number of bytes to copy, including the trailing NUL.
 | |
|  *
 | |
|  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
 | |
|  */
 | |
| char *strndup_user(const char __user *s, long n)
 | |
| {
 | |
| 	char *p;
 | |
| 	long length;
 | |
| 
 | |
| 	length = strnlen_user(s, n);
 | |
| 
 | |
| 	if (!length)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	if (length > n)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	p = memdup_user(s, length);
 | |
| 
 | |
| 	if (IS_ERR(p))
 | |
| 		return p;
 | |
| 
 | |
| 	p[length - 1] = '\0';
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(strndup_user);
 | |
| 
 | |
| /**
 | |
|  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 | |
|  *
 | |
|  * @src: source address in user space
 | |
|  * @len: number of bytes to copy
 | |
|  *
 | |
|  * Return: an ERR_PTR() on failure.
 | |
|  */
 | |
| void *memdup_user_nul(const void __user *src, size_t len)
 | |
| {
 | |
| 	char *p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 | |
| 	 * cause pagefault, which makes it pointless to use GFP_NOFS
 | |
| 	 * or GFP_ATOMIC.
 | |
| 	 */
 | |
| 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (copy_from_user(p, src, len)) {
 | |
| 		kfree(p);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 	p[len] = '\0';
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| EXPORT_SYMBOL(memdup_user_nul);
 | |
| 
 | |
| void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 		struct vm_area_struct *prev, struct rb_node *rb_parent)
 | |
| {
 | |
| 	struct vm_area_struct *next;
 | |
| 
 | |
| 	vma->vm_prev = prev;
 | |
| 	if (prev) {
 | |
| 		next = prev->vm_next;
 | |
| 		prev->vm_next = vma;
 | |
| 	} else {
 | |
| 		mm->mmap = vma;
 | |
| 		if (rb_parent)
 | |
| 			next = rb_entry(rb_parent,
 | |
| 					struct vm_area_struct, vm_rb);
 | |
| 		else
 | |
| 			next = NULL;
 | |
| 	}
 | |
| 	vma->vm_next = next;
 | |
| 	if (next)
 | |
| 		next->vm_prev = vma;
 | |
| }
 | |
| 
 | |
| /* Check if the vma is being used as a stack by this task */
 | |
| int vma_is_stack_for_current(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct task_struct * __maybe_unused t = current;
 | |
| 
 | |
| 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 | |
| void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 | |
| {
 | |
| 	mm->mmap_base = TASK_UNMAPPED_BASE;
 | |
| 	mm->get_unmapped_area = arch_get_unmapped_area;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 | |
|  * back to the regular GUP.
 | |
|  * Note a difference with get_user_pages_fast: this always returns the
 | |
|  * number of pages pinned, 0 if no pages were pinned.
 | |
|  * If the architecture does not support this function, simply return with no
 | |
|  * pages pinned.
 | |
|  */
 | |
| int __weak __get_user_pages_fast(unsigned long start,
 | |
| 				 int nr_pages, int write, struct page **pages)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 | |
| 
 | |
| /**
 | |
|  * get_user_pages_fast() - pin user pages in memory
 | |
|  * @start:	starting user address
 | |
|  * @nr_pages:	number of pages from start to pin
 | |
|  * @gup_flags:	flags modifying pin behaviour
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_pages long.
 | |
|  *
 | |
|  * get_user_pages_fast provides equivalent functionality to get_user_pages,
 | |
|  * operating on current and current->mm, with force=0 and vma=NULL. However
 | |
|  * unlike get_user_pages, it must be called without mmap_sem held.
 | |
|  *
 | |
|  * get_user_pages_fast may take mmap_sem and page table locks, so no
 | |
|  * assumptions can be made about lack of locking. get_user_pages_fast is to be
 | |
|  * implemented in a way that is advantageous (vs get_user_pages()) when the
 | |
|  * user memory area is already faulted in and present in ptes. However if the
 | |
|  * pages have to be faulted in, it may turn out to be slightly slower so
 | |
|  * callers need to carefully consider what to use. On many architectures,
 | |
|  * get_user_pages_fast simply falls back to get_user_pages.
 | |
|  *
 | |
|  * Return: number of pages pinned. This may be fewer than the number
 | |
|  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 | |
|  * were pinned, returns -errno.
 | |
|  */
 | |
| int __weak get_user_pages_fast(unsigned long start,
 | |
| 				int nr_pages, unsigned int gup_flags,
 | |
| 				struct page **pages)
 | |
| {
 | |
| 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_user_pages_fast);
 | |
| 
 | |
| unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot,
 | |
| 	unsigned long flag, unsigned long pgoff)
 | |
| {
 | |
| 	unsigned long ret;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long populate;
 | |
| 	LIST_HEAD(uf);
 | |
| 
 | |
| 	ret = security_mmap_file(file, prot, flag);
 | |
| 	if (!ret) {
 | |
| 		if (down_write_killable(&mm->mmap_sem))
 | |
| 			return -EINTR;
 | |
| 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 | |
| 				    &populate, &uf);
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 		userfaultfd_unmap_complete(mm, &uf);
 | |
| 		if (populate)
 | |
| 			mm_populate(ret, populate);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long vm_mmap(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot,
 | |
| 	unsigned long flag, unsigned long offset)
 | |
| {
 | |
| 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
 | |
| 		return -EINVAL;
 | |
| 	if (unlikely(offset_in_page(offset)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 | |
| }
 | |
| EXPORT_SYMBOL(vm_mmap);
 | |
| 
 | |
| /**
 | |
|  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 | |
|  * failure, fall back to non-contiguous (vmalloc) allocation.
 | |
|  * @size: size of the request.
 | |
|  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 | |
|  * @node: numa node to allocate from
 | |
|  *
 | |
|  * Uses kmalloc to get the memory but if the allocation fails then falls back
 | |
|  * to the vmalloc allocator. Use kvfree for freeing the memory.
 | |
|  *
 | |
|  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 | |
|  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 | |
|  * preferable to the vmalloc fallback, due to visible performance drawbacks.
 | |
|  *
 | |
|  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 | |
|  * fall back to vmalloc.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory of %NULL in case of failure
 | |
|  */
 | |
| void *kvmalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	gfp_t kmalloc_flags = flags;
 | |
| 	void *ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 | |
| 	 * so the given set of flags has to be compatible.
 | |
| 	 */
 | |
| 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
 | |
| 		return kmalloc_node(size, flags, node);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to attempt a large physically contiguous block first because
 | |
| 	 * it is less likely to fragment multiple larger blocks and therefore
 | |
| 	 * contribute to a long term fragmentation less than vmalloc fallback.
 | |
| 	 * However make sure that larger requests are not too disruptive - no
 | |
| 	 * OOM killer and no allocation failure warnings as we have a fallback.
 | |
| 	 */
 | |
| 	if (size > PAGE_SIZE) {
 | |
| 		kmalloc_flags |= __GFP_NOWARN;
 | |
| 
 | |
| 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 | |
| 			kmalloc_flags |= __GFP_NORETRY;
 | |
| 	}
 | |
| 
 | |
| 	ret = kmalloc_node(size, kmalloc_flags, node);
 | |
| 
 | |
| 	/*
 | |
| 	 * It doesn't really make sense to fallback to vmalloc for sub page
 | |
| 	 * requests
 | |
| 	 */
 | |
| 	if (ret || size <= PAGE_SIZE)
 | |
| 		return ret;
 | |
| 
 | |
| 	return __vmalloc_node_flags_caller(size, node, flags,
 | |
| 			__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(kvmalloc_node);
 | |
| 
 | |
| /**
 | |
|  * kvfree() - Free memory.
 | |
|  * @addr: Pointer to allocated memory.
 | |
|  *
 | |
|  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 | |
|  * It is slightly more efficient to use kfree() or vfree() if you are certain
 | |
|  * that you know which one to use.
 | |
|  *
 | |
|  * Context: Either preemptible task context or not-NMI interrupt.
 | |
|  */
 | |
| void kvfree(const void *addr)
 | |
| {
 | |
| 	if (is_vmalloc_addr(addr))
 | |
| 		vfree(addr);
 | |
| 	else
 | |
| 		kfree(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(kvfree);
 | |
| 
 | |
| static inline void *__page_rmapping(struct page *page)
 | |
| {
 | |
| 	unsigned long mapping;
 | |
| 
 | |
| 	mapping = (unsigned long)page->mapping;
 | |
| 	mapping &= ~PAGE_MAPPING_FLAGS;
 | |
| 
 | |
| 	return (void *)mapping;
 | |
| }
 | |
| 
 | |
| /* Neutral page->mapping pointer to address_space or anon_vma or other */
 | |
| void *page_rmapping(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	return __page_rmapping(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if this page is mapped into pagetables.
 | |
|  * For compound page it returns true if any subpage of compound page is mapped.
 | |
|  */
 | |
| bool page_mapped(struct page *page)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (likely(!PageCompound(page)))
 | |
| 		return atomic_read(&page->_mapcount) >= 0;
 | |
| 	page = compound_head(page);
 | |
| 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 | |
| 		return true;
 | |
| 	if (PageHuge(page))
 | |
| 		return false;
 | |
| 	for (i = 0; i < (1 << compound_order(page)); i++) {
 | |
| 		if (atomic_read(&page[i]._mapcount) >= 0)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL(page_mapped);
 | |
| 
 | |
| struct anon_vma *page_anon_vma(struct page *page)
 | |
| {
 | |
| 	unsigned long mapping;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 	mapping = (unsigned long)page->mapping;
 | |
| 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 | |
| 		return NULL;
 | |
| 	return __page_rmapping(page);
 | |
| }
 | |
| 
 | |
| struct address_space *page_mapping(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 
 | |
| 	/* This happens if someone calls flush_dcache_page on slab page */
 | |
| 	if (unlikely(PageSlab(page)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(PageSwapCache(page))) {
 | |
| 		swp_entry_t entry;
 | |
| 
 | |
| 		entry.val = page_private(page);
 | |
| 		return swap_address_space(entry);
 | |
| 	}
 | |
| 
 | |
| 	mapping = page->mapping;
 | |
| 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 | |
| }
 | |
| EXPORT_SYMBOL(page_mapping);
 | |
| 
 | |
| /*
 | |
|  * For file cache pages, return the address_space, otherwise return NULL
 | |
|  */
 | |
| struct address_space *page_mapping_file(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageSwapCache(page)))
 | |
| 		return NULL;
 | |
| 	return page_mapping(page);
 | |
| }
 | |
| 
 | |
| /* Slow path of page_mapcount() for compound pages */
 | |
| int __page_mapcount(struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = atomic_read(&page->_mapcount) + 1;
 | |
| 	/*
 | |
| 	 * For file THP page->_mapcount contains total number of mapping
 | |
| 	 * of the page: no need to look into compound_mapcount.
 | |
| 	 */
 | |
| 	if (!PageAnon(page) && !PageHuge(page))
 | |
| 		return ret;
 | |
| 	page = compound_head(page);
 | |
| 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 | |
| 	if (PageDoubleMap(page))
 | |
| 		ret--;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__page_mapcount);
 | |
| 
 | |
| int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 | |
| int sysctl_overcommit_ratio __read_mostly = 50;
 | |
| unsigned long sysctl_overcommit_kbytes __read_mostly;
 | |
| int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 | |
| unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 | |
| unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 | |
| 
 | |
| int overcommit_ratio_handler(struct ctl_table *table, int write,
 | |
| 			     void __user *buffer, size_t *lenp,
 | |
| 			     loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		sysctl_overcommit_kbytes = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int overcommit_kbytes_handler(struct ctl_table *table, int write,
 | |
| 			     void __user *buffer, size_t *lenp,
 | |
| 			     loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		sysctl_overcommit_ratio = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 | |
|  */
 | |
| unsigned long vm_commit_limit(void)
 | |
| {
 | |
| 	unsigned long allowed;
 | |
| 
 | |
| 	if (sysctl_overcommit_kbytes)
 | |
| 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 | |
| 	else
 | |
| 		allowed = ((totalram_pages() - hugetlb_total_pages())
 | |
| 			   * sysctl_overcommit_ratio / 100);
 | |
| 	allowed += total_swap_pages;
 | |
| 
 | |
| 	return allowed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure vm_committed_as in one cacheline and not cacheline shared with
 | |
|  * other variables. It can be updated by several CPUs frequently.
 | |
|  */
 | |
| struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 | |
| 
 | |
| /*
 | |
|  * The global memory commitment made in the system can be a metric
 | |
|  * that can be used to drive ballooning decisions when Linux is hosted
 | |
|  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 | |
|  * balancing memory across competing virtual machines that are hosted.
 | |
|  * Several metrics drive this policy engine including the guest reported
 | |
|  * memory commitment.
 | |
|  */
 | |
| unsigned long vm_memory_committed(void)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&vm_committed_as);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vm_memory_committed);
 | |
| 
 | |
| /*
 | |
|  * Check that a process has enough memory to allocate a new virtual
 | |
|  * mapping. 0 means there is enough memory for the allocation to
 | |
|  * succeed and -ENOMEM implies there is not.
 | |
|  *
 | |
|  * We currently support three overcommit policies, which are set via the
 | |
|  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
 | |
|  *
 | |
|  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 | |
|  * Additional code 2002 Jul 20 by Robert Love.
 | |
|  *
 | |
|  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 | |
|  *
 | |
|  * Note this is a helper function intended to be used by LSMs which
 | |
|  * wish to use this logic.
 | |
|  */
 | |
| int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 | |
| {
 | |
| 	long allowed;
 | |
| 
 | |
| 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 | |
| 			-(s64)vm_committed_as_batch * num_online_cpus(),
 | |
| 			"memory commitment underflow");
 | |
| 
 | |
| 	vm_acct_memory(pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes we want to use more memory than we have
 | |
| 	 */
 | |
| 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 | |
| 		if (pages > totalram_pages() + total_swap_pages)
 | |
| 			goto error;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	allowed = vm_commit_limit();
 | |
| 	/*
 | |
| 	 * Reserve some for root
 | |
| 	 */
 | |
| 	if (!cap_sys_admin)
 | |
| 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't let a single process grow so big a user can't recover
 | |
| 	 */
 | |
| 	if (mm) {
 | |
| 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 | |
| 
 | |
| 		allowed -= min_t(long, mm->total_vm / 32, reserve);
 | |
| 	}
 | |
| 
 | |
| 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 | |
| 		return 0;
 | |
| error:
 | |
| 	vm_unacct_memory(pages);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_cmdline() - copy the cmdline value to a buffer.
 | |
|  * @task:     the task whose cmdline value to copy.
 | |
|  * @buffer:   the buffer to copy to.
 | |
|  * @buflen:   the length of the buffer. Larger cmdline values are truncated
 | |
|  *            to this length.
 | |
|  *
 | |
|  * Return: the size of the cmdline field copied. Note that the copy does
 | |
|  * not guarantee an ending NULL byte.
 | |
|  */
 | |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 | |
| {
 | |
| 	int res = 0;
 | |
| 	unsigned int len;
 | |
| 	struct mm_struct *mm = get_task_mm(task);
 | |
| 	unsigned long arg_start, arg_end, env_start, env_end;
 | |
| 	if (!mm)
 | |
| 		goto out;
 | |
| 	if (!mm->arg_end)
 | |
| 		goto out_mm;	/* Shh! No looking before we're done */
 | |
| 
 | |
| 	spin_lock(&mm->arg_lock);
 | |
| 	arg_start = mm->arg_start;
 | |
| 	arg_end = mm->arg_end;
 | |
| 	env_start = mm->env_start;
 | |
| 	env_end = mm->env_end;
 | |
| 	spin_unlock(&mm->arg_lock);
 | |
| 
 | |
| 	len = arg_end - arg_start;
 | |
| 
 | |
| 	if (len > buflen)
 | |
| 		len = buflen;
 | |
| 
 | |
| 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the nul at the end of args has been overwritten, then
 | |
| 	 * assume application is using setproctitle(3).
 | |
| 	 */
 | |
| 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 | |
| 		len = strnlen(buffer, res);
 | |
| 		if (len < res) {
 | |
| 			res = len;
 | |
| 		} else {
 | |
| 			len = env_end - env_start;
 | |
| 			if (len > buflen - res)
 | |
| 				len = buflen - res;
 | |
| 			res += access_process_vm(task, env_start,
 | |
| 						 buffer+res, len,
 | |
| 						 FOLL_FORCE);
 | |
| 			res = strnlen(buffer, res);
 | |
| 		}
 | |
| 	}
 | |
| out_mm:
 | |
| 	mmput(mm);
 | |
| out:
 | |
| 	return res;
 | |
| }
 |