mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-04 00:06:36 +00:00
![]() According to i915 documentation [1], "Port D" (DP/HDMI Port D) is actually gmbus pin pair 6 (gmbus0.2:0 == 110b GPIOF), not 7 (111b). Pin pair 7 is a reserved pair. [1] Documentation for [DevSNB+] and [DevIBX], as found on http://intellinuxgraphics.org: [DevSNB+]: http://intellinuxgraphics.org/documentation/SNB/IHD_OS_Vol3_Part3.pdf Section 2.2.2 lists the 6 gmbus ports (gpio pin pairs): [ 5: HDMI/DPD, 4: HDMIB, 3: HDMI/DPC, 2: LVDS, 1: SSC, 0: VGA ] 2.2.2.1 lists the GPIO registers to control these 6 ports. 2.2.3.1 lists the mapping between 5 of these gmbus ports and the 3 Pin_Pair_Select bits (of the GMBUS0 register). This table is missing HDMIB (port 101). [DevIBX]: http://intellinuxgraphics.org/IHD_OS_Vol3_Part3r2.pdf Section 2.2.2 lists the same 6 gmbus ports plus two 'reserved' gpio ports. 2.2.2.1 lists 8 GPIO registers... however, it says the size of the block is 6x32, which implies that those 2 reserved GPIO registers (GPIO_6 & GPIO_7) don't actually exist (or are irrelevant). 2.2.3.1 lists the mapping between the 6 named gmbus ports and the 3 Pin_Pair_Select bits (of the GMBUS0 register). This table has HDMIB. Note: the "reserved" and "disabled" pairs do not actually map to a physical pair of pins, nor GPIO regs and shouldn't be initialized or used. Fixing this is left for a later patch. This bug had not been noticed earlier for two reasons: 1) Until recently, "gmbus" mode was disabled - all transfers actually used "bit-bang" mode on GPIO port 5 (the "HDMI/DPD CTLDATA/CLK" pair), at register 0x5024 (defined as GPIOF i915_reg.h). Since this is the correct pair of pins for HDMI1, transfers succeed. 2) Even if gmbus mode is re-enabled, the first attempted transaction will fail because it tries to use the wrong ("Reserved") pin pair. However, the driver immediately falls back again to the bit-bang method, which correctly uses GPIOF, so again, transfers succeed. However, if gmbus mode is re-enabled and the GPIO fall-back mode is disabled, then reading an attached monitor's EDID fail. Signed-off-by: Daniel Kurtz <djkurtz@chromium.org> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> |
||
---|---|---|
.. | ||
exynos | ||
gma500 | ||
i2c | ||
i810 | ||
i915 | ||
mga | ||
nouveau | ||
r128 | ||
radeon | ||
savage | ||
sis | ||
tdfx | ||
ttm | ||
via | ||
vmwgfx | ||
ati_pcigart.c | ||
drm_agpsupport.c | ||
drm_auth.c | ||
drm_buffer.c | ||
drm_bufs.c | ||
drm_cache.c | ||
drm_context.c | ||
drm_crtc.c | ||
drm_crtc_helper.c | ||
drm_debugfs.c | ||
drm_dma.c | ||
drm_dp_i2c_helper.c | ||
drm_drv.c | ||
drm_edid.c | ||
drm_edid_modes.h | ||
drm_encoder_slave.c | ||
drm_fb_helper.c | ||
drm_fops.c | ||
drm_gem.c | ||
drm_global.c | ||
drm_hashtab.c | ||
drm_info.c | ||
drm_ioc32.c | ||
drm_ioctl.c | ||
drm_irq.c | ||
drm_lock.c | ||
drm_memory.c | ||
drm_mm.c | ||
drm_modes.c | ||
drm_pci.c | ||
drm_platform.c | ||
drm_proc.c | ||
drm_scatter.c | ||
drm_stub.c | ||
drm_sysfs.c | ||
drm_trace.h | ||
drm_trace_points.c | ||
drm_usb.c | ||
drm_vm.c | ||
Kconfig | ||
Makefile | ||
README.drm |
************************************************************ * For the very latest on DRI development, please see: * * http://dri.freedesktop.org/ * ************************************************************ The Direct Rendering Manager (drm) is a device-independent kernel-level device driver that provides support for the XFree86 Direct Rendering Infrastructure (DRI). The DRM supports the Direct Rendering Infrastructure (DRI) in four major ways: 1. The DRM provides synchronized access to the graphics hardware via the use of an optimized two-tiered lock. 2. The DRM enforces the DRI security policy for access to the graphics hardware by only allowing authenticated X11 clients access to restricted regions of memory. 3. The DRM provides a generic DMA engine, complete with multiple queues and the ability to detect the need for an OpenGL context switch. 4. The DRM is extensible via the use of small device-specific modules that rely extensively on the API exported by the DRM module. Documentation on the DRI is available from: http://dri.freedesktop.org/wiki/Documentation http://sourceforge.net/project/showfiles.php?group_id=387 http://dri.sourceforge.net/doc/ For specific information about kernel-level support, see: The Direct Rendering Manager, Kernel Support for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/drm_low_level.html Hardware Locking for the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/hardware_locking_low_level.html A Security Analysis of the Direct Rendering Infrastructure http://dri.sourceforge.net/doc/security_low_level.html