mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 b848b26c66
			
		
	
	
		b848b26c66
		
	
	
	
	
		
			
			Now that ->sendpage() has been removed, MSG_SENDPAGE_NOTLAST can be cleaned up. Things were converted to use MSG_MORE instead, but the protocol sendpage stubs still convert MSG_SENDPAGE_NOTLAST to MSG_MORE, which is now unnecessary. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jens Axboe <axboe@kernel.dk> cc: Matthew Wilcox <willy@infradead.org> cc: linux-afs@lists.infradead.org cc: mptcp@lists.linux.dev cc: rds-devel@oss.oracle.com cc: tipc-discussion@lists.sourceforge.net cc: virtualization@lists.linux-foundation.org Link: https://lore.kernel.org/r/20230623225513.2732256-17-dhowells@redhat.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
		
			
				
	
	
		
			1469 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1469 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <crypto/aead.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <net/dst.h>
 | |
| #include <net/inet_connection_sock.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/tls.h>
 | |
| 
 | |
| #include "tls.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| /* device_offload_lock is used to synchronize tls_dev_add
 | |
|  * against NETDEV_DOWN notifications.
 | |
|  */
 | |
| static DECLARE_RWSEM(device_offload_lock);
 | |
| 
 | |
| static struct workqueue_struct *destruct_wq __read_mostly;
 | |
| 
 | |
| static LIST_HEAD(tls_device_list);
 | |
| static LIST_HEAD(tls_device_down_list);
 | |
| static DEFINE_SPINLOCK(tls_device_lock);
 | |
| 
 | |
| static void tls_device_free_ctx(struct tls_context *ctx)
 | |
| {
 | |
| 	if (ctx->tx_conf == TLS_HW) {
 | |
| 		kfree(tls_offload_ctx_tx(ctx));
 | |
| 		kfree(ctx->tx.rec_seq);
 | |
| 		kfree(ctx->tx.iv);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->rx_conf == TLS_HW)
 | |
| 		kfree(tls_offload_ctx_rx(ctx));
 | |
| 
 | |
| 	tls_ctx_free(NULL, ctx);
 | |
| }
 | |
| 
 | |
| static void tls_device_tx_del_task(struct work_struct *work)
 | |
| {
 | |
| 	struct tls_offload_context_tx *offload_ctx =
 | |
| 		container_of(work, struct tls_offload_context_tx, destruct_work);
 | |
| 	struct tls_context *ctx = offload_ctx->ctx;
 | |
| 	struct net_device *netdev;
 | |
| 
 | |
| 	/* Safe, because this is the destroy flow, refcount is 0, so
 | |
| 	 * tls_device_down can't store this field in parallel.
 | |
| 	 */
 | |
| 	netdev = rcu_dereference_protected(ctx->netdev,
 | |
| 					   !refcount_read(&ctx->refcount));
 | |
| 
 | |
| 	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
 | |
| 	dev_put(netdev);
 | |
| 	ctx->netdev = NULL;
 | |
| 	tls_device_free_ctx(ctx);
 | |
| }
 | |
| 
 | |
| static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
 | |
| {
 | |
| 	struct net_device *netdev;
 | |
| 	unsigned long flags;
 | |
| 	bool async_cleanup;
 | |
| 
 | |
| 	spin_lock_irqsave(&tls_device_lock, flags);
 | |
| 	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
 | |
| 		spin_unlock_irqrestore(&tls_device_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
 | |
| 
 | |
| 	/* Safe, because this is the destroy flow, refcount is 0, so
 | |
| 	 * tls_device_down can't store this field in parallel.
 | |
| 	 */
 | |
| 	netdev = rcu_dereference_protected(ctx->netdev,
 | |
| 					   !refcount_read(&ctx->refcount));
 | |
| 
 | |
| 	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
 | |
| 	if (async_cleanup) {
 | |
| 		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
 | |
| 
 | |
| 		/* queue_work inside the spinlock
 | |
| 		 * to make sure tls_device_down waits for that work.
 | |
| 		 */
 | |
| 		queue_work(destruct_wq, &offload_ctx->destruct_work);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tls_device_lock, flags);
 | |
| 
 | |
| 	if (!async_cleanup)
 | |
| 		tls_device_free_ctx(ctx);
 | |
| }
 | |
| 
 | |
| /* We assume that the socket is already connected */
 | |
| static struct net_device *get_netdev_for_sock(struct sock *sk)
 | |
| {
 | |
| 	struct dst_entry *dst = sk_dst_get(sk);
 | |
| 	struct net_device *netdev = NULL;
 | |
| 
 | |
| 	if (likely(dst)) {
 | |
| 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
 | |
| 		dev_hold(netdev);
 | |
| 	}
 | |
| 
 | |
| 	dst_release(dst);
 | |
| 
 | |
| 	return netdev;
 | |
| }
 | |
| 
 | |
| static void destroy_record(struct tls_record_info *record)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < record->num_frags; i++)
 | |
| 		__skb_frag_unref(&record->frags[i], false);
 | |
| 	kfree(record);
 | |
| }
 | |
| 
 | |
| static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 | |
| {
 | |
| 	struct tls_record_info *info, *temp;
 | |
| 
 | |
| 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 | |
| 		list_del(&info->list);
 | |
| 		destroy_record(info);
 | |
| 	}
 | |
| 
 | |
| 	offload_ctx->retransmit_hint = NULL;
 | |
| }
 | |
| 
 | |
| static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct tls_record_info *info, *temp;
 | |
| 	struct tls_offload_context_tx *ctx;
 | |
| 	u64 deleted_records = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!tls_ctx)
 | |
| 		return;
 | |
| 
 | |
| 	ctx = tls_offload_ctx_tx(tls_ctx);
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx->lock, flags);
 | |
| 	info = ctx->retransmit_hint;
 | |
| 	if (info && !before(acked_seq, info->end_seq))
 | |
| 		ctx->retransmit_hint = NULL;
 | |
| 
 | |
| 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 | |
| 		if (before(acked_seq, info->end_seq))
 | |
| 			break;
 | |
| 		list_del(&info->list);
 | |
| 
 | |
| 		destroy_record(info);
 | |
| 		deleted_records++;
 | |
| 	}
 | |
| 
 | |
| 	ctx->unacked_record_sn += deleted_records;
 | |
| 	spin_unlock_irqrestore(&ctx->lock, flags);
 | |
| }
 | |
| 
 | |
| /* At this point, there should be no references on this
 | |
|  * socket and no in-flight SKBs associated with this
 | |
|  * socket, so it is safe to free all the resources.
 | |
|  */
 | |
| void tls_device_sk_destruct(struct sock *sk)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 | |
| 
 | |
| 	tls_ctx->sk_destruct(sk);
 | |
| 
 | |
| 	if (tls_ctx->tx_conf == TLS_HW) {
 | |
| 		if (ctx->open_record)
 | |
| 			destroy_record(ctx->open_record);
 | |
| 		delete_all_records(ctx);
 | |
| 		crypto_free_aead(ctx->aead_send);
 | |
| 		clean_acked_data_disable(inet_csk(sk));
 | |
| 	}
 | |
| 
 | |
| 	tls_device_queue_ctx_destruction(tls_ctx);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
 | |
| 
 | |
| void tls_device_free_resources_tx(struct sock *sk)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 
 | |
| 	tls_free_partial_record(sk, tls_ctx);
 | |
| }
 | |
| 
 | |
| void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 
 | |
| 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
 | |
| 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
 | |
| 
 | |
| static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 | |
| 				 u32 seq)
 | |
| {
 | |
| 	struct net_device *netdev;
 | |
| 	struct sk_buff *skb;
 | |
| 	int err = 0;
 | |
| 	u8 *rcd_sn;
 | |
| 
 | |
| 	skb = tcp_write_queue_tail(sk);
 | |
| 	if (skb)
 | |
| 		TCP_SKB_CB(skb)->eor = 1;
 | |
| 
 | |
| 	rcd_sn = tls_ctx->tx.rec_seq;
 | |
| 
 | |
| 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
 | |
| 	down_read(&device_offload_lock);
 | |
| 	netdev = rcu_dereference_protected(tls_ctx->netdev,
 | |
| 					   lockdep_is_held(&device_offload_lock));
 | |
| 	if (netdev)
 | |
| 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 | |
| 							 rcd_sn,
 | |
| 							 TLS_OFFLOAD_CTX_DIR_TX);
 | |
| 	up_read(&device_offload_lock);
 | |
| 	if (err)
 | |
| 		return;
 | |
| 
 | |
| 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 | |
| }
 | |
| 
 | |
| static void tls_append_frag(struct tls_record_info *record,
 | |
| 			    struct page_frag *pfrag,
 | |
| 			    int size)
 | |
| {
 | |
| 	skb_frag_t *frag;
 | |
| 
 | |
| 	frag = &record->frags[record->num_frags - 1];
 | |
| 	if (skb_frag_page(frag) == pfrag->page &&
 | |
| 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
 | |
| 		skb_frag_size_add(frag, size);
 | |
| 	} else {
 | |
| 		++frag;
 | |
| 		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
 | |
| 					size);
 | |
| 		++record->num_frags;
 | |
| 		get_page(pfrag->page);
 | |
| 	}
 | |
| 
 | |
| 	pfrag->offset += size;
 | |
| 	record->len += size;
 | |
| }
 | |
| 
 | |
| static int tls_push_record(struct sock *sk,
 | |
| 			   struct tls_context *ctx,
 | |
| 			   struct tls_offload_context_tx *offload_ctx,
 | |
| 			   struct tls_record_info *record,
 | |
| 			   int flags)
 | |
| {
 | |
| 	struct tls_prot_info *prot = &ctx->prot_info;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	skb_frag_t *frag;
 | |
| 	int i;
 | |
| 
 | |
| 	record->end_seq = tp->write_seq + record->len;
 | |
| 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
 | |
| 	offload_ctx->open_record = NULL;
 | |
| 
 | |
| 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 | |
| 		tls_device_resync_tx(sk, ctx, tp->write_seq);
 | |
| 
 | |
| 	tls_advance_record_sn(sk, prot, &ctx->tx);
 | |
| 
 | |
| 	for (i = 0; i < record->num_frags; i++) {
 | |
| 		frag = &record->frags[i];
 | |
| 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 | |
| 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 | |
| 			    skb_frag_size(frag), skb_frag_off(frag));
 | |
| 		sk_mem_charge(sk, skb_frag_size(frag));
 | |
| 		get_page(skb_frag_page(frag));
 | |
| 	}
 | |
| 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 | |
| 
 | |
| 	/* all ready, send */
 | |
| 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 | |
| }
 | |
| 
 | |
| static int tls_device_record_close(struct sock *sk,
 | |
| 				   struct tls_context *ctx,
 | |
| 				   struct tls_record_info *record,
 | |
| 				   struct page_frag *pfrag,
 | |
| 				   unsigned char record_type)
 | |
| {
 | |
| 	struct tls_prot_info *prot = &ctx->prot_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* append tag
 | |
| 	 * device will fill in the tag, we just need to append a placeholder
 | |
| 	 * use socket memory to improve coalescing (re-using a single buffer
 | |
| 	 * increases frag count)
 | |
| 	 * if we can't allocate memory now, steal some back from data
 | |
| 	 */
 | |
| 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
 | |
| 					sk->sk_allocation))) {
 | |
| 		ret = 0;
 | |
| 		tls_append_frag(record, pfrag, prot->tag_size);
 | |
| 	} else {
 | |
| 		ret = prot->tag_size;
 | |
| 		if (record->len <= prot->overhead_size)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* fill prepend */
 | |
| 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
 | |
| 			 record->len - prot->overhead_size,
 | |
| 			 record_type);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 | |
| 				 struct page_frag *pfrag,
 | |
| 				 size_t prepend_size)
 | |
| {
 | |
| 	struct tls_record_info *record;
 | |
| 	skb_frag_t *frag;
 | |
| 
 | |
| 	record = kmalloc(sizeof(*record), GFP_KERNEL);
 | |
| 	if (!record)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	frag = &record->frags[0];
 | |
| 	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
 | |
| 				prepend_size);
 | |
| 
 | |
| 	get_page(pfrag->page);
 | |
| 	pfrag->offset += prepend_size;
 | |
| 
 | |
| 	record->num_frags = 1;
 | |
| 	record->len = prepend_size;
 | |
| 	offload_ctx->open_record = record;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tls_do_allocation(struct sock *sk,
 | |
| 			     struct tls_offload_context_tx *offload_ctx,
 | |
| 			     struct page_frag *pfrag,
 | |
| 			     size_t prepend_size)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!offload_ctx->open_record) {
 | |
| 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 | |
| 						   sk->sk_allocation))) {
 | |
| 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
 | |
| 			sk_stream_moderate_sndbuf(sk);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (pfrag->size > pfrag->offset)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!sk_page_frag_refill(sk, pfrag))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	size_t pre_copy, nocache;
 | |
| 
 | |
| 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
 | |
| 	if (pre_copy) {
 | |
| 		pre_copy = min(pre_copy, bytes);
 | |
| 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
 | |
| 			return -EFAULT;
 | |
| 		bytes -= pre_copy;
 | |
| 		addr += pre_copy;
 | |
| 	}
 | |
| 
 | |
| 	nocache = round_down(bytes, SMP_CACHE_BYTES);
 | |
| 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
 | |
| 		return -EFAULT;
 | |
| 	bytes -= nocache;
 | |
| 	addr += nocache;
 | |
| 
 | |
| 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tls_push_data(struct sock *sk,
 | |
| 			 struct iov_iter *iter,
 | |
| 			 size_t size, int flags,
 | |
| 			 unsigned char record_type)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct tls_prot_info *prot = &tls_ctx->prot_info;
 | |
| 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 | |
| 	struct tls_record_info *record;
 | |
| 	int tls_push_record_flags;
 | |
| 	struct page_frag *pfrag;
 | |
| 	size_t orig_size = size;
 | |
| 	u32 max_open_record_len;
 | |
| 	bool more = false;
 | |
| 	bool done = false;
 | |
| 	int copy, rc = 0;
 | |
| 	long timeo;
 | |
| 
 | |
| 	if (flags &
 | |
| 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SPLICE_PAGES))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (unlikely(sk->sk_err))
 | |
| 		return -sk->sk_err;
 | |
| 
 | |
| 	flags |= MSG_SENDPAGE_DECRYPTED;
 | |
| 	tls_push_record_flags = flags | MSG_MORE;
 | |
| 
 | |
| 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 | |
| 	if (tls_is_partially_sent_record(tls_ctx)) {
 | |
| 		rc = tls_push_partial_record(sk, tls_ctx, flags);
 | |
| 		if (rc < 0)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	pfrag = sk_page_frag(sk);
 | |
| 
 | |
| 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 | |
| 	 * we need to leave room for an authentication tag.
 | |
| 	 */
 | |
| 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 | |
| 			      prot->prepend_size;
 | |
| 	do {
 | |
| 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
 | |
| 		if (unlikely(rc)) {
 | |
| 			rc = sk_stream_wait_memory(sk, &timeo);
 | |
| 			if (!rc)
 | |
| 				continue;
 | |
| 
 | |
| 			record = ctx->open_record;
 | |
| 			if (!record)
 | |
| 				break;
 | |
| handle_error:
 | |
| 			if (record_type != TLS_RECORD_TYPE_DATA) {
 | |
| 				/* avoid sending partial
 | |
| 				 * record with type !=
 | |
| 				 * application_data
 | |
| 				 */
 | |
| 				size = orig_size;
 | |
| 				destroy_record(record);
 | |
| 				ctx->open_record = NULL;
 | |
| 			} else if (record->len > prot->prepend_size) {
 | |
| 				goto last_record;
 | |
| 			}
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		record = ctx->open_record;
 | |
| 
 | |
| 		copy = min_t(size_t, size, max_open_record_len - record->len);
 | |
| 		if (copy && (flags & MSG_SPLICE_PAGES)) {
 | |
| 			struct page_frag zc_pfrag;
 | |
| 			struct page **pages = &zc_pfrag.page;
 | |
| 			size_t off;
 | |
| 
 | |
| 			rc = iov_iter_extract_pages(iter, &pages,
 | |
| 						    copy, 1, 0, &off);
 | |
| 			if (rc <= 0) {
 | |
| 				if (rc == 0)
 | |
| 					rc = -EIO;
 | |
| 				goto handle_error;
 | |
| 			}
 | |
| 			copy = rc;
 | |
| 
 | |
| 			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
 | |
| 				iov_iter_revert(iter, copy);
 | |
| 				rc = -EIO;
 | |
| 				goto handle_error;
 | |
| 			}
 | |
| 
 | |
| 			zc_pfrag.offset = off;
 | |
| 			zc_pfrag.size = copy;
 | |
| 			tls_append_frag(record, &zc_pfrag, copy);
 | |
| 		} else if (copy) {
 | |
| 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
 | |
| 
 | |
| 			rc = tls_device_copy_data(page_address(pfrag->page) +
 | |
| 						  pfrag->offset, copy,
 | |
| 						  iter);
 | |
| 			if (rc)
 | |
| 				goto handle_error;
 | |
| 			tls_append_frag(record, pfrag, copy);
 | |
| 		}
 | |
| 
 | |
| 		size -= copy;
 | |
| 		if (!size) {
 | |
| last_record:
 | |
| 			tls_push_record_flags = flags;
 | |
| 			if (flags & MSG_MORE) {
 | |
| 				more = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			done = true;
 | |
| 		}
 | |
| 
 | |
| 		if (done || record->len >= max_open_record_len ||
 | |
| 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 | |
| 			rc = tls_device_record_close(sk, tls_ctx, record,
 | |
| 						     pfrag, record_type);
 | |
| 			if (rc) {
 | |
| 				if (rc > 0) {
 | |
| 					size += rc;
 | |
| 				} else {
 | |
| 					size = orig_size;
 | |
| 					destroy_record(record);
 | |
| 					ctx->open_record = NULL;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			rc = tls_push_record(sk,
 | |
| 					     tls_ctx,
 | |
| 					     ctx,
 | |
| 					     record,
 | |
| 					     tls_push_record_flags);
 | |
| 			if (rc < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (!done);
 | |
| 
 | |
| 	tls_ctx->pending_open_record_frags = more;
 | |
| 
 | |
| 	if (orig_size - size > 0)
 | |
| 		rc = orig_size - size;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 | |
| {
 | |
| 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!tls_ctx->zerocopy_sendfile)
 | |
| 		msg->msg_flags &= ~MSG_SPLICE_PAGES;
 | |
| 
 | |
| 	mutex_lock(&tls_ctx->tx_lock);
 | |
| 	lock_sock(sk);
 | |
| 
 | |
| 	if (unlikely(msg->msg_controllen)) {
 | |
| 		rc = tls_process_cmsg(sk, msg, &record_type);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
 | |
| 			   record_type);
 | |
| 
 | |
| out:
 | |
| 	release_sock(sk);
 | |
| 	mutex_unlock(&tls_ctx->tx_lock);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void tls_device_splice_eof(struct socket *sock)
 | |
| {
 | |
| 	struct sock *sk = sock->sk;
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct iov_iter iter = {};
 | |
| 
 | |
| 	if (!tls_is_partially_sent_record(tls_ctx))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&tls_ctx->tx_lock);
 | |
| 	lock_sock(sk);
 | |
| 
 | |
| 	if (tls_is_partially_sent_record(tls_ctx)) {
 | |
| 		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
 | |
| 		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
 | |
| 	}
 | |
| 
 | |
| 	release_sock(sk);
 | |
| 	mutex_unlock(&tls_ctx->tx_lock);
 | |
| }
 | |
| 
 | |
| struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 | |
| 				       u32 seq, u64 *p_record_sn)
 | |
| {
 | |
| 	u64 record_sn = context->hint_record_sn;
 | |
| 	struct tls_record_info *info, *last;
 | |
| 
 | |
| 	info = context->retransmit_hint;
 | |
| 	if (!info ||
 | |
| 	    before(seq, info->end_seq - info->len)) {
 | |
| 		/* if retransmit_hint is irrelevant start
 | |
| 		 * from the beginning of the list
 | |
| 		 */
 | |
| 		info = list_first_entry_or_null(&context->records_list,
 | |
| 						struct tls_record_info, list);
 | |
| 		if (!info)
 | |
| 			return NULL;
 | |
| 		/* send the start_marker record if seq number is before the
 | |
| 		 * tls offload start marker sequence number. This record is
 | |
| 		 * required to handle TCP packets which are before TLS offload
 | |
| 		 * started.
 | |
| 		 *  And if it's not start marker, look if this seq number
 | |
| 		 * belongs to the list.
 | |
| 		 */
 | |
| 		if (likely(!tls_record_is_start_marker(info))) {
 | |
| 			/* we have the first record, get the last record to see
 | |
| 			 * if this seq number belongs to the list.
 | |
| 			 */
 | |
| 			last = list_last_entry(&context->records_list,
 | |
| 					       struct tls_record_info, list);
 | |
| 
 | |
| 			if (!between(seq, tls_record_start_seq(info),
 | |
| 				     last->end_seq))
 | |
| 				return NULL;
 | |
| 		}
 | |
| 		record_sn = context->unacked_record_sn;
 | |
| 	}
 | |
| 
 | |
| 	/* We just need the _rcu for the READ_ONCE() */
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
 | |
| 		if (before(seq, info->end_seq)) {
 | |
| 			if (!context->retransmit_hint ||
 | |
| 			    after(info->end_seq,
 | |
| 				  context->retransmit_hint->end_seq)) {
 | |
| 				context->hint_record_sn = record_sn;
 | |
| 				context->retransmit_hint = info;
 | |
| 			}
 | |
| 			*p_record_sn = record_sn;
 | |
| 			goto exit_rcu_unlock;
 | |
| 		}
 | |
| 		record_sn++;
 | |
| 	}
 | |
| 	info = NULL;
 | |
| 
 | |
| exit_rcu_unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	return info;
 | |
| }
 | |
| EXPORT_SYMBOL(tls_get_record);
 | |
| 
 | |
| static int tls_device_push_pending_record(struct sock *sk, int flags)
 | |
| {
 | |
| 	struct iov_iter iter;
 | |
| 
 | |
| 	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
 | |
| 	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
 | |
| }
 | |
| 
 | |
| void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 | |
| {
 | |
| 	if (tls_is_partially_sent_record(ctx)) {
 | |
| 		gfp_t sk_allocation = sk->sk_allocation;
 | |
| 
 | |
| 		WARN_ON_ONCE(sk->sk_write_pending);
 | |
| 
 | |
| 		sk->sk_allocation = GFP_ATOMIC;
 | |
| 		tls_push_partial_record(sk, ctx,
 | |
| 					MSG_DONTWAIT | MSG_NOSIGNAL |
 | |
| 					MSG_SENDPAGE_DECRYPTED);
 | |
| 		sk->sk_allocation = sk_allocation;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tls_device_resync_rx(struct tls_context *tls_ctx,
 | |
| 				 struct sock *sk, u32 seq, u8 *rcd_sn)
 | |
| {
 | |
| 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 | |
| 	struct net_device *netdev;
 | |
| 
 | |
| 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
 | |
| 	rcu_read_lock();
 | |
| 	netdev = rcu_dereference(tls_ctx->netdev);
 | |
| 	if (netdev)
 | |
| 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 | |
| 						   TLS_OFFLOAD_CTX_DIR_RX);
 | |
| 	rcu_read_unlock();
 | |
| 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
 | |
| 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
 | |
| {
 | |
| 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
 | |
| 	u32 req_seq = resync_req >> 32;
 | |
| 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
 | |
| 	u16 i;
 | |
| 
 | |
| 	*rcd_delta = 0;
 | |
| 
 | |
| 	if (is_async) {
 | |
| 		/* shouldn't get to wraparound:
 | |
| 		 * too long in async stage, something bad happened
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
 | |
| 			return false;
 | |
| 
 | |
| 		/* asynchronous stage: log all headers seq such that
 | |
| 		 * req_seq <= seq <= end_seq, and wait for real resync request
 | |
| 		 */
 | |
| 		if (before(*seq, req_seq))
 | |
| 			return false;
 | |
| 		if (!after(*seq, req_end) &&
 | |
| 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
 | |
| 			resync_async->log[resync_async->loglen++] = *seq;
 | |
| 
 | |
| 		resync_async->rcd_delta++;
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* synchronous stage: check against the logged entries and
 | |
| 	 * proceed to check the next entries if no match was found
 | |
| 	 */
 | |
| 	for (i = 0; i < resync_async->loglen; i++)
 | |
| 		if (req_seq == resync_async->log[i] &&
 | |
| 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
 | |
| 			*rcd_delta = resync_async->rcd_delta - i;
 | |
| 			*seq = req_seq;
 | |
| 			resync_async->loglen = 0;
 | |
| 			resync_async->rcd_delta = 0;
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 	resync_async->loglen = 0;
 | |
| 	resync_async->rcd_delta = 0;
 | |
| 
 | |
| 	if (req_seq == *seq &&
 | |
| 	    atomic64_try_cmpxchg(&resync_async->req,
 | |
| 				 &resync_req, 0))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct tls_offload_context_rx *rx_ctx;
 | |
| 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 | |
| 	u32 sock_data, is_req_pending;
 | |
| 	struct tls_prot_info *prot;
 | |
| 	s64 resync_req;
 | |
| 	u16 rcd_delta;
 | |
| 	u32 req_seq;
 | |
| 
 | |
| 	if (tls_ctx->rx_conf != TLS_HW)
 | |
| 		return;
 | |
| 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
 | |
| 		return;
 | |
| 
 | |
| 	prot = &tls_ctx->prot_info;
 | |
| 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
 | |
| 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 | |
| 
 | |
| 	switch (rx_ctx->resync_type) {
 | |
| 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 | |
| 		resync_req = atomic64_read(&rx_ctx->resync_req);
 | |
| 		req_seq = resync_req >> 32;
 | |
| 		seq += TLS_HEADER_SIZE - 1;
 | |
| 		is_req_pending = resync_req;
 | |
| 
 | |
| 		if (likely(!is_req_pending) || req_seq != seq ||
 | |
| 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 | |
| 			return;
 | |
| 		break;
 | |
| 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 | |
| 		if (likely(!rx_ctx->resync_nh_do_now))
 | |
| 			return;
 | |
| 
 | |
| 		/* head of next rec is already in, note that the sock_inq will
 | |
| 		 * include the currently parsed message when called from parser
 | |
| 		 */
 | |
| 		sock_data = tcp_inq(sk);
 | |
| 		if (sock_data > rcd_len) {
 | |
| 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
 | |
| 							    rcd_len);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		rx_ctx->resync_nh_do_now = 0;
 | |
| 		seq += rcd_len;
 | |
| 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 | |
| 		break;
 | |
| 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
 | |
| 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
 | |
| 		is_req_pending = resync_req;
 | |
| 		if (likely(!is_req_pending))
 | |
| 			return;
 | |
| 
 | |
| 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
 | |
| 						resync_req, &seq, &rcd_delta))
 | |
| 			return;
 | |
| 		tls_bigint_subtract(rcd_sn, rcd_delta);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 | |
| }
 | |
| 
 | |
| static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 | |
| 					   struct tls_offload_context_rx *ctx,
 | |
| 					   struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct strp_msg *rxm;
 | |
| 
 | |
| 	/* device will request resyncs by itself based on stream scan */
 | |
| 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 | |
| 		return;
 | |
| 	/* already scheduled */
 | |
| 	if (ctx->resync_nh_do_now)
 | |
| 		return;
 | |
| 	/* seen decrypted fragments since last fully-failed record */
 | |
| 	if (ctx->resync_nh_reset) {
 | |
| 		ctx->resync_nh_reset = 0;
 | |
| 		ctx->resync_nh.decrypted_failed = 1;
 | |
| 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 | |
| 		return;
 | |
| 
 | |
| 	/* doing resync, bump the next target in case it fails */
 | |
| 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 | |
| 		ctx->resync_nh.decrypted_tgt *= 2;
 | |
| 	else
 | |
| 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 | |
| 
 | |
| 	rxm = strp_msg(skb);
 | |
| 
 | |
| 	/* head of next rec is already in, parser will sync for us */
 | |
| 	if (tcp_inq(sk) > rxm->full_len) {
 | |
| 		trace_tls_device_rx_resync_nh_schedule(sk);
 | |
| 		ctx->resync_nh_do_now = 1;
 | |
| 	} else {
 | |
| 		struct tls_prot_info *prot = &tls_ctx->prot_info;
 | |
| 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 | |
| 
 | |
| 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 | |
| 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 | |
| 
 | |
| 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 | |
| 				     rcd_sn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
 | |
| {
 | |
| 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
 | |
| 	const struct tls_cipher_size_desc *cipher_sz;
 | |
| 	int err, offset, copy, data_len, pos;
 | |
| 	struct sk_buff *skb, *skb_iter;
 | |
| 	struct scatterlist sg[1];
 | |
| 	struct strp_msg *rxm;
 | |
| 	char *orig_buf, *buf;
 | |
| 
 | |
| 	switch (tls_ctx->crypto_recv.info.cipher_type) {
 | |
| 	case TLS_CIPHER_AES_GCM_128:
 | |
| 	case TLS_CIPHER_AES_GCM_256:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
 | |
| 
 | |
| 	rxm = strp_msg(tls_strp_msg(sw_ctx));
 | |
| 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
 | |
| 			   sk->sk_allocation);
 | |
| 	if (!orig_buf)
 | |
| 		return -ENOMEM;
 | |
| 	buf = orig_buf;
 | |
| 
 | |
| 	err = tls_strp_msg_cow(sw_ctx);
 | |
| 	if (unlikely(err))
 | |
| 		goto free_buf;
 | |
| 
 | |
| 	skb = tls_strp_msg(sw_ctx);
 | |
| 	rxm = strp_msg(skb);
 | |
| 	offset = rxm->offset;
 | |
| 
 | |
| 	sg_init_table(sg, 1);
 | |
| 	sg_set_buf(&sg[0], buf,
 | |
| 		   rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
 | |
| 	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
 | |
| 	if (err)
 | |
| 		goto free_buf;
 | |
| 
 | |
| 	/* We are interested only in the decrypted data not the auth */
 | |
| 	err = decrypt_skb(sk, sg);
 | |
| 	if (err != -EBADMSG)
 | |
| 		goto free_buf;
 | |
| 	else
 | |
| 		err = 0;
 | |
| 
 | |
| 	data_len = rxm->full_len - cipher_sz->tag;
 | |
| 
 | |
| 	if (skb_pagelen(skb) > offset) {
 | |
| 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 | |
| 
 | |
| 		if (skb->decrypted) {
 | |
| 			err = skb_store_bits(skb, offset, buf, copy);
 | |
| 			if (err)
 | |
| 				goto free_buf;
 | |
| 		}
 | |
| 
 | |
| 		offset += copy;
 | |
| 		buf += copy;
 | |
| 	}
 | |
| 
 | |
| 	pos = skb_pagelen(skb);
 | |
| 	skb_walk_frags(skb, skb_iter) {
 | |
| 		int frag_pos;
 | |
| 
 | |
| 		/* Practically all frags must belong to msg if reencrypt
 | |
| 		 * is needed with current strparser and coalescing logic,
 | |
| 		 * but strparser may "get optimized", so let's be safe.
 | |
| 		 */
 | |
| 		if (pos + skb_iter->len <= offset)
 | |
| 			goto done_with_frag;
 | |
| 		if (pos >= data_len + rxm->offset)
 | |
| 			break;
 | |
| 
 | |
| 		frag_pos = offset - pos;
 | |
| 		copy = min_t(int, skb_iter->len - frag_pos,
 | |
| 			     data_len + rxm->offset - offset);
 | |
| 
 | |
| 		if (skb_iter->decrypted) {
 | |
| 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 | |
| 			if (err)
 | |
| 				goto free_buf;
 | |
| 		}
 | |
| 
 | |
| 		offset += copy;
 | |
| 		buf += copy;
 | |
| done_with_frag:
 | |
| 		pos += skb_iter->len;
 | |
| 	}
 | |
| 
 | |
| free_buf:
 | |
| 	kfree(orig_buf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
 | |
| {
 | |
| 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 | |
| 	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
 | |
| 	struct sk_buff *skb = tls_strp_msg(sw_ctx);
 | |
| 	struct strp_msg *rxm = strp_msg(skb);
 | |
| 	int is_decrypted, is_encrypted;
 | |
| 
 | |
| 	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
 | |
| 		is_decrypted = skb->decrypted;
 | |
| 		is_encrypted = !is_decrypted;
 | |
| 	} else {
 | |
| 		is_decrypted = 0;
 | |
| 		is_encrypted = 0;
 | |
| 	}
 | |
| 
 | |
| 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
 | |
| 				   tls_ctx->rx.rec_seq, rxm->full_len,
 | |
| 				   is_encrypted, is_decrypted);
 | |
| 
 | |
| 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
 | |
| 		if (likely(is_encrypted || is_decrypted))
 | |
| 			return is_decrypted;
 | |
| 
 | |
| 		/* After tls_device_down disables the offload, the next SKB will
 | |
| 		 * likely have initial fragments decrypted, and final ones not
 | |
| 		 * decrypted. We need to reencrypt that single SKB.
 | |
| 		 */
 | |
| 		return tls_device_reencrypt(sk, tls_ctx);
 | |
| 	}
 | |
| 
 | |
| 	/* Return immediately if the record is either entirely plaintext or
 | |
| 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 | |
| 	 * record.
 | |
| 	 */
 | |
| 	if (is_decrypted) {
 | |
| 		ctx->resync_nh_reset = 1;
 | |
| 		return is_decrypted;
 | |
| 	}
 | |
| 	if (is_encrypted) {
 | |
| 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ctx->resync_nh_reset = 1;
 | |
| 	return tls_device_reencrypt(sk, tls_ctx);
 | |
| }
 | |
| 
 | |
| static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 | |
| 			      struct net_device *netdev)
 | |
| {
 | |
| 	if (sk->sk_destruct != tls_device_sk_destruct) {
 | |
| 		refcount_set(&ctx->refcount, 1);
 | |
| 		dev_hold(netdev);
 | |
| 		RCU_INIT_POINTER(ctx->netdev, netdev);
 | |
| 		spin_lock_irq(&tls_device_lock);
 | |
| 		list_add_tail(&ctx->list, &tls_device_list);
 | |
| 		spin_unlock_irq(&tls_device_lock);
 | |
| 
 | |
| 		ctx->sk_destruct = sk->sk_destruct;
 | |
| 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct tls_prot_info *prot = &tls_ctx->prot_info;
 | |
| 	const struct tls_cipher_size_desc *cipher_sz;
 | |
| 	struct tls_record_info *start_marker_record;
 | |
| 	struct tls_offload_context_tx *offload_ctx;
 | |
| 	struct tls_crypto_info *crypto_info;
 | |
| 	struct net_device *netdev;
 | |
| 	char *iv, *rec_seq;
 | |
| 	struct sk_buff *skb;
 | |
| 	__be64 rcd_sn;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ctx->priv_ctx_tx)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	netdev = get_netdev_for_sock(sk);
 | |
| 	if (!netdev) {
 | |
| 		pr_err_ratelimited("%s: netdev not found\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
 | |
| 		rc = -EOPNOTSUPP;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 
 | |
| 	crypto_info = &ctx->crypto_send.info;
 | |
| 	if (crypto_info->version != TLS_1_2_VERSION) {
 | |
| 		rc = -EOPNOTSUPP;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 
 | |
| 	switch (crypto_info->cipher_type) {
 | |
| 	case TLS_CIPHER_AES_GCM_128:
 | |
| 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
 | |
| 		rec_seq =
 | |
| 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
 | |
| 		break;
 | |
| 	case TLS_CIPHER_AES_GCM_256:
 | |
| 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
 | |
| 		rec_seq =
 | |
| 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
 | |
| 		break;
 | |
| 	default:
 | |
| 		rc = -EINVAL;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 	cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
 | |
| 
 | |
| 	/* Sanity-check the rec_seq_size for stack allocations */
 | |
| 	if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 
 | |
| 	prot->version = crypto_info->version;
 | |
| 	prot->cipher_type = crypto_info->cipher_type;
 | |
| 	prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
 | |
| 	prot->tag_size = cipher_sz->tag;
 | |
| 	prot->overhead_size = prot->prepend_size + prot->tag_size;
 | |
| 	prot->iv_size = cipher_sz->iv;
 | |
| 	prot->salt_size = cipher_sz->salt;
 | |
| 	ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
 | |
| 	if (!ctx->tx.iv) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
 | |
| 
 | |
| 	prot->rec_seq_size = cipher_sz->rec_seq;
 | |
| 	ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
 | |
| 	if (!ctx->tx.rec_seq) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto free_iv;
 | |
| 	}
 | |
| 
 | |
| 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
 | |
| 	if (!start_marker_record) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto free_rec_seq;
 | |
| 	}
 | |
| 
 | |
| 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
 | |
| 	if (!offload_ctx) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto free_marker_record;
 | |
| 	}
 | |
| 
 | |
| 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
 | |
| 	if (rc)
 | |
| 		goto free_offload_ctx;
 | |
| 
 | |
| 	/* start at rec_seq - 1 to account for the start marker record */
 | |
| 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
 | |
| 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
 | |
| 
 | |
| 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
 | |
| 	start_marker_record->len = 0;
 | |
| 	start_marker_record->num_frags = 0;
 | |
| 
 | |
| 	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
 | |
| 	offload_ctx->ctx = ctx;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&offload_ctx->records_list);
 | |
| 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
 | |
| 	spin_lock_init(&offload_ctx->lock);
 | |
| 	sg_init_table(offload_ctx->sg_tx_data,
 | |
| 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
 | |
| 
 | |
| 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
 | |
| 	ctx->push_pending_record = tls_device_push_pending_record;
 | |
| 
 | |
| 	/* TLS offload is greatly simplified if we don't send
 | |
| 	 * SKBs where only part of the payload needs to be encrypted.
 | |
| 	 * So mark the last skb in the write queue as end of record.
 | |
| 	 */
 | |
| 	skb = tcp_write_queue_tail(sk);
 | |
| 	if (skb)
 | |
| 		TCP_SKB_CB(skb)->eor = 1;
 | |
| 
 | |
| 	/* Avoid offloading if the device is down
 | |
| 	 * We don't want to offload new flows after
 | |
| 	 * the NETDEV_DOWN event
 | |
| 	 *
 | |
| 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
 | |
| 	 * handler thus protecting from the device going down before
 | |
| 	 * ctx was added to tls_device_list.
 | |
| 	 */
 | |
| 	down_read(&device_offload_lock);
 | |
| 	if (!(netdev->flags & IFF_UP)) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto release_lock;
 | |
| 	}
 | |
| 
 | |
| 	ctx->priv_ctx_tx = offload_ctx;
 | |
| 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
 | |
| 					     &ctx->crypto_send.info,
 | |
| 					     tcp_sk(sk)->write_seq);
 | |
| 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
 | |
| 				     tcp_sk(sk)->write_seq, rec_seq, rc);
 | |
| 	if (rc)
 | |
| 		goto release_lock;
 | |
| 
 | |
| 	tls_device_attach(ctx, sk, netdev);
 | |
| 	up_read(&device_offload_lock);
 | |
| 
 | |
| 	/* following this assignment tls_is_skb_tx_device_offloaded
 | |
| 	 * will return true and the context might be accessed
 | |
| 	 * by the netdev's xmit function.
 | |
| 	 */
 | |
| 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
 | |
| 	dev_put(netdev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| release_lock:
 | |
| 	up_read(&device_offload_lock);
 | |
| 	clean_acked_data_disable(inet_csk(sk));
 | |
| 	crypto_free_aead(offload_ctx->aead_send);
 | |
| free_offload_ctx:
 | |
| 	kfree(offload_ctx);
 | |
| 	ctx->priv_ctx_tx = NULL;
 | |
| free_marker_record:
 | |
| 	kfree(start_marker_record);
 | |
| free_rec_seq:
 | |
| 	kfree(ctx->tx.rec_seq);
 | |
| free_iv:
 | |
| 	kfree(ctx->tx.iv);
 | |
| release_netdev:
 | |
| 	dev_put(netdev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
 | |
| {
 | |
| 	struct tls12_crypto_info_aes_gcm_128 *info;
 | |
| 	struct tls_offload_context_rx *context;
 | |
| 	struct net_device *netdev;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	netdev = get_netdev_for_sock(sk);
 | |
| 	if (!netdev) {
 | |
| 		pr_err_ratelimited("%s: netdev not found\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
 | |
| 		rc = -EOPNOTSUPP;
 | |
| 		goto release_netdev;
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid offloading if the device is down
 | |
| 	 * We don't want to offload new flows after
 | |
| 	 * the NETDEV_DOWN event
 | |
| 	 *
 | |
| 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
 | |
| 	 * handler thus protecting from the device going down before
 | |
| 	 * ctx was added to tls_device_list.
 | |
| 	 */
 | |
| 	down_read(&device_offload_lock);
 | |
| 	if (!(netdev->flags & IFF_UP)) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto release_lock;
 | |
| 	}
 | |
| 
 | |
| 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
 | |
| 	if (!context) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto release_lock;
 | |
| 	}
 | |
| 	context->resync_nh_reset = 1;
 | |
| 
 | |
| 	ctx->priv_ctx_rx = context;
 | |
| 	rc = tls_set_sw_offload(sk, ctx, 0);
 | |
| 	if (rc)
 | |
| 		goto release_ctx;
 | |
| 
 | |
| 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
 | |
| 					     &ctx->crypto_recv.info,
 | |
| 					     tcp_sk(sk)->copied_seq);
 | |
| 	info = (void *)&ctx->crypto_recv.info;
 | |
| 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
 | |
| 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
 | |
| 	if (rc)
 | |
| 		goto free_sw_resources;
 | |
| 
 | |
| 	tls_device_attach(ctx, sk, netdev);
 | |
| 	up_read(&device_offload_lock);
 | |
| 
 | |
| 	dev_put(netdev);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_sw_resources:
 | |
| 	up_read(&device_offload_lock);
 | |
| 	tls_sw_free_resources_rx(sk);
 | |
| 	down_read(&device_offload_lock);
 | |
| release_ctx:
 | |
| 	ctx->priv_ctx_rx = NULL;
 | |
| release_lock:
 | |
| 	up_read(&device_offload_lock);
 | |
| release_netdev:
 | |
| 	dev_put(netdev);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void tls_device_offload_cleanup_rx(struct sock *sk)
 | |
| {
 | |
| 	struct tls_context *tls_ctx = tls_get_ctx(sk);
 | |
| 	struct net_device *netdev;
 | |
| 
 | |
| 	down_read(&device_offload_lock);
 | |
| 	netdev = rcu_dereference_protected(tls_ctx->netdev,
 | |
| 					   lockdep_is_held(&device_offload_lock));
 | |
| 	if (!netdev)
 | |
| 		goto out;
 | |
| 
 | |
| 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
 | |
| 					TLS_OFFLOAD_CTX_DIR_RX);
 | |
| 
 | |
| 	if (tls_ctx->tx_conf != TLS_HW) {
 | |
| 		dev_put(netdev);
 | |
| 		rcu_assign_pointer(tls_ctx->netdev, NULL);
 | |
| 	} else {
 | |
| 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
 | |
| 	}
 | |
| out:
 | |
| 	up_read(&device_offload_lock);
 | |
| 	tls_sw_release_resources_rx(sk);
 | |
| }
 | |
| 
 | |
| static int tls_device_down(struct net_device *netdev)
 | |
| {
 | |
| 	struct tls_context *ctx, *tmp;
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	/* Request a write lock to block new offload attempts */
 | |
| 	down_write(&device_offload_lock);
 | |
| 
 | |
| 	spin_lock_irqsave(&tls_device_lock, flags);
 | |
| 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
 | |
| 		struct net_device *ctx_netdev =
 | |
| 			rcu_dereference_protected(ctx->netdev,
 | |
| 						  lockdep_is_held(&device_offload_lock));
 | |
| 
 | |
| 		if (ctx_netdev != netdev ||
 | |
| 		    !refcount_inc_not_zero(&ctx->refcount))
 | |
| 			continue;
 | |
| 
 | |
| 		list_move(&ctx->list, &list);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&tls_device_lock, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
 | |
| 		/* Stop offloaded TX and switch to the fallback.
 | |
| 		 * tls_is_skb_tx_device_offloaded will return false.
 | |
| 		 */
 | |
| 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
 | |
| 
 | |
| 		/* Stop the RX and TX resync.
 | |
| 		 * tls_dev_resync must not be called after tls_dev_del.
 | |
| 		 */
 | |
| 		rcu_assign_pointer(ctx->netdev, NULL);
 | |
| 
 | |
| 		/* Start skipping the RX resync logic completely. */
 | |
| 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
 | |
| 
 | |
| 		/* Sync with inflight packets. After this point:
 | |
| 		 * TX: no non-encrypted packets will be passed to the driver.
 | |
| 		 * RX: resync requests from the driver will be ignored.
 | |
| 		 */
 | |
| 		synchronize_net();
 | |
| 
 | |
| 		/* Release the offload context on the driver side. */
 | |
| 		if (ctx->tx_conf == TLS_HW)
 | |
| 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
 | |
| 							TLS_OFFLOAD_CTX_DIR_TX);
 | |
| 		if (ctx->rx_conf == TLS_HW &&
 | |
| 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
 | |
| 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
 | |
| 							TLS_OFFLOAD_CTX_DIR_RX);
 | |
| 
 | |
| 		dev_put(netdev);
 | |
| 
 | |
| 		/* Move the context to a separate list for two reasons:
 | |
| 		 * 1. When the context is deallocated, list_del is called.
 | |
| 		 * 2. It's no longer an offloaded context, so we don't want to
 | |
| 		 *    run offload-specific code on this context.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&tls_device_lock, flags);
 | |
| 		list_move_tail(&ctx->list, &tls_device_down_list);
 | |
| 		spin_unlock_irqrestore(&tls_device_lock, flags);
 | |
| 
 | |
| 		/* Device contexts for RX and TX will be freed in on sk_destruct
 | |
| 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
 | |
| 		 * Now release the ref taken above.
 | |
| 		 */
 | |
| 		if (refcount_dec_and_test(&ctx->refcount)) {
 | |
| 			/* sk_destruct ran after tls_device_down took a ref, and
 | |
| 			 * it returned early. Complete the destruction here.
 | |
| 			 */
 | |
| 			list_del(&ctx->list);
 | |
| 			tls_device_free_ctx(ctx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	up_write(&device_offload_lock);
 | |
| 
 | |
| 	flush_workqueue(destruct_wq);
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static int tls_dev_event(struct notifier_block *this, unsigned long event,
 | |
| 			 void *ptr)
 | |
| {
 | |
| 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
 | |
| 
 | |
| 	if (!dev->tlsdev_ops &&
 | |
| 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case NETDEV_REGISTER:
 | |
| 	case NETDEV_FEAT_CHANGE:
 | |
| 		if (netif_is_bond_master(dev))
 | |
| 			return NOTIFY_DONE;
 | |
| 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
 | |
| 		    !dev->tlsdev_ops->tls_dev_resync)
 | |
| 			return NOTIFY_BAD;
 | |
| 
 | |
| 		if  (dev->tlsdev_ops &&
 | |
| 		     dev->tlsdev_ops->tls_dev_add &&
 | |
| 		     dev->tlsdev_ops->tls_dev_del)
 | |
| 			return NOTIFY_DONE;
 | |
| 		else
 | |
| 			return NOTIFY_BAD;
 | |
| 	case NETDEV_DOWN:
 | |
| 		return tls_device_down(dev);
 | |
| 	}
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block tls_dev_notifier = {
 | |
| 	.notifier_call	= tls_dev_event,
 | |
| };
 | |
| 
 | |
| int __init tls_device_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
 | |
| 	if (!destruct_wq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = register_netdevice_notifier(&tls_dev_notifier);
 | |
| 	if (err)
 | |
| 		destroy_workqueue(destruct_wq);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void __exit tls_device_cleanup(void)
 | |
| {
 | |
| 	unregister_netdevice_notifier(&tls_dev_notifier);
 | |
| 	destroy_workqueue(destruct_wq);
 | |
| 	clean_acked_data_flush();
 | |
| }
 |