mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 bde1597d0f
			
		
	
	
		bde1597d0f
		
	
	
	
	
		
			
			The xarray.c file contains the only call to radix_tree_node_rcu_free(), and it comes with its own extern declaration for it. This means the function definition causes a missing-prototype warning: lib/radix-tree.c:288:6: error: no previous prototype for 'radix_tree_node_rcu_free' [-Werror=missing-prototypes] Instead, move the declaration for this function to a new header that can be included by both, and do the same for the radix_tree_node_cachep variable that has the same underlying problem but does not cause a warning with gcc. [zhangpeng.00@bytedance.com: fix building radix tree test suite] Link: https://lkml.kernel.org/r/20230521095450.21332-1-zhangpeng.00@bytedance.com Link: https://lkml.kernel.org/r/20230516194212.548910-1-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			1609 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1609 lines
		
	
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2001 Momchil Velikov
 | |
|  * Portions Copyright (C) 2001 Christoph Hellwig
 | |
|  * Copyright (C) 2005 SGI, Christoph Lameter
 | |
|  * Copyright (C) 2006 Nick Piggin
 | |
|  * Copyright (C) 2012 Konstantin Khlebnikov
 | |
|  * Copyright (C) 2016 Intel, Matthew Wilcox
 | |
|  * Copyright (C) 2016 Intel, Ross Zwisler
 | |
|  */
 | |
| 
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/preempt.h>		/* in_interrupt() */
 | |
| #include <linux/radix-tree.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/xarray.h>
 | |
| 
 | |
| #include "radix-tree.h"
 | |
| 
 | |
| /*
 | |
|  * Radix tree node cache.
 | |
|  */
 | |
| struct kmem_cache *radix_tree_node_cachep;
 | |
| 
 | |
| /*
 | |
|  * The radix tree is variable-height, so an insert operation not only has
 | |
|  * to build the branch to its corresponding item, it also has to build the
 | |
|  * branch to existing items if the size has to be increased (by
 | |
|  * radix_tree_extend).
 | |
|  *
 | |
|  * The worst case is a zero height tree with just a single item at index 0,
 | |
|  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
 | |
|  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
 | |
|  * Hence:
 | |
|  */
 | |
| #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
 | |
| 
 | |
| /*
 | |
|  * The IDR does not have to be as high as the radix tree since it uses
 | |
|  * signed integers, not unsigned longs.
 | |
|  */
 | |
| #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
 | |
| #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
 | |
| 						RADIX_TREE_MAP_SHIFT))
 | |
| #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
 | |
| 
 | |
| /*
 | |
|  * Per-cpu pool of preloaded nodes
 | |
|  */
 | |
| DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
 | |
| 	.lock = INIT_LOCAL_LOCK(lock),
 | |
| };
 | |
| EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
 | |
| 
 | |
| static inline struct radix_tree_node *entry_to_node(void *ptr)
 | |
| {
 | |
| 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
 | |
| }
 | |
| 
 | |
| static inline void *node_to_entry(void *ptr)
 | |
| {
 | |
| 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
 | |
| }
 | |
| 
 | |
| #define RADIX_TREE_RETRY	XA_RETRY_ENTRY
 | |
| 
 | |
| static inline unsigned long
 | |
| get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 | |
| {
 | |
| 	return parent ? slot - parent->slots : 0;
 | |
| }
 | |
| 
 | |
| static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 | |
| 			struct radix_tree_node **nodep, unsigned long index)
 | |
| {
 | |
| 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 | |
| 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 | |
| 
 | |
| 	*nodep = (void *)entry;
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 | |
| {
 | |
| 	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
 | |
| }
 | |
| 
 | |
| static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 | |
| 		int offset)
 | |
| {
 | |
| 	__set_bit(offset, node->tags[tag]);
 | |
| }
 | |
| 
 | |
| static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 | |
| 		int offset)
 | |
| {
 | |
| 	__clear_bit(offset, node->tags[tag]);
 | |
| }
 | |
| 
 | |
| static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 | |
| 		int offset)
 | |
| {
 | |
| 	return test_bit(offset, node->tags[tag]);
 | |
| }
 | |
| 
 | |
| static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 | |
| {
 | |
| 	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 | |
| }
 | |
| 
 | |
| static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 | |
| {
 | |
| 	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 | |
| }
 | |
| 
 | |
| static inline void root_tag_clear_all(struct radix_tree_root *root)
 | |
| {
 | |
| 	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 | |
| }
 | |
| 
 | |
| static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 | |
| {
 | |
| 	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 | |
| }
 | |
| 
 | |
| static inline unsigned root_tags_get(const struct radix_tree_root *root)
 | |
| {
 | |
| 	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline bool is_idr(const struct radix_tree_root *root)
 | |
| {
 | |
| 	return !!(root->xa_flags & ROOT_IS_IDR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns 1 if any slot in the node has this tag set.
 | |
|  * Otherwise returns 0.
 | |
|  */
 | |
| static inline int any_tag_set(const struct radix_tree_node *node,
 | |
| 							unsigned int tag)
 | |
| {
 | |
| 	unsigned idx;
 | |
| 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 | |
| 		if (node->tags[tag][idx])
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 | |
| {
 | |
| 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * radix_tree_find_next_bit - find the next set bit in a memory region
 | |
|  *
 | |
|  * @node: where to begin the search
 | |
|  * @tag: the tag index
 | |
|  * @offset: the bitnumber to start searching at
 | |
|  *
 | |
|  * Unrollable variant of find_next_bit() for constant size arrays.
 | |
|  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 | |
|  * Returns next bit offset, or size if nothing found.
 | |
|  */
 | |
| static __always_inline unsigned long
 | |
| radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 | |
| 			 unsigned long offset)
 | |
| {
 | |
| 	const unsigned long *addr = node->tags[tag];
 | |
| 
 | |
| 	if (offset < RADIX_TREE_MAP_SIZE) {
 | |
| 		unsigned long tmp;
 | |
| 
 | |
| 		addr += offset / BITS_PER_LONG;
 | |
| 		tmp = *addr >> (offset % BITS_PER_LONG);
 | |
| 		if (tmp)
 | |
| 			return __ffs(tmp) + offset;
 | |
| 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 | |
| 		while (offset < RADIX_TREE_MAP_SIZE) {
 | |
| 			tmp = *++addr;
 | |
| 			if (tmp)
 | |
| 				return __ffs(tmp) + offset;
 | |
| 			offset += BITS_PER_LONG;
 | |
| 		}
 | |
| 	}
 | |
| 	return RADIX_TREE_MAP_SIZE;
 | |
| }
 | |
| 
 | |
| static unsigned int iter_offset(const struct radix_tree_iter *iter)
 | |
| {
 | |
| 	return iter->index & RADIX_TREE_MAP_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The maximum index which can be stored in a radix tree
 | |
|  */
 | |
| static inline unsigned long shift_maxindex(unsigned int shift)
 | |
| {
 | |
| 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 | |
| }
 | |
| 
 | |
| static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 | |
| {
 | |
| 	return shift_maxindex(node->shift);
 | |
| }
 | |
| 
 | |
| static unsigned long next_index(unsigned long index,
 | |
| 				const struct radix_tree_node *node,
 | |
| 				unsigned long offset)
 | |
| {
 | |
| 	return (index & ~node_maxindex(node)) + (offset << node->shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This assumes that the caller has performed appropriate preallocation, and
 | |
|  * that the caller has pinned this thread of control to the current CPU.
 | |
|  */
 | |
| static struct radix_tree_node *
 | |
| radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 | |
| 			struct radix_tree_root *root,
 | |
| 			unsigned int shift, unsigned int offset,
 | |
| 			unsigned int count, unsigned int nr_values)
 | |
| {
 | |
| 	struct radix_tree_node *ret = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload code isn't irq safe and it doesn't make sense to use
 | |
| 	 * preloading during an interrupt anyway as all the allocations have
 | |
| 	 * to be atomic. So just do normal allocation when in interrupt.
 | |
| 	 */
 | |
| 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 | |
| 		struct radix_tree_preload *rtp;
 | |
| 
 | |
| 		/*
 | |
| 		 * Even if the caller has preloaded, try to allocate from the
 | |
| 		 * cache first for the new node to get accounted to the memory
 | |
| 		 * cgroup.
 | |
| 		 */
 | |
| 		ret = kmem_cache_alloc(radix_tree_node_cachep,
 | |
| 				       gfp_mask | __GFP_NOWARN);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Provided the caller has preloaded here, we will always
 | |
| 		 * succeed in getting a node here (and never reach
 | |
| 		 * kmem_cache_alloc)
 | |
| 		 */
 | |
| 		rtp = this_cpu_ptr(&radix_tree_preloads);
 | |
| 		if (rtp->nr) {
 | |
| 			ret = rtp->nodes;
 | |
| 			rtp->nodes = ret->parent;
 | |
| 			rtp->nr--;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Update the allocation stack trace as this is more useful
 | |
| 		 * for debugging.
 | |
| 		 */
 | |
| 		kmemleak_update_trace(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 | |
| out:
 | |
| 	BUG_ON(radix_tree_is_internal_node(ret));
 | |
| 	if (ret) {
 | |
| 		ret->shift = shift;
 | |
| 		ret->offset = offset;
 | |
| 		ret->count = count;
 | |
| 		ret->nr_values = nr_values;
 | |
| 		ret->parent = parent;
 | |
| 		ret->array = root;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void radix_tree_node_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct radix_tree_node *node =
 | |
| 			container_of(head, struct radix_tree_node, rcu_head);
 | |
| 
 | |
| 	/*
 | |
| 	 * Must only free zeroed nodes into the slab.  We can be left with
 | |
| 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 | |
| 	 * and tags here.
 | |
| 	 */
 | |
| 	memset(node->slots, 0, sizeof(node->slots));
 | |
| 	memset(node->tags, 0, sizeof(node->tags));
 | |
| 	INIT_LIST_HEAD(&node->private_list);
 | |
| 
 | |
| 	kmem_cache_free(radix_tree_node_cachep, node);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| radix_tree_node_free(struct radix_tree_node *node)
 | |
| {
 | |
| 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load up this CPU's radix_tree_node buffer with sufficient objects to
 | |
|  * ensure that the addition of a single element in the tree cannot fail.  On
 | |
|  * success, return zero, with preemption disabled.  On error, return -ENOMEM
 | |
|  * with preemption not disabled.
 | |
|  *
 | |
|  * To make use of this facility, the radix tree must be initialised without
 | |
|  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 | |
|  */
 | |
| static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 | |
| {
 | |
| 	struct radix_tree_preload *rtp;
 | |
| 	struct radix_tree_node *node;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Nodes preloaded by one cgroup can be used by another cgroup, so
 | |
| 	 * they should never be accounted to any particular memory cgroup.
 | |
| 	 */
 | |
| 	gfp_mask &= ~__GFP_ACCOUNT;
 | |
| 
 | |
| 	local_lock(&radix_tree_preloads.lock);
 | |
| 	rtp = this_cpu_ptr(&radix_tree_preloads);
 | |
| 	while (rtp->nr < nr) {
 | |
| 		local_unlock(&radix_tree_preloads.lock);
 | |
| 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 | |
| 		if (node == NULL)
 | |
| 			goto out;
 | |
| 		local_lock(&radix_tree_preloads.lock);
 | |
| 		rtp = this_cpu_ptr(&radix_tree_preloads);
 | |
| 		if (rtp->nr < nr) {
 | |
| 			node->parent = rtp->nodes;
 | |
| 			rtp->nodes = node;
 | |
| 			rtp->nr++;
 | |
| 		} else {
 | |
| 			kmem_cache_free(radix_tree_node_cachep, node);
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load up this CPU's radix_tree_node buffer with sufficient objects to
 | |
|  * ensure that the addition of a single element in the tree cannot fail.  On
 | |
|  * success, return zero, with preemption disabled.  On error, return -ENOMEM
 | |
|  * with preemption not disabled.
 | |
|  *
 | |
|  * To make use of this facility, the radix tree must be initialised without
 | |
|  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 | |
|  */
 | |
| int radix_tree_preload(gfp_t gfp_mask)
 | |
| {
 | |
| 	/* Warn on non-sensical use... */
 | |
| 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 | |
| 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_preload);
 | |
| 
 | |
| /*
 | |
|  * The same as above function, except we don't guarantee preloading happens.
 | |
|  * We do it, if we decide it helps. On success, return zero with preemption
 | |
|  * disabled. On error, return -ENOMEM with preemption not disabled.
 | |
|  */
 | |
| int radix_tree_maybe_preload(gfp_t gfp_mask)
 | |
| {
 | |
| 	if (gfpflags_allow_blocking(gfp_mask))
 | |
| 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 | |
| 	/* Preloading doesn't help anything with this gfp mask, skip it */
 | |
| 	local_lock(&radix_tree_preloads.lock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_maybe_preload);
 | |
| 
 | |
| static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 | |
| 		struct radix_tree_node **nodep, unsigned long *maxindex)
 | |
| {
 | |
| 	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 | |
| 
 | |
| 	*nodep = node;
 | |
| 
 | |
| 	if (likely(radix_tree_is_internal_node(node))) {
 | |
| 		node = entry_to_node(node);
 | |
| 		*maxindex = node_maxindex(node);
 | |
| 		return node->shift + RADIX_TREE_MAP_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	*maxindex = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Extend a radix tree so it can store key @index.
 | |
|  */
 | |
| static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 | |
| 				unsigned long index, unsigned int shift)
 | |
| {
 | |
| 	void *entry;
 | |
| 	unsigned int maxshift;
 | |
| 	int tag;
 | |
| 
 | |
| 	/* Figure out what the shift should be.  */
 | |
| 	maxshift = shift;
 | |
| 	while (index > shift_maxindex(maxshift))
 | |
| 		maxshift += RADIX_TREE_MAP_SHIFT;
 | |
| 
 | |
| 	entry = rcu_dereference_raw(root->xa_head);
 | |
| 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 | |
| 		goto out;
 | |
| 
 | |
| 	do {
 | |
| 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 | |
| 							root, shift, 0, 1, 0);
 | |
| 		if (!node)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (is_idr(root)) {
 | |
| 			all_tag_set(node, IDR_FREE);
 | |
| 			if (!root_tag_get(root, IDR_FREE)) {
 | |
| 				tag_clear(node, IDR_FREE, 0);
 | |
| 				root_tag_set(root, IDR_FREE);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Propagate the aggregated tag info to the new child */
 | |
| 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 | |
| 				if (root_tag_get(root, tag))
 | |
| 					tag_set(node, tag, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		BUG_ON(shift > BITS_PER_LONG);
 | |
| 		if (radix_tree_is_internal_node(entry)) {
 | |
| 			entry_to_node(entry)->parent = node;
 | |
| 		} else if (xa_is_value(entry)) {
 | |
| 			/* Moving a value entry root->xa_head to a node */
 | |
| 			node->nr_values = 1;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * entry was already in the radix tree, so we do not need
 | |
| 		 * rcu_assign_pointer here
 | |
| 		 */
 | |
| 		node->slots[0] = (void __rcu *)entry;
 | |
| 		entry = node_to_entry(node);
 | |
| 		rcu_assign_pointer(root->xa_head, entry);
 | |
| 		shift += RADIX_TREE_MAP_SHIFT;
 | |
| 	} while (shift <= maxshift);
 | |
| out:
 | |
| 	return maxshift + RADIX_TREE_MAP_SHIFT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_shrink    -    shrink radix tree to minimum height
 | |
|  *	@root:		radix tree root
 | |
|  */
 | |
| static inline bool radix_tree_shrink(struct radix_tree_root *root)
 | |
| {
 | |
| 	bool shrunk = false;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 | |
| 		struct radix_tree_node *child;
 | |
| 
 | |
| 		if (!radix_tree_is_internal_node(node))
 | |
| 			break;
 | |
| 		node = entry_to_node(node);
 | |
| 
 | |
| 		/*
 | |
| 		 * The candidate node has more than one child, or its child
 | |
| 		 * is not at the leftmost slot, we cannot shrink.
 | |
| 		 */
 | |
| 		if (node->count != 1)
 | |
| 			break;
 | |
| 		child = rcu_dereference_raw(node->slots[0]);
 | |
| 		if (!child)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * For an IDR, we must not shrink entry 0 into the root in
 | |
| 		 * case somebody calls idr_replace() with a pointer that
 | |
| 		 * appears to be an internal entry
 | |
| 		 */
 | |
| 		if (!node->shift && is_idr(root))
 | |
| 			break;
 | |
| 
 | |
| 		if (radix_tree_is_internal_node(child))
 | |
| 			entry_to_node(child)->parent = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need rcu_assign_pointer(), since we are simply
 | |
| 		 * moving the node from one part of the tree to another: if it
 | |
| 		 * was safe to dereference the old pointer to it
 | |
| 		 * (node->slots[0]), it will be safe to dereference the new
 | |
| 		 * one (root->xa_head) as far as dependent read barriers go.
 | |
| 		 */
 | |
| 		root->xa_head = (void __rcu *)child;
 | |
| 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 | |
| 			root_tag_clear(root, IDR_FREE);
 | |
| 
 | |
| 		/*
 | |
| 		 * We have a dilemma here. The node's slot[0] must not be
 | |
| 		 * NULLed in case there are concurrent lookups expecting to
 | |
| 		 * find the item. However if this was a bottom-level node,
 | |
| 		 * then it may be subject to the slot pointer being visible
 | |
| 		 * to callers dereferencing it. If item corresponding to
 | |
| 		 * slot[0] is subsequently deleted, these callers would expect
 | |
| 		 * their slot to become empty sooner or later.
 | |
| 		 *
 | |
| 		 * For example, lockless pagecache will look up a slot, deref
 | |
| 		 * the page pointer, and if the page has 0 refcount it means it
 | |
| 		 * was concurrently deleted from pagecache so try the deref
 | |
| 		 * again. Fortunately there is already a requirement for logic
 | |
| 		 * to retry the entire slot lookup -- the indirect pointer
 | |
| 		 * problem (replacing direct root node with an indirect pointer
 | |
| 		 * also results in a stale slot). So tag the slot as indirect
 | |
| 		 * to force callers to retry.
 | |
| 		 */
 | |
| 		node->count = 0;
 | |
| 		if (!radix_tree_is_internal_node(child)) {
 | |
| 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(!list_empty(&node->private_list));
 | |
| 		radix_tree_node_free(node);
 | |
| 		shrunk = true;
 | |
| 	}
 | |
| 
 | |
| 	return shrunk;
 | |
| }
 | |
| 
 | |
| static bool delete_node(struct radix_tree_root *root,
 | |
| 			struct radix_tree_node *node)
 | |
| {
 | |
| 	bool deleted = false;
 | |
| 
 | |
| 	do {
 | |
| 		struct radix_tree_node *parent;
 | |
| 
 | |
| 		if (node->count) {
 | |
| 			if (node_to_entry(node) ==
 | |
| 					rcu_dereference_raw(root->xa_head))
 | |
| 				deleted |= radix_tree_shrink(root);
 | |
| 			return deleted;
 | |
| 		}
 | |
| 
 | |
| 		parent = node->parent;
 | |
| 		if (parent) {
 | |
| 			parent->slots[node->offset] = NULL;
 | |
| 			parent->count--;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Shouldn't the tags already have all been cleared
 | |
| 			 * by the caller?
 | |
| 			 */
 | |
| 			if (!is_idr(root))
 | |
| 				root_tag_clear_all(root);
 | |
| 			root->xa_head = NULL;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(!list_empty(&node->private_list));
 | |
| 		radix_tree_node_free(node);
 | |
| 		deleted = true;
 | |
| 
 | |
| 		node = parent;
 | |
| 	} while (node);
 | |
| 
 | |
| 	return deleted;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__radix_tree_create	-	create a slot in a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *	@nodep:		returns node
 | |
|  *	@slotp:		returns slot
 | |
|  *
 | |
|  *	Create, if necessary, and return the node and slot for an item
 | |
|  *	at position @index in the radix tree @root.
 | |
|  *
 | |
|  *	Until there is more than one item in the tree, no nodes are
 | |
|  *	allocated and @root->xa_head is used as a direct slot instead of
 | |
|  *	pointing to a node, in which case *@nodep will be NULL.
 | |
|  *
 | |
|  *	Returns -ENOMEM, or 0 for success.
 | |
|  */
 | |
| static int __radix_tree_create(struct radix_tree_root *root,
 | |
| 		unsigned long index, struct radix_tree_node **nodep,
 | |
| 		void __rcu ***slotp)
 | |
| {
 | |
| 	struct radix_tree_node *node = NULL, *child;
 | |
| 	void __rcu **slot = (void __rcu **)&root->xa_head;
 | |
| 	unsigned long maxindex;
 | |
| 	unsigned int shift, offset = 0;
 | |
| 	unsigned long max = index;
 | |
| 	gfp_t gfp = root_gfp_mask(root);
 | |
| 
 | |
| 	shift = radix_tree_load_root(root, &child, &maxindex);
 | |
| 
 | |
| 	/* Make sure the tree is high enough.  */
 | |
| 	if (max > maxindex) {
 | |
| 		int error = radix_tree_extend(root, gfp, max, shift);
 | |
| 		if (error < 0)
 | |
| 			return error;
 | |
| 		shift = error;
 | |
| 		child = rcu_dereference_raw(root->xa_head);
 | |
| 	}
 | |
| 
 | |
| 	while (shift > 0) {
 | |
| 		shift -= RADIX_TREE_MAP_SHIFT;
 | |
| 		if (child == NULL) {
 | |
| 			/* Have to add a child node.  */
 | |
| 			child = radix_tree_node_alloc(gfp, node, root, shift,
 | |
| 							offset, 0, 0);
 | |
| 			if (!child)
 | |
| 				return -ENOMEM;
 | |
| 			rcu_assign_pointer(*slot, node_to_entry(child));
 | |
| 			if (node)
 | |
| 				node->count++;
 | |
| 		} else if (!radix_tree_is_internal_node(child))
 | |
| 			break;
 | |
| 
 | |
| 		/* Go a level down */
 | |
| 		node = entry_to_node(child);
 | |
| 		offset = radix_tree_descend(node, &child, index);
 | |
| 		slot = &node->slots[offset];
 | |
| 	}
 | |
| 
 | |
| 	if (nodep)
 | |
| 		*nodep = node;
 | |
| 	if (slotp)
 | |
| 		*slotp = slot;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free any nodes below this node.  The tree is presumed to not need
 | |
|  * shrinking, and any user data in the tree is presumed to not need a
 | |
|  * destructor called on it.  If we need to add a destructor, we can
 | |
|  * add that functionality later.  Note that we may not clear tags or
 | |
|  * slots from the tree as an RCU walker may still have a pointer into
 | |
|  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 | |
|  * but we'll still have to clear those in rcu_free.
 | |
|  */
 | |
| static void radix_tree_free_nodes(struct radix_tree_node *node)
 | |
| {
 | |
| 	unsigned offset = 0;
 | |
| 	struct radix_tree_node *child = entry_to_node(node);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		void *entry = rcu_dereference_raw(child->slots[offset]);
 | |
| 		if (xa_is_node(entry) && child->shift) {
 | |
| 			child = entry_to_node(entry);
 | |
| 			offset = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 		offset++;
 | |
| 		while (offset == RADIX_TREE_MAP_SIZE) {
 | |
| 			struct radix_tree_node *old = child;
 | |
| 			offset = child->offset + 1;
 | |
| 			child = child->parent;
 | |
| 			WARN_ON_ONCE(!list_empty(&old->private_list));
 | |
| 			radix_tree_node_free(old);
 | |
| 			if (old == entry_to_node(node))
 | |
| 				return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int insert_entries(struct radix_tree_node *node,
 | |
| 		void __rcu **slot, void *item)
 | |
| {
 | |
| 	if (*slot)
 | |
| 		return -EEXIST;
 | |
| 	rcu_assign_pointer(*slot, item);
 | |
| 	if (node) {
 | |
| 		node->count++;
 | |
| 		if (xa_is_value(item))
 | |
| 			node->nr_values++;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_insert    -    insert into a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *	@item:		item to insert
 | |
|  *
 | |
|  *	Insert an item into the radix tree at position @index.
 | |
|  */
 | |
| int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 | |
| 			void *item)
 | |
| {
 | |
| 	struct radix_tree_node *node;
 | |
| 	void __rcu **slot;
 | |
| 	int error;
 | |
| 
 | |
| 	BUG_ON(radix_tree_is_internal_node(item));
 | |
| 
 | |
| 	error = __radix_tree_create(root, index, &node, &slot);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = insert_entries(node, slot, item);
 | |
| 	if (error < 0)
 | |
| 		return error;
 | |
| 
 | |
| 	if (node) {
 | |
| 		unsigned offset = get_slot_offset(node, slot);
 | |
| 		BUG_ON(tag_get(node, 0, offset));
 | |
| 		BUG_ON(tag_get(node, 1, offset));
 | |
| 		BUG_ON(tag_get(node, 2, offset));
 | |
| 	} else {
 | |
| 		BUG_ON(root_tags_get(root));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_insert);
 | |
| 
 | |
| /**
 | |
|  *	__radix_tree_lookup	-	lookup an item in a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *	@nodep:		returns node
 | |
|  *	@slotp:		returns slot
 | |
|  *
 | |
|  *	Lookup and return the item at position @index in the radix
 | |
|  *	tree @root.
 | |
|  *
 | |
|  *	Until there is more than one item in the tree, no nodes are
 | |
|  *	allocated and @root->xa_head is used as a direct slot instead of
 | |
|  *	pointing to a node, in which case *@nodep will be NULL.
 | |
|  */
 | |
| void *__radix_tree_lookup(const struct radix_tree_root *root,
 | |
| 			  unsigned long index, struct radix_tree_node **nodep,
 | |
| 			  void __rcu ***slotp)
 | |
| {
 | |
| 	struct radix_tree_node *node, *parent;
 | |
| 	unsigned long maxindex;
 | |
| 	void __rcu **slot;
 | |
| 
 | |
|  restart:
 | |
| 	parent = NULL;
 | |
| 	slot = (void __rcu **)&root->xa_head;
 | |
| 	radix_tree_load_root(root, &node, &maxindex);
 | |
| 	if (index > maxindex)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (radix_tree_is_internal_node(node)) {
 | |
| 		unsigned offset;
 | |
| 
 | |
| 		parent = entry_to_node(node);
 | |
| 		offset = radix_tree_descend(parent, &node, index);
 | |
| 		slot = parent->slots + offset;
 | |
| 		if (node == RADIX_TREE_RETRY)
 | |
| 			goto restart;
 | |
| 		if (parent->shift == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (nodep)
 | |
| 		*nodep = parent;
 | |
| 	if (slotp)
 | |
| 		*slotp = slot;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *
 | |
|  *	Returns:  the slot corresponding to the position @index in the
 | |
|  *	radix tree @root. This is useful for update-if-exists operations.
 | |
|  *
 | |
|  *	This function can be called under rcu_read_lock iff the slot is not
 | |
|  *	modified by radix_tree_replace_slot, otherwise it must be called
 | |
|  *	exclusive from other writers. Any dereference of the slot must be done
 | |
|  *	using radix_tree_deref_slot.
 | |
|  */
 | |
| void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 | |
| 				unsigned long index)
 | |
| {
 | |
| 	void __rcu **slot;
 | |
| 
 | |
| 	if (!__radix_tree_lookup(root, index, NULL, &slot))
 | |
| 		return NULL;
 | |
| 	return slot;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_lookup_slot);
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_lookup    -    perform lookup operation on a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *
 | |
|  *	Lookup the item at the position @index in the radix tree @root.
 | |
|  *
 | |
|  *	This function can be called under rcu_read_lock, however the caller
 | |
|  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 | |
|  *	them safely). No RCU barriers are required to access or modify the
 | |
|  *	returned item, however.
 | |
|  */
 | |
| void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 | |
| {
 | |
| 	return __radix_tree_lookup(root, index, NULL, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_lookup);
 | |
| 
 | |
| static void replace_slot(void __rcu **slot, void *item,
 | |
| 		struct radix_tree_node *node, int count, int values)
 | |
| {
 | |
| 	if (node && (count || values)) {
 | |
| 		node->count += count;
 | |
| 		node->nr_values += values;
 | |
| 	}
 | |
| 
 | |
| 	rcu_assign_pointer(*slot, item);
 | |
| }
 | |
| 
 | |
| static bool node_tag_get(const struct radix_tree_root *root,
 | |
| 				const struct radix_tree_node *node,
 | |
| 				unsigned int tag, unsigned int offset)
 | |
| {
 | |
| 	if (node)
 | |
| 		return tag_get(node, tag, offset);
 | |
| 	return root_tag_get(root, tag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IDR users want to be able to store NULL in the tree, so if the slot isn't
 | |
|  * free, don't adjust the count, even if it's transitioning between NULL and
 | |
|  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 | |
|  * have empty bits, but it only stores NULL in slots when they're being
 | |
|  * deleted.
 | |
|  */
 | |
| static int calculate_count(struct radix_tree_root *root,
 | |
| 				struct radix_tree_node *node, void __rcu **slot,
 | |
| 				void *item, void *old)
 | |
| {
 | |
| 	if (is_idr(root)) {
 | |
| 		unsigned offset = get_slot_offset(node, slot);
 | |
| 		bool free = node_tag_get(root, node, IDR_FREE, offset);
 | |
| 		if (!free)
 | |
| 			return 0;
 | |
| 		if (!old)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return !!item - !!old;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __radix_tree_replace		- replace item in a slot
 | |
|  * @root:		radix tree root
 | |
|  * @node:		pointer to tree node
 | |
|  * @slot:		pointer to slot in @node
 | |
|  * @item:		new item to store in the slot.
 | |
|  *
 | |
|  * For use with __radix_tree_lookup().  Caller must hold tree write locked
 | |
|  * across slot lookup and replacement.
 | |
|  */
 | |
| void __radix_tree_replace(struct radix_tree_root *root,
 | |
| 			  struct radix_tree_node *node,
 | |
| 			  void __rcu **slot, void *item)
 | |
| {
 | |
| 	void *old = rcu_dereference_raw(*slot);
 | |
| 	int values = !!xa_is_value(item) - !!xa_is_value(old);
 | |
| 	int count = calculate_count(root, node, slot, item, old);
 | |
| 
 | |
| 	/*
 | |
| 	 * This function supports replacing value entries and
 | |
| 	 * deleting entries, but that needs accounting against the
 | |
| 	 * node unless the slot is root->xa_head.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 | |
| 			(count || values));
 | |
| 	replace_slot(slot, item, node, count, values);
 | |
| 
 | |
| 	if (!node)
 | |
| 		return;
 | |
| 
 | |
| 	delete_node(root, node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * radix_tree_replace_slot	- replace item in a slot
 | |
|  * @root:	radix tree root
 | |
|  * @slot:	pointer to slot
 | |
|  * @item:	new item to store in the slot.
 | |
|  *
 | |
|  * For use with radix_tree_lookup_slot() and
 | |
|  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 | |
|  * across slot lookup and replacement.
 | |
|  *
 | |
|  * NOTE: This cannot be used to switch between non-entries (empty slots),
 | |
|  * regular entries, and value entries, as that requires accounting
 | |
|  * inside the radix tree node. When switching from one type of entry or
 | |
|  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 | |
|  * radix_tree_iter_replace().
 | |
|  */
 | |
| void radix_tree_replace_slot(struct radix_tree_root *root,
 | |
| 			     void __rcu **slot, void *item)
 | |
| {
 | |
| 	__radix_tree_replace(root, NULL, slot, item);
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_replace_slot);
 | |
| 
 | |
| /**
 | |
|  * radix_tree_iter_replace - replace item in a slot
 | |
|  * @root:	radix tree root
 | |
|  * @iter:	iterator state
 | |
|  * @slot:	pointer to slot
 | |
|  * @item:	new item to store in the slot.
 | |
|  *
 | |
|  * For use with radix_tree_for_each_slot().
 | |
|  * Caller must hold tree write locked.
 | |
|  */
 | |
| void radix_tree_iter_replace(struct radix_tree_root *root,
 | |
| 				const struct radix_tree_iter *iter,
 | |
| 				void __rcu **slot, void *item)
 | |
| {
 | |
| 	__radix_tree_replace(root, iter->node, slot, item);
 | |
| }
 | |
| 
 | |
| static void node_tag_set(struct radix_tree_root *root,
 | |
| 				struct radix_tree_node *node,
 | |
| 				unsigned int tag, unsigned int offset)
 | |
| {
 | |
| 	while (node) {
 | |
| 		if (tag_get(node, tag, offset))
 | |
| 			return;
 | |
| 		tag_set(node, tag, offset);
 | |
| 		offset = node->offset;
 | |
| 		node = node->parent;
 | |
| 	}
 | |
| 
 | |
| 	if (!root_tag_get(root, tag))
 | |
| 		root_tag_set(root, tag);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_tag_set - set a tag on a radix tree node
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *	@tag:		tag index
 | |
|  *
 | |
|  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 | |
|  *	corresponding to @index in the radix tree.  From
 | |
|  *	the root all the way down to the leaf node.
 | |
|  *
 | |
|  *	Returns the address of the tagged item.  Setting a tag on a not-present
 | |
|  *	item is a bug.
 | |
|  */
 | |
| void *radix_tree_tag_set(struct radix_tree_root *root,
 | |
| 			unsigned long index, unsigned int tag)
 | |
| {
 | |
| 	struct radix_tree_node *node, *parent;
 | |
| 	unsigned long maxindex;
 | |
| 
 | |
| 	radix_tree_load_root(root, &node, &maxindex);
 | |
| 	BUG_ON(index > maxindex);
 | |
| 
 | |
| 	while (radix_tree_is_internal_node(node)) {
 | |
| 		unsigned offset;
 | |
| 
 | |
| 		parent = entry_to_node(node);
 | |
| 		offset = radix_tree_descend(parent, &node, index);
 | |
| 		BUG_ON(!node);
 | |
| 
 | |
| 		if (!tag_get(parent, tag, offset))
 | |
| 			tag_set(parent, tag, offset);
 | |
| 	}
 | |
| 
 | |
| 	/* set the root's tag bit */
 | |
| 	if (!root_tag_get(root, tag))
 | |
| 		root_tag_set(root, tag);
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_tag_set);
 | |
| 
 | |
| static void node_tag_clear(struct radix_tree_root *root,
 | |
| 				struct radix_tree_node *node,
 | |
| 				unsigned int tag, unsigned int offset)
 | |
| {
 | |
| 	while (node) {
 | |
| 		if (!tag_get(node, tag, offset))
 | |
| 			return;
 | |
| 		tag_clear(node, tag, offset);
 | |
| 		if (any_tag_set(node, tag))
 | |
| 			return;
 | |
| 
 | |
| 		offset = node->offset;
 | |
| 		node = node->parent;
 | |
| 	}
 | |
| 
 | |
| 	/* clear the root's tag bit */
 | |
| 	if (root_tag_get(root, tag))
 | |
| 		root_tag_clear(root, tag);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_tag_clear - clear a tag on a radix tree node
 | |
|  *	@root:		radix tree root
 | |
|  *	@index:		index key
 | |
|  *	@tag:		tag index
 | |
|  *
 | |
|  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 | |
|  *	corresponding to @index in the radix tree.  If this causes
 | |
|  *	the leaf node to have no tags set then clear the tag in the
 | |
|  *	next-to-leaf node, etc.
 | |
|  *
 | |
|  *	Returns the address of the tagged item on success, else NULL.  ie:
 | |
|  *	has the same return value and semantics as radix_tree_lookup().
 | |
|  */
 | |
| void *radix_tree_tag_clear(struct radix_tree_root *root,
 | |
| 			unsigned long index, unsigned int tag)
 | |
| {
 | |
| 	struct radix_tree_node *node, *parent;
 | |
| 	unsigned long maxindex;
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	radix_tree_load_root(root, &node, &maxindex);
 | |
| 	if (index > maxindex)
 | |
| 		return NULL;
 | |
| 
 | |
| 	parent = NULL;
 | |
| 
 | |
| 	while (radix_tree_is_internal_node(node)) {
 | |
| 		parent = entry_to_node(node);
 | |
| 		offset = radix_tree_descend(parent, &node, index);
 | |
| 	}
 | |
| 
 | |
| 	if (node)
 | |
| 		node_tag_clear(root, parent, tag, offset);
 | |
| 
 | |
| 	return node;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_tag_clear);
 | |
| 
 | |
| /**
 | |
|   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
 | |
|   * @root: radix tree root
 | |
|   * @iter: iterator state
 | |
|   * @tag: tag to clear
 | |
|   */
 | |
| void radix_tree_iter_tag_clear(struct radix_tree_root *root,
 | |
| 			const struct radix_tree_iter *iter, unsigned int tag)
 | |
| {
 | |
| 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * radix_tree_tag_get - get a tag on a radix tree node
 | |
|  * @root:		radix tree root
 | |
|  * @index:		index key
 | |
|  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
 | |
|  *
 | |
|  * Return values:
 | |
|  *
 | |
|  *  0: tag not present or not set
 | |
|  *  1: tag set
 | |
|  *
 | |
|  * Note that the return value of this function may not be relied on, even if
 | |
|  * the RCU lock is held, unless tag modification and node deletion are excluded
 | |
|  * from concurrency.
 | |
|  */
 | |
| int radix_tree_tag_get(const struct radix_tree_root *root,
 | |
| 			unsigned long index, unsigned int tag)
 | |
| {
 | |
| 	struct radix_tree_node *node, *parent;
 | |
| 	unsigned long maxindex;
 | |
| 
 | |
| 	if (!root_tag_get(root, tag))
 | |
| 		return 0;
 | |
| 
 | |
| 	radix_tree_load_root(root, &node, &maxindex);
 | |
| 	if (index > maxindex)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (radix_tree_is_internal_node(node)) {
 | |
| 		unsigned offset;
 | |
| 
 | |
| 		parent = entry_to_node(node);
 | |
| 		offset = radix_tree_descend(parent, &node, index);
 | |
| 
 | |
| 		if (!tag_get(parent, tag, offset))
 | |
| 			return 0;
 | |
| 		if (node == RADIX_TREE_RETRY)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_tag_get);
 | |
| 
 | |
| /* Construct iter->tags bit-mask from node->tags[tag] array */
 | |
| static void set_iter_tags(struct radix_tree_iter *iter,
 | |
| 				struct radix_tree_node *node, unsigned offset,
 | |
| 				unsigned tag)
 | |
| {
 | |
| 	unsigned tag_long = offset / BITS_PER_LONG;
 | |
| 	unsigned tag_bit  = offset % BITS_PER_LONG;
 | |
| 
 | |
| 	if (!node) {
 | |
| 		iter->tags = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
 | |
| 
 | |
| 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 | |
| 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 | |
| 		/* Pick tags from next element */
 | |
| 		if (tag_bit)
 | |
| 			iter->tags |= node->tags[tag][tag_long + 1] <<
 | |
| 						(BITS_PER_LONG - tag_bit);
 | |
| 		/* Clip chunk size, here only BITS_PER_LONG tags */
 | |
| 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __rcu **radix_tree_iter_resume(void __rcu **slot,
 | |
| 					struct radix_tree_iter *iter)
 | |
| {
 | |
| 	slot++;
 | |
| 	iter->index = __radix_tree_iter_add(iter, 1);
 | |
| 	iter->next_index = iter->index;
 | |
| 	iter->tags = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_iter_resume);
 | |
| 
 | |
| /**
 | |
|  * radix_tree_next_chunk - find next chunk of slots for iteration
 | |
|  *
 | |
|  * @root:	radix tree root
 | |
|  * @iter:	iterator state
 | |
|  * @flags:	RADIX_TREE_ITER_* flags and tag index
 | |
|  * Returns:	pointer to chunk first slot, or NULL if iteration is over
 | |
|  */
 | |
| void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
 | |
| 			     struct radix_tree_iter *iter, unsigned flags)
 | |
| {
 | |
| 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
 | |
| 	struct radix_tree_node *node, *child;
 | |
| 	unsigned long index, offset, maxindex;
 | |
| 
 | |
| 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Catch next_index overflow after ~0UL. iter->index never overflows
 | |
| 	 * during iterating; it can be zero only at the beginning.
 | |
| 	 * And we cannot overflow iter->next_index in a single step,
 | |
| 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 | |
| 	 *
 | |
| 	 * This condition also used by radix_tree_next_slot() to stop
 | |
| 	 * contiguous iterating, and forbid switching to the next chunk.
 | |
| 	 */
 | |
| 	index = iter->next_index;
 | |
| 	if (!index && iter->index)
 | |
| 		return NULL;
 | |
| 
 | |
|  restart:
 | |
| 	radix_tree_load_root(root, &child, &maxindex);
 | |
| 	if (index > maxindex)
 | |
| 		return NULL;
 | |
| 	if (!child)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!radix_tree_is_internal_node(child)) {
 | |
| 		/* Single-slot tree */
 | |
| 		iter->index = index;
 | |
| 		iter->next_index = maxindex + 1;
 | |
| 		iter->tags = 1;
 | |
| 		iter->node = NULL;
 | |
| 		return (void __rcu **)&root->xa_head;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		node = entry_to_node(child);
 | |
| 		offset = radix_tree_descend(node, &child, index);
 | |
| 
 | |
| 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
 | |
| 				!tag_get(node, tag, offset) : !child) {
 | |
| 			/* Hole detected */
 | |
| 			if (flags & RADIX_TREE_ITER_CONTIG)
 | |
| 				return NULL;
 | |
| 
 | |
| 			if (flags & RADIX_TREE_ITER_TAGGED)
 | |
| 				offset = radix_tree_find_next_bit(node, tag,
 | |
| 						offset + 1);
 | |
| 			else
 | |
| 				while (++offset	< RADIX_TREE_MAP_SIZE) {
 | |
| 					void *slot = rcu_dereference_raw(
 | |
| 							node->slots[offset]);
 | |
| 					if (slot)
 | |
| 						break;
 | |
| 				}
 | |
| 			index &= ~node_maxindex(node);
 | |
| 			index += offset << node->shift;
 | |
| 			/* Overflow after ~0UL */
 | |
| 			if (!index)
 | |
| 				return NULL;
 | |
| 			if (offset == RADIX_TREE_MAP_SIZE)
 | |
| 				goto restart;
 | |
| 			child = rcu_dereference_raw(node->slots[offset]);
 | |
| 		}
 | |
| 
 | |
| 		if (!child)
 | |
| 			goto restart;
 | |
| 		if (child == RADIX_TREE_RETRY)
 | |
| 			break;
 | |
| 	} while (node->shift && radix_tree_is_internal_node(child));
 | |
| 
 | |
| 	/* Update the iterator state */
 | |
| 	iter->index = (index &~ node_maxindex(node)) | offset;
 | |
| 	iter->next_index = (index | node_maxindex(node)) + 1;
 | |
| 	iter->node = node;
 | |
| 
 | |
| 	if (flags & RADIX_TREE_ITER_TAGGED)
 | |
| 		set_iter_tags(iter, node, offset, tag);
 | |
| 
 | |
| 	return node->slots + offset;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_next_chunk);
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 | |
|  *	@root:		radix tree root
 | |
|  *	@results:	where the results of the lookup are placed
 | |
|  *	@first_index:	start the lookup from this key
 | |
|  *	@max_items:	place up to this many items at *results
 | |
|  *
 | |
|  *	Performs an index-ascending scan of the tree for present items.  Places
 | |
|  *	them at *@results and returns the number of items which were placed at
 | |
|  *	*@results.
 | |
|  *
 | |
|  *	The implementation is naive.
 | |
|  *
 | |
|  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 | |
|  *	rcu_read_lock. In this case, rather than the returned results being
 | |
|  *	an atomic snapshot of the tree at a single point in time, the
 | |
|  *	semantics of an RCU protected gang lookup are as though multiple
 | |
|  *	radix_tree_lookups have been issued in individual locks, and results
 | |
|  *	stored in 'results'.
 | |
|  */
 | |
| unsigned int
 | |
| radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
 | |
| 			unsigned long first_index, unsigned int max_items)
 | |
| {
 | |
| 	struct radix_tree_iter iter;
 | |
| 	void __rcu **slot;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!max_items))
 | |
| 		return 0;
 | |
| 
 | |
| 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
 | |
| 		results[ret] = rcu_dereference_raw(*slot);
 | |
| 		if (!results[ret])
 | |
| 			continue;
 | |
| 		if (radix_tree_is_internal_node(results[ret])) {
 | |
| 			slot = radix_tree_iter_retry(&iter);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (++ret == max_items)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_gang_lookup);
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
 | |
|  *	                             based on a tag
 | |
|  *	@root:		radix tree root
 | |
|  *	@results:	where the results of the lookup are placed
 | |
|  *	@first_index:	start the lookup from this key
 | |
|  *	@max_items:	place up to this many items at *results
 | |
|  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 | |
|  *
 | |
|  *	Performs an index-ascending scan of the tree for present items which
 | |
|  *	have the tag indexed by @tag set.  Places the items at *@results and
 | |
|  *	returns the number of items which were placed at *@results.
 | |
|  */
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
 | |
| 		unsigned long first_index, unsigned int max_items,
 | |
| 		unsigned int tag)
 | |
| {
 | |
| 	struct radix_tree_iter iter;
 | |
| 	void __rcu **slot;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!max_items))
 | |
| 		return 0;
 | |
| 
 | |
| 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
 | |
| 		results[ret] = rcu_dereference_raw(*slot);
 | |
| 		if (!results[ret])
 | |
| 			continue;
 | |
| 		if (radix_tree_is_internal_node(results[ret])) {
 | |
| 			slot = radix_tree_iter_retry(&iter);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (++ret == max_items)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
 | |
|  *					  radix tree based on a tag
 | |
|  *	@root:		radix tree root
 | |
|  *	@results:	where the results of the lookup are placed
 | |
|  *	@first_index:	start the lookup from this key
 | |
|  *	@max_items:	place up to this many items at *results
 | |
|  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
 | |
|  *
 | |
|  *	Performs an index-ascending scan of the tree for present items which
 | |
|  *	have the tag indexed by @tag set.  Places the slots at *@results and
 | |
|  *	returns the number of slots which were placed at *@results.
 | |
|  */
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
 | |
| 		void __rcu ***results, unsigned long first_index,
 | |
| 		unsigned int max_items, unsigned int tag)
 | |
| {
 | |
| 	struct radix_tree_iter iter;
 | |
| 	void __rcu **slot;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!max_items))
 | |
| 		return 0;
 | |
| 
 | |
| 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
 | |
| 		results[ret] = slot;
 | |
| 		if (++ret == max_items)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
 | |
| 
 | |
| static bool __radix_tree_delete(struct radix_tree_root *root,
 | |
| 				struct radix_tree_node *node, void __rcu **slot)
 | |
| {
 | |
| 	void *old = rcu_dereference_raw(*slot);
 | |
| 	int values = xa_is_value(old) ? -1 : 0;
 | |
| 	unsigned offset = get_slot_offset(node, slot);
 | |
| 	int tag;
 | |
| 
 | |
| 	if (is_idr(root))
 | |
| 		node_tag_set(root, node, IDR_FREE, offset);
 | |
| 	else
 | |
| 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 | |
| 			node_tag_clear(root, node, tag, offset);
 | |
| 
 | |
| 	replace_slot(slot, NULL, node, -1, values);
 | |
| 	return node && delete_node(root, node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * radix_tree_iter_delete - delete the entry at this iterator position
 | |
|  * @root: radix tree root
 | |
|  * @iter: iterator state
 | |
|  * @slot: pointer to slot
 | |
|  *
 | |
|  * Delete the entry at the position currently pointed to by the iterator.
 | |
|  * This may result in the current node being freed; if it is, the iterator
 | |
|  * is advanced so that it will not reference the freed memory.  This
 | |
|  * function may be called without any locking if there are no other threads
 | |
|  * which can access this tree.
 | |
|  */
 | |
| void radix_tree_iter_delete(struct radix_tree_root *root,
 | |
| 				struct radix_tree_iter *iter, void __rcu **slot)
 | |
| {
 | |
| 	if (__radix_tree_delete(root, iter->node, slot))
 | |
| 		iter->index = iter->next_index;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_iter_delete);
 | |
| 
 | |
| /**
 | |
|  * radix_tree_delete_item - delete an item from a radix tree
 | |
|  * @root: radix tree root
 | |
|  * @index: index key
 | |
|  * @item: expected item
 | |
|  *
 | |
|  * Remove @item at @index from the radix tree rooted at @root.
 | |
|  *
 | |
|  * Return: the deleted entry, or %NULL if it was not present
 | |
|  * or the entry at the given @index was not @item.
 | |
|  */
 | |
| void *radix_tree_delete_item(struct radix_tree_root *root,
 | |
| 			     unsigned long index, void *item)
 | |
| {
 | |
| 	struct radix_tree_node *node = NULL;
 | |
| 	void __rcu **slot = NULL;
 | |
| 	void *entry;
 | |
| 
 | |
| 	entry = __radix_tree_lookup(root, index, &node, &slot);
 | |
| 	if (!slot)
 | |
| 		return NULL;
 | |
| 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
 | |
| 						get_slot_offset(node, slot))))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (item && entry != item)
 | |
| 		return NULL;
 | |
| 
 | |
| 	__radix_tree_delete(root, node, slot);
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_delete_item);
 | |
| 
 | |
| /**
 | |
|  * radix_tree_delete - delete an entry from a radix tree
 | |
|  * @root: radix tree root
 | |
|  * @index: index key
 | |
|  *
 | |
|  * Remove the entry at @index from the radix tree rooted at @root.
 | |
|  *
 | |
|  * Return: The deleted entry, or %NULL if it was not present.
 | |
|  */
 | |
| void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
 | |
| {
 | |
| 	return radix_tree_delete_item(root, index, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_delete);
 | |
| 
 | |
| /**
 | |
|  *	radix_tree_tagged - test whether any items in the tree are tagged
 | |
|  *	@root:		radix tree root
 | |
|  *	@tag:		tag to test
 | |
|  */
 | |
| int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
 | |
| {
 | |
| 	return root_tag_get(root, tag);
 | |
| }
 | |
| EXPORT_SYMBOL(radix_tree_tagged);
 | |
| 
 | |
| /**
 | |
|  * idr_preload - preload for idr_alloc()
 | |
|  * @gfp_mask: allocation mask to use for preloading
 | |
|  *
 | |
|  * Preallocate memory to use for the next call to idr_alloc().  This function
 | |
|  * returns with preemption disabled.  It will be enabled by idr_preload_end().
 | |
|  */
 | |
| void idr_preload(gfp_t gfp_mask)
 | |
| {
 | |
| 	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
 | |
| 		local_lock(&radix_tree_preloads.lock);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_preload);
 | |
| 
 | |
| void __rcu **idr_get_free(struct radix_tree_root *root,
 | |
| 			      struct radix_tree_iter *iter, gfp_t gfp,
 | |
| 			      unsigned long max)
 | |
| {
 | |
| 	struct radix_tree_node *node = NULL, *child;
 | |
| 	void __rcu **slot = (void __rcu **)&root->xa_head;
 | |
| 	unsigned long maxindex, start = iter->next_index;
 | |
| 	unsigned int shift, offset = 0;
 | |
| 
 | |
|  grow:
 | |
| 	shift = radix_tree_load_root(root, &child, &maxindex);
 | |
| 	if (!radix_tree_tagged(root, IDR_FREE))
 | |
| 		start = max(start, maxindex + 1);
 | |
| 	if (start > max)
 | |
| 		return ERR_PTR(-ENOSPC);
 | |
| 
 | |
| 	if (start > maxindex) {
 | |
| 		int error = radix_tree_extend(root, gfp, start, shift);
 | |
| 		if (error < 0)
 | |
| 			return ERR_PTR(error);
 | |
| 		shift = error;
 | |
| 		child = rcu_dereference_raw(root->xa_head);
 | |
| 	}
 | |
| 	if (start == 0 && shift == 0)
 | |
| 		shift = RADIX_TREE_MAP_SHIFT;
 | |
| 
 | |
| 	while (shift) {
 | |
| 		shift -= RADIX_TREE_MAP_SHIFT;
 | |
| 		if (child == NULL) {
 | |
| 			/* Have to add a child node.  */
 | |
| 			child = radix_tree_node_alloc(gfp, node, root, shift,
 | |
| 							offset, 0, 0);
 | |
| 			if (!child)
 | |
| 				return ERR_PTR(-ENOMEM);
 | |
| 			all_tag_set(child, IDR_FREE);
 | |
| 			rcu_assign_pointer(*slot, node_to_entry(child));
 | |
| 			if (node)
 | |
| 				node->count++;
 | |
| 		} else if (!radix_tree_is_internal_node(child))
 | |
| 			break;
 | |
| 
 | |
| 		node = entry_to_node(child);
 | |
| 		offset = radix_tree_descend(node, &child, start);
 | |
| 		if (!tag_get(node, IDR_FREE, offset)) {
 | |
| 			offset = radix_tree_find_next_bit(node, IDR_FREE,
 | |
| 							offset + 1);
 | |
| 			start = next_index(start, node, offset);
 | |
| 			if (start > max || start == 0)
 | |
| 				return ERR_PTR(-ENOSPC);
 | |
| 			while (offset == RADIX_TREE_MAP_SIZE) {
 | |
| 				offset = node->offset + 1;
 | |
| 				node = node->parent;
 | |
| 				if (!node)
 | |
| 					goto grow;
 | |
| 				shift = node->shift;
 | |
| 			}
 | |
| 			child = rcu_dereference_raw(node->slots[offset]);
 | |
| 		}
 | |
| 		slot = &node->slots[offset];
 | |
| 	}
 | |
| 
 | |
| 	iter->index = start;
 | |
| 	if (node)
 | |
| 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
 | |
| 	else
 | |
| 		iter->next_index = 1;
 | |
| 	iter->node = node;
 | |
| 	set_iter_tags(iter, node, offset, IDR_FREE);
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_destroy - release all internal memory from an IDR
 | |
|  * @idr: idr handle
 | |
|  *
 | |
|  * After this function is called, the IDR is empty, and may be reused or
 | |
|  * the data structure containing it may be freed.
 | |
|  *
 | |
|  * A typical clean-up sequence for objects stored in an idr tree will use
 | |
|  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
 | |
|  * free the memory used to keep track of those objects.
 | |
|  */
 | |
| void idr_destroy(struct idr *idr)
 | |
| {
 | |
| 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
 | |
| 	if (radix_tree_is_internal_node(node))
 | |
| 		radix_tree_free_nodes(node);
 | |
| 	idr->idr_rt.xa_head = NULL;
 | |
| 	root_tag_set(&idr->idr_rt, IDR_FREE);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_destroy);
 | |
| 
 | |
| static void
 | |
| radix_tree_node_ctor(void *arg)
 | |
| {
 | |
| 	struct radix_tree_node *node = arg;
 | |
| 
 | |
| 	memset(node, 0, sizeof(*node));
 | |
| 	INIT_LIST_HEAD(&node->private_list);
 | |
| }
 | |
| 
 | |
| static int radix_tree_cpu_dead(unsigned int cpu)
 | |
| {
 | |
| 	struct radix_tree_preload *rtp;
 | |
| 	struct radix_tree_node *node;
 | |
| 
 | |
| 	/* Free per-cpu pool of preloaded nodes */
 | |
| 	rtp = &per_cpu(radix_tree_preloads, cpu);
 | |
| 	while (rtp->nr) {
 | |
| 		node = rtp->nodes;
 | |
| 		rtp->nodes = node->parent;
 | |
| 		kmem_cache_free(radix_tree_node_cachep, node);
 | |
| 		rtp->nr--;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init radix_tree_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
 | |
| 	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
 | |
| 	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
 | |
| 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
 | |
| 			sizeof(struct radix_tree_node), 0,
 | |
| 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
 | |
| 			radix_tree_node_ctor);
 | |
| 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
 | |
| 					NULL, radix_tree_cpu_dead);
 | |
| 	WARN_ON(ret < 0);
 | |
| }
 |