linux/kernel/rcu/srcutiny.c
Paul E. McKenney e0fcba9ac0 srcu: Make call_srcu() available during very early boot
Event tracing is moving to SRCU in order to take advantage of the fact
that SRCU may be safely used from idle and even offline CPUs.  However,
event tracing can invoke call_srcu() very early in the boot process,
even before workqueue_init_early() is invoked (let alone rcu_init()).
Therefore, call_srcu()'s attempts to queue work fail miserably.

This commit therefore detects this situation, and refrains from attempting
to queue work before rcu_init() time, but does everything else that it
would have done, and in addition, adds the srcu_struct to a global list.
The rcu_init() function now invokes a new srcu_init() function, which
is empty if CONFIG_SRCU=n.  Otherwise, srcu_init() queues work for
each srcu_struct on the list.  This all happens early enough in boot
that there is but a single CPU with interrupts disabled, which allows
synchronization to be dispensed with.

Of course, the queued work won't actually be invoked until after
workqueue_init() is invoked, which happens shortly after the scheduler
is up and running.  This means that although call_srcu() may be invoked
any time after per-CPU variables have been set up, there is still a very
narrow window when synchronize_srcu() won't work, and this window
extends from the time that the scheduler starts until the time that
workqueue_init() returns.  This can be fixed in a manner similar to
the fix for synchronize_rcu_expedited() and friends, but until someone
actually needs to use synchronize_srcu() during this window, this fix
is added churn for no benefit.

Finally, note that Tree SRCU's new srcu_init() function invokes
queue_work() rather than the queue_delayed_work() function that is
invoked post-boot.  The reason is that queue_delayed_work() will (as you
would expect) post a timer, and timers have not yet been initialized.
So use of queue_work() avoids the complaints about use of uninitialized
spinlocks that would otherwise result.  Besides, some delay is already
provide by the aforementioned fact that the queued work won't actually
be invoked until after the scheduler is up and running.

Requested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-08-30 16:10:19 -07:00

231 lines
6.6 KiB
C

/*
* Sleepable Read-Copy Update mechanism for mutual exclusion,
* tiny version for non-preemptible single-CPU use.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright (C) IBM Corporation, 2017
*
* Author: Paul McKenney <paulmck@us.ibm.com>
*/
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/preempt.h>
#include <linux/rcupdate_wait.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/srcu.h>
#include <linux/rcu_node_tree.h>
#include "rcu_segcblist.h"
#include "rcu.h"
int rcu_scheduler_active __read_mostly;
static LIST_HEAD(srcu_boot_list);
static bool srcu_init_done;
static int init_srcu_struct_fields(struct srcu_struct *sp)
{
sp->srcu_lock_nesting[0] = 0;
sp->srcu_lock_nesting[1] = 0;
init_swait_queue_head(&sp->srcu_wq);
sp->srcu_cb_head = NULL;
sp->srcu_cb_tail = &sp->srcu_cb_head;
sp->srcu_gp_running = false;
sp->srcu_gp_waiting = false;
sp->srcu_idx = 0;
INIT_WORK(&sp->srcu_work, srcu_drive_gp);
INIT_LIST_HEAD(&sp->srcu_boot_entry);
return 0;
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
int __init_srcu_struct(struct srcu_struct *sp, const char *name,
struct lock_class_key *key)
{
/* Don't re-initialize a lock while it is held. */
debug_check_no_locks_freed((void *)sp, sizeof(*sp));
lockdep_init_map(&sp->dep_map, name, key, 0);
return init_srcu_struct_fields(sp);
}
EXPORT_SYMBOL_GPL(__init_srcu_struct);
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/*
* init_srcu_struct - initialize a sleep-RCU structure
* @sp: structure to initialize.
*
* Must invoke this on a given srcu_struct before passing that srcu_struct
* to any other function. Each srcu_struct represents a separate domain
* of SRCU protection.
*/
int init_srcu_struct(struct srcu_struct *sp)
{
return init_srcu_struct_fields(sp);
}
EXPORT_SYMBOL_GPL(init_srcu_struct);
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/*
* cleanup_srcu_struct - deconstruct a sleep-RCU structure
* @sp: structure to clean up.
*
* Must invoke this after you are finished using a given srcu_struct that
* was initialized via init_srcu_struct(), else you leak memory.
*/
void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced)
{
WARN_ON(sp->srcu_lock_nesting[0] || sp->srcu_lock_nesting[1]);
if (quiesced)
WARN_ON(work_pending(&sp->srcu_work));
else
flush_work(&sp->srcu_work);
WARN_ON(sp->srcu_gp_running);
WARN_ON(sp->srcu_gp_waiting);
WARN_ON(sp->srcu_cb_head);
WARN_ON(&sp->srcu_cb_head != sp->srcu_cb_tail);
}
EXPORT_SYMBOL_GPL(_cleanup_srcu_struct);
/*
* Removes the count for the old reader from the appropriate element of
* the srcu_struct.
*/
void __srcu_read_unlock(struct srcu_struct *sp, int idx)
{
int newval = sp->srcu_lock_nesting[idx] - 1;
WRITE_ONCE(sp->srcu_lock_nesting[idx], newval);
if (!newval && READ_ONCE(sp->srcu_gp_waiting))
swake_up_one(&sp->srcu_wq);
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
/*
* Workqueue handler to drive one grace period and invoke any callbacks
* that become ready as a result. Single-CPU and !PREEMPT operation
* means that we get away with murder on synchronization. ;-)
*/
void srcu_drive_gp(struct work_struct *wp)
{
int idx;
struct rcu_head *lh;
struct rcu_head *rhp;
struct srcu_struct *sp;
sp = container_of(wp, struct srcu_struct, srcu_work);
if (sp->srcu_gp_running || !READ_ONCE(sp->srcu_cb_head))
return; /* Already running or nothing to do. */
/* Remove recently arrived callbacks and wait for readers. */
WRITE_ONCE(sp->srcu_gp_running, true);
local_irq_disable();
lh = sp->srcu_cb_head;
sp->srcu_cb_head = NULL;
sp->srcu_cb_tail = &sp->srcu_cb_head;
local_irq_enable();
idx = sp->srcu_idx;
WRITE_ONCE(sp->srcu_idx, !sp->srcu_idx);
WRITE_ONCE(sp->srcu_gp_waiting, true); /* srcu_read_unlock() wakes! */
swait_event_exclusive(sp->srcu_wq, !READ_ONCE(sp->srcu_lock_nesting[idx]));
WRITE_ONCE(sp->srcu_gp_waiting, false); /* srcu_read_unlock() cheap. */
/* Invoke the callbacks we removed above. */
while (lh) {
rhp = lh;
lh = lh->next;
local_bh_disable();
rhp->func(rhp);
local_bh_enable();
}
/*
* Enable rescheduling, and if there are more callbacks,
* reschedule ourselves. This can race with a call_srcu()
* at interrupt level, but the ->srcu_gp_running checks will
* straighten that out.
*/
WRITE_ONCE(sp->srcu_gp_running, false);
if (READ_ONCE(sp->srcu_cb_head))
schedule_work(&sp->srcu_work);
}
EXPORT_SYMBOL_GPL(srcu_drive_gp);
/*
* Enqueue an SRCU callback on the specified srcu_struct structure,
* initiating grace-period processing if it is not already running.
*/
void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
rcu_callback_t func)
{
unsigned long flags;
rhp->func = func;
rhp->next = NULL;
local_irq_save(flags);
*sp->srcu_cb_tail = rhp;
sp->srcu_cb_tail = &rhp->next;
local_irq_restore(flags);
if (!READ_ONCE(sp->srcu_gp_running)) {
if (likely(srcu_init_done))
schedule_work(&sp->srcu_work);
else if (list_empty(&sp->srcu_boot_entry))
list_add(&sp->srcu_boot_entry, &srcu_boot_list);
}
}
EXPORT_SYMBOL_GPL(call_srcu);
/*
* synchronize_srcu - wait for prior SRCU read-side critical-section completion
*/
void synchronize_srcu(struct srcu_struct *sp)
{
struct rcu_synchronize rs;
init_rcu_head_on_stack(&rs.head);
init_completion(&rs.completion);
call_srcu(sp, &rs.head, wakeme_after_rcu);
wait_for_completion(&rs.completion);
destroy_rcu_head_on_stack(&rs.head);
}
EXPORT_SYMBOL_GPL(synchronize_srcu);
/* Lockdep diagnostics. */
void __init rcu_scheduler_starting(void)
{
rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
}
/*
* Queue work for srcu_struct structures with early boot callbacks.
* The work won't actually execute until the workqueue initialization
* phase that takes place after the scheduler starts.
*/
void __init srcu_init(void)
{
struct srcu_struct *sp;
srcu_init_done = true;
while (!list_empty(&srcu_boot_list)) {
sp = list_first_entry(&srcu_boot_list,
struct srcu_struct, srcu_boot_entry);
list_del_init(&sp->srcu_boot_entry);
schedule_work(&sp->srcu_work);
}
}