mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 9e7c73c0b9
			
		
	
	
		9e7c73c0b9
		
	
	
	
	
		
			
			register_sysctl_paths() is only required if your child (directories) have entries and pid_namespace does not. So use register_sysctl_init() instead where we don't care about the return value and use register_sysctl() where we do. Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Acked-by: Jeff Xu <jeffxu@google.com> Link: https://lore.kernel.org/r/20230302202826.776286-9-mcgrof@kernel.org
		
			
				
	
	
		
			482 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			482 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Pid namespaces
 | |
|  *
 | |
|  * Authors:
 | |
|  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | |
|  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | |
|  *     Many thanks to Oleg Nesterov for comments and help
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/pid.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/acct.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/idr.h>
 | |
| #include "pid_sysctl.h"
 | |
| 
 | |
| static DEFINE_MUTEX(pid_caches_mutex);
 | |
| static struct kmem_cache *pid_ns_cachep;
 | |
| /* Write once array, filled from the beginning. */
 | |
| static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 | |
| 
 | |
| /*
 | |
|  * creates the kmem cache to allocate pids from.
 | |
|  * @level: pid namespace level
 | |
|  */
 | |
| 
 | |
| static struct kmem_cache *create_pid_cachep(unsigned int level)
 | |
| {
 | |
| 	/* Level 0 is init_pid_ns.pid_cachep */
 | |
| 	struct kmem_cache **pkc = &pid_cache[level - 1];
 | |
| 	struct kmem_cache *kc;
 | |
| 	char name[4 + 10 + 1];
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	kc = READ_ONCE(*pkc);
 | |
| 	if (kc)
 | |
| 		return kc;
 | |
| 
 | |
| 	snprintf(name, sizeof(name), "pid_%u", level + 1);
 | |
| 	len = sizeof(struct pid) + level * sizeof(struct upid);
 | |
| 	mutex_lock(&pid_caches_mutex);
 | |
| 	/* Name collision forces to do allocation under mutex. */
 | |
| 	if (!*pkc)
 | |
| 		*pkc = kmem_cache_create(name, len, 0,
 | |
| 					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
 | |
| 	mutex_unlock(&pid_caches_mutex);
 | |
| 	/* current can fail, but someone else can succeed. */
 | |
| 	return READ_ONCE(*pkc);
 | |
| }
 | |
| 
 | |
| static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 | |
| {
 | |
| 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static void dec_pid_namespaces(struct ucounts *ucounts)
 | |
| {
 | |
| 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 | |
| 	struct pid_namespace *parent_pid_ns)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 	unsigned int level = parent_pid_ns->level + 1;
 | |
| 	struct ucounts *ucounts;
 | |
| 	int err;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOSPC;
 | |
| 	if (level > MAX_PID_NS_LEVEL)
 | |
| 		goto out;
 | |
| 	ucounts = inc_pid_namespaces(user_ns);
 | |
| 	if (!ucounts)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 | |
| 	if (ns == NULL)
 | |
| 		goto out_dec;
 | |
| 
 | |
| 	idr_init(&ns->idr);
 | |
| 
 | |
| 	ns->pid_cachep = create_pid_cachep(level);
 | |
| 	if (ns->pid_cachep == NULL)
 | |
| 		goto out_free_idr;
 | |
| 
 | |
| 	err = ns_alloc_inum(&ns->ns);
 | |
| 	if (err)
 | |
| 		goto out_free_idr;
 | |
| 	ns->ns.ops = &pidns_operations;
 | |
| 
 | |
| 	refcount_set(&ns->ns.count, 1);
 | |
| 	ns->level = level;
 | |
| 	ns->parent = get_pid_ns(parent_pid_ns);
 | |
| 	ns->user_ns = get_user_ns(user_ns);
 | |
| 	ns->ucounts = ucounts;
 | |
| 	ns->pid_allocated = PIDNS_ADDING;
 | |
| 
 | |
| 	initialize_memfd_noexec_scope(ns);
 | |
| 
 | |
| 	return ns;
 | |
| 
 | |
| out_free_idr:
 | |
| 	idr_destroy(&ns->idr);
 | |
| 	kmem_cache_free(pid_ns_cachep, ns);
 | |
| out_dec:
 | |
| 	dec_pid_namespaces(ucounts);
 | |
| out:
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void delayed_free_pidns(struct rcu_head *p)
 | |
| {
 | |
| 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
 | |
| 
 | |
| 	dec_pid_namespaces(ns->ucounts);
 | |
| 	put_user_ns(ns->user_ns);
 | |
| 
 | |
| 	kmem_cache_free(pid_ns_cachep, ns);
 | |
| }
 | |
| 
 | |
| static void destroy_pid_namespace(struct pid_namespace *ns)
 | |
| {
 | |
| 	ns_free_inum(&ns->ns);
 | |
| 
 | |
| 	idr_destroy(&ns->idr);
 | |
| 	call_rcu(&ns->rcu, delayed_free_pidns);
 | |
| }
 | |
| 
 | |
| struct pid_namespace *copy_pid_ns(unsigned long flags,
 | |
| 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
 | |
| {
 | |
| 	if (!(flags & CLONE_NEWPID))
 | |
| 		return get_pid_ns(old_ns);
 | |
| 	if (task_active_pid_ns(current) != old_ns)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	return create_pid_namespace(user_ns, old_ns);
 | |
| }
 | |
| 
 | |
| void put_pid_ns(struct pid_namespace *ns)
 | |
| {
 | |
| 	struct pid_namespace *parent;
 | |
| 
 | |
| 	while (ns != &init_pid_ns) {
 | |
| 		parent = ns->parent;
 | |
| 		if (!refcount_dec_and_test(&ns->ns.count))
 | |
| 			break;
 | |
| 		destroy_pid_namespace(ns);
 | |
| 		ns = parent;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_pid_ns);
 | |
| 
 | |
| void zap_pid_ns_processes(struct pid_namespace *pid_ns)
 | |
| {
 | |
| 	int nr;
 | |
| 	int rc;
 | |
| 	struct task_struct *task, *me = current;
 | |
| 	int init_pids = thread_group_leader(me) ? 1 : 2;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	/* Don't allow any more processes into the pid namespace */
 | |
| 	disable_pid_allocation(pid_ns);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore SIGCHLD causing any terminated children to autoreap.
 | |
| 	 * This speeds up the namespace shutdown, plus see the comment
 | |
| 	 * below.
 | |
| 	 */
 | |
| 	spin_lock_irq(&me->sighand->siglock);
 | |
| 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
 | |
| 	spin_unlock_irq(&me->sighand->siglock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The last thread in the cgroup-init thread group is terminating.
 | |
| 	 * Find remaining pid_ts in the namespace, signal and wait for them
 | |
| 	 * to exit.
 | |
| 	 *
 | |
| 	 * Note:  This signals each threads in the namespace - even those that
 | |
| 	 * 	  belong to the same thread group, To avoid this, we would have
 | |
| 	 * 	  to walk the entire tasklist looking a processes in this
 | |
| 	 * 	  namespace, but that could be unnecessarily expensive if the
 | |
| 	 * 	  pid namespace has just a few processes. Or we need to
 | |
| 	 * 	  maintain a tasklist for each pid namespace.
 | |
| 	 *
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	nr = 2;
 | |
| 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
 | |
| 		task = pid_task(pid, PIDTYPE_PID);
 | |
| 		if (task && !__fatal_signal_pending(task))
 | |
| 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
 | |
| 	 * kernel_wait4() will also block until our children traced from the
 | |
| 	 * parent namespace are detached and become EXIT_DEAD.
 | |
| 	 */
 | |
| 	do {
 | |
| 		clear_thread_flag(TIF_SIGPENDING);
 | |
| 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
 | |
| 	} while (rc != -ECHILD);
 | |
| 
 | |
| 	/*
 | |
| 	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
 | |
| 	 * process whose parents processes are outside of the pid
 | |
| 	 * namespace.  Such processes are created with setns()+fork().
 | |
| 	 *
 | |
| 	 * If those EXIT_ZOMBIE processes are not reaped by their
 | |
| 	 * parents before their parents exit, they will be reparented
 | |
| 	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
 | |
| 	 * stay valid until they all go away.
 | |
| 	 *
 | |
| 	 * The code relies on the pid_ns->child_reaper ignoring
 | |
| 	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
 | |
| 	 * autoreaped if reparented.
 | |
| 	 *
 | |
| 	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
 | |
| 	 * processes before allowing the child_reaper to be reaped, as
 | |
| 	 * that gives the invariant that when the init process of a
 | |
| 	 * pid namespace is reaped all of the processes in the pid
 | |
| 	 * namespace are gone.
 | |
| 	 *
 | |
| 	 * Once all of the other tasks are gone from the pid_namespace
 | |
| 	 * free_pid() will awaken this task.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		if (pid_ns->pid_allocated == init_pids)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Release tasks_rcu_exit_srcu to avoid following deadlock:
 | |
| 		 *
 | |
| 		 * 1) TASK A unshare(CLONE_NEWPID)
 | |
| 		 * 2) TASK A fork() twice -> TASK B (child reaper for new ns)
 | |
| 		 *    and TASK C
 | |
| 		 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it
 | |
| 		 * 4) TASK A calls synchronize_rcu_tasks()
 | |
| 		 *                   -> synchronize_srcu(tasks_rcu_exit_srcu)
 | |
| 		 * 5) *DEADLOCK*
 | |
| 		 *
 | |
| 		 * It is considered safe to release tasks_rcu_exit_srcu here
 | |
| 		 * because we assume the current task can not be concurrently
 | |
| 		 * reaped at this point.
 | |
| 		 */
 | |
| 		exit_tasks_rcu_stop();
 | |
| 		schedule();
 | |
| 		exit_tasks_rcu_start();
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	if (pid_ns->reboot)
 | |
| 		current->signal->group_exit_code = pid_ns->reboot;
 | |
| 
 | |
| 	acct_exit_ns(pid_ns);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CHECKPOINT_RESTORE
 | |
| static int pid_ns_ctl_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
 | |
| 	struct ctl_table tmp = *table;
 | |
| 	int ret, next;
 | |
| 
 | |
| 	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing directly to ns' last_pid field is OK, since this field
 | |
| 	 * is volatile in a living namespace anyway and a code writing to
 | |
| 	 * it should synchronize its usage with external means.
 | |
| 	 */
 | |
| 
 | |
| 	next = idr_get_cursor(&pid_ns->idr) - 1;
 | |
| 
 | |
| 	tmp.data = &next;
 | |
| 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 | |
| 	if (!ret && write)
 | |
| 		idr_set_cursor(&pid_ns->idr, next + 1);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| extern int pid_max;
 | |
| static struct ctl_table pid_ns_ctl_table[] = {
 | |
| 	{
 | |
| 		.procname = "ns_last_pid",
 | |
| 		.maxlen = sizeof(int),
 | |
| 		.mode = 0666, /* permissions are checked in the handler */
 | |
| 		.proc_handler = pid_ns_ctl_handler,
 | |
| 		.extra1 = SYSCTL_ZERO,
 | |
| 		.extra2 = &pid_max,
 | |
| 	},
 | |
| 	{ }
 | |
| };
 | |
| #endif	/* CONFIG_CHECKPOINT_RESTORE */
 | |
| 
 | |
| int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
 | |
| {
 | |
| 	if (pid_ns == &init_pid_ns)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case LINUX_REBOOT_CMD_RESTART2:
 | |
| 	case LINUX_REBOOT_CMD_RESTART:
 | |
| 		pid_ns->reboot = SIGHUP;
 | |
| 		break;
 | |
| 
 | |
| 	case LINUX_REBOOT_CMD_POWER_OFF:
 | |
| 	case LINUX_REBOOT_CMD_HALT:
 | |
| 		pid_ns->reboot = SIGINT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	send_sig(SIGKILL, pid_ns->child_reaper, 1);
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	do_exit(0);
 | |
| 
 | |
| 	/* Not reached */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
 | |
| {
 | |
| 	return container_of(ns, struct pid_namespace, ns);
 | |
| }
 | |
| 
 | |
| static struct ns_common *pidns_get(struct task_struct *task)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	ns = task_active_pid_ns(task);
 | |
| 	if (ns)
 | |
| 		get_pid_ns(ns);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ns ? &ns->ns : NULL;
 | |
| }
 | |
| 
 | |
| static struct ns_common *pidns_for_children_get(struct task_struct *task)
 | |
| {
 | |
| 	struct pid_namespace *ns = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	if (task->nsproxy) {
 | |
| 		ns = task->nsproxy->pid_ns_for_children;
 | |
| 		get_pid_ns(ns);
 | |
| 	}
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	if (ns) {
 | |
| 		read_lock(&tasklist_lock);
 | |
| 		if (!ns->child_reaper) {
 | |
| 			put_pid_ns(ns);
 | |
| 			ns = NULL;
 | |
| 		}
 | |
| 		read_unlock(&tasklist_lock);
 | |
| 	}
 | |
| 
 | |
| 	return ns ? &ns->ns : NULL;
 | |
| }
 | |
| 
 | |
| static void pidns_put(struct ns_common *ns)
 | |
| {
 | |
| 	put_pid_ns(to_pid_ns(ns));
 | |
| }
 | |
| 
 | |
| static int pidns_install(struct nsset *nsset, struct ns_common *ns)
 | |
| {
 | |
| 	struct nsproxy *nsproxy = nsset->nsproxy;
 | |
| 	struct pid_namespace *active = task_active_pid_ns(current);
 | |
| 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
 | |
| 
 | |
| 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
 | |
| 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only allow entering the current active pid namespace
 | |
| 	 * or a child of the current active pid namespace.
 | |
| 	 *
 | |
| 	 * This is required for fork to return a usable pid value and
 | |
| 	 * this maintains the property that processes and their
 | |
| 	 * children can not escape their current pid namespace.
 | |
| 	 */
 | |
| 	if (new->level < active->level)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ancestor = new;
 | |
| 	while (ancestor->level > active->level)
 | |
| 		ancestor = ancestor->parent;
 | |
| 	if (ancestor != active)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	put_pid_ns(nsproxy->pid_ns_for_children);
 | |
| 	nsproxy->pid_ns_for_children = get_pid_ns(new);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct ns_common *pidns_get_parent(struct ns_common *ns)
 | |
| {
 | |
| 	struct pid_namespace *active = task_active_pid_ns(current);
 | |
| 	struct pid_namespace *pid_ns, *p;
 | |
| 
 | |
| 	/* See if the parent is in the current namespace */
 | |
| 	pid_ns = p = to_pid_ns(ns)->parent;
 | |
| 	for (;;) {
 | |
| 		if (!p)
 | |
| 			return ERR_PTR(-EPERM);
 | |
| 		if (p == active)
 | |
| 			break;
 | |
| 		p = p->parent;
 | |
| 	}
 | |
| 
 | |
| 	return &get_pid_ns(pid_ns)->ns;
 | |
| }
 | |
| 
 | |
| static struct user_namespace *pidns_owner(struct ns_common *ns)
 | |
| {
 | |
| 	return to_pid_ns(ns)->user_ns;
 | |
| }
 | |
| 
 | |
| const struct proc_ns_operations pidns_operations = {
 | |
| 	.name		= "pid",
 | |
| 	.type		= CLONE_NEWPID,
 | |
| 	.get		= pidns_get,
 | |
| 	.put		= pidns_put,
 | |
| 	.install	= pidns_install,
 | |
| 	.owner		= pidns_owner,
 | |
| 	.get_parent	= pidns_get_parent,
 | |
| };
 | |
| 
 | |
| const struct proc_ns_operations pidns_for_children_operations = {
 | |
| 	.name		= "pid_for_children",
 | |
| 	.real_ns_name	= "pid",
 | |
| 	.type		= CLONE_NEWPID,
 | |
| 	.get		= pidns_for_children_get,
 | |
| 	.put		= pidns_put,
 | |
| 	.install	= pidns_install,
 | |
| 	.owner		= pidns_owner,
 | |
| 	.get_parent	= pidns_get_parent,
 | |
| };
 | |
| 
 | |
| static __init int pid_namespaces_init(void)
 | |
| {
 | |
| 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
 | |
| 
 | |
| #ifdef CONFIG_CHECKPOINT_RESTORE
 | |
| 	register_sysctl_init("kernel", pid_ns_ctl_table);
 | |
| #endif
 | |
| 
 | |
| 	register_pid_ns_sysctl_table_vm();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __initcall(pid_namespaces_init);
 |