mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 b012980d1c
			
		
	
	
		b012980d1c
		
	
	
	
	
		
			
			In a bid to kill off explicit mmiowb() usage in driver code, hook up the asm-generic mmiowb() tracking code for riscv, so that an mmiowb() is automatically issued from spin_unlock() if an I/O write was performed in the critical section. Reviewed-by: Palmer Dabbelt <palmer@sifive.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
		
			
				
	
	
		
			290 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
 | |
|  *   which was based on arch/arm/include/io.h
 | |
|  *
 | |
|  * Copyright (C) 1996-2000 Russell King
 | |
|  * Copyright (C) 2012 ARM Ltd.
 | |
|  * Copyright (C) 2014 Regents of the University of California
 | |
|  *
 | |
|  *   This program is free software; you can redistribute it and/or
 | |
|  *   modify it under the terms of the GNU General Public License
 | |
|  *   as published by the Free Software Foundation, version 2.
 | |
|  *
 | |
|  *   This program is distributed in the hope that it will be useful,
 | |
|  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *   GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #ifndef _ASM_RISCV_IO_H
 | |
| #define _ASM_RISCV_IO_H
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <asm/mmiowb.h>
 | |
| 
 | |
| extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
 | |
| 
 | |
| /*
 | |
|  * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
 | |
|  * change the properties of memory regions.  This should be fixed by the
 | |
|  * upcoming platform spec.
 | |
|  */
 | |
| #define ioremap_nocache(addr, size) ioremap((addr), (size))
 | |
| #define ioremap_wc(addr, size) ioremap((addr), (size))
 | |
| #define ioremap_wt(addr, size) ioremap((addr), (size))
 | |
| 
 | |
| extern void iounmap(volatile void __iomem *addr);
 | |
| 
 | |
| /* Generic IO read/write.  These perform native-endian accesses. */
 | |
| #define __raw_writeb __raw_writeb
 | |
| static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
 | |
| {
 | |
| 	asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
 | |
| }
 | |
| 
 | |
| #define __raw_writew __raw_writew
 | |
| static inline void __raw_writew(u16 val, volatile void __iomem *addr)
 | |
| {
 | |
| 	asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
 | |
| }
 | |
| 
 | |
| #define __raw_writel __raw_writel
 | |
| static inline void __raw_writel(u32 val, volatile void __iomem *addr)
 | |
| {
 | |
| 	asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define __raw_writeq __raw_writeq
 | |
| static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
 | |
| {
 | |
| 	asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define __raw_readb __raw_readb
 | |
| static inline u8 __raw_readb(const volatile void __iomem *addr)
 | |
| {
 | |
| 	u8 val;
 | |
| 
 | |
| 	asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| #define __raw_readw __raw_readw
 | |
| static inline u16 __raw_readw(const volatile void __iomem *addr)
 | |
| {
 | |
| 	u16 val;
 | |
| 
 | |
| 	asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| #define __raw_readl __raw_readl
 | |
| static inline u32 __raw_readl(const volatile void __iomem *addr)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define __raw_readq __raw_readq
 | |
| static inline u64 __raw_readq(const volatile void __iomem *addr)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
 | |
| 	return val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Unordered I/O memory access primitives.  These are even more relaxed than
 | |
|  * the relaxed versions, as they don't even order accesses between successive
 | |
|  * operations to the I/O regions.
 | |
|  */
 | |
| #define readb_cpu(c)		({ u8  __r = __raw_readb(c); __r; })
 | |
| #define readw_cpu(c)		({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
 | |
| #define readl_cpu(c)		({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
 | |
| 
 | |
| #define writeb_cpu(v,c)		((void)__raw_writeb((v),(c)))
 | |
| #define writew_cpu(v,c)		((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
 | |
| #define writel_cpu(v,c)		((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define readq_cpu(c)		({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
 | |
| #define writeq_cpu(v,c)		((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Relaxed I/O memory access primitives. These follow the Device memory
 | |
|  * ordering rules but do not guarantee any ordering relative to Normal memory
 | |
|  * accesses.  These are defined to order the indicated access (either a read or
 | |
|  * write) with all other I/O memory accesses. Since the platform specification
 | |
|  * defines that all I/O regions are strongly ordered on channel 2, no explicit
 | |
|  * fences are required to enforce this ordering.
 | |
|  */
 | |
| /* FIXME: These are now the same as asm-generic */
 | |
| #define __io_rbr()		do {} while (0)
 | |
| #define __io_rar()		do {} while (0)
 | |
| #define __io_rbw()		do {} while (0)
 | |
| #define __io_raw()		do {} while (0)
 | |
| 
 | |
| #define readb_relaxed(c)	({ u8  __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
 | |
| #define readw_relaxed(c)	({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
 | |
| #define readl_relaxed(c)	({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
 | |
| 
 | |
| #define writeb_relaxed(v,c)	({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
 | |
| #define writew_relaxed(v,c)	({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
 | |
| #define writel_relaxed(v,c)	({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define readq_relaxed(c)	({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
 | |
| #define writeq_relaxed(v,c)	({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * I/O memory access primitives. Reads are ordered relative to any
 | |
|  * following Normal memory access. Writes are ordered relative to any prior
 | |
|  * Normal memory access.  The memory barriers here are necessary as RISC-V
 | |
|  * doesn't define any ordering between the memory space and the I/O space.
 | |
|  */
 | |
| #define __io_br()	do {} while (0)
 | |
| #define __io_ar(v)	__asm__ __volatile__ ("fence i,r" : : : "memory");
 | |
| #define __io_bw()	__asm__ __volatile__ ("fence w,o" : : : "memory");
 | |
| #define __io_aw()	mmiowb_set_pending()
 | |
| 
 | |
| #define readb(c)	({ u8  __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; })
 | |
| #define readw(c)	({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; })
 | |
| #define readl(c)	({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; })
 | |
| 
 | |
| #define writeb(v,c)	({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
 | |
| #define writew(v,c)	({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
 | |
| #define writel(v,c)	({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define readq(c)	({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; })
 | |
| #define writeq(v,c)	({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Emulation routines for the port-mapped IO space used by some PCI drivers.
 | |
|  * These are defined as being "fully synchronous", but also "not guaranteed to
 | |
|  * be fully ordered with respect to other memory and I/O operations".  We're
 | |
|  * going to be on the safe side here and just make them:
 | |
|  *  - Fully ordered WRT each other, by bracketing them with two fences.  The
 | |
|  *    outer set contains both I/O so inX is ordered with outX, while the inner just
 | |
|  *    needs the type of the access (I for inX and O for outX).
 | |
|  *  - Ordered in the same manner as readX/writeX WRT memory by subsuming their
 | |
|  *    fences.
 | |
|  *  - Ordered WRT timer reads, so udelay and friends don't get elided by the
 | |
|  *    implementation.
 | |
|  * Note that there is no way to actually enforce that outX is a non-posted
 | |
|  * operation on RISC-V, but hopefully the timer ordering constraint is
 | |
|  * sufficient to ensure this works sanely on controllers that support I/O
 | |
|  * writes.
 | |
|  */
 | |
| #define __io_pbr()	__asm__ __volatile__ ("fence io,i"  : : : "memory");
 | |
| #define __io_par(v)	__asm__ __volatile__ ("fence i,ior" : : : "memory");
 | |
| #define __io_pbw()	__asm__ __volatile__ ("fence iow,o" : : : "memory");
 | |
| #define __io_paw()	__asm__ __volatile__ ("fence o,io"  : : : "memory");
 | |
| 
 | |
| #define inb(c)		({ u8  __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
 | |
| #define inw(c)		({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
 | |
| #define inl(c)		({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; })
 | |
| 
 | |
| #define outb(v,c)	({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
 | |
| #define outw(v,c)	({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
 | |
| #define outl(v,c)	({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define inq(c)		({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(__v); __v; })
 | |
| #define outq(v,c)	({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Accesses from a single hart to a single I/O address must be ordered.  This
 | |
|  * allows us to use the raw read macros, but we still need to fence before and
 | |
|  * after the block to ensure ordering WRT other macros.  These are defined to
 | |
|  * perform host-endian accesses so we use __raw instead of __cpu.
 | |
|  */
 | |
| #define __io_reads_ins(port, ctype, len, bfence, afence)			\
 | |
| 	static inline void __ ## port ## len(const volatile void __iomem *addr,	\
 | |
| 					     void *buffer,			\
 | |
| 					     unsigned int count)		\
 | |
| 	{									\
 | |
| 		bfence;								\
 | |
| 		if (count) {							\
 | |
| 			ctype *buf = buffer;					\
 | |
| 										\
 | |
| 			do {							\
 | |
| 				ctype x = __raw_read ## len(addr);		\
 | |
| 				*buf++ = x;					\
 | |
| 			} while (--count);					\
 | |
| 		}								\
 | |
| 		afence;								\
 | |
| 	}
 | |
| 
 | |
| #define __io_writes_outs(port, ctype, len, bfence, afence)			\
 | |
| 	static inline void __ ## port ## len(volatile void __iomem *addr,	\
 | |
| 					     const void *buffer,		\
 | |
| 					     unsigned int count)		\
 | |
| 	{									\
 | |
| 		bfence;								\
 | |
| 		if (count) {							\
 | |
| 			const ctype *buf = buffer;				\
 | |
| 										\
 | |
| 			do {							\
 | |
| 				__raw_write ## len(*buf++, addr);		\
 | |
| 			} while (--count);					\
 | |
| 		}								\
 | |
| 		afence;								\
 | |
| 	}
 | |
| 
 | |
| __io_reads_ins(reads,  u8, b, __io_br(), __io_ar(addr))
 | |
| __io_reads_ins(reads, u16, w, __io_br(), __io_ar(addr))
 | |
| __io_reads_ins(reads, u32, l, __io_br(), __io_ar(addr))
 | |
| #define readsb(addr, buffer, count) __readsb(addr, buffer, count)
 | |
| #define readsw(addr, buffer, count) __readsw(addr, buffer, count)
 | |
| #define readsl(addr, buffer, count) __readsl(addr, buffer, count)
 | |
| 
 | |
| __io_reads_ins(ins,  u8, b, __io_pbr(), __io_par(addr))
 | |
| __io_reads_ins(ins, u16, w, __io_pbr(), __io_par(addr))
 | |
| __io_reads_ins(ins, u32, l, __io_pbr(), __io_par(addr))
 | |
| #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
 | |
| #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
 | |
| #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
 | |
| 
 | |
| __io_writes_outs(writes,  u8, b, __io_bw(), __io_aw())
 | |
| __io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
 | |
| __io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
 | |
| #define writesb(addr, buffer, count) __writesb(addr, buffer, count)
 | |
| #define writesw(addr, buffer, count) __writesw(addr, buffer, count)
 | |
| #define writesl(addr, buffer, count) __writesl(addr, buffer, count)
 | |
| 
 | |
| __io_writes_outs(outs,  u8, b, __io_pbw(), __io_paw())
 | |
| __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
 | |
| __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
 | |
| #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
 | |
| #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
 | |
| #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| __io_reads_ins(reads, u64, q, __io_br(), __io_ar(addr))
 | |
| #define readsq(addr, buffer, count) __readsq(addr, buffer, count)
 | |
| 
 | |
| __io_reads_ins(ins, u64, q, __io_pbr(), __io_par(addr))
 | |
| #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
 | |
| 
 | |
| __io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
 | |
| #define writesq(addr, buffer, count) __writesq(addr, buffer, count)
 | |
| 
 | |
| __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
 | |
| #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
 | |
| #endif
 | |
| 
 | |
| #include <asm-generic/io.h>
 | |
| 
 | |
| #endif /* _ASM_RISCV_IO_H */
 |