mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 319c151747
			
		
	
	
		319c151747
		
	
	
	
	
		
			
			Move the head of epitem list out of struct file; for epoll ones it's moved into struct eventpoll (->refs there), for non-epoll - into the new object (struct epitem_head). In place of ->f_ep_links we leave a pointer to the list head (->f_ep). ->f_ep is protected by ->f_lock and it's zeroed as soon as the list of epitems becomes empty (that can happen only in ep_remove() by now). The list of files for reverse path check is *not* going through struct file now - it's a single-linked list going through epitem_head instances. It's terminated by ERR_PTR(-1) (== EP_UNACTIVE_POINTER), so the elements of list can be distinguished by head->next != NULL. epitem_head instances are allocated at ep_insert() time (by attach_epitem()) and freed either by ep_remove() (if it empties the set of epitems *and* epitem_head does not belong to the reverse path check list) or by clear_tfile_check_list() when the list is emptied (if the set of epitems is empty by that point). Allocations are done from a separate slab - minimal kmalloc() size is too large on some architectures. As the result, we trim struct file _and_ get rid of the games with temporary file references. Locking and barriers are interesting (aren't they always); see unlist_file() and ep_remove() for details. The non-obvious part is that ep_remove() needs to decide if it will be the one to free the damn thing *before* actually storing NULL to head->epitems.first - that's what smp_load_acquire is for in there. unlist_file() lockless path is safe, since we hit it only if we observe NULL in head->epitems.first and whoever had done that store is guaranteed to have observed non-NULL in head->next. IOW, their last access had been the store of NULL into ->epitems.first and we can safely free the sucker. OTOH, we are under rcu_read_lock() and both epitem and epitem->file have their freeing RCU-delayed. So if we see non-NULL ->epitems.first, we can grab ->f_lock (all epitems in there share the same struct file) and safely recheck the emptiness of ->epitems; again, ->next is still non-NULL, so ep_remove() couldn't have freed head yet. ->f_lock serializes us wrt ep_remove(); the rest is trivial. Note that once head->epitems becomes NULL, nothing can get inserted into it - the only remaining reference to head after that point is from the reverse path check list. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			400 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/fs/file_table.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *  Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
 | |
|  */
 | |
| 
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/eventpoll.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/cdev.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/percpu_counter.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/ima.h>
 | |
| #include <linux/swap.h>
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /* sysctl tunables... */
 | |
| struct files_stat_struct files_stat = {
 | |
| 	.max_files = NR_FILE
 | |
| };
 | |
| 
 | |
| /* SLAB cache for file structures */
 | |
| static struct kmem_cache *filp_cachep __read_mostly;
 | |
| 
 | |
| static struct percpu_counter nr_files __cacheline_aligned_in_smp;
 | |
| 
 | |
| static void file_free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct file *f = container_of(head, struct file, f_u.fu_rcuhead);
 | |
| 
 | |
| 	put_cred(f->f_cred);
 | |
| 	kmem_cache_free(filp_cachep, f);
 | |
| }
 | |
| 
 | |
| static inline void file_free(struct file *f)
 | |
| {
 | |
| 	security_file_free(f);
 | |
| 	if (!(f->f_mode & FMODE_NOACCOUNT))
 | |
| 		percpu_counter_dec(&nr_files);
 | |
| 	call_rcu(&f->f_u.fu_rcuhead, file_free_rcu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the total number of open files in the system
 | |
|  */
 | |
| static long get_nr_files(void)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&nr_files);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the maximum number of open files in the system
 | |
|  */
 | |
| unsigned long get_max_files(void)
 | |
| {
 | |
| 	return files_stat.max_files;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_max_files);
 | |
| 
 | |
| /*
 | |
|  * Handle nr_files sysctl
 | |
|  */
 | |
| #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 | |
| int proc_nr_files(struct ctl_table *table, int write,
 | |
|                      void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	files_stat.nr_files = get_nr_files();
 | |
| 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| }
 | |
| #else
 | |
| int proc_nr_files(struct ctl_table *table, int write,
 | |
|                      void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct file *__alloc_file(int flags, const struct cred *cred)
 | |
| {
 | |
| 	struct file *f;
 | |
| 	int error;
 | |
| 
 | |
| 	f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL);
 | |
| 	if (unlikely(!f))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	f->f_cred = get_cred(cred);
 | |
| 	error = security_file_alloc(f);
 | |
| 	if (unlikely(error)) {
 | |
| 		file_free_rcu(&f->f_u.fu_rcuhead);
 | |
| 		return ERR_PTR(error);
 | |
| 	}
 | |
| 
 | |
| 	atomic_long_set(&f->f_count, 1);
 | |
| 	rwlock_init(&f->f_owner.lock);
 | |
| 	spin_lock_init(&f->f_lock);
 | |
| 	mutex_init(&f->f_pos_lock);
 | |
| 	f->f_flags = flags;
 | |
| 	f->f_mode = OPEN_FMODE(flags);
 | |
| 	/* f->f_version: 0 */
 | |
| 
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| /* Find an unused file structure and return a pointer to it.
 | |
|  * Returns an error pointer if some error happend e.g. we over file
 | |
|  * structures limit, run out of memory or operation is not permitted.
 | |
|  *
 | |
|  * Be very careful using this.  You are responsible for
 | |
|  * getting write access to any mount that you might assign
 | |
|  * to this filp, if it is opened for write.  If this is not
 | |
|  * done, you will imbalance int the mount's writer count
 | |
|  * and a warning at __fput() time.
 | |
|  */
 | |
| struct file *alloc_empty_file(int flags, const struct cred *cred)
 | |
| {
 | |
| 	static long old_max;
 | |
| 	struct file *f;
 | |
| 
 | |
| 	/*
 | |
| 	 * Privileged users can go above max_files
 | |
| 	 */
 | |
| 	if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) {
 | |
| 		/*
 | |
| 		 * percpu_counters are inaccurate.  Do an expensive check before
 | |
| 		 * we go and fail.
 | |
| 		 */
 | |
| 		if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files)
 | |
| 			goto over;
 | |
| 	}
 | |
| 
 | |
| 	f = __alloc_file(flags, cred);
 | |
| 	if (!IS_ERR(f))
 | |
| 		percpu_counter_inc(&nr_files);
 | |
| 
 | |
| 	return f;
 | |
| 
 | |
| over:
 | |
| 	/* Ran out of filps - report that */
 | |
| 	if (get_nr_files() > old_max) {
 | |
| 		pr_info("VFS: file-max limit %lu reached\n", get_max_files());
 | |
| 		old_max = get_nr_files();
 | |
| 	}
 | |
| 	return ERR_PTR(-ENFILE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Variant of alloc_empty_file() that doesn't check and modify nr_files.
 | |
|  *
 | |
|  * Should not be used unless there's a very good reason to do so.
 | |
|  */
 | |
| struct file *alloc_empty_file_noaccount(int flags, const struct cred *cred)
 | |
| {
 | |
| 	struct file *f = __alloc_file(flags, cred);
 | |
| 
 | |
| 	if (!IS_ERR(f))
 | |
| 		f->f_mode |= FMODE_NOACCOUNT;
 | |
| 
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_file - allocate and initialize a 'struct file'
 | |
|  *
 | |
|  * @path: the (dentry, vfsmount) pair for the new file
 | |
|  * @flags: O_... flags with which the new file will be opened
 | |
|  * @fop: the 'struct file_operations' for the new file
 | |
|  */
 | |
| static struct file *alloc_file(const struct path *path, int flags,
 | |
| 		const struct file_operations *fop)
 | |
| {
 | |
| 	struct file *file;
 | |
| 
 | |
| 	file = alloc_empty_file(flags, current_cred());
 | |
| 	if (IS_ERR(file))
 | |
| 		return file;
 | |
| 
 | |
| 	file->f_path = *path;
 | |
| 	file->f_inode = path->dentry->d_inode;
 | |
| 	file->f_mapping = path->dentry->d_inode->i_mapping;
 | |
| 	file->f_wb_err = filemap_sample_wb_err(file->f_mapping);
 | |
| 	file->f_sb_err = file_sample_sb_err(file);
 | |
| 	if ((file->f_mode & FMODE_READ) &&
 | |
| 	     likely(fop->read || fop->read_iter))
 | |
| 		file->f_mode |= FMODE_CAN_READ;
 | |
| 	if ((file->f_mode & FMODE_WRITE) &&
 | |
| 	     likely(fop->write || fop->write_iter))
 | |
| 		file->f_mode |= FMODE_CAN_WRITE;
 | |
| 	file->f_mode |= FMODE_OPENED;
 | |
| 	file->f_op = fop;
 | |
| 	if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ)
 | |
| 		i_readcount_inc(path->dentry->d_inode);
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| struct file *alloc_file_pseudo(struct inode *inode, struct vfsmount *mnt,
 | |
| 				const char *name, int flags,
 | |
| 				const struct file_operations *fops)
 | |
| {
 | |
| 	static const struct dentry_operations anon_ops = {
 | |
| 		.d_dname = simple_dname
 | |
| 	};
 | |
| 	struct qstr this = QSTR_INIT(name, strlen(name));
 | |
| 	struct path path;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	path.dentry = d_alloc_pseudo(mnt->mnt_sb, &this);
 | |
| 	if (!path.dentry)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	if (!mnt->mnt_sb->s_d_op)
 | |
| 		d_set_d_op(path.dentry, &anon_ops);
 | |
| 	path.mnt = mntget(mnt);
 | |
| 	d_instantiate(path.dentry, inode);
 | |
| 	file = alloc_file(&path, flags, fops);
 | |
| 	if (IS_ERR(file)) {
 | |
| 		ihold(inode);
 | |
| 		path_put(&path);
 | |
| 	}
 | |
| 	return file;
 | |
| }
 | |
| EXPORT_SYMBOL(alloc_file_pseudo);
 | |
| 
 | |
| struct file *alloc_file_clone(struct file *base, int flags,
 | |
| 				const struct file_operations *fops)
 | |
| {
 | |
| 	struct file *f = alloc_file(&base->f_path, flags, fops);
 | |
| 	if (!IS_ERR(f)) {
 | |
| 		path_get(&f->f_path);
 | |
| 		f->f_mapping = base->f_mapping;
 | |
| 	}
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| /* the real guts of fput() - releasing the last reference to file
 | |
|  */
 | |
| static void __fput(struct file *file)
 | |
| {
 | |
| 	struct dentry *dentry = file->f_path.dentry;
 | |
| 	struct vfsmount *mnt = file->f_path.mnt;
 | |
| 	struct inode *inode = file->f_inode;
 | |
| 	fmode_t mode = file->f_mode;
 | |
| 
 | |
| 	if (unlikely(!(file->f_mode & FMODE_OPENED)))
 | |
| 		goto out;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	fsnotify_close(file);
 | |
| 	/*
 | |
| 	 * The function eventpoll_release() should be the first called
 | |
| 	 * in the file cleanup chain.
 | |
| 	 */
 | |
| 	eventpoll_release(file);
 | |
| 	locks_remove_file(file);
 | |
| 
 | |
| 	ima_file_free(file);
 | |
| 	if (unlikely(file->f_flags & FASYNC)) {
 | |
| 		if (file->f_op->fasync)
 | |
| 			file->f_op->fasync(-1, file, 0);
 | |
| 	}
 | |
| 	if (file->f_op->release)
 | |
| 		file->f_op->release(inode, file);
 | |
| 	if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL &&
 | |
| 		     !(mode & FMODE_PATH))) {
 | |
| 		cdev_put(inode->i_cdev);
 | |
| 	}
 | |
| 	fops_put(file->f_op);
 | |
| 	put_pid(file->f_owner.pid);
 | |
| 	if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ)
 | |
| 		i_readcount_dec(inode);
 | |
| 	if (mode & FMODE_WRITER) {
 | |
| 		put_write_access(inode);
 | |
| 		__mnt_drop_write(mnt);
 | |
| 	}
 | |
| 	dput(dentry);
 | |
| 	if (unlikely(mode & FMODE_NEED_UNMOUNT))
 | |
| 		dissolve_on_fput(mnt);
 | |
| 	mntput(mnt);
 | |
| out:
 | |
| 	file_free(file);
 | |
| }
 | |
| 
 | |
| static LLIST_HEAD(delayed_fput_list);
 | |
| static void delayed_fput(struct work_struct *unused)
 | |
| {
 | |
| 	struct llist_node *node = llist_del_all(&delayed_fput_list);
 | |
| 	struct file *f, *t;
 | |
| 
 | |
| 	llist_for_each_entry_safe(f, t, node, f_u.fu_llist)
 | |
| 		__fput(f);
 | |
| }
 | |
| 
 | |
| static void ____fput(struct callback_head *work)
 | |
| {
 | |
| 	__fput(container_of(work, struct file, f_u.fu_rcuhead));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If kernel thread really needs to have the final fput() it has done
 | |
|  * to complete, call this.  The only user right now is the boot - we
 | |
|  * *do* need to make sure our writes to binaries on initramfs has
 | |
|  * not left us with opened struct file waiting for __fput() - execve()
 | |
|  * won't work without that.  Please, don't add more callers without
 | |
|  * very good reasons; in particular, never call that with locks
 | |
|  * held and never call that from a thread that might need to do
 | |
|  * some work on any kind of umount.
 | |
|  */
 | |
| void flush_delayed_fput(void)
 | |
| {
 | |
| 	delayed_fput(NULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(flush_delayed_fput);
 | |
| 
 | |
| static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput);
 | |
| 
 | |
| void fput_many(struct file *file, unsigned int refs)
 | |
| {
 | |
| 	if (atomic_long_sub_and_test(refs, &file->f_count)) {
 | |
| 		struct task_struct *task = current;
 | |
| 
 | |
| 		if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) {
 | |
| 			init_task_work(&file->f_u.fu_rcuhead, ____fput);
 | |
| 			if (!task_work_add(task, &file->f_u.fu_rcuhead, TWA_RESUME))
 | |
| 				return;
 | |
| 			/*
 | |
| 			 * After this task has run exit_task_work(),
 | |
| 			 * task_work_add() will fail.  Fall through to delayed
 | |
| 			 * fput to avoid leaking *file.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		if (llist_add(&file->f_u.fu_llist, &delayed_fput_list))
 | |
| 			schedule_delayed_work(&delayed_fput_work, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void fput(struct file *file)
 | |
| {
 | |
| 	fput_many(file, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * synchronous analog of fput(); for kernel threads that might be needed
 | |
|  * in some umount() (and thus can't use flush_delayed_fput() without
 | |
|  * risking deadlocks), need to wait for completion of __fput() and know
 | |
|  * for this specific struct file it won't involve anything that would
 | |
|  * need them.  Use only if you really need it - at the very least,
 | |
|  * don't blindly convert fput() by kernel thread to that.
 | |
|  */
 | |
| void __fput_sync(struct file *file)
 | |
| {
 | |
| 	if (atomic_long_dec_and_test(&file->f_count)) {
 | |
| 		struct task_struct *task = current;
 | |
| 		BUG_ON(!(task->flags & PF_KTHREAD));
 | |
| 		__fput(file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(fput);
 | |
| 
 | |
| void __init files_init(void)
 | |
| {
 | |
| 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
 | |
| 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL);
 | |
| 	percpu_counter_init(&nr_files, 0, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * One file with associated inode and dcache is very roughly 1K. Per default
 | |
|  * do not use more than 10% of our memory for files.
 | |
|  */
 | |
| void __init files_maxfiles_init(void)
 | |
| {
 | |
| 	unsigned long n;
 | |
| 	unsigned long nr_pages = totalram_pages();
 | |
| 	unsigned long memreserve = (nr_pages - nr_free_pages()) * 3/2;
 | |
| 
 | |
| 	memreserve = min(memreserve, nr_pages - 1);
 | |
| 	n = ((nr_pages - memreserve) * (PAGE_SIZE / 1024)) / 10;
 | |
| 
 | |
| 	files_stat.max_files = max_t(unsigned long, n, NR_FILE);
 | |
| }
 |