mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 da06e3c517
			
		
	
	
		da06e3c517
		
			
		
	
	
	
	
		
			
			Before 2011 there was no meaningful synchronization between read/readdir/write/seek. Only in commitef3d0fd27e("vfs: do (nearly) lockless generic_file_llseek") synchronization was added for SEEK_CUR by taking f_lock around vfs_setpos(). Then in 2014 full synchronization between read/readdir/write/seek was added in commit9c225f2655("vfs: atomic f_pos accesses as per POSIX") by introducing f_pos_lock for regular files with FMODE_ATOMIC_POS and for directories. At that point taking f_lock became unnecessary for such files. So only acquire f_lock for SEEK_CUR if this isn't a file that would have acquired f_pos_lock if necessary. Link: https://lore.kernel.org/r/20250207-daten-mahlzeit-99d2079864fb@brauner Signed-off-by: Christian Brauner <brauner@kernel.org>
		
			
				
	
	
		
			1454 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1454 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  linux/fs/file.c
 | |
|  *
 | |
|  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
 | |
|  *
 | |
|  *  Manage the dynamic fd arrays in the process files_struct.
 | |
|  */
 | |
| 
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/close_range.h>
 | |
| #include <linux/file_ref.h>
 | |
| #include <net/sock.h>
 | |
| #include <linux/init_task.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /**
 | |
|  * __file_ref_put - Slowpath of file_ref_put()
 | |
|  * @ref:	Pointer to the reference count
 | |
|  * @cnt:	Current reference count
 | |
|  *
 | |
|  * Invoked when the reference count is outside of the valid zone.
 | |
|  *
 | |
|  * Return:
 | |
|  *	True if this was the last reference with no future references
 | |
|  *	possible. This signals the caller that it can safely schedule the
 | |
|  *	object, which is protected by the reference counter, for
 | |
|  *	deconstruction.
 | |
|  *
 | |
|  *	False if there are still active references or the put() raced
 | |
|  *	with a concurrent get()/put() pair. Caller is not allowed to
 | |
|  *	deconstruct the protected object.
 | |
|  */
 | |
| bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
 | |
| {
 | |
| 	/* Did this drop the last reference? */
 | |
| 	if (likely(cnt == FILE_REF_NOREF)) {
 | |
| 		/*
 | |
| 		 * Carefully try to set the reference count to FILE_REF_DEAD.
 | |
| 		 *
 | |
| 		 * This can fail if a concurrent get() operation has
 | |
| 		 * elevated it again or the corresponding put() even marked
 | |
| 		 * it dead already. Both are valid situations and do not
 | |
| 		 * require a retry. If this fails the caller is not
 | |
| 		 * allowed to deconstruct the object.
 | |
| 		 */
 | |
| 		if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
 | |
| 			return false;
 | |
| 
 | |
| 		/*
 | |
| 		 * The caller can safely schedule the object for
 | |
| 		 * deconstruction. Provide acquire ordering.
 | |
| 		 */
 | |
| 		smp_acquire__after_ctrl_dep();
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the reference count was already in the dead zone, then this
 | |
| 	 * put() operation is imbalanced. Warn, put the reference count back to
 | |
| 	 * DEAD and tell the caller to not deconstruct the object.
 | |
| 	 */
 | |
| 	if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
 | |
| 		atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a put() operation on a saturated refcount. Restore the
 | |
| 	 * mean saturation value and tell the caller to not deconstruct the
 | |
| 	 * object.
 | |
| 	 */
 | |
| 	if (cnt > FILE_REF_MAXREF)
 | |
| 		atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__file_ref_put);
 | |
| 
 | |
| unsigned int sysctl_nr_open __read_mostly = 1024*1024;
 | |
| unsigned int sysctl_nr_open_min = BITS_PER_LONG;
 | |
| /* our min() is unusable in constant expressions ;-/ */
 | |
| #define __const_min(x, y) ((x) < (y) ? (x) : (y))
 | |
| unsigned int sysctl_nr_open_max =
 | |
| 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
 | |
| 
 | |
| static void __free_fdtable(struct fdtable *fdt)
 | |
| {
 | |
| 	kvfree(fdt->fd);
 | |
| 	kvfree(fdt->open_fds);
 | |
| 	kfree(fdt);
 | |
| }
 | |
| 
 | |
| static void free_fdtable_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
 | |
| }
 | |
| 
 | |
| #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
 | |
| #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
 | |
| 
 | |
| #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
 | |
| /*
 | |
|  * Copy 'count' fd bits from the old table to the new table and clear the extra
 | |
|  * space if any.  This does not copy the file pointers.  Called with the files
 | |
|  * spinlock held for write.
 | |
|  */
 | |
| static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
 | |
| 			    unsigned int copy_words)
 | |
| {
 | |
| 	unsigned int nwords = fdt_words(nfdt);
 | |
| 
 | |
| 	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
 | |
| 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
 | |
| 	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
 | |
| 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
 | |
| 	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
 | |
| 			copy_words, nwords);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy all file descriptors from the old table to the new, expanded table and
 | |
|  * clear the extra space.  Called with the files spinlock held for write.
 | |
|  */
 | |
| static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
 | |
| {
 | |
| 	size_t cpy, set;
 | |
| 
 | |
| 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
 | |
| 
 | |
| 	cpy = ofdt->max_fds * sizeof(struct file *);
 | |
| 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
 | |
| 	memcpy(nfdt->fd, ofdt->fd, cpy);
 | |
| 	memset((char *)nfdt->fd + cpy, 0, set);
 | |
| 
 | |
| 	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note how the fdtable bitmap allocations very much have to be a multiple of
 | |
|  * BITS_PER_LONG. This is not only because we walk those things in chunks of
 | |
|  * 'unsigned long' in some places, but simply because that is how the Linux
 | |
|  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
 | |
|  * they are very much "bits in an array of unsigned long".
 | |
|  */
 | |
| static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	unsigned int nr;
 | |
| 	void *data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many fds we actually want to support in this fdtable.
 | |
| 	 * Allocation steps are keyed to the size of the fdarray, since it
 | |
| 	 * grows far faster than any of the other dynamic data. We try to fit
 | |
| 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
 | |
| 	 * and growing in powers of two from there on.  Since we called only
 | |
| 	 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
 | |
| 	 * already gives BITS_PER_LONG slots), the above boils down to
 | |
| 	 * 1.  use the smallest power of two large enough to give us that many
 | |
| 	 * slots.
 | |
| 	 * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is
 | |
| 	 * 256 slots (i.e. 1Kb fd array).
 | |
| 	 * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there
 | |
| 	 * and we are never going to be asked for 64 or less.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
 | |
| 		nr = 256;
 | |
| 	else
 | |
| 		nr = roundup_pow_of_two(slots_wanted);
 | |
| 	/*
 | |
| 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
 | |
| 	 * had been set lower between the check in expand_files() and here.
 | |
| 	 *
 | |
| 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
 | |
| 	 * bitmaps handling below becomes unpleasant, to put it mildly...
 | |
| 	 */
 | |
| 	if (unlikely(nr > sysctl_nr_open)) {
 | |
| 		nr = round_down(sysctl_nr_open, BITS_PER_LONG);
 | |
| 		if (nr < slots_wanted)
 | |
| 			return ERR_PTR(-EMFILE);
 | |
| 	}
 | |
| 
 | |
| 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!fdt)
 | |
| 		goto out;
 | |
| 	fdt->max_fds = nr;
 | |
| 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!data)
 | |
| 		goto out_fdt;
 | |
| 	fdt->fd = data;
 | |
| 
 | |
| 	data = kvmalloc(max_t(size_t,
 | |
| 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
 | |
| 				 GFP_KERNEL_ACCOUNT);
 | |
| 	if (!data)
 | |
| 		goto out_arr;
 | |
| 	fdt->open_fds = data;
 | |
| 	data += nr / BITS_PER_BYTE;
 | |
| 	fdt->close_on_exec = data;
 | |
| 	data += nr / BITS_PER_BYTE;
 | |
| 	fdt->full_fds_bits = data;
 | |
| 
 | |
| 	return fdt;
 | |
| 
 | |
| out_arr:
 | |
| 	kvfree(fdt->fd);
 | |
| out_fdt:
 | |
| 	kfree(fdt);
 | |
| out:
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand the file descriptor table.
 | |
|  * This function will allocate a new fdtable and both fd array and fdset, of
 | |
|  * the given size.
 | |
|  * Return <0 error code on error; 0 on successful completion.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| static int expand_fdtable(struct files_struct *files, unsigned int nr)
 | |
| 	__releases(files->file_lock)
 | |
| 	__acquires(files->file_lock)
 | |
| {
 | |
| 	struct fdtable *new_fdt, *cur_fdt;
 | |
| 
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	new_fdt = alloc_fdtable(nr + 1);
 | |
| 
 | |
| 	/* make sure all fd_install() have seen resize_in_progress
 | |
| 	 * or have finished their rcu_read_lock_sched() section.
 | |
| 	 */
 | |
| 	if (atomic_read(&files->count) > 1)
 | |
| 		synchronize_rcu();
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	if (IS_ERR(new_fdt))
 | |
| 		return PTR_ERR(new_fdt);
 | |
| 	cur_fdt = files_fdtable(files);
 | |
| 	BUG_ON(nr < cur_fdt->max_fds);
 | |
| 	copy_fdtable(new_fdt, cur_fdt);
 | |
| 	rcu_assign_pointer(files->fdt, new_fdt);
 | |
| 	if (cur_fdt != &files->fdtab)
 | |
| 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
 | |
| 	/* coupled with smp_rmb() in fd_install() */
 | |
| 	smp_wmb();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand files.
 | |
|  * This function will expand the file structures, if the requested size exceeds
 | |
|  * the current capacity and there is room for expansion.
 | |
|  * Return <0 error code on error; 0 on success.
 | |
|  * The files->file_lock should be held on entry, and will be held on exit.
 | |
|  */
 | |
| static int expand_files(struct files_struct *files, unsigned int nr)
 | |
| 	__releases(files->file_lock)
 | |
| 	__acquires(files->file_lock)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	int error;
 | |
| 
 | |
| repeat:
 | |
| 	fdt = files_fdtable(files);
 | |
| 
 | |
| 	/* Do we need to expand? */
 | |
| 	if (nr < fdt->max_fds)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (unlikely(files->resize_in_progress)) {
 | |
| 		spin_unlock(&files->file_lock);
 | |
| 		wait_event(files->resize_wait, !files->resize_in_progress);
 | |
| 		spin_lock(&files->file_lock);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* Can we expand? */
 | |
| 	if (unlikely(nr >= sysctl_nr_open))
 | |
| 		return -EMFILE;
 | |
| 
 | |
| 	/* All good, so we try */
 | |
| 	files->resize_in_progress = true;
 | |
| 	error = expand_fdtable(files, nr);
 | |
| 	files->resize_in_progress = false;
 | |
| 
 | |
| 	wake_up_all(&files->resize_wait);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
 | |
| 				       bool set)
 | |
| {
 | |
| 	if (set) {
 | |
| 		__set_bit(fd, fdt->close_on_exec);
 | |
| 	} else {
 | |
| 		if (test_bit(fd, fdt->close_on_exec))
 | |
| 			__clear_bit(fd, fdt->close_on_exec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
 | |
| {
 | |
| 	__set_bit(fd, fdt->open_fds);
 | |
| 	__set_close_on_exec(fd, fdt, set);
 | |
| 	fd /= BITS_PER_LONG;
 | |
| 	if (!~fdt->open_fds[fd])
 | |
| 		__set_bit(fd, fdt->full_fds_bits);
 | |
| }
 | |
| 
 | |
| static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
 | |
| {
 | |
| 	__clear_bit(fd, fdt->open_fds);
 | |
| 	fd /= BITS_PER_LONG;
 | |
| 	if (test_bit(fd, fdt->full_fds_bits))
 | |
| 		__clear_bit(fd, fdt->full_fds_bits);
 | |
| }
 | |
| 
 | |
| static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
 | |
| {
 | |
| 	return test_bit(fd, fdt->open_fds);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that a sane fdtable size always has to be a multiple of
 | |
|  * BITS_PER_LONG, since we have bitmaps that are sized by this.
 | |
|  *
 | |
|  * punch_hole is optional - when close_range() is asked to unshare
 | |
|  * and close, we don't need to copy descriptors in that range, so
 | |
|  * a smaller cloned descriptor table might suffice if the last
 | |
|  * currently opened descriptor falls into that range.
 | |
|  */
 | |
| static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
 | |
| {
 | |
| 	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
 | |
| 
 | |
| 	if (last == fdt->max_fds)
 | |
| 		return NR_OPEN_DEFAULT;
 | |
| 	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
 | |
| 		last = find_last_bit(fdt->open_fds, punch_hole->from);
 | |
| 		if (last == punch_hole->from)
 | |
| 			return NR_OPEN_DEFAULT;
 | |
| 	}
 | |
| 	return ALIGN(last + 1, BITS_PER_LONG);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new descriptor table and copy contents from the passed in
 | |
|  * instance.  Returns a pointer to cloned table on success, ERR_PTR()
 | |
|  * on failure.  For 'punch_hole' see sane_fdtable_size().
 | |
|  */
 | |
| struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
 | |
| {
 | |
| 	struct files_struct *newf;
 | |
| 	struct file **old_fds, **new_fds;
 | |
| 	unsigned int open_files, i;
 | |
| 	struct fdtable *old_fdt, *new_fdt;
 | |
| 
 | |
| 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 | |
| 	if (!newf)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	atomic_set(&newf->count, 1);
 | |
| 
 | |
| 	spin_lock_init(&newf->file_lock);
 | |
| 	newf->resize_in_progress = false;
 | |
| 	init_waitqueue_head(&newf->resize_wait);
 | |
| 	newf->next_fd = 0;
 | |
| 	new_fdt = &newf->fdtab;
 | |
| 	new_fdt->max_fds = NR_OPEN_DEFAULT;
 | |
| 	new_fdt->close_on_exec = newf->close_on_exec_init;
 | |
| 	new_fdt->open_fds = newf->open_fds_init;
 | |
| 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
 | |
| 	new_fdt->fd = &newf->fd_array[0];
 | |
| 
 | |
| 	spin_lock(&oldf->file_lock);
 | |
| 	old_fdt = files_fdtable(oldf);
 | |
| 	open_files = sane_fdtable_size(old_fdt, punch_hole);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we need to allocate a larger fd array and fd set.
 | |
| 	 */
 | |
| 	while (unlikely(open_files > new_fdt->max_fds)) {
 | |
| 		spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 		if (new_fdt != &newf->fdtab)
 | |
| 			__free_fdtable(new_fdt);
 | |
| 
 | |
| 		new_fdt = alloc_fdtable(open_files);
 | |
| 		if (IS_ERR(new_fdt)) {
 | |
| 			kmem_cache_free(files_cachep, newf);
 | |
| 			return ERR_CAST(new_fdt);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Reacquire the oldf lock and a pointer to its fd table
 | |
| 		 * who knows it may have a new bigger fd table. We need
 | |
| 		 * the latest pointer.
 | |
| 		 */
 | |
| 		spin_lock(&oldf->file_lock);
 | |
| 		old_fdt = files_fdtable(oldf);
 | |
| 		open_files = sane_fdtable_size(old_fdt, punch_hole);
 | |
| 	}
 | |
| 
 | |
| 	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
 | |
| 
 | |
| 	old_fds = old_fdt->fd;
 | |
| 	new_fds = new_fdt->fd;
 | |
| 
 | |
| 	for (i = open_files; i != 0; i--) {
 | |
| 		struct file *f = *old_fds++;
 | |
| 		if (f) {
 | |
| 			get_file(f);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The fd may be claimed in the fd bitmap but not yet
 | |
| 			 * instantiated in the files array if a sibling thread
 | |
| 			 * is partway through open().  So make sure that this
 | |
| 			 * fd is available to the new process.
 | |
| 			 */
 | |
| 			__clear_open_fd(open_files - i, new_fdt);
 | |
| 		}
 | |
| 		rcu_assign_pointer(*new_fds++, f);
 | |
| 	}
 | |
| 	spin_unlock(&oldf->file_lock);
 | |
| 
 | |
| 	/* clear the remainder */
 | |
| 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
 | |
| 
 | |
| 	rcu_assign_pointer(newf->fdt, new_fdt);
 | |
| 
 | |
| 	return newf;
 | |
| }
 | |
| 
 | |
| static struct fdtable *close_files(struct files_struct * files)
 | |
| {
 | |
| 	/*
 | |
| 	 * It is safe to dereference the fd table without RCU or
 | |
| 	 * ->file_lock because this is the last reference to the
 | |
| 	 * files structure.
 | |
| 	 */
 | |
| 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 | |
| 	unsigned int i, j = 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long set;
 | |
| 		i = j * BITS_PER_LONG;
 | |
| 		if (i >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->open_fds[j++];
 | |
| 		while (set) {
 | |
| 			if (set & 1) {
 | |
| 				struct file *file = fdt->fd[i];
 | |
| 				if (file) {
 | |
| 					filp_close(file, files);
 | |
| 					cond_resched();
 | |
| 				}
 | |
| 			}
 | |
| 			i++;
 | |
| 			set >>= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return fdt;
 | |
| }
 | |
| 
 | |
| void put_files_struct(struct files_struct *files)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&files->count)) {
 | |
| 		struct fdtable *fdt = close_files(files);
 | |
| 
 | |
| 		/* free the arrays if they are not embedded */
 | |
| 		if (fdt != &files->fdtab)
 | |
| 			__free_fdtable(fdt);
 | |
| 		kmem_cache_free(files_cachep, files);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void exit_files(struct task_struct *tsk)
 | |
| {
 | |
| 	struct files_struct * files = tsk->files;
 | |
| 
 | |
| 	if (files) {
 | |
| 		task_lock(tsk);
 | |
| 		tsk->files = NULL;
 | |
| 		task_unlock(tsk);
 | |
| 		put_files_struct(files);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct files_struct init_files = {
 | |
| 	.count		= ATOMIC_INIT(1),
 | |
| 	.fdt		= &init_files.fdtab,
 | |
| 	.fdtab		= {
 | |
| 		.max_fds	= NR_OPEN_DEFAULT,
 | |
| 		.fd		= &init_files.fd_array[0],
 | |
| 		.close_on_exec	= init_files.close_on_exec_init,
 | |
| 		.open_fds	= init_files.open_fds_init,
 | |
| 		.full_fds_bits	= init_files.full_fds_bits_init,
 | |
| 	},
 | |
| 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
 | |
| 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
 | |
| };
 | |
| 
 | |
| static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
 | |
| {
 | |
| 	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
 | |
| 	unsigned int maxbit = maxfd / BITS_PER_LONG;
 | |
| 	unsigned int bitbit = start / BITS_PER_LONG;
 | |
| 	unsigned int bit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to avoid looking at the second level bitmap
 | |
| 	 */
 | |
| 	bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
 | |
| 				 start & (BITS_PER_LONG - 1));
 | |
| 	if (bit < BITS_PER_LONG)
 | |
| 		return bit + bitbit * BITS_PER_LONG;
 | |
| 
 | |
| 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
 | |
| 	if (bitbit >= maxfd)
 | |
| 		return maxfd;
 | |
| 	if (bitbit > start)
 | |
| 		start = bitbit;
 | |
| 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * allocate a file descriptor, mark it busy.
 | |
|  */
 | |
| static int alloc_fd(unsigned start, unsigned end, unsigned flags)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	unsigned int fd;
 | |
| 	int error;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| repeat:
 | |
| 	fdt = files_fdtable(files);
 | |
| 	fd = start;
 | |
| 	if (fd < files->next_fd)
 | |
| 		fd = files->next_fd;
 | |
| 
 | |
| 	if (likely(fd < fdt->max_fds))
 | |
| 		fd = find_next_fd(fdt, fd);
 | |
| 
 | |
| 	/*
 | |
| 	 * N.B. For clone tasks sharing a files structure, this test
 | |
| 	 * will limit the total number of files that can be opened.
 | |
| 	 */
 | |
| 	error = -EMFILE;
 | |
| 	if (unlikely(fd >= end))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (unlikely(fd >= fdt->max_fds)) {
 | |
| 		error = expand_files(files, fd);
 | |
| 		if (error < 0)
 | |
| 			goto out;
 | |
| 
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	if (start <= files->next_fd)
 | |
| 		files->next_fd = fd + 1;
 | |
| 
 | |
| 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
 | |
| 	error = fd;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
 | |
| {
 | |
| 	return alloc_fd(0, nofile, flags);
 | |
| }
 | |
| 
 | |
| int get_unused_fd_flags(unsigned flags)
 | |
| {
 | |
| 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
 | |
| }
 | |
| EXPORT_SYMBOL(get_unused_fd_flags);
 | |
| 
 | |
| static void __put_unused_fd(struct files_struct *files, unsigned int fd)
 | |
| {
 | |
| 	struct fdtable *fdt = files_fdtable(files);
 | |
| 	__clear_open_fd(fd, fdt);
 | |
| 	if (fd < files->next_fd)
 | |
| 		files->next_fd = fd;
 | |
| }
 | |
| 
 | |
| void put_unused_fd(unsigned int fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	__put_unused_fd(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(put_unused_fd);
 | |
| 
 | |
| /*
 | |
|  * Install a file pointer in the fd array.
 | |
|  *
 | |
|  * The VFS is full of places where we drop the files lock between
 | |
|  * setting the open_fds bitmap and installing the file in the file
 | |
|  * array.  At any such point, we are vulnerable to a dup2() race
 | |
|  * installing a file in the array before us.  We need to detect this and
 | |
|  * fput() the struct file we are about to overwrite in this case.
 | |
|  *
 | |
|  * It should never happen - if we allow dup2() do it, _really_ bad things
 | |
|  * will follow.
 | |
|  *
 | |
|  * This consumes the "file" refcount, so callers should treat it
 | |
|  * as if they had called fput(file).
 | |
|  */
 | |
| 
 | |
| void fd_install(unsigned int fd, struct file *file)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock_sched();
 | |
| 
 | |
| 	if (unlikely(files->resize_in_progress)) {
 | |
| 		rcu_read_unlock_sched();
 | |
| 		spin_lock(&files->file_lock);
 | |
| 		fdt = files_fdtable(files);
 | |
| 		WARN_ON(fdt->fd[fd] != NULL);
 | |
| 		rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 		spin_unlock(&files->file_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* coupled with smp_wmb() in expand_fdtable() */
 | |
| 	smp_rmb();
 | |
| 	fdt = rcu_dereference_sched(files->fdt);
 | |
| 	BUG_ON(fdt->fd[fd] != NULL);
 | |
| 	rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 	rcu_read_unlock_sched();
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(fd_install);
 | |
| 
 | |
| /**
 | |
|  * file_close_fd_locked - return file associated with fd
 | |
|  * @files: file struct to retrieve file from
 | |
|  * @fd: file descriptor to retrieve file for
 | |
|  *
 | |
|  * Doesn't take a separate reference count.
 | |
|  *
 | |
|  * Context: files_lock must be held.
 | |
|  *
 | |
|  * Returns: The file associated with @fd (NULL if @fd is not open)
 | |
|  */
 | |
| struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
 | |
| {
 | |
| 	struct fdtable *fdt = files_fdtable(files);
 | |
| 	struct file *file;
 | |
| 
 | |
| 	lockdep_assert_held(&files->file_lock);
 | |
| 
 | |
| 	if (fd >= fdt->max_fds)
 | |
| 		return NULL;
 | |
| 
 | |
| 	fd = array_index_nospec(fd, fdt->max_fds);
 | |
| 	file = fdt->fd[fd];
 | |
| 	if (file) {
 | |
| 		rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 		__put_unused_fd(files, fd);
 | |
| 	}
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| int close_fd(unsigned fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	file = file_close_fd_locked(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	if (!file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	return filp_close(file, files);
 | |
| }
 | |
| EXPORT_SYMBOL(close_fd);
 | |
| 
 | |
| /**
 | |
|  * last_fd - return last valid index into fd table
 | |
|  * @fdt: File descriptor table.
 | |
|  *
 | |
|  * Context: Either rcu read lock or files_lock must be held.
 | |
|  *
 | |
|  * Returns: Last valid index into fdtable.
 | |
|  */
 | |
| static inline unsigned last_fd(struct fdtable *fdt)
 | |
| {
 | |
| 	return fdt->max_fds - 1;
 | |
| }
 | |
| 
 | |
| static inline void __range_cloexec(struct files_struct *cur_fds,
 | |
| 				   unsigned int fd, unsigned int max_fd)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/* make sure we're using the correct maximum value */
 | |
| 	spin_lock(&cur_fds->file_lock);
 | |
| 	fdt = files_fdtable(cur_fds);
 | |
| 	max_fd = min(last_fd(fdt), max_fd);
 | |
| 	if (fd <= max_fd)
 | |
| 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
 | |
| 	spin_unlock(&cur_fds->file_lock);
 | |
| }
 | |
| 
 | |
| static inline void __range_close(struct files_struct *files, unsigned int fd,
 | |
| 				 unsigned int max_fd)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	unsigned n;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	n = last_fd(files_fdtable(files));
 | |
| 	max_fd = min(max_fd, n);
 | |
| 
 | |
| 	for (; fd <= max_fd; fd++) {
 | |
| 		file = file_close_fd_locked(files, fd);
 | |
| 		if (file) {
 | |
| 			spin_unlock(&files->file_lock);
 | |
| 			filp_close(file, files);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&files->file_lock);
 | |
| 		} else if (need_resched()) {
 | |
| 			spin_unlock(&files->file_lock);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&files->file_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_close_range() - Close all file descriptors in a given range.
 | |
|  *
 | |
|  * @fd:     starting file descriptor to close
 | |
|  * @max_fd: last file descriptor to close
 | |
|  * @flags:  CLOSE_RANGE flags.
 | |
|  *
 | |
|  * This closes a range of file descriptors. All file descriptors
 | |
|  * from @fd up to and including @max_fd are closed.
 | |
|  * Currently, errors to close a given file descriptor are ignored.
 | |
|  */
 | |
| SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
 | |
| 		unsigned int, flags)
 | |
| {
 | |
| 	struct task_struct *me = current;
 | |
| 	struct files_struct *cur_fds = me->files, *fds = NULL;
 | |
| 
 | |
| 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (fd > max_fd)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
 | |
| 		struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
 | |
| 
 | |
| 		/*
 | |
| 		 * If the caller requested all fds to be made cloexec we always
 | |
| 		 * copy all of the file descriptors since they still want to
 | |
| 		 * use them.
 | |
| 		 */
 | |
| 		if (flags & CLOSE_RANGE_CLOEXEC)
 | |
| 			punch_hole = NULL;
 | |
| 
 | |
| 		fds = dup_fd(cur_fds, punch_hole);
 | |
| 		if (IS_ERR(fds))
 | |
| 			return PTR_ERR(fds);
 | |
| 		/*
 | |
| 		 * We used to share our file descriptor table, and have now
 | |
| 		 * created a private one, make sure we're using it below.
 | |
| 		 */
 | |
| 		swap(cur_fds, fds);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & CLOSE_RANGE_CLOEXEC)
 | |
| 		__range_cloexec(cur_fds, fd, max_fd);
 | |
| 	else
 | |
| 		__range_close(cur_fds, fd, max_fd);
 | |
| 
 | |
| 	if (fds) {
 | |
| 		/*
 | |
| 		 * We're done closing the files we were supposed to. Time to install
 | |
| 		 * the new file descriptor table and drop the old one.
 | |
| 		 */
 | |
| 		task_lock(me);
 | |
| 		me->files = cur_fds;
 | |
| 		task_unlock(me);
 | |
| 		put_files_struct(fds);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * file_close_fd - return file associated with fd
 | |
|  * @fd: file descriptor to retrieve file for
 | |
|  *
 | |
|  * Doesn't take a separate reference count.
 | |
|  *
 | |
|  * Returns: The file associated with @fd (NULL if @fd is not open)
 | |
|  */
 | |
| struct file *file_close_fd(unsigned int fd)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	file = file_close_fd_locked(files, fd);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| void do_close_on_exec(struct files_struct *files)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/* exec unshares first */
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	for (i = 0; ; i++) {
 | |
| 		unsigned long set;
 | |
| 		unsigned fd = i * BITS_PER_LONG;
 | |
| 		fdt = files_fdtable(files);
 | |
| 		if (fd >= fdt->max_fds)
 | |
| 			break;
 | |
| 		set = fdt->close_on_exec[i];
 | |
| 		if (!set)
 | |
| 			continue;
 | |
| 		fdt->close_on_exec[i] = 0;
 | |
| 		for ( ; set ; fd++, set >>= 1) {
 | |
| 			struct file *file;
 | |
| 			if (!(set & 1))
 | |
| 				continue;
 | |
| 			file = fdt->fd[fd];
 | |
| 			if (!file)
 | |
| 				continue;
 | |
| 			rcu_assign_pointer(fdt->fd[fd], NULL);
 | |
| 			__put_unused_fd(files, fd);
 | |
| 			spin_unlock(&files->file_lock);
 | |
| 			filp_close(file, files);
 | |
| 			cond_resched();
 | |
| 			spin_lock(&files->file_lock);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| static struct file *__get_file_rcu(struct file __rcu **f)
 | |
| {
 | |
| 	struct file __rcu *file;
 | |
| 	struct file __rcu *file_reloaded;
 | |
| 	struct file __rcu *file_reloaded_cmp;
 | |
| 
 | |
| 	file = rcu_dereference_raw(*f);
 | |
| 	if (!file)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(!file_ref_get(&file->f_ref)))
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	file_reloaded = rcu_dereference_raw(*f);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that all accesses have a dependency on the load from
 | |
| 	 * rcu_dereference_raw() above so we get correct ordering
 | |
| 	 * between reuse/allocation and the pointer check below.
 | |
| 	 */
 | |
| 	file_reloaded_cmp = file_reloaded;
 | |
| 	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
 | |
| 
 | |
| 	/*
 | |
| 	 * file_ref_get() above provided a full memory barrier when we
 | |
| 	 * acquired a reference.
 | |
| 	 *
 | |
| 	 * This is paired with the write barrier from assigning to the
 | |
| 	 * __rcu protected file pointer so that if that pointer still
 | |
| 	 * matches the current file, we know we have successfully
 | |
| 	 * acquired a reference to the right file.
 | |
| 	 *
 | |
| 	 * If the pointers don't match the file has been reallocated by
 | |
| 	 * SLAB_TYPESAFE_BY_RCU.
 | |
| 	 */
 | |
| 	if (file == file_reloaded_cmp)
 | |
| 		return file_reloaded;
 | |
| 
 | |
| 	fput(file);
 | |
| 	return ERR_PTR(-EAGAIN);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_file_rcu - try go get a reference to a file under rcu
 | |
|  * @f: the file to get a reference on
 | |
|  *
 | |
|  * This function tries to get a reference on @f carefully verifying that
 | |
|  * @f hasn't been reused.
 | |
|  *
 | |
|  * This function should rarely have to be used and only by users who
 | |
|  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
 | |
|  *
 | |
|  * Return: Returns @f with the reference count increased or NULL.
 | |
|  */
 | |
| struct file *get_file_rcu(struct file __rcu **f)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		struct file __rcu *file;
 | |
| 
 | |
| 		file = __get_file_rcu(f);
 | |
| 		if (!IS_ERR(file))
 | |
| 			return file;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_file_rcu);
 | |
| 
 | |
| /**
 | |
|  * get_file_active - try go get a reference to a file
 | |
|  * @f: the file to get a reference on
 | |
|  *
 | |
|  * In contast to get_file_rcu() the pointer itself isn't part of the
 | |
|  * reference counting.
 | |
|  *
 | |
|  * This function should rarely have to be used and only by users who
 | |
|  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
 | |
|  *
 | |
|  * Return: Returns @f with the reference count increased or NULL.
 | |
|  */
 | |
| struct file *get_file_active(struct file **f)
 | |
| {
 | |
| 	struct file __rcu *file;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	file = __get_file_rcu(f);
 | |
| 	rcu_read_unlock();
 | |
| 	if (IS_ERR(file))
 | |
| 		file = NULL;
 | |
| 	return file;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_file_active);
 | |
| 
 | |
| static inline struct file *__fget_files_rcu(struct files_struct *files,
 | |
|        unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		struct file *file;
 | |
| 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
 | |
| 		struct file __rcu **fdentry;
 | |
| 		unsigned long nospec_mask;
 | |
| 
 | |
| 		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
 | |
| 		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
 | |
| 
 | |
| 		/*
 | |
| 		 * fdentry points to the 'fd' offset, or fdt->fd[0].
 | |
| 		 * Loading from fdt->fd[0] is always safe, because the
 | |
| 		 * array always exists.
 | |
| 		 */
 | |
| 		fdentry = fdt->fd + (fd & nospec_mask);
 | |
| 
 | |
| 		/* Do the load, then mask any invalid result */
 | |
| 		file = rcu_dereference_raw(*fdentry);
 | |
| 		file = (void *)(nospec_mask & (unsigned long)file);
 | |
| 		if (unlikely(!file))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have a file pointer that was valid at
 | |
| 		 * some point, but it might have become stale since.
 | |
| 		 *
 | |
| 		 * We need to confirm it by incrementing the refcount
 | |
| 		 * and then check the lookup again.
 | |
| 		 *
 | |
| 		 * file_ref_get() gives us a full memory barrier. We
 | |
| 		 * only really need an 'acquire' one to protect the
 | |
| 		 * loads below, but we don't have that.
 | |
| 		 */
 | |
| 		if (unlikely(!file_ref_get(&file->f_ref)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Such a race can take two forms:
 | |
| 		 *
 | |
| 		 *  (a) the file ref already went down to zero and the
 | |
| 		 *      file hasn't been reused yet or the file count
 | |
| 		 *      isn't zero but the file has already been reused.
 | |
| 		 *
 | |
| 		 *  (b) the file table entry has changed under us.
 | |
| 		 *       Note that we don't need to re-check the 'fdt->fd'
 | |
| 		 *       pointer having changed, because it always goes
 | |
| 		 *       hand-in-hand with 'fdt'.
 | |
| 		 *
 | |
| 		 * If so, we need to put our ref and try again.
 | |
| 		 */
 | |
| 		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
 | |
| 		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
 | |
| 			fput(file);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This isn't the file we're looking for or we're not
 | |
| 		 * allowed to get a reference to it.
 | |
| 		 */
 | |
| 		if (unlikely(file->f_mode & mask)) {
 | |
| 			fput(file);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok, we have a ref to the file, and checked that it
 | |
| 		 * still exists.
 | |
| 		 */
 | |
| 		return file;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct file *__fget_files(struct files_struct *files, unsigned int fd,
 | |
| 				 fmode_t mask)
 | |
| {
 | |
| 	struct file *file;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	file = __fget_files_rcu(files, fd, mask);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static inline struct file *__fget(unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	return __fget_files(current->files, fd, mask);
 | |
| }
 | |
| 
 | |
| struct file *fget(unsigned int fd)
 | |
| {
 | |
| 	return __fget(fd, FMODE_PATH);
 | |
| }
 | |
| EXPORT_SYMBOL(fget);
 | |
| 
 | |
| struct file *fget_raw(unsigned int fd)
 | |
| {
 | |
| 	return __fget(fd, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(fget_raw);
 | |
| 
 | |
| struct file *fget_task(struct task_struct *task, unsigned int fd)
 | |
| {
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	if (task->files)
 | |
| 		file = __fget_files(task->files, fd, 0);
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
 | |
| {
 | |
| 	/* Must be called with rcu_read_lock held */
 | |
| 	struct files_struct *files;
 | |
| 	unsigned int fd = *ret_fd;
 | |
| 	struct file *file = NULL;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	files = task->files;
 | |
| 	if (files) {
 | |
| 		rcu_read_lock();
 | |
| 		for (; fd < files_fdtable(files)->max_fds; fd++) {
 | |
| 			file = __fget_files_rcu(files, fd, 0);
 | |
| 			if (file)
 | |
| 				break;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	task_unlock(task);
 | |
| 	*ret_fd = fd;
 | |
| 	return file;
 | |
| }
 | |
| EXPORT_SYMBOL(fget_task_next);
 | |
| 
 | |
| /*
 | |
|  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
 | |
|  *
 | |
|  * You can use this instead of fget if you satisfy all of the following
 | |
|  * conditions:
 | |
|  * 1) You must call fput_light before exiting the syscall and returning control
 | |
|  *    to userspace (i.e. you cannot remember the returned struct file * after
 | |
|  *    returning to userspace).
 | |
|  * 2) You must not call filp_close on the returned struct file * in between
 | |
|  *    calls to fget_light and fput_light.
 | |
|  * 3) You must not clone the current task in between the calls to fget_light
 | |
|  *    and fput_light.
 | |
|  *
 | |
|  * The fput_needed flag returned by fget_light should be passed to the
 | |
|  * corresponding fput_light.
 | |
|  *
 | |
|  * (As an exception to rule 2, you can call filp_close between fget_light and
 | |
|  * fput_light provided that you capture a real refcount with get_file before
 | |
|  * the call to filp_close, and ensure that this real refcount is fput *after*
 | |
|  * the fput_light call.)
 | |
|  *
 | |
|  * See also the documentation in rust/kernel/file.rs.
 | |
|  */
 | |
| static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	/*
 | |
| 	 * If another thread is concurrently calling close_fd() followed
 | |
| 	 * by put_files_struct(), we must not observe the old table
 | |
| 	 * entry combined with the new refcount - otherwise we could
 | |
| 	 * return a file that is concurrently being freed.
 | |
| 	 *
 | |
| 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
 | |
| 	 * put_files_struct().
 | |
| 	 */
 | |
| 	if (likely(atomic_read_acquire(&files->count) == 1)) {
 | |
| 		file = files_lookup_fd_raw(files, fd);
 | |
| 		if (!file || unlikely(file->f_mode & mask))
 | |
| 			return EMPTY_FD;
 | |
| 		return BORROWED_FD(file);
 | |
| 	} else {
 | |
| 		file = __fget_files(files, fd, mask);
 | |
| 		if (!file)
 | |
| 			return EMPTY_FD;
 | |
| 		return CLONED_FD(file);
 | |
| 	}
 | |
| }
 | |
| struct fd fdget(unsigned int fd)
 | |
| {
 | |
| 	return __fget_light(fd, FMODE_PATH);
 | |
| }
 | |
| EXPORT_SYMBOL(fdget);
 | |
| 
 | |
| struct fd fdget_raw(unsigned int fd)
 | |
| {
 | |
| 	return __fget_light(fd, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to avoid f_pos locking. We only need it if the
 | |
|  * file is marked for FMODE_ATOMIC_POS, and it can be
 | |
|  * accessed multiple ways.
 | |
|  *
 | |
|  * Always do it for directories, because pidfd_getfd()
 | |
|  * can make a file accessible even if it otherwise would
 | |
|  * not be, and for directories this is a correctness
 | |
|  * issue, not a "POSIX requirement".
 | |
|  */
 | |
| static inline bool file_needs_f_pos_lock(struct file *file)
 | |
| {
 | |
| 	return (file->f_mode & FMODE_ATOMIC_POS) &&
 | |
| 		(file_count(file) > 1 || file->f_op->iterate_shared);
 | |
| }
 | |
| 
 | |
| bool file_seek_cur_needs_f_lock(struct file *file)
 | |
| {
 | |
| 	if (!(file->f_mode & FMODE_ATOMIC_POS) && !file->f_op->iterate_shared)
 | |
| 		return false;
 | |
| 
 | |
| 	VFS_WARN_ON_ONCE((file_count(file) > 1) &&
 | |
| 			 !mutex_is_locked(&file->f_pos_lock));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct fd fdget_pos(unsigned int fd)
 | |
| {
 | |
| 	struct fd f = fdget(fd);
 | |
| 	struct file *file = fd_file(f);
 | |
| 
 | |
| 	if (file && file_needs_f_pos_lock(file)) {
 | |
| 		f.word |= FDPUT_POS_UNLOCK;
 | |
| 		mutex_lock(&file->f_pos_lock);
 | |
| 	}
 | |
| 	return f;
 | |
| }
 | |
| 
 | |
| void __f_unlock_pos(struct file *f)
 | |
| {
 | |
| 	mutex_unlock(&f->f_pos_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We only lock f_pos if we have threads or if the file might be
 | |
|  * shared with another process. In both cases we'll have an elevated
 | |
|  * file count (done either by fdget() or by fork()).
 | |
|  */
 | |
| 
 | |
| void set_close_on_exec(unsigned int fd, int flag)
 | |
| {
 | |
| 	struct files_struct *files = current->files;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	__set_close_on_exec(fd, files_fdtable(files), flag);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| }
 | |
| 
 | |
| bool get_close_on_exec(unsigned int fd)
 | |
| {
 | |
| 	bool res;
 | |
| 	rcu_read_lock();
 | |
| 	res = close_on_exec(fd, current->files);
 | |
| 	rcu_read_unlock();
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int do_dup2(struct files_struct *files,
 | |
| 	struct file *file, unsigned fd, unsigned flags)
 | |
| __releases(&files->file_lock)
 | |
| {
 | |
| 	struct file *tofree;
 | |
| 	struct fdtable *fdt;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to detect attempts to do dup2() over allocated but still
 | |
| 	 * not finished descriptor.
 | |
| 	 *
 | |
| 	 * POSIX is silent on the issue, we return -EBUSY.
 | |
| 	 */
 | |
| 	fdt = files_fdtable(files);
 | |
| 	fd = array_index_nospec(fd, fdt->max_fds);
 | |
| 	tofree = fdt->fd[fd];
 | |
| 	if (!tofree && fd_is_open(fd, fdt))
 | |
| 		goto Ebusy;
 | |
| 	get_file(file);
 | |
| 	rcu_assign_pointer(fdt->fd[fd], file);
 | |
| 	__set_open_fd(fd, fdt, flags & O_CLOEXEC);
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 
 | |
| 	if (tofree)
 | |
| 		filp_close(tofree, files);
 | |
| 
 | |
| 	return fd;
 | |
| 
 | |
| Ebusy:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| int replace_fd(unsigned fd, struct file *file, unsigned flags)
 | |
| {
 | |
| 	int err;
 | |
| 	struct files_struct *files = current->files;
 | |
| 
 | |
| 	if (!file)
 | |
| 		return close_fd(fd);
 | |
| 
 | |
| 	if (fd >= rlimit(RLIMIT_NOFILE))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	err = expand_files(files, fd);
 | |
| 	if (unlikely(err < 0))
 | |
| 		goto out_unlock;
 | |
| 	return do_dup2(files, file, fd, flags);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * receive_fd() - Install received file into file descriptor table
 | |
|  * @file: struct file that was received from another process
 | |
|  * @ufd: __user pointer to write new fd number to
 | |
|  * @o_flags: the O_* flags to apply to the new fd entry
 | |
|  *
 | |
|  * Installs a received file into the file descriptor table, with appropriate
 | |
|  * checks and count updates. Optionally writes the fd number to userspace, if
 | |
|  * @ufd is non-NULL.
 | |
|  *
 | |
|  * This helper handles its own reference counting of the incoming
 | |
|  * struct file.
 | |
|  *
 | |
|  * Returns newly install fd or -ve on error.
 | |
|  */
 | |
| int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
 | |
| {
 | |
| 	int new_fd;
 | |
| 	int error;
 | |
| 
 | |
| 	error = security_file_receive(file);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	new_fd = get_unused_fd_flags(o_flags);
 | |
| 	if (new_fd < 0)
 | |
| 		return new_fd;
 | |
| 
 | |
| 	if (ufd) {
 | |
| 		error = put_user(new_fd, ufd);
 | |
| 		if (error) {
 | |
| 			put_unused_fd(new_fd);
 | |
| 			return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fd_install(new_fd, get_file(file));
 | |
| 	__receive_sock(file);
 | |
| 	return new_fd;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(receive_fd);
 | |
| 
 | |
| int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = security_file_receive(file);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	error = replace_fd(new_fd, file, o_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	__receive_sock(file);
 | |
| 	return new_fd;
 | |
| }
 | |
| 
 | |
| static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
 | |
| {
 | |
| 	int err = -EBADF;
 | |
| 	struct file *file;
 | |
| 	struct files_struct *files = current->files;
 | |
| 
 | |
| 	if ((flags & ~O_CLOEXEC) != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(oldfd == newfd))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (newfd >= rlimit(RLIMIT_NOFILE))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	err = expand_files(files, newfd);
 | |
| 	file = files_lookup_fd_locked(files, oldfd);
 | |
| 	if (unlikely(!file))
 | |
| 		goto Ebadf;
 | |
| 	if (unlikely(err < 0)) {
 | |
| 		if (err == -EMFILE)
 | |
| 			goto Ebadf;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	return do_dup2(files, file, newfd, flags);
 | |
| 
 | |
| Ebadf:
 | |
| 	err = -EBADF;
 | |
| out_unlock:
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
 | |
| {
 | |
| 	return ksys_dup3(oldfd, newfd, flags);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
 | |
| {
 | |
| 	if (unlikely(newfd == oldfd)) { /* corner case */
 | |
| 		struct files_struct *files = current->files;
 | |
| 		struct file *f;
 | |
| 		int retval = oldfd;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		f = __fget_files_rcu(files, oldfd, 0);
 | |
| 		if (!f)
 | |
| 			retval = -EBADF;
 | |
| 		rcu_read_unlock();
 | |
| 		if (f)
 | |
| 			fput(f);
 | |
| 		return retval;
 | |
| 	}
 | |
| 	return ksys_dup3(oldfd, newfd, 0);
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(dup, unsigned int, fildes)
 | |
| {
 | |
| 	int ret = -EBADF;
 | |
| 	struct file *file = fget_raw(fildes);
 | |
| 
 | |
| 	if (file) {
 | |
| 		ret = get_unused_fd_flags(0);
 | |
| 		if (ret >= 0)
 | |
| 			fd_install(ret, file);
 | |
| 		else
 | |
| 			fput(file);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int f_dupfd(unsigned int from, struct file *file, unsigned flags)
 | |
| {
 | |
| 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
 | |
| 	int err;
 | |
| 	if (from >= nofile)
 | |
| 		return -EINVAL;
 | |
| 	err = alloc_fd(from, nofile, flags);
 | |
| 	if (err >= 0) {
 | |
| 		get_file(file);
 | |
| 		fd_install(err, file);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int iterate_fd(struct files_struct *files, unsigned n,
 | |
| 		int (*f)(const void *, struct file *, unsigned),
 | |
| 		const void *p)
 | |
| {
 | |
| 	struct fdtable *fdt;
 | |
| 	int res = 0;
 | |
| 	if (!files)
 | |
| 		return 0;
 | |
| 	spin_lock(&files->file_lock);
 | |
| 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
 | |
| 		struct file *file;
 | |
| 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
 | |
| 		if (!file)
 | |
| 			continue;
 | |
| 		res = f(p, file, n);
 | |
| 		if (res)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&files->file_lock);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(iterate_fd);
 |