mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 12952b6bbd
			
		
	
	
		12952b6bbd
		
	
	
	
	
		
			
			1, Allow usage of LSX/LASX in the kernel;
 2, Add SIMD-optimized RAID5/RAID6 routines;
 3, Add Loongson Binary Translation (LBT) extension support;
 4, Add basic KGDB & KDB support;
 5, Add building with kcov coverage;
 6, Add KFENCE (Kernel Electric-Fence) support;
 7, Add KASAN (Kernel Address Sanitizer) support;
 8, Some bug fixes and other small changes;
 9, Update the default config file.
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmT5TfMWHGNoZW5odWFj
 YWlAa2VybmVsLm9yZwAKCRAChivD8uImeqd3EACjqCaHNlp33kwufSPpGuQw9a8I
 F7JW1KzBOoWELch5nFRjfQClROBWRmM4jN5YnxENBQ5K2F1K6gfxdkfjew+KV2mn
 ki9ByamCfFVJDZXo9wavUD2LBrVakEFmLT+SyXBxdWwJ3fDivHjF6A0qs9ltp7dq
 Bttq4bkw1mZsU6MnViRwPKVROtNUVrd9mwYSTq0iXviVEbWhPHQQTxRizNra9Z6X
 7XWxO0ODHl0WVvdOJU+F16mBRS3Bs1g/HHAIDc41yrYEHFFOeFCEUAQSF/4Nj5wj
 BAfAB8WOa9+vPH8fTnrpCt2RtGJmkz71TM49DdXB7jpGaWIyc4WDi9MXeeBiJ0wE
 vQg8IECc9POC1sH4/6BMwq2qkrWRj2PYFYof0fP66iWNjmodtNUf7GOVHy8MTQan
 xHWizJFAdY/u/bwbF9tRQ+EVeot/844CkjtZxkgTfV8shN6kCMEVAamwBItZ7TXN
 g/oc1ORM6nsKHBDQF3r2LSY0Gbf3OSfMJVL8SLEQ9hAhgGhotmJ36B4bdvyO7T0Q
 gNn//U+p4IIMFRKRxreEz9P0KjTOJrHAAxNzu1oZebhGZd5WI+i0PHYkkBDKZTXc
 7qaEdM2cX8Wd0ePIXOHQnSItwYO7ilrviHyeCM8wd/g2/W/00jvnpF3J+2rk7eJO
 rcfAr8+V5ylYBQzp6Q==
 =NXy2
 -----END PGP SIGNATURE-----
Merge tag 'loongarch-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
 - Allow usage of LSX/LASX in the kernel, and use them for
   SIMD-optimized RAID5/RAID6 routines
 - Add Loongson Binary Translation (LBT) extension support
 - Add basic KGDB & KDB support
 - Add building with kcov coverage
 - Add KFENCE (Kernel Electric-Fence) support
 - Add KASAN (Kernel Address Sanitizer) support
 - Some bug fixes and other small changes
 - Update the default config file
* tag 'loongarch-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (25 commits)
  LoongArch: Update Loongson-3 default config file
  LoongArch: Add KASAN (Kernel Address Sanitizer) support
  LoongArch: Simplify the processing of jumping new kernel for KASLR
  kasan: Add (pmd|pud)_init for LoongArch zero_(pud|p4d)_populate process
  kasan: Add __HAVE_ARCH_SHADOW_MAP to support arch specific mapping
  LoongArch: Add KFENCE (Kernel Electric-Fence) support
  LoongArch: Get partial stack information when providing regs parameter
  LoongArch: mm: Add page table mapped mode support for virt_to_page()
  kfence: Defer the assignment of the local variable addr
  LoongArch: Allow building with kcov coverage
  LoongArch: Provide kaslr_offset() to get kernel offset
  LoongArch: Add basic KGDB & KDB support
  LoongArch: Add Loongson Binary Translation (LBT) extension support
  raid6: Add LoongArch SIMD recovery implementation
  raid6: Add LoongArch SIMD syndrome calculation
  LoongArch: Add SIMD-optimized XOR routines
  LoongArch: Allow usage of LSX/LASX in the kernel
  LoongArch: Define symbol 'fault' as a local label in fpu.S
  LoongArch: Adjust {copy, clear}_user exception handler behavior
  LoongArch: Use static defined zero page rather than allocated
  ...
		
	
			
		
			
				
	
	
		
			1232 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1232 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * KFENCE guarded object allocator and fault handling.
 | |
|  *
 | |
|  * Copyright (C) 2020, Google LLC.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "kfence: " fmt
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/irq_work.h>
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/kcsan-checks.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/panic_notifier.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/string.h>
 | |
| 
 | |
| #include <asm/kfence.h>
 | |
| 
 | |
| #include "kfence.h"
 | |
| 
 | |
| /* Disables KFENCE on the first warning assuming an irrecoverable error. */
 | |
| #define KFENCE_WARN_ON(cond)                                                   \
 | |
| 	({                                                                     \
 | |
| 		const bool __cond = WARN_ON(cond);                             \
 | |
| 		if (unlikely(__cond)) {                                        \
 | |
| 			WRITE_ONCE(kfence_enabled, false);                     \
 | |
| 			disabled_by_warn = true;                               \
 | |
| 		}                                                              \
 | |
| 		__cond;                                                        \
 | |
| 	})
 | |
| 
 | |
| /* === Data ================================================================= */
 | |
| 
 | |
| static bool kfence_enabled __read_mostly;
 | |
| static bool disabled_by_warn __read_mostly;
 | |
| 
 | |
| unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
 | |
| EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
 | |
| 
 | |
| #ifdef MODULE_PARAM_PREFIX
 | |
| #undef MODULE_PARAM_PREFIX
 | |
| #endif
 | |
| #define MODULE_PARAM_PREFIX "kfence."
 | |
| 
 | |
| static int kfence_enable_late(void);
 | |
| static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	unsigned long num;
 | |
| 	int ret = kstrtoul(val, 0, &num);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Using 0 to indicate KFENCE is disabled. */
 | |
| 	if (!num && READ_ONCE(kfence_enabled)) {
 | |
| 		pr_info("disabled\n");
 | |
| 		WRITE_ONCE(kfence_enabled, false);
 | |
| 	}
 | |
| 
 | |
| 	*((unsigned long *)kp->arg) = num;
 | |
| 
 | |
| 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
 | |
| 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
 | |
| {
 | |
| 	if (!READ_ONCE(kfence_enabled))
 | |
| 		return sprintf(buffer, "0\n");
 | |
| 
 | |
| 	return param_get_ulong(buffer, kp);
 | |
| }
 | |
| 
 | |
| static const struct kernel_param_ops sample_interval_param_ops = {
 | |
| 	.set = param_set_sample_interval,
 | |
| 	.get = param_get_sample_interval,
 | |
| };
 | |
| module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
 | |
| 
 | |
| /* Pool usage% threshold when currently covered allocations are skipped. */
 | |
| static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
 | |
| module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
 | |
| 
 | |
| /* If true, use a deferrable timer. */
 | |
| static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
 | |
| module_param_named(deferrable, kfence_deferrable, bool, 0444);
 | |
| 
 | |
| /* If true, check all canary bytes on panic. */
 | |
| static bool kfence_check_on_panic __read_mostly;
 | |
| module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
 | |
| 
 | |
| /* The pool of pages used for guard pages and objects. */
 | |
| char *__kfence_pool __read_mostly;
 | |
| EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
 | |
| 
 | |
| /*
 | |
|  * Per-object metadata, with one-to-one mapping of object metadata to
 | |
|  * backing pages (in __kfence_pool).
 | |
|  */
 | |
| static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
 | |
| struct kfence_metadata *kfence_metadata __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
 | |
|  * So introduce kfence_metadata_init to initialize metadata, and then make
 | |
|  * kfence_metadata visible after initialization is successful. This prevents
 | |
|  * potential UAF or access to uninitialized metadata.
 | |
|  */
 | |
| static struct kfence_metadata *kfence_metadata_init __read_mostly;
 | |
| 
 | |
| /* Freelist with available objects. */
 | |
| static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
 | |
| static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
 | |
| 
 | |
| /*
 | |
|  * The static key to set up a KFENCE allocation; or if static keys are not used
 | |
|  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
 | |
|  */
 | |
| DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
 | |
| 
 | |
| /* Gates the allocation, ensuring only one succeeds in a given period. */
 | |
| atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
 | |
| 
 | |
| /*
 | |
|  * A Counting Bloom filter of allocation coverage: limits currently covered
 | |
|  * allocations of the same source filling up the pool.
 | |
|  *
 | |
|  * Assuming a range of 15%-85% unique allocations in the pool at any point in
 | |
|  * time, the below parameters provide a probablity of 0.02-0.33 for false
 | |
|  * positive hits respectively:
 | |
|  *
 | |
|  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
 | |
|  */
 | |
| #define ALLOC_COVERED_HNUM	2
 | |
| #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
 | |
| #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
 | |
| #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
 | |
| #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
 | |
| static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
 | |
| 
 | |
| /* Stack depth used to determine uniqueness of an allocation. */
 | |
| #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
 | |
| 
 | |
| /*
 | |
|  * Randomness for stack hashes, making the same collisions across reboots and
 | |
|  * different machines less likely.
 | |
|  */
 | |
| static u32 stack_hash_seed __ro_after_init;
 | |
| 
 | |
| /* Statistics counters for debugfs. */
 | |
| enum kfence_counter_id {
 | |
| 	KFENCE_COUNTER_ALLOCATED,
 | |
| 	KFENCE_COUNTER_ALLOCS,
 | |
| 	KFENCE_COUNTER_FREES,
 | |
| 	KFENCE_COUNTER_ZOMBIES,
 | |
| 	KFENCE_COUNTER_BUGS,
 | |
| 	KFENCE_COUNTER_SKIP_INCOMPAT,
 | |
| 	KFENCE_COUNTER_SKIP_CAPACITY,
 | |
| 	KFENCE_COUNTER_SKIP_COVERED,
 | |
| 	KFENCE_COUNTER_COUNT,
 | |
| };
 | |
| static atomic_long_t counters[KFENCE_COUNTER_COUNT];
 | |
| static const char *const counter_names[] = {
 | |
| 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
 | |
| 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
 | |
| 	[KFENCE_COUNTER_FREES]		= "total frees",
 | |
| 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
 | |
| 	[KFENCE_COUNTER_BUGS]		= "total bugs",
 | |
| 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
 | |
| 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
 | |
| 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
 | |
| };
 | |
| static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
 | |
| 
 | |
| /* === Internals ============================================================ */
 | |
| 
 | |
| static inline bool should_skip_covered(void)
 | |
| {
 | |
| 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
 | |
| 
 | |
| 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
 | |
| }
 | |
| 
 | |
| static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
 | |
| {
 | |
| 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
 | |
| 	num_entries = filter_irq_stacks(stack_entries, num_entries);
 | |
| 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds (or subtracts) count @val for allocation stack trace hash
 | |
|  * @alloc_stack_hash from Counting Bloom filter.
 | |
|  */
 | |
| static void alloc_covered_add(u32 alloc_stack_hash, int val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 | |
| 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
 | |
| 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the allocation stack trace hash @alloc_stack_hash is
 | |
|  * currently contained (non-zero count) in Counting Bloom filter.
 | |
|  */
 | |
| static bool alloc_covered_contains(u32 alloc_stack_hash)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
 | |
| 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
 | |
| 			return false;
 | |
| 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool kfence_protect(unsigned long addr)
 | |
| {
 | |
| 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
 | |
| }
 | |
| 
 | |
| static bool kfence_unprotect(unsigned long addr)
 | |
| {
 | |
| 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
 | |
| }
 | |
| 
 | |
| static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
 | |
| {
 | |
| 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
 | |
| 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
 | |
| 
 | |
| 	/* The checks do not affect performance; only called from slow-paths. */
 | |
| 
 | |
| 	/* Only call with a pointer into kfence_metadata. */
 | |
| 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
 | |
| 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This metadata object only ever maps to 1 page; verify that the stored
 | |
| 	 * address is in the expected range.
 | |
| 	 */
 | |
| 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pageaddr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the object's metadata state, including updating the alloc/free stacks
 | |
|  * depending on the state transition.
 | |
|  */
 | |
| static noinline void
 | |
| metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
 | |
| 		      unsigned long *stack_entries, size_t num_stack_entries)
 | |
| {
 | |
| 	struct kfence_track *track =
 | |
| 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
 | |
| 
 | |
| 	lockdep_assert_held(&meta->lock);
 | |
| 
 | |
| 	if (stack_entries) {
 | |
| 		memcpy(track->stack_entries, stack_entries,
 | |
| 		       num_stack_entries * sizeof(stack_entries[0]));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Skip over 1 (this) functions; noinline ensures we do not
 | |
| 		 * accidentally skip over the caller by never inlining.
 | |
| 		 */
 | |
| 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
 | |
| 	}
 | |
| 	track->num_stack_entries = num_stack_entries;
 | |
| 	track->pid = task_pid_nr(current);
 | |
| 	track->cpu = raw_smp_processor_id();
 | |
| 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with READ_ONCE() in
 | |
| 	 *	kfence_shutdown_cache(),
 | |
| 	 *	kfence_handle_page_fault().
 | |
| 	 */
 | |
| 	WRITE_ONCE(meta->state, next);
 | |
| }
 | |
| 
 | |
| /* Check canary byte at @addr. */
 | |
| static inline bool check_canary_byte(u8 *addr)
 | |
| {
 | |
| 	struct kfence_metadata *meta;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
 | |
| 		return true;
 | |
| 
 | |
| 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 | |
| 
 | |
| 	meta = addr_to_metadata((unsigned long)addr);
 | |
| 	raw_spin_lock_irqsave(&meta->lock, flags);
 | |
| 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
 | |
| 	raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void set_canary(const struct kfence_metadata *meta)
 | |
| {
 | |
| 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 | |
| 	unsigned long addr = pageaddr;
 | |
| 
 | |
| 	/*
 | |
| 	 * The canary may be written to part of the object memory, but it does
 | |
| 	 * not affect it. The user should initialize the object before using it.
 | |
| 	 */
 | |
| 	for (; addr < meta->addr; addr += sizeof(u64))
 | |
| 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
 | |
| 
 | |
| 	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
 | |
| 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
 | |
| 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
 | |
| }
 | |
| 
 | |
| static inline void check_canary(const struct kfence_metadata *meta)
 | |
| {
 | |
| 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
 | |
| 	unsigned long addr = pageaddr;
 | |
| 
 | |
| 	/*
 | |
| 	 * We'll iterate over each canary byte per-side until a corrupted byte
 | |
| 	 * is found. However, we'll still iterate over the canary bytes to the
 | |
| 	 * right of the object even if there was an error in the canary bytes to
 | |
| 	 * the left of the object. Specifically, if check_canary_byte()
 | |
| 	 * generates an error, showing both sides might give more clues as to
 | |
| 	 * what the error is about when displaying which bytes were corrupted.
 | |
| 	 */
 | |
| 
 | |
| 	/* Apply to left of object. */
 | |
| 	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
 | |
| 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the canary is corrupted in a certain 64 bytes, or the canary
 | |
| 	 * memory cannot be completely covered by multiple consecutive 64 bytes,
 | |
| 	 * it needs to be checked one by one.
 | |
| 	 */
 | |
| 	for (; addr < meta->addr; addr++) {
 | |
| 		if (unlikely(!check_canary_byte((u8 *)addr)))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Apply to right of object. */
 | |
| 	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
 | |
| 		if (unlikely(!check_canary_byte((u8 *)addr)))
 | |
| 			return;
 | |
| 	}
 | |
| 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
 | |
| 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
 | |
| 
 | |
| 			for (; addr - pageaddr < PAGE_SIZE; addr++) {
 | |
| 				if (!check_canary_byte((u8 *)addr))
 | |
| 					return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
 | |
| 				  unsigned long *stack_entries, size_t num_stack_entries,
 | |
| 				  u32 alloc_stack_hash)
 | |
| {
 | |
| 	struct kfence_metadata *meta = NULL;
 | |
| 	unsigned long flags;
 | |
| 	struct slab *slab;
 | |
| 	void *addr;
 | |
| 	const bool random_right_allocate = get_random_u32_below(2);
 | |
| 	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
 | |
| 				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
 | |
| 
 | |
| 	/* Try to obtain a free object. */
 | |
| 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 | |
| 	if (!list_empty(&kfence_freelist)) {
 | |
| 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
 | |
| 		list_del_init(&meta->list);
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 | |
| 	if (!meta) {
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
 | |
| 		/*
 | |
| 		 * This is extremely unlikely -- we are reporting on a
 | |
| 		 * use-after-free, which locked meta->lock, and the reporting
 | |
| 		 * code via printk calls kmalloc() which ends up in
 | |
| 		 * kfence_alloc() and tries to grab the same object that we're
 | |
| 		 * reporting on. While it has never been observed, lockdep does
 | |
| 		 * report that there is a possibility of deadlock. Fix it by
 | |
| 		 * using trylock and bailing out gracefully.
 | |
| 		 */
 | |
| 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 | |
| 		/* Put the object back on the freelist. */
 | |
| 		list_add_tail(&meta->list, &kfence_freelist);
 | |
| 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 | |
| 
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	meta->addr = metadata_to_pageaddr(meta);
 | |
| 	/* Unprotect if we're reusing this page. */
 | |
| 	if (meta->state == KFENCE_OBJECT_FREED)
 | |
| 		kfence_unprotect(meta->addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: for allocations made before RNG initialization, will always
 | |
| 	 * return zero. We still benefit from enabling KFENCE as early as
 | |
| 	 * possible, even when the RNG is not yet available, as this will allow
 | |
| 	 * KFENCE to detect bugs due to earlier allocations. The only downside
 | |
| 	 * is that the out-of-bounds accesses detected are deterministic for
 | |
| 	 * such allocations.
 | |
| 	 */
 | |
| 	if (random_right_allocate) {
 | |
| 		/* Allocate on the "right" side, re-calculate address. */
 | |
| 		meta->addr += PAGE_SIZE - size;
 | |
| 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
 | |
| 	}
 | |
| 
 | |
| 	addr = (void *)meta->addr;
 | |
| 
 | |
| 	/* Update remaining metadata. */
 | |
| 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
 | |
| 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
 | |
| 	WRITE_ONCE(meta->cache, cache);
 | |
| 	meta->size = size;
 | |
| 	meta->alloc_stack_hash = alloc_stack_hash;
 | |
| 	raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 
 | |
| 	alloc_covered_add(alloc_stack_hash, 1);
 | |
| 
 | |
| 	/* Set required slab fields. */
 | |
| 	slab = virt_to_slab((void *)meta->addr);
 | |
| 	slab->slab_cache = cache;
 | |
| #if defined(CONFIG_SLUB)
 | |
| 	slab->objects = 1;
 | |
| #elif defined(CONFIG_SLAB)
 | |
| 	slab->s_mem = addr;
 | |
| #endif
 | |
| 
 | |
| 	/* Memory initialization. */
 | |
| 	set_canary(meta);
 | |
| 
 | |
| 	/*
 | |
| 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
 | |
| 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
 | |
| 	 * redzone.
 | |
| 	 */
 | |
| 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
 | |
| 		memzero_explicit(addr, size);
 | |
| 	if (cache->ctor)
 | |
| 		cache->ctor(addr);
 | |
| 
 | |
| 	if (random_fault)
 | |
| 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
 | |
| 
 | |
| 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
 | |
| 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
 | |
| {
 | |
| 	struct kcsan_scoped_access assert_page_exclusive;
 | |
| 	unsigned long flags;
 | |
| 	bool init;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&meta->lock, flags);
 | |
| 
 | |
| 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
 | |
| 		/* Invalid or double-free, bail out. */
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 | |
| 		kfence_report_error((unsigned long)addr, false, NULL, meta,
 | |
| 				    KFENCE_ERROR_INVALID_FREE);
 | |
| 		raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
 | |
| 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
 | |
| 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
 | |
| 				  &assert_page_exclusive);
 | |
| 
 | |
| 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
 | |
| 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
 | |
| 
 | |
| 	/* Restore page protection if there was an OOB access. */
 | |
| 	if (meta->unprotected_page) {
 | |
| 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
 | |
| 		kfence_protect(meta->unprotected_page);
 | |
| 		meta->unprotected_page = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark the object as freed. */
 | |
| 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
 | |
| 	init = slab_want_init_on_free(meta->cache);
 | |
| 	raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 
 | |
| 	alloc_covered_add(meta->alloc_stack_hash, -1);
 | |
| 
 | |
| 	/* Check canary bytes for memory corruption. */
 | |
| 	check_canary(meta);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear memory if init-on-free is set. While we protect the page, the
 | |
| 	 * data is still there, and after a use-after-free is detected, we
 | |
| 	 * unprotect the page, so the data is still accessible.
 | |
| 	 */
 | |
| 	if (!zombie && unlikely(init))
 | |
| 		memzero_explicit(addr, meta->size);
 | |
| 
 | |
| 	/* Protect to detect use-after-frees. */
 | |
| 	kfence_protect((unsigned long)addr);
 | |
| 
 | |
| 	kcsan_end_scoped_access(&assert_page_exclusive);
 | |
| 	if (!zombie) {
 | |
| 		/* Add it to the tail of the freelist for reuse. */
 | |
| 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
 | |
| 		KFENCE_WARN_ON(!list_empty(&meta->list));
 | |
| 		list_add_tail(&meta->list, &kfence_freelist);
 | |
| 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
 | |
| 
 | |
| 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
 | |
| 	} else {
 | |
| 		/* See kfence_shutdown_cache(). */
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rcu_guarded_free(struct rcu_head *h)
 | |
| {
 | |
| 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
 | |
| 
 | |
| 	kfence_guarded_free((void *)meta->addr, meta, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialization of the KFENCE pool after its allocation.
 | |
|  * Returns 0 on success; otherwise returns the address up to
 | |
|  * which partial initialization succeeded.
 | |
|  */
 | |
| static unsigned long kfence_init_pool(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct page *pages;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!arch_kfence_init_pool())
 | |
| 		return (unsigned long)__kfence_pool;
 | |
| 
 | |
| 	addr = (unsigned long)__kfence_pool;
 | |
| 	pages = virt_to_page(__kfence_pool);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up object pages: they must have PG_slab set, to avoid freeing
 | |
| 	 * these as real pages.
 | |
| 	 *
 | |
| 	 * We also want to avoid inserting kfence_free() in the kfree()
 | |
| 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
 | |
| 	 * enters __slab_free() slow-path.
 | |
| 	 */
 | |
| 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 | |
| 		struct slab *slab = page_slab(nth_page(pages, i));
 | |
| 
 | |
| 		if (!i || (i % 2))
 | |
| 			continue;
 | |
| 
 | |
| 		__folio_set_slab(slab_folio(slab));
 | |
| #ifdef CONFIG_MEMCG
 | |
| 		slab->memcg_data = (unsigned long)&kfence_metadata_init[i / 2 - 1].objcg |
 | |
| 				   MEMCG_DATA_OBJCGS;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
 | |
| 	 * merely serves as an extended guard page. However, adding one
 | |
| 	 * additional page in the beginning gives us an even number of pages,
 | |
| 	 * which simplifies the mapping of address to metadata index.
 | |
| 	 */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		if (unlikely(!kfence_protect(addr)))
 | |
| 			return addr;
 | |
| 
 | |
| 		addr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 | |
| 		struct kfence_metadata *meta = &kfence_metadata_init[i];
 | |
| 
 | |
| 		/* Initialize metadata. */
 | |
| 		INIT_LIST_HEAD(&meta->list);
 | |
| 		raw_spin_lock_init(&meta->lock);
 | |
| 		meta->state = KFENCE_OBJECT_UNUSED;
 | |
| 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
 | |
| 		list_add_tail(&meta->list, &kfence_freelist);
 | |
| 
 | |
| 		/* Protect the right redzone. */
 | |
| 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
 | |
| 			goto reset_slab;
 | |
| 
 | |
| 		addr += 2 * PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make kfence_metadata visible only when initialization is successful.
 | |
| 	 * Otherwise, if the initialization fails and kfence_metadata is freed,
 | |
| 	 * it may cause UAF in kfence_shutdown_cache().
 | |
| 	 */
 | |
| 	smp_store_release(&kfence_metadata, kfence_metadata_init);
 | |
| 	return 0;
 | |
| 
 | |
| reset_slab:
 | |
| 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
 | |
| 		struct slab *slab = page_slab(nth_page(pages, i));
 | |
| 
 | |
| 		if (!i || (i % 2))
 | |
| 			continue;
 | |
| #ifdef CONFIG_MEMCG
 | |
| 		slab->memcg_data = 0;
 | |
| #endif
 | |
| 		__folio_clear_slab(slab_folio(slab));
 | |
| 	}
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static bool __init kfence_init_pool_early(void)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (!__kfence_pool)
 | |
| 		return false;
 | |
| 
 | |
| 	addr = kfence_init_pool();
 | |
| 
 | |
| 	if (!addr) {
 | |
| 		/*
 | |
| 		 * The pool is live and will never be deallocated from this point on.
 | |
| 		 * Ignore the pool object from the kmemleak phys object tree, as it would
 | |
| 		 * otherwise overlap with allocations returned by kfence_alloc(), which
 | |
| 		 * are registered with kmemleak through the slab post-alloc hook.
 | |
| 		 */
 | |
| 		kmemleak_ignore_phys(__pa(__kfence_pool));
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only release unprotected pages, and do not try to go back and change
 | |
| 	 * page attributes due to risk of failing to do so as well. If changing
 | |
| 	 * page attributes for some pages fails, it is very likely that it also
 | |
| 	 * fails for the first page, and therefore expect addr==__kfence_pool in
 | |
| 	 * most failure cases.
 | |
| 	 */
 | |
| 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
 | |
| 	__kfence_pool = NULL;
 | |
| 
 | |
| 	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
 | |
| 	kfence_metadata_init = NULL;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* === DebugFS Interface ==================================================== */
 | |
| 
 | |
| static int stats_show(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
 | |
| 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
 | |
| 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SHOW_ATTRIBUTE(stats);
 | |
| 
 | |
| /*
 | |
|  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
 | |
|  * start_object() and next_object() return the object index + 1, because NULL is used
 | |
|  * to stop iteration.
 | |
|  */
 | |
| static void *start_object(struct seq_file *seq, loff_t *pos)
 | |
| {
 | |
| 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 | |
| 		return (void *)((long)*pos + 1);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void stop_object(struct seq_file *seq, void *v)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
 | |
| {
 | |
| 	++*pos;
 | |
| 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
 | |
| 		return (void *)((long)*pos + 1);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int show_object(struct seq_file *seq, void *v)
 | |
| {
 | |
| 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&meta->lock, flags);
 | |
| 	kfence_print_object(seq, meta);
 | |
| 	raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 	seq_puts(seq, "---------------------------------\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations objects_sops = {
 | |
| 	.start = start_object,
 | |
| 	.next = next_object,
 | |
| 	.stop = stop_object,
 | |
| 	.show = show_object,
 | |
| };
 | |
| DEFINE_SEQ_ATTRIBUTE(objects);
 | |
| 
 | |
| static int kfence_debugfs_init(void)
 | |
| {
 | |
| 	struct dentry *kfence_dir;
 | |
| 
 | |
| 	if (!READ_ONCE(kfence_enabled))
 | |
| 		return 0;
 | |
| 
 | |
| 	kfence_dir = debugfs_create_dir("kfence", NULL);
 | |
| 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
 | |
| 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(kfence_debugfs_init);
 | |
| 
 | |
| /* === Panic Notifier ====================================================== */
 | |
| 
 | |
| static void kfence_check_all_canary(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 | |
| 		struct kfence_metadata *meta = &kfence_metadata[i];
 | |
| 
 | |
| 		if (meta->state == KFENCE_OBJECT_ALLOCATED)
 | |
| 			check_canary(meta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kfence_check_canary_callback(struct notifier_block *nb,
 | |
| 					unsigned long reason, void *arg)
 | |
| {
 | |
| 	kfence_check_all_canary();
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kfence_check_canary_notifier = {
 | |
| 	.notifier_call = kfence_check_canary_callback,
 | |
| };
 | |
| 
 | |
| /* === Allocation Gate Timer ================================================ */
 | |
| 
 | |
| static struct delayed_work kfence_timer;
 | |
| 
 | |
| #ifdef CONFIG_KFENCE_STATIC_KEYS
 | |
| /* Wait queue to wake up allocation-gate timer task. */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
 | |
| 
 | |
| static void wake_up_kfence_timer(struct irq_work *work)
 | |
| {
 | |
| 	wake_up(&allocation_wait);
 | |
| }
 | |
| static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Set up delayed work, which will enable and disable the static key. We need to
 | |
|  * use a work queue (rather than a simple timer), since enabling and disabling a
 | |
|  * static key cannot be done from an interrupt.
 | |
|  *
 | |
|  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
 | |
|  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
 | |
|  * more aggressive sampling intervals), we could get away with a variant that
 | |
|  * avoids IPIs, at the cost of not immediately capturing allocations if the
 | |
|  * instructions remain cached.
 | |
|  */
 | |
| static void toggle_allocation_gate(struct work_struct *work)
 | |
| {
 | |
| 	if (!READ_ONCE(kfence_enabled))
 | |
| 		return;
 | |
| 
 | |
| 	atomic_set(&kfence_allocation_gate, 0);
 | |
| #ifdef CONFIG_KFENCE_STATIC_KEYS
 | |
| 	/* Enable static key, and await allocation to happen. */
 | |
| 	static_branch_enable(&kfence_allocation_key);
 | |
| 
 | |
| 	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
 | |
| 
 | |
| 	/* Disable static key and reset timer. */
 | |
| 	static_branch_disable(&kfence_allocation_key);
 | |
| #endif
 | |
| 	queue_delayed_work(system_unbound_wq, &kfence_timer,
 | |
| 			   msecs_to_jiffies(kfence_sample_interval));
 | |
| }
 | |
| 
 | |
| /* === Public interface ===================================================== */
 | |
| 
 | |
| void __init kfence_alloc_pool_and_metadata(void)
 | |
| {
 | |
| 	if (!kfence_sample_interval)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the pool has already been initialized by arch, there is no need to
 | |
| 	 * re-allocate the memory pool.
 | |
| 	 */
 | |
| 	if (!__kfence_pool)
 | |
| 		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
 | |
| 
 | |
| 	if (!__kfence_pool) {
 | |
| 		pr_err("failed to allocate pool\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* The memory allocated by memblock has been zeroed out. */
 | |
| 	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
 | |
| 	if (!kfence_metadata_init) {
 | |
| 		pr_err("failed to allocate metadata\n");
 | |
| 		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
 | |
| 		__kfence_pool = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kfence_init_enable(void)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
 | |
| 		static_branch_enable(&kfence_allocation_key);
 | |
| 
 | |
| 	if (kfence_deferrable)
 | |
| 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
 | |
| 	else
 | |
| 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
 | |
| 
 | |
| 	if (kfence_check_on_panic)
 | |
| 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
 | |
| 
 | |
| 	WRITE_ONCE(kfence_enabled, true);
 | |
| 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 | |
| 
 | |
| 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
 | |
| 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
 | |
| 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
 | |
| }
 | |
| 
 | |
| void __init kfence_init(void)
 | |
| {
 | |
| 	stack_hash_seed = get_random_u32();
 | |
| 
 | |
| 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
 | |
| 	if (!kfence_sample_interval)
 | |
| 		return;
 | |
| 
 | |
| 	if (!kfence_init_pool_early()) {
 | |
| 		pr_err("%s failed\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	kfence_init_enable();
 | |
| }
 | |
| 
 | |
| static int kfence_init_late(void)
 | |
| {
 | |
| 	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
 | |
| 	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
 | |
| 	unsigned long addr = (unsigned long)__kfence_pool;
 | |
| 	unsigned long free_size = KFENCE_POOL_SIZE;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_CONTIG_ALLOC
 | |
| 	struct page *pages;
 | |
| 
 | |
| 	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
 | |
| 				   NULL);
 | |
| 	if (!pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	__kfence_pool = page_to_virt(pages);
 | |
| 	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
 | |
| 				   NULL);
 | |
| 	if (pages)
 | |
| 		kfence_metadata_init = page_to_virt(pages);
 | |
| #else
 | |
| 	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
 | |
| 	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
 | |
| 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
 | |
| 	if (!__kfence_pool)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
 | |
| #endif
 | |
| 
 | |
| 	if (!kfence_metadata_init)
 | |
| 		goto free_pool;
 | |
| 
 | |
| 	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
 | |
| 	addr = kfence_init_pool();
 | |
| 	if (!addr) {
 | |
| 		kfence_init_enable();
 | |
| 		kfence_debugfs_init();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_err("%s failed\n", __func__);
 | |
| 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
 | |
| 	err = -EBUSY;
 | |
| 
 | |
| #ifdef CONFIG_CONTIG_ALLOC
 | |
| 	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
 | |
| 			  nr_pages_meta);
 | |
| free_pool:
 | |
| 	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
 | |
| 			  free_size / PAGE_SIZE);
 | |
| #else
 | |
| 	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
 | |
| free_pool:
 | |
| 	free_pages_exact((void *)addr, free_size);
 | |
| #endif
 | |
| 
 | |
| 	kfence_metadata_init = NULL;
 | |
| 	__kfence_pool = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int kfence_enable_late(void)
 | |
| {
 | |
| 	if (!__kfence_pool)
 | |
| 		return kfence_init_late();
 | |
| 
 | |
| 	WRITE_ONCE(kfence_enabled, true);
 | |
| 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
 | |
| 	pr_info("re-enabled\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kfence_shutdown_cache(struct kmem_cache *s)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct kfence_metadata *meta;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Pairs with release in kfence_init_pool(). */
 | |
| 	if (!smp_load_acquire(&kfence_metadata))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 | |
| 		bool in_use;
 | |
| 
 | |
| 		meta = &kfence_metadata[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * If we observe some inconsistent cache and state pair where we
 | |
| 		 * should have returned false here, cache destruction is racing
 | |
| 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
 | |
| 		 * the lock will not help, as different critical section
 | |
| 		 * serialization will have the same outcome.
 | |
| 		 */
 | |
| 		if (READ_ONCE(meta->cache) != s ||
 | |
| 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&meta->lock, flags);
 | |
| 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
 | |
| 		raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 
 | |
| 		if (in_use) {
 | |
| 			/*
 | |
| 			 * This cache still has allocations, and we should not
 | |
| 			 * release them back into the freelist so they can still
 | |
| 			 * safely be used and retain the kernel's default
 | |
| 			 * behaviour of keeping the allocations alive (leak the
 | |
| 			 * cache); however, they effectively become "zombie
 | |
| 			 * allocations" as the KFENCE objects are the only ones
 | |
| 			 * still in use and the owning cache is being destroyed.
 | |
| 			 *
 | |
| 			 * We mark them freed, so that any subsequent use shows
 | |
| 			 * more useful error messages that will include stack
 | |
| 			 * traces of the user of the object, the original
 | |
| 			 * allocation, and caller to shutdown_cache().
 | |
| 			 */
 | |
| 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
 | |
| 		meta = &kfence_metadata[i];
 | |
| 
 | |
| 		/* See above. */
 | |
| 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
 | |
| 			continue;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&meta->lock, flags);
 | |
| 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
 | |
| 			meta->cache = NULL;
 | |
| 		raw_spin_unlock_irqrestore(&meta->lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
 | |
| {
 | |
| 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
 | |
| 	size_t num_stack_entries;
 | |
| 	u32 alloc_stack_hash;
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform size check before switching kfence_allocation_gate, so that
 | |
| 	 * we don't disable KFENCE without making an allocation.
 | |
| 	 */
 | |
| 	if (size > PAGE_SIZE) {
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip allocations from non-default zones, including DMA. We cannot
 | |
| 	 * guarantee that pages in the KFENCE pool will have the requested
 | |
| 	 * properties (e.g. reside in DMAable memory).
 | |
| 	 */
 | |
| 	if ((flags & GFP_ZONEMASK) ||
 | |
| 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip allocations for this slab, if KFENCE has been disabled for
 | |
| 	 * this slab.
 | |
| 	 */
 | |
| 	if (s->flags & SLAB_SKIP_KFENCE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
 | |
| 		return NULL;
 | |
| #ifdef CONFIG_KFENCE_STATIC_KEYS
 | |
| 	/*
 | |
| 	 * waitqueue_active() is fully ordered after the update of
 | |
| 	 * kfence_allocation_gate per atomic_inc_return().
 | |
| 	 */
 | |
| 	if (waitqueue_active(&allocation_wait)) {
 | |
| 		/*
 | |
| 		 * Calling wake_up() here may deadlock when allocations happen
 | |
| 		 * from within timer code. Use an irq_work to defer it.
 | |
| 		 */
 | |
| 		irq_work_queue(&wake_up_kfence_timer_work);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!READ_ONCE(kfence_enabled))
 | |
| 		return NULL;
 | |
| 
 | |
| 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do expensive check for coverage of allocation in slow-path after
 | |
| 	 * allocation_gate has already become non-zero, even though it might
 | |
| 	 * mean not making any allocation within a given sample interval.
 | |
| 	 *
 | |
| 	 * This ensures reasonable allocation coverage when the pool is almost
 | |
| 	 * full, including avoiding long-lived allocations of the same source
 | |
| 	 * filling up the pool (e.g. pagecache allocations).
 | |
| 	 */
 | |
| 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
 | |
| 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
 | |
| 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
 | |
| 				    alloc_stack_hash);
 | |
| }
 | |
| 
 | |
| size_t kfence_ksize(const void *addr)
 | |
| {
 | |
| 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
 | |
| 	 * either a use-after-free or invalid access.
 | |
| 	 */
 | |
| 	return meta ? meta->size : 0;
 | |
| }
 | |
| 
 | |
| void *kfence_object_start(const void *addr)
 | |
| {
 | |
| 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
 | |
| 	 * either a use-after-free or invalid access.
 | |
| 	 */
 | |
| 	return meta ? (void *)meta->addr : NULL;
 | |
| }
 | |
| 
 | |
| void __kfence_free(void *addr)
 | |
| {
 | |
| 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	KFENCE_WARN_ON(meta->objcg);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
 | |
| 	 * the object, as the object page may be recycled for other-typed
 | |
| 	 * objects once it has been freed. meta->cache may be NULL if the cache
 | |
| 	 * was destroyed.
 | |
| 	 */
 | |
| 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
 | |
| 		call_rcu(&meta->rcu_head, rcu_guarded_free);
 | |
| 	else
 | |
| 		kfence_guarded_free(addr, meta, false);
 | |
| }
 | |
| 
 | |
| bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
 | |
| {
 | |
| 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
 | |
| 	struct kfence_metadata *to_report = NULL;
 | |
| 	enum kfence_error_type error_type;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!is_kfence_address((void *)addr))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
 | |
| 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
 | |
| 
 | |
| 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
 | |
| 
 | |
| 	if (page_index % 2) {
 | |
| 		/* This is a redzone, report a buffer overflow. */
 | |
| 		struct kfence_metadata *meta;
 | |
| 		int distance = 0;
 | |
| 
 | |
| 		meta = addr_to_metadata(addr - PAGE_SIZE);
 | |
| 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
 | |
| 			to_report = meta;
 | |
| 			/* Data race ok; distance calculation approximate. */
 | |
| 			distance = addr - data_race(meta->addr + meta->size);
 | |
| 		}
 | |
| 
 | |
| 		meta = addr_to_metadata(addr + PAGE_SIZE);
 | |
| 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
 | |
| 			/* Data race ok; distance calculation approximate. */
 | |
| 			if (!to_report || distance > data_race(meta->addr) - addr)
 | |
| 				to_report = meta;
 | |
| 		}
 | |
| 
 | |
| 		if (!to_report)
 | |
| 			goto out;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&to_report->lock, flags);
 | |
| 		to_report->unprotected_page = addr;
 | |
| 		error_type = KFENCE_ERROR_OOB;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the object was freed before we took the look we can still
 | |
| 		 * report this as an OOB -- the report will simply show the
 | |
| 		 * stacktrace of the free as well.
 | |
| 		 */
 | |
| 	} else {
 | |
| 		to_report = addr_to_metadata(addr);
 | |
| 		if (!to_report)
 | |
| 			goto out;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&to_report->lock, flags);
 | |
| 		error_type = KFENCE_ERROR_UAF;
 | |
| 		/*
 | |
| 		 * We may race with __kfence_alloc(), and it is possible that a
 | |
| 		 * freed object may be reallocated. We simply report this as a
 | |
| 		 * use-after-free, with the stack trace showing the place where
 | |
| 		 * the object was re-allocated.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (to_report) {
 | |
| 		kfence_report_error(addr, is_write, regs, to_report, error_type);
 | |
| 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
 | |
| 	} else {
 | |
| 		/* This may be a UAF or OOB access, but we can't be sure. */
 | |
| 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
 | |
| 	}
 | |
| 
 | |
| 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
 | |
| }
 |