mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 8d3a7d797c
			
		
	
	
		8d3a7d797c
		
	
	
	
	
		
			
			Use helper macro __ATTR_RW to define numa demotion attributes. Minor readability improvement. Link: https://lkml.kernel.org/r/20230715035111.2656784-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			730 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			730 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/slab.h>
 | |
| #include <linux/lockdep.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/memory-tiers.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| struct memory_tier {
 | |
| 	/* hierarchy of memory tiers */
 | |
| 	struct list_head list;
 | |
| 	/* list of all memory types part of this tier */
 | |
| 	struct list_head memory_types;
 | |
| 	/*
 | |
| 	 * start value of abstract distance. memory tier maps
 | |
| 	 * an abstract distance  range,
 | |
| 	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
 | |
| 	 */
 | |
| 	int adistance_start;
 | |
| 	struct device dev;
 | |
| 	/* All the nodes that are part of all the lower memory tiers. */
 | |
| 	nodemask_t lower_tier_mask;
 | |
| };
 | |
| 
 | |
| struct demotion_nodes {
 | |
| 	nodemask_t preferred;
 | |
| };
 | |
| 
 | |
| struct node_memory_type_map {
 | |
| 	struct memory_dev_type *memtype;
 | |
| 	int map_count;
 | |
| };
 | |
| 
 | |
| static DEFINE_MUTEX(memory_tier_lock);
 | |
| static LIST_HEAD(memory_tiers);
 | |
| static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
 | |
| static struct memory_dev_type *default_dram_type;
 | |
| 
 | |
| static struct bus_type memory_tier_subsys = {
 | |
| 	.name = "memory_tiering",
 | |
| 	.dev_name = "memory_tier",
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static int top_tier_adistance;
 | |
| /*
 | |
|  * node_demotion[] examples:
 | |
|  *
 | |
|  * Example 1:
 | |
|  *
 | |
|  * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
 | |
|  *
 | |
|  * node distances:
 | |
|  * node   0    1    2    3
 | |
|  *    0  10   20   30   40
 | |
|  *    1  20   10   40   30
 | |
|  *    2  30   40   10   40
 | |
|  *    3  40   30   40   10
 | |
|  *
 | |
|  * memory_tiers0 = 0-1
 | |
|  * memory_tiers1 = 2-3
 | |
|  *
 | |
|  * node_demotion[0].preferred = 2
 | |
|  * node_demotion[1].preferred = 3
 | |
|  * node_demotion[2].preferred = <empty>
 | |
|  * node_demotion[3].preferred = <empty>
 | |
|  *
 | |
|  * Example 2:
 | |
|  *
 | |
|  * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
 | |
|  *
 | |
|  * node distances:
 | |
|  * node   0    1    2
 | |
|  *    0  10   20   30
 | |
|  *    1  20   10   30
 | |
|  *    2  30   30   10
 | |
|  *
 | |
|  * memory_tiers0 = 0-2
 | |
|  *
 | |
|  * node_demotion[0].preferred = <empty>
 | |
|  * node_demotion[1].preferred = <empty>
 | |
|  * node_demotion[2].preferred = <empty>
 | |
|  *
 | |
|  * Example 3:
 | |
|  *
 | |
|  * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
 | |
|  *
 | |
|  * node distances:
 | |
|  * node   0    1    2
 | |
|  *    0  10   20   30
 | |
|  *    1  20   10   40
 | |
|  *    2  30   40   10
 | |
|  *
 | |
|  * memory_tiers0 = 1
 | |
|  * memory_tiers1 = 0
 | |
|  * memory_tiers2 = 2
 | |
|  *
 | |
|  * node_demotion[0].preferred = 2
 | |
|  * node_demotion[1].preferred = 0
 | |
|  * node_demotion[2].preferred = <empty>
 | |
|  *
 | |
|  */
 | |
| static struct demotion_nodes *node_demotion __read_mostly;
 | |
| #endif /* CONFIG_MIGRATION */
 | |
| 
 | |
| static inline struct memory_tier *to_memory_tier(struct device *device)
 | |
| {
 | |
| 	return container_of(device, struct memory_tier, dev);
 | |
| }
 | |
| 
 | |
| static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
 | |
| {
 | |
| 	nodemask_t nodes = NODE_MASK_NONE;
 | |
| 	struct memory_dev_type *memtype;
 | |
| 
 | |
| 	list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling)
 | |
| 		nodes_or(nodes, nodes, memtype->nodes);
 | |
| 
 | |
| 	return nodes;
 | |
| }
 | |
| 
 | |
| static void memory_tier_device_release(struct device *dev)
 | |
| {
 | |
| 	struct memory_tier *tier = to_memory_tier(dev);
 | |
| 	/*
 | |
| 	 * synchronize_rcu in clear_node_memory_tier makes sure
 | |
| 	 * we don't have rcu access to this memory tier.
 | |
| 	 */
 | |
| 	kfree(tier);
 | |
| }
 | |
| 
 | |
| static ssize_t nodelist_show(struct device *dev,
 | |
| 			     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	nodemask_t nmask;
 | |
| 
 | |
| 	mutex_lock(&memory_tier_lock);
 | |
| 	nmask = get_memtier_nodemask(to_memory_tier(dev));
 | |
| 	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
 | |
| 	mutex_unlock(&memory_tier_lock);
 | |
| 	return ret;
 | |
| }
 | |
| static DEVICE_ATTR_RO(nodelist);
 | |
| 
 | |
| static struct attribute *memtier_dev_attrs[] = {
 | |
| 	&dev_attr_nodelist.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group memtier_dev_group = {
 | |
| 	.attrs = memtier_dev_attrs,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *memtier_dev_groups[] = {
 | |
| 	&memtier_dev_group,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
 | |
| {
 | |
| 	int ret;
 | |
| 	bool found_slot = false;
 | |
| 	struct memory_tier *memtier, *new_memtier;
 | |
| 	int adistance = memtype->adistance;
 | |
| 	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
 | |
| 
 | |
| 	lockdep_assert_held_once(&memory_tier_lock);
 | |
| 
 | |
| 	adistance = round_down(adistance, memtier_adistance_chunk_size);
 | |
| 	/*
 | |
| 	 * If the memtype is already part of a memory tier,
 | |
| 	 * just return that.
 | |
| 	 */
 | |
| 	if (!list_empty(&memtype->tier_sibiling)) {
 | |
| 		list_for_each_entry(memtier, &memory_tiers, list) {
 | |
| 			if (adistance == memtier->adistance_start)
 | |
| 				return memtier;
 | |
| 		}
 | |
| 		WARN_ON(1);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(memtier, &memory_tiers, list) {
 | |
| 		if (adistance == memtier->adistance_start) {
 | |
| 			goto link_memtype;
 | |
| 		} else if (adistance < memtier->adistance_start) {
 | |
| 			found_slot = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
 | |
| 	if (!new_memtier)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	new_memtier->adistance_start = adistance;
 | |
| 	INIT_LIST_HEAD(&new_memtier->list);
 | |
| 	INIT_LIST_HEAD(&new_memtier->memory_types);
 | |
| 	if (found_slot)
 | |
| 		list_add_tail(&new_memtier->list, &memtier->list);
 | |
| 	else
 | |
| 		list_add_tail(&new_memtier->list, &memory_tiers);
 | |
| 
 | |
| 	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
 | |
| 	new_memtier->dev.bus = &memory_tier_subsys;
 | |
| 	new_memtier->dev.release = memory_tier_device_release;
 | |
| 	new_memtier->dev.groups = memtier_dev_groups;
 | |
| 
 | |
| 	ret = device_register(&new_memtier->dev);
 | |
| 	if (ret) {
 | |
| 		list_del(&new_memtier->list);
 | |
| 		put_device(&new_memtier->dev);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 	memtier = new_memtier;
 | |
| 
 | |
| link_memtype:
 | |
| 	list_add(&memtype->tier_sibiling, &memtier->memory_types);
 | |
| 	return memtier;
 | |
| }
 | |
| 
 | |
| static struct memory_tier *__node_get_memory_tier(int node)
 | |
| {
 | |
| 	pg_data_t *pgdat;
 | |
| 
 | |
| 	pgdat = NODE_DATA(node);
 | |
| 	if (!pgdat)
 | |
| 		return NULL;
 | |
| 	/*
 | |
| 	 * Since we hold memory_tier_lock, we can avoid
 | |
| 	 * RCU read locks when accessing the details. No
 | |
| 	 * parallel updates are possible here.
 | |
| 	 */
 | |
| 	return rcu_dereference_check(pgdat->memtier,
 | |
| 				     lockdep_is_held(&memory_tier_lock));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| bool node_is_toptier(int node)
 | |
| {
 | |
| 	bool toptier;
 | |
| 	pg_data_t *pgdat;
 | |
| 	struct memory_tier *memtier;
 | |
| 
 | |
| 	pgdat = NODE_DATA(node);
 | |
| 	if (!pgdat)
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	memtier = rcu_dereference(pgdat->memtier);
 | |
| 	if (!memtier) {
 | |
| 		toptier = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (memtier->adistance_start <= top_tier_adistance)
 | |
| 		toptier = true;
 | |
| 	else
 | |
| 		toptier = false;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return toptier;
 | |
| }
 | |
| 
 | |
| void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
 | |
| {
 | |
| 	struct memory_tier *memtier;
 | |
| 
 | |
| 	/*
 | |
| 	 * pg_data_t.memtier updates includes a synchronize_rcu()
 | |
| 	 * which ensures that we either find NULL or a valid memtier
 | |
| 	 * in NODE_DATA. protect the access via rcu_read_lock();
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	memtier = rcu_dereference(pgdat->memtier);
 | |
| 	if (memtier)
 | |
| 		*targets = memtier->lower_tier_mask;
 | |
| 	else
 | |
| 		*targets = NODE_MASK_NONE;
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * next_demotion_node() - Get the next node in the demotion path
 | |
|  * @node: The starting node to lookup the next node
 | |
|  *
 | |
|  * Return: node id for next memory node in the demotion path hierarchy
 | |
|  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
 | |
|  * @node online or guarantee that it *continues* to be the next demotion
 | |
|  * target.
 | |
|  */
 | |
| int next_demotion_node(int node)
 | |
| {
 | |
| 	struct demotion_nodes *nd;
 | |
| 	int target;
 | |
| 
 | |
| 	if (!node_demotion)
 | |
| 		return NUMA_NO_NODE;
 | |
| 
 | |
| 	nd = &node_demotion[node];
 | |
| 
 | |
| 	/*
 | |
| 	 * node_demotion[] is updated without excluding this
 | |
| 	 * function from running.
 | |
| 	 *
 | |
| 	 * Make sure to use RCU over entire code blocks if
 | |
| 	 * node_demotion[] reads need to be consistent.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	/*
 | |
| 	 * If there are multiple target nodes, just select one
 | |
| 	 * target node randomly.
 | |
| 	 *
 | |
| 	 * In addition, we can also use round-robin to select
 | |
| 	 * target node, but we should introduce another variable
 | |
| 	 * for node_demotion[] to record last selected target node,
 | |
| 	 * that may cause cache ping-pong due to the changing of
 | |
| 	 * last target node. Or introducing per-cpu data to avoid
 | |
| 	 * caching issue, which seems more complicated. So selecting
 | |
| 	 * target node randomly seems better until now.
 | |
| 	 */
 | |
| 	target = node_random(&nd->preferred);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| static void disable_all_demotion_targets(void)
 | |
| {
 | |
| 	struct memory_tier *memtier;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_state(node, N_MEMORY) {
 | |
| 		node_demotion[node].preferred = NODE_MASK_NONE;
 | |
| 		/*
 | |
| 		 * We are holding memory_tier_lock, it is safe
 | |
| 		 * to access pgda->memtier.
 | |
| 		 */
 | |
| 		memtier = __node_get_memory_tier(node);
 | |
| 		if (memtier)
 | |
| 			memtier->lower_tier_mask = NODE_MASK_NONE;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Ensure that the "disable" is visible across the system.
 | |
| 	 * Readers will see either a combination of before+disable
 | |
| 	 * state or disable+after.  They will never see before and
 | |
| 	 * after state together.
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find an automatic demotion target for all memory
 | |
|  * nodes. Failing here is OK.  It might just indicate
 | |
|  * being at the end of a chain.
 | |
|  */
 | |
| static void establish_demotion_targets(void)
 | |
| {
 | |
| 	struct memory_tier *memtier;
 | |
| 	struct demotion_nodes *nd;
 | |
| 	int target = NUMA_NO_NODE, node;
 | |
| 	int distance, best_distance;
 | |
| 	nodemask_t tier_nodes, lower_tier;
 | |
| 
 | |
| 	lockdep_assert_held_once(&memory_tier_lock);
 | |
| 
 | |
| 	if (!node_demotion)
 | |
| 		return;
 | |
| 
 | |
| 	disable_all_demotion_targets();
 | |
| 
 | |
| 	for_each_node_state(node, N_MEMORY) {
 | |
| 		best_distance = -1;
 | |
| 		nd = &node_demotion[node];
 | |
| 
 | |
| 		memtier = __node_get_memory_tier(node);
 | |
| 		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Get the lower memtier to find the  demotion node list.
 | |
| 		 */
 | |
| 		memtier = list_next_entry(memtier, list);
 | |
| 		tier_nodes = get_memtier_nodemask(memtier);
 | |
| 		/*
 | |
| 		 * find_next_best_node, use 'used' nodemask as a skip list.
 | |
| 		 * Add all memory nodes except the selected memory tier
 | |
| 		 * nodelist to skip list so that we find the best node from the
 | |
| 		 * memtier nodelist.
 | |
| 		 */
 | |
| 		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
 | |
| 
 | |
| 		/*
 | |
| 		 * Find all the nodes in the memory tier node list of same best distance.
 | |
| 		 * add them to the preferred mask. We randomly select between nodes
 | |
| 		 * in the preferred mask when allocating pages during demotion.
 | |
| 		 */
 | |
| 		do {
 | |
| 			target = find_next_best_node(node, &tier_nodes);
 | |
| 			if (target == NUMA_NO_NODE)
 | |
| 				break;
 | |
| 
 | |
| 			distance = node_distance(node, target);
 | |
| 			if (distance == best_distance || best_distance == -1) {
 | |
| 				best_distance = distance;
 | |
| 				node_set(target, nd->preferred);
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		} while (1);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Promotion is allowed from a memory tier to higher
 | |
| 	 * memory tier only if the memory tier doesn't include
 | |
| 	 * compute. We want to skip promotion from a memory tier,
 | |
| 	 * if any node that is part of the memory tier have CPUs.
 | |
| 	 * Once we detect such a memory tier, we consider that tier
 | |
| 	 * as top tiper from which promotion is not allowed.
 | |
| 	 */
 | |
| 	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
 | |
| 		tier_nodes = get_memtier_nodemask(memtier);
 | |
| 		nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
 | |
| 		if (!nodes_empty(tier_nodes)) {
 | |
| 			/*
 | |
| 			 * abstract distance below the max value of this memtier
 | |
| 			 * is considered toptier.
 | |
| 			 */
 | |
| 			top_tier_adistance = memtier->adistance_start +
 | |
| 						MEMTIER_CHUNK_SIZE - 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Now build the lower_tier mask for each node collecting node mask from
 | |
| 	 * all memory tier below it. This allows us to fallback demotion page
 | |
| 	 * allocation to a set of nodes that is closer the above selected
 | |
| 	 * perferred node.
 | |
| 	 */
 | |
| 	lower_tier = node_states[N_MEMORY];
 | |
| 	list_for_each_entry(memtier, &memory_tiers, list) {
 | |
| 		/*
 | |
| 		 * Keep removing current tier from lower_tier nodes,
 | |
| 		 * This will remove all nodes in current and above
 | |
| 		 * memory tier from the lower_tier mask.
 | |
| 		 */
 | |
| 		tier_nodes = get_memtier_nodemask(memtier);
 | |
| 		nodes_andnot(lower_tier, lower_tier, tier_nodes);
 | |
| 		memtier->lower_tier_mask = lower_tier;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void establish_demotion_targets(void) {}
 | |
| #endif /* CONFIG_MIGRATION */
 | |
| 
 | |
| static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
 | |
| {
 | |
| 	if (!node_memory_types[node].memtype)
 | |
| 		node_memory_types[node].memtype = memtype;
 | |
| 	/*
 | |
| 	 * for each device getting added in the same NUMA node
 | |
| 	 * with this specific memtype, bump the map count. We
 | |
| 	 * Only take memtype device reference once, so that
 | |
| 	 * changing a node memtype can be done by droping the
 | |
| 	 * only reference count taken here.
 | |
| 	 */
 | |
| 
 | |
| 	if (node_memory_types[node].memtype == memtype) {
 | |
| 		if (!node_memory_types[node].map_count++)
 | |
| 			kref_get(&memtype->kref);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct memory_tier *set_node_memory_tier(int node)
 | |
| {
 | |
| 	struct memory_tier *memtier;
 | |
| 	struct memory_dev_type *memtype;
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 
 | |
| 
 | |
| 	lockdep_assert_held_once(&memory_tier_lock);
 | |
| 
 | |
| 	if (!node_state(node, N_MEMORY))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	__init_node_memory_type(node, default_dram_type);
 | |
| 
 | |
| 	memtype = node_memory_types[node].memtype;
 | |
| 	node_set(node, memtype->nodes);
 | |
| 	memtier = find_create_memory_tier(memtype);
 | |
| 	if (!IS_ERR(memtier))
 | |
| 		rcu_assign_pointer(pgdat->memtier, memtier);
 | |
| 	return memtier;
 | |
| }
 | |
| 
 | |
| static void destroy_memory_tier(struct memory_tier *memtier)
 | |
| {
 | |
| 	list_del(&memtier->list);
 | |
| 	device_unregister(&memtier->dev);
 | |
| }
 | |
| 
 | |
| static bool clear_node_memory_tier(int node)
 | |
| {
 | |
| 	bool cleared = false;
 | |
| 	pg_data_t *pgdat;
 | |
| 	struct memory_tier *memtier;
 | |
| 
 | |
| 	pgdat = NODE_DATA(node);
 | |
| 	if (!pgdat)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that anybody looking at NODE_DATA who finds
 | |
| 	 * a valid memtier finds memory_dev_types with nodes still
 | |
| 	 * linked to the memtier. We achieve this by waiting for
 | |
| 	 * rcu read section to finish using synchronize_rcu.
 | |
| 	 * This also enables us to free the destroyed memory tier
 | |
| 	 * with kfree instead of kfree_rcu
 | |
| 	 */
 | |
| 	memtier = __node_get_memory_tier(node);
 | |
| 	if (memtier) {
 | |
| 		struct memory_dev_type *memtype;
 | |
| 
 | |
| 		rcu_assign_pointer(pgdat->memtier, NULL);
 | |
| 		synchronize_rcu();
 | |
| 		memtype = node_memory_types[node].memtype;
 | |
| 		node_clear(node, memtype->nodes);
 | |
| 		if (nodes_empty(memtype->nodes)) {
 | |
| 			list_del_init(&memtype->tier_sibiling);
 | |
| 			if (list_empty(&memtier->memory_types))
 | |
| 				destroy_memory_tier(memtier);
 | |
| 		}
 | |
| 		cleared = true;
 | |
| 	}
 | |
| 	return cleared;
 | |
| }
 | |
| 
 | |
| static void release_memtype(struct kref *kref)
 | |
| {
 | |
| 	struct memory_dev_type *memtype;
 | |
| 
 | |
| 	memtype = container_of(kref, struct memory_dev_type, kref);
 | |
| 	kfree(memtype);
 | |
| }
 | |
| 
 | |
| struct memory_dev_type *alloc_memory_type(int adistance)
 | |
| {
 | |
| 	struct memory_dev_type *memtype;
 | |
| 
 | |
| 	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
 | |
| 	if (!memtype)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	memtype->adistance = adistance;
 | |
| 	INIT_LIST_HEAD(&memtype->tier_sibiling);
 | |
| 	memtype->nodes  = NODE_MASK_NONE;
 | |
| 	kref_init(&memtype->kref);
 | |
| 	return memtype;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_memory_type);
 | |
| 
 | |
| void put_memory_type(struct memory_dev_type *memtype)
 | |
| {
 | |
| 	kref_put(&memtype->kref, release_memtype);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_memory_type);
 | |
| 
 | |
| void init_node_memory_type(int node, struct memory_dev_type *memtype)
 | |
| {
 | |
| 
 | |
| 	mutex_lock(&memory_tier_lock);
 | |
| 	__init_node_memory_type(node, memtype);
 | |
| 	mutex_unlock(&memory_tier_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(init_node_memory_type);
 | |
| 
 | |
| void clear_node_memory_type(int node, struct memory_dev_type *memtype)
 | |
| {
 | |
| 	mutex_lock(&memory_tier_lock);
 | |
| 	if (node_memory_types[node].memtype == memtype)
 | |
| 		node_memory_types[node].map_count--;
 | |
| 	/*
 | |
| 	 * If we umapped all the attached devices to this node,
 | |
| 	 * clear the node memory type.
 | |
| 	 */
 | |
| 	if (!node_memory_types[node].map_count) {
 | |
| 		node_memory_types[node].memtype = NULL;
 | |
| 		put_memory_type(memtype);
 | |
| 	}
 | |
| 	mutex_unlock(&memory_tier_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(clear_node_memory_type);
 | |
| 
 | |
| static int __meminit memtier_hotplug_callback(struct notifier_block *self,
 | |
| 					      unsigned long action, void *_arg)
 | |
| {
 | |
| 	struct memory_tier *memtier;
 | |
| 	struct memory_notify *arg = _arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only update the node migration order when a node is
 | |
| 	 * changing status, like online->offline.
 | |
| 	 */
 | |
| 	if (arg->status_change_nid < 0)
 | |
| 		return notifier_from_errno(0);
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_OFFLINE:
 | |
| 		mutex_lock(&memory_tier_lock);
 | |
| 		if (clear_node_memory_tier(arg->status_change_nid))
 | |
| 			establish_demotion_targets();
 | |
| 		mutex_unlock(&memory_tier_lock);
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 		mutex_lock(&memory_tier_lock);
 | |
| 		memtier = set_node_memory_tier(arg->status_change_nid);
 | |
| 		if (!IS_ERR(memtier))
 | |
| 			establish_demotion_targets();
 | |
| 		mutex_unlock(&memory_tier_lock);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return notifier_from_errno(0);
 | |
| }
 | |
| 
 | |
| static int __init memory_tier_init(void)
 | |
| {
 | |
| 	int ret, node;
 | |
| 	struct memory_tier *memtier;
 | |
| 
 | |
| 	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
 | |
| 	if (ret)
 | |
| 		panic("%s() failed to register memory tier subsystem\n", __func__);
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| 	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
 | |
| 				GFP_KERNEL);
 | |
| 	WARN_ON(!node_demotion);
 | |
| #endif
 | |
| 	mutex_lock(&memory_tier_lock);
 | |
| 	/*
 | |
| 	 * For now we can have 4 faster memory tiers with smaller adistance
 | |
| 	 * than default DRAM tier.
 | |
| 	 */
 | |
| 	default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
 | |
| 	if (IS_ERR(default_dram_type))
 | |
| 		panic("%s() failed to allocate default DRAM tier\n", __func__);
 | |
| 
 | |
| 	/*
 | |
| 	 * Look at all the existing N_MEMORY nodes and add them to
 | |
| 	 * default memory tier or to a tier if we already have memory
 | |
| 	 * types assigned.
 | |
| 	 */
 | |
| 	for_each_node_state(node, N_MEMORY) {
 | |
| 		memtier = set_node_memory_tier(node);
 | |
| 		if (IS_ERR(memtier))
 | |
| 			/*
 | |
| 			 * Continue with memtiers we are able to setup
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 	establish_demotion_targets();
 | |
| 	mutex_unlock(&memory_tier_lock);
 | |
| 
 | |
| 	hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(memory_tier_init);
 | |
| 
 | |
| bool numa_demotion_enabled = false;
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| #ifdef CONFIG_SYSFS
 | |
| static ssize_t demotion_enabled_show(struct kobject *kobj,
 | |
| 				     struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sysfs_emit(buf, "%s\n",
 | |
| 			  numa_demotion_enabled ? "true" : "false");
 | |
| }
 | |
| 
 | |
| static ssize_t demotion_enabled_store(struct kobject *kobj,
 | |
| 				      struct kobj_attribute *attr,
 | |
| 				      const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &numa_demotion_enabled);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute numa_demotion_enabled_attr =
 | |
| 	__ATTR_RW(demotion_enabled);
 | |
| 
 | |
| static struct attribute *numa_attrs[] = {
 | |
| 	&numa_demotion_enabled_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group numa_attr_group = {
 | |
| 	.attrs = numa_attrs,
 | |
| };
 | |
| 
 | |
| static int __init numa_init_sysfs(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *numa_kobj;
 | |
| 
 | |
| 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
 | |
| 	if (!numa_kobj) {
 | |
| 		pr_err("failed to create numa kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register numa group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| delete_obj:
 | |
| 	kobject_put(numa_kobj);
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(numa_init_sysfs);
 | |
| #endif /* CONFIG_SYSFS */
 | |
| #endif
 |