mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 0fb66b81db
			
		
	
	
		0fb66b81db
		
			
		
	
	
	
	
		
			
			Replace a few lines of code by calling a spi_xfer_is_dma_mapped() helper. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Serge Semin <fancer.lancer@gmail.com> Tested-by: Neil Armstrong <neil.armstrong@linaro.org> # on SM8650-QRD Link: https://lore.kernel.org/r/20240531194723.1761567-3-andriy.shevchenko@linux.intel.com Tested-by: Nícolas F. R. A. Prado <nfraprado@collabora.com> Signed-off-by: Mark Brown <broonie@kernel.org>
		
			
				
	
	
		
			1024 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1024 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Designware SPI core controller driver (refer pxa2xx_spi.c)
 | |
|  *
 | |
|  * Copyright (c) 2009, Intel Corporation.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/spi-mem.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/of.h>
 | |
| 
 | |
| #include "internals.h"
 | |
| #include "spi-dw.h"
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| #include <linux/debugfs.h>
 | |
| #endif
 | |
| 
 | |
| /* Slave spi_device related */
 | |
| struct dw_spi_chip_data {
 | |
| 	u32 cr0;
 | |
| 	u32 rx_sample_dly;	/* RX sample delay */
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 
 | |
| #define DW_SPI_DBGFS_REG(_name, _off)	\
 | |
| {					\
 | |
| 	.name = _name,			\
 | |
| 	.offset = _off,			\
 | |
| }
 | |
| 
 | |
| static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
 | |
| 	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
 | |
| 	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
 | |
| 	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
 | |
| 	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
 | |
| 	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
 | |
| 	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
 | |
| 	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
 | |
| 	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
 | |
| 	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
 | |
| 	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
 | |
| 	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
 | |
| 	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
 | |
| 	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
 | |
| 	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
 | |
| 	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
 | |
| 	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
 | |
| };
 | |
| 
 | |
| static void dw_spi_debugfs_init(struct dw_spi *dws)
 | |
| {
 | |
| 	char name[32];
 | |
| 
 | |
| 	snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
 | |
| 	dws->debugfs = debugfs_create_dir(name, NULL);
 | |
| 
 | |
| 	dws->regset.regs = dw_spi_dbgfs_regs;
 | |
| 	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
 | |
| 	dws->regset.base = dws->regs;
 | |
| 	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
 | |
| }
 | |
| 
 | |
| static void dw_spi_debugfs_remove(struct dw_spi *dws)
 | |
| {
 | |
| 	debugfs_remove_recursive(dws->debugfs);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void dw_spi_debugfs_init(struct dw_spi *dws)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_FS */
 | |
| 
 | |
| void dw_spi_set_cs(struct spi_device *spi, bool enable)
 | |
| {
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | |
| 	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
 | |
| 
 | |
| 	/*
 | |
| 	 * DW SPI controller demands any native CS being set in order to
 | |
| 	 * proceed with data transfer. So in order to activate the SPI
 | |
| 	 * communications we must set a corresponding bit in the Slave
 | |
| 	 * Enable register no matter whether the SPI core is configured to
 | |
| 	 * support active-high or active-low CS level.
 | |
| 	 */
 | |
| 	if (cs_high == enable)
 | |
| 		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
 | |
| 	else
 | |
| 		dw_writel(dws, DW_SPI_SER, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
 | |
| 
 | |
| /* Return the max entries we can fill into tx fifo */
 | |
| static inline u32 dw_spi_tx_max(struct dw_spi *dws)
 | |
| {
 | |
| 	u32 tx_room, rxtx_gap;
 | |
| 
 | |
| 	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Another concern is about the tx/rx mismatch, we
 | |
| 	 * though to use (dws->fifo_len - rxflr - txflr) as
 | |
| 	 * one maximum value for tx, but it doesn't cover the
 | |
| 	 * data which is out of tx/rx fifo and inside the
 | |
| 	 * shift registers. So a control from sw point of
 | |
| 	 * view is taken.
 | |
| 	 */
 | |
| 	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
 | |
| 
 | |
| 	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
 | |
| }
 | |
| 
 | |
| /* Return the max entries we should read out of rx fifo */
 | |
| static inline u32 dw_spi_rx_max(struct dw_spi *dws)
 | |
| {
 | |
| 	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
 | |
| }
 | |
| 
 | |
| static void dw_writer(struct dw_spi *dws)
 | |
| {
 | |
| 	u32 max = dw_spi_tx_max(dws);
 | |
| 	u32 txw = 0;
 | |
| 
 | |
| 	while (max--) {
 | |
| 		if (dws->tx) {
 | |
| 			if (dws->n_bytes == 1)
 | |
| 				txw = *(u8 *)(dws->tx);
 | |
| 			else if (dws->n_bytes == 2)
 | |
| 				txw = *(u16 *)(dws->tx);
 | |
| 			else
 | |
| 				txw = *(u32 *)(dws->tx);
 | |
| 
 | |
| 			dws->tx += dws->n_bytes;
 | |
| 		}
 | |
| 		dw_write_io_reg(dws, DW_SPI_DR, txw);
 | |
| 		--dws->tx_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dw_reader(struct dw_spi *dws)
 | |
| {
 | |
| 	u32 max = dw_spi_rx_max(dws);
 | |
| 	u32 rxw;
 | |
| 
 | |
| 	while (max--) {
 | |
| 		rxw = dw_read_io_reg(dws, DW_SPI_DR);
 | |
| 		if (dws->rx) {
 | |
| 			if (dws->n_bytes == 1)
 | |
| 				*(u8 *)(dws->rx) = rxw;
 | |
| 			else if (dws->n_bytes == 2)
 | |
| 				*(u16 *)(dws->rx) = rxw;
 | |
| 			else
 | |
| 				*(u32 *)(dws->rx) = rxw;
 | |
| 
 | |
| 			dws->rx += dws->n_bytes;
 | |
| 		}
 | |
| 		--dws->rx_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int dw_spi_check_status(struct dw_spi *dws, bool raw)
 | |
| {
 | |
| 	u32 irq_status;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (raw)
 | |
| 		irq_status = dw_readl(dws, DW_SPI_RISR);
 | |
| 	else
 | |
| 		irq_status = dw_readl(dws, DW_SPI_ISR);
 | |
| 
 | |
| 	if (irq_status & DW_SPI_INT_RXOI) {
 | |
| 		dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_status & DW_SPI_INT_RXUI) {
 | |
| 		dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_status & DW_SPI_INT_TXOI) {
 | |
| 		dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Generically handle the erroneous situation */
 | |
| 	if (ret) {
 | |
| 		dw_spi_reset_chip(dws);
 | |
| 		if (dws->host->cur_msg)
 | |
| 			dws->host->cur_msg->status = ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
 | |
| 
 | |
| static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
 | |
| {
 | |
| 	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
 | |
| 
 | |
| 	if (dw_spi_check_status(dws, false)) {
 | |
| 		spi_finalize_current_transfer(dws->host);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read data from the Rx FIFO every time we've got a chance executing
 | |
| 	 * this method. If there is nothing left to receive, terminate the
 | |
| 	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
 | |
| 	 * final stage of the transfer. By doing so we'll get the next IRQ
 | |
| 	 * right when the leftover incoming data is received.
 | |
| 	 */
 | |
| 	dw_reader(dws);
 | |
| 	if (!dws->rx_len) {
 | |
| 		dw_spi_mask_intr(dws, 0xff);
 | |
| 		spi_finalize_current_transfer(dws->host);
 | |
| 	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
 | |
| 		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
 | |
| 	 * disabled after the data transmission is finished so not to
 | |
| 	 * have the TXE IRQ flood at the final stage of the transfer.
 | |
| 	 */
 | |
| 	if (irq_status & DW_SPI_INT_TXEI) {
 | |
| 		dw_writer(dws);
 | |
| 		if (!dws->tx_len)
 | |
| 			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t dw_spi_irq(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spi_controller *host = dev_id;
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(host);
 | |
| 	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
 | |
| 
 | |
| 	if (!irq_status)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (!host->cur_msg) {
 | |
| 		dw_spi_mask_intr(dws, 0xff);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return dws->transfer_handler(dws);
 | |
| }
 | |
| 
 | |
| static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
 | |
| {
 | |
| 	u32 cr0 = 0;
 | |
| 
 | |
| 	if (dw_spi_ip_is(dws, PSSI)) {
 | |
| 		/* CTRLR0[ 5: 4] Frame Format */
 | |
| 		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 | |
| 
 | |
| 		/*
 | |
| 		 * SPI mode (SCPOL|SCPH)
 | |
| 		 * CTRLR0[ 6] Serial Clock Phase
 | |
| 		 * CTRLR0[ 7] Serial Clock Polarity
 | |
| 		 */
 | |
| 		if (spi->mode & SPI_CPOL)
 | |
| 			cr0 |= DW_PSSI_CTRLR0_SCPOL;
 | |
| 		if (spi->mode & SPI_CPHA)
 | |
| 			cr0 |= DW_PSSI_CTRLR0_SCPHA;
 | |
| 
 | |
| 		/* CTRLR0[11] Shift Register Loop */
 | |
| 		if (spi->mode & SPI_LOOP)
 | |
| 			cr0 |= DW_PSSI_CTRLR0_SRL;
 | |
| 	} else {
 | |
| 		/* CTRLR0[ 7: 6] Frame Format */
 | |
| 		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
 | |
| 
 | |
| 		/*
 | |
| 		 * SPI mode (SCPOL|SCPH)
 | |
| 		 * CTRLR0[ 8] Serial Clock Phase
 | |
| 		 * CTRLR0[ 9] Serial Clock Polarity
 | |
| 		 */
 | |
| 		if (spi->mode & SPI_CPOL)
 | |
| 			cr0 |= DW_HSSI_CTRLR0_SCPOL;
 | |
| 		if (spi->mode & SPI_CPHA)
 | |
| 			cr0 |= DW_HSSI_CTRLR0_SCPHA;
 | |
| 
 | |
| 		/* CTRLR0[13] Shift Register Loop */
 | |
| 		if (spi->mode & SPI_LOOP)
 | |
| 			cr0 |= DW_HSSI_CTRLR0_SRL;
 | |
| 
 | |
| 		/* CTRLR0[31] MST */
 | |
| 		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
 | |
| 			cr0 |= DW_HSSI_CTRLR0_MST;
 | |
| 	}
 | |
| 
 | |
| 	return cr0;
 | |
| }
 | |
| 
 | |
| void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
 | |
| 			  struct dw_spi_cfg *cfg)
 | |
| {
 | |
| 	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 | |
| 	u32 cr0 = chip->cr0;
 | |
| 	u32 speed_hz;
 | |
| 	u16 clk_div;
 | |
| 
 | |
| 	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
 | |
| 	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
 | |
| 
 | |
| 	if (dw_spi_ip_is(dws, PSSI))
 | |
| 		/* CTRLR0[ 9:8] Transfer Mode */
 | |
| 		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 | |
| 	else
 | |
| 		/* CTRLR0[11:10] Transfer Mode */
 | |
| 		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
 | |
| 
 | |
| 	dw_writel(dws, DW_SPI_CTRLR0, cr0);
 | |
| 
 | |
| 	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
 | |
| 	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
 | |
| 		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
 | |
| 
 | |
| 	/* Note DW APB SSI clock divider doesn't support odd numbers */
 | |
| 	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
 | |
| 	speed_hz = dws->max_freq / clk_div;
 | |
| 
 | |
| 	if (dws->current_freq != speed_hz) {
 | |
| 		dw_spi_set_clk(dws, clk_div);
 | |
| 		dws->current_freq = speed_hz;
 | |
| 	}
 | |
| 
 | |
| 	/* Update RX sample delay if required */
 | |
| 	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
 | |
| 		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
 | |
| 		dws->cur_rx_sample_dly = chip->rx_sample_dly;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
 | |
| 
 | |
| static void dw_spi_irq_setup(struct dw_spi *dws)
 | |
| {
 | |
| 	u16 level;
 | |
| 	u8 imask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
 | |
| 	 * will be adjusted at the final stage of the IRQ-based SPI transfer
 | |
| 	 * execution so not to lose the leftover of the incoming data.
 | |
| 	 */
 | |
| 	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
 | |
| 	dw_writel(dws, DW_SPI_TXFTLR, level);
 | |
| 	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
 | |
| 
 | |
| 	dws->transfer_handler = dw_spi_transfer_handler;
 | |
| 
 | |
| 	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
 | |
| 		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
 | |
| 	dw_spi_umask_intr(dws, imask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The iterative procedure of the poll-based transfer is simple: write as much
 | |
|  * as possible to the Tx FIFO, wait until the pending to receive data is ready
 | |
|  * to be read, read it from the Rx FIFO and check whether the performed
 | |
|  * procedure has been successful.
 | |
|  *
 | |
|  * Note this method the same way as the IRQ-based transfer won't work well for
 | |
|  * the SPI devices connected to the controller with native CS due to the
 | |
|  * automatic CS assertion/de-assertion.
 | |
|  */
 | |
| static int dw_spi_poll_transfer(struct dw_spi *dws,
 | |
| 				struct spi_transfer *transfer)
 | |
| {
 | |
| 	struct spi_delay delay;
 | |
| 	u16 nbits;
 | |
| 	int ret;
 | |
| 
 | |
| 	delay.unit = SPI_DELAY_UNIT_SCK;
 | |
| 	nbits = dws->n_bytes * BITS_PER_BYTE;
 | |
| 
 | |
| 	do {
 | |
| 		dw_writer(dws);
 | |
| 
 | |
| 		delay.value = nbits * (dws->rx_len - dws->tx_len);
 | |
| 		spi_delay_exec(&delay, transfer);
 | |
| 
 | |
| 		dw_reader(dws);
 | |
| 
 | |
| 		ret = dw_spi_check_status(dws, true);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} while (dws->rx_len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dw_spi_transfer_one(struct spi_controller *host,
 | |
| 			       struct spi_device *spi,
 | |
| 			       struct spi_transfer *transfer)
 | |
| {
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(host);
 | |
| 	struct dw_spi_cfg cfg = {
 | |
| 		.tmode = DW_SPI_CTRLR0_TMOD_TR,
 | |
| 		.dfs = transfer->bits_per_word,
 | |
| 		.freq = transfer->speed_hz,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	dws->dma_mapped = 0;
 | |
| 	dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
 | |
| 	dws->tx = (void *)transfer->tx_buf;
 | |
| 	dws->tx_len = transfer->len / dws->n_bytes;
 | |
| 	dws->rx = transfer->rx_buf;
 | |
| 	dws->rx_len = dws->tx_len;
 | |
| 
 | |
| 	/* Ensure the data above is visible for all CPUs */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	dw_spi_enable_chip(dws, 0);
 | |
| 
 | |
| 	dw_spi_update_config(dws, spi, &cfg);
 | |
| 
 | |
| 	transfer->effective_speed_hz = dws->current_freq;
 | |
| 
 | |
| 	/* Check if current transfer is a DMA transaction */
 | |
| 	dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer);
 | |
| 
 | |
| 	/* For poll mode just disable all interrupts */
 | |
| 	dw_spi_mask_intr(dws, 0xff);
 | |
| 
 | |
| 	if (dws->dma_mapped) {
 | |
| 		ret = dws->dma_ops->dma_setup(dws, transfer);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	dw_spi_enable_chip(dws, 1);
 | |
| 
 | |
| 	if (dws->dma_mapped)
 | |
| 		return dws->dma_ops->dma_transfer(dws, transfer);
 | |
| 	else if (dws->irq == IRQ_NOTCONNECTED)
 | |
| 		return dw_spi_poll_transfer(dws, transfer);
 | |
| 
 | |
| 	dw_spi_irq_setup(dws);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void dw_spi_handle_err(struct spi_controller *host,
 | |
| 			      struct spi_message *msg)
 | |
| {
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(host);
 | |
| 
 | |
| 	if (dws->dma_mapped)
 | |
| 		dws->dma_ops->dma_stop(dws);
 | |
| 
 | |
| 	dw_spi_reset_chip(dws);
 | |
| }
 | |
| 
 | |
| static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 | |
| {
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN)
 | |
| 		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool dw_spi_supports_mem_op(struct spi_mem *mem,
 | |
| 				   const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
 | |
| 	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
 | |
| 		return false;
 | |
| 
 | |
| 	return spi_mem_default_supports_op(mem, op);
 | |
| }
 | |
| 
 | |
| static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
 | |
| {
 | |
| 	unsigned int i, j, len;
 | |
| 	u8 *out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the total length of the EEPROM command transfer and
 | |
| 	 * either use the pre-allocated buffer or create a temporary one.
 | |
| 	 */
 | |
| 	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT)
 | |
| 		len += op->data.nbytes;
 | |
| 
 | |
| 	if (len <= DW_SPI_BUF_SIZE) {
 | |
| 		out = dws->buf;
 | |
| 	} else {
 | |
| 		out = kzalloc(len, GFP_KERNEL);
 | |
| 		if (!out)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the operation code, address and dummy bytes into the single
 | |
| 	 * buffer. If it's a transfer with data to be sent, also copy it into the
 | |
| 	 * single buffer in order to speed the data transmission up.
 | |
| 	 */
 | |
| 	for (i = 0; i < op->cmd.nbytes; ++i)
 | |
| 		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
 | |
| 	for (j = 0; j < op->addr.nbytes; ++i, ++j)
 | |
| 		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
 | |
| 	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
 | |
| 		out[i] = 0x0;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT)
 | |
| 		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
 | |
| 
 | |
| 	dws->n_bytes = 1;
 | |
| 	dws->tx = out;
 | |
| 	dws->tx_len = len;
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN) {
 | |
| 		dws->rx = op->data.buf.in;
 | |
| 		dws->rx_len = op->data.nbytes;
 | |
| 	} else {
 | |
| 		dws->rx = NULL;
 | |
| 		dws->rx_len = 0;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dw_spi_free_mem_buf(struct dw_spi *dws)
 | |
| {
 | |
| 	if (dws->tx != dws->buf)
 | |
| 		kfree(dws->tx);
 | |
| }
 | |
| 
 | |
| static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
 | |
| {
 | |
| 	u32 room, entries, sts;
 | |
| 	unsigned int len;
 | |
| 	u8 *buf;
 | |
| 
 | |
| 	/*
 | |
| 	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
 | |
| 	 * since native CS hasn't been enabled yet and the automatic data
 | |
| 	 * transmission won't start til we do that.
 | |
| 	 */
 | |
| 	len = min(dws->fifo_len, dws->tx_len);
 | |
| 	buf = dws->tx;
 | |
| 	while (len--)
 | |
| 		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 | |
| 
 | |
| 	/*
 | |
| 	 * After setting any bit in the SER register the transmission will
 | |
| 	 * start automatically. We have to keep up with that procedure
 | |
| 	 * otherwise the CS de-assertion will happen whereupon the memory
 | |
| 	 * operation will be pre-terminated.
 | |
| 	 */
 | |
| 	len = dws->tx_len - ((void *)buf - dws->tx);
 | |
| 	dw_spi_set_cs(spi, false);
 | |
| 	while (len) {
 | |
| 		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
 | |
| 		if (!entries) {
 | |
| 			dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		room = min(dws->fifo_len - entries, len);
 | |
| 		for (; room; --room, --len)
 | |
| 			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Data fetching will start automatically if the EEPROM-read mode is
 | |
| 	 * activated. We have to keep up with the incoming data pace to
 | |
| 	 * prevent the Rx FIFO overflow causing the inbound data loss.
 | |
| 	 */
 | |
| 	len = dws->rx_len;
 | |
| 	buf = dws->rx;
 | |
| 	while (len) {
 | |
| 		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
 | |
| 		if (!entries) {
 | |
| 			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
 | |
| 			if (sts & DW_SPI_INT_RXOI) {
 | |
| 				dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 		entries = min(entries, len);
 | |
| 		for (; entries; --entries, --len)
 | |
| 			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
 | |
| {
 | |
| 	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
 | |
| }
 | |
| 
 | |
| static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
 | |
| {
 | |
| 	int retry = DW_SPI_WAIT_RETRIES;
 | |
| 	struct spi_delay delay;
 | |
| 	unsigned long ns, us;
 | |
| 	u32 nents;
 | |
| 
 | |
| 	nents = dw_readl(dws, DW_SPI_TXFLR);
 | |
| 	ns = NSEC_PER_SEC / dws->current_freq * nents;
 | |
| 	ns *= dws->n_bytes * BITS_PER_BYTE;
 | |
| 	if (ns <= NSEC_PER_USEC) {
 | |
| 		delay.unit = SPI_DELAY_UNIT_NSECS;
 | |
| 		delay.value = ns;
 | |
| 	} else {
 | |
| 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
 | |
| 		delay.unit = SPI_DELAY_UNIT_USECS;
 | |
| 		delay.value = clamp_val(us, 0, USHRT_MAX);
 | |
| 	}
 | |
| 
 | |
| 	while (dw_spi_ctlr_busy(dws) && retry--)
 | |
| 		spi_delay_exec(&delay, NULL);
 | |
| 
 | |
| 	if (retry < 0) {
 | |
| 		dev_err(&dws->host->dev, "Mem op hanged up\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
 | |
| {
 | |
| 	dw_spi_enable_chip(dws, 0);
 | |
| 	dw_spi_set_cs(spi, true);
 | |
| 	dw_spi_enable_chip(dws, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The SPI memory operation implementation below is the best choice for the
 | |
|  * devices, which are selected by the native chip-select lane. It's
 | |
|  * specifically developed to workaround the problem with automatic chip-select
 | |
|  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
 | |
|  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
 | |
|  * unavailable.
 | |
|  */
 | |
| static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
 | |
| 	struct dw_spi_cfg cfg;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect the outbound data into a single buffer to speed the
 | |
| 	 * transmission up at least on the initial stage.
 | |
| 	 */
 | |
| 	ret = dw_spi_init_mem_buf(dws, op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
 | |
| 	 * operation. Transmit-only mode is suitable for the rest of them.
 | |
| 	 */
 | |
| 	cfg.dfs = 8;
 | |
| 	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
 | |
| 	if (op->data.dir == SPI_MEM_DATA_IN) {
 | |
| 		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
 | |
| 		cfg.ndf = op->data.nbytes;
 | |
| 	} else {
 | |
| 		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
 | |
| 	}
 | |
| 
 | |
| 	dw_spi_enable_chip(dws, 0);
 | |
| 
 | |
| 	dw_spi_update_config(dws, mem->spi, &cfg);
 | |
| 
 | |
| 	dw_spi_mask_intr(dws, 0xff);
 | |
| 
 | |
| 	dw_spi_enable_chip(dws, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * DW APB SSI controller has very nasty peculiarities. First originally
 | |
| 	 * (without any vendor-specific modifications) it doesn't provide a
 | |
| 	 * direct way to set and clear the native chip-select signal. Instead
 | |
| 	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
 | |
| 	 * transmission is going on, and automatically de-asserts it back to
 | |
| 	 * the high level if the Tx FIFO doesn't have anything to be pushed
 | |
| 	 * out. Due to that a multi-tasking or heavy IRQs activity might be
 | |
| 	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
 | |
| 	 * getting empty and sudden CS de-assertion, which in the middle of the
 | |
| 	 * transfer will most likely cause the data loss. Secondly the
 | |
| 	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
 | |
| 	 * data being automatically pulled in into the Rx FIFO. So if the
 | |
| 	 * driver software is late in fetching the data from the FIFO before
 | |
| 	 * it's overflown, new incoming data will be lost. In order to make
 | |
| 	 * sure the executed memory operations are CS-atomic and to prevent the
 | |
| 	 * Rx FIFO overflow we have to disable the local interrupts so to block
 | |
| 	 * any preemption during the subsequent IO operations.
 | |
| 	 *
 | |
| 	 * Note. At some circumstances disabling IRQs may not help to prevent
 | |
| 	 * the problems described above. The CS de-assertion and Rx FIFO
 | |
| 	 * overflow may still happen due to the relatively slow system bus or
 | |
| 	 * CPU not working fast enough, so the write-then-read algo implemented
 | |
| 	 * here just won't keep up with the SPI bus data transfer. Such
 | |
| 	 * situation is highly platform specific and is supposed to be fixed by
 | |
| 	 * manually restricting the SPI bus frequency using the
 | |
| 	 * dws->max_mem_freq parameter.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	ret = dw_spi_write_then_read(dws, mem->spi);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the operation being finished and check the controller
 | |
| 	 * status only if there hasn't been any run-time error detected. In the
 | |
| 	 * former case it's just pointless. In the later one to prevent an
 | |
| 	 * additional error message printing since any hw error flag being set
 | |
| 	 * would be due to an error detected on the data transfer.
 | |
| 	 */
 | |
| 	if (!ret) {
 | |
| 		ret = dw_spi_wait_mem_op_done(dws);
 | |
| 		if (!ret)
 | |
| 			ret = dw_spi_check_status(dws, true);
 | |
| 	}
 | |
| 
 | |
| 	dw_spi_stop_mem_op(dws, mem->spi);
 | |
| 
 | |
| 	dw_spi_free_mem_buf(dws);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the default memory operations if a glue layer hasn't specified
 | |
|  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
 | |
|  * controller doesn't have an embedded dirmap interface. Note the memory
 | |
|  * operations implemented in this driver is the best choice only for the DW APB
 | |
|  * SSI controller with standard native CS functionality. If a hardware vendor
 | |
|  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
 | |
|  * be safer to use the normal SPI-messages-based transfers implementation.
 | |
|  */
 | |
| static void dw_spi_init_mem_ops(struct dw_spi *dws)
 | |
| {
 | |
| 	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
 | |
| 	    !dws->set_cs) {
 | |
| 		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
 | |
| 		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
 | |
| 		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
 | |
| 		if (!dws->max_mem_freq)
 | |
| 			dws->max_mem_freq = dws->max_freq;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This may be called twice for each spi dev */
 | |
| static int dw_spi_setup(struct spi_device *spi)
 | |
| {
 | |
| 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | |
| 	struct dw_spi_chip_data *chip;
 | |
| 
 | |
| 	/* Only alloc on first setup */
 | |
| 	chip = spi_get_ctldata(spi);
 | |
| 	if (!chip) {
 | |
| 		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
 | |
| 		u32 rx_sample_dly_ns;
 | |
| 
 | |
| 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
 | |
| 		if (!chip)
 | |
| 			return -ENOMEM;
 | |
| 		spi_set_ctldata(spi, chip);
 | |
| 		/* Get specific / default rx-sample-delay */
 | |
| 		if (device_property_read_u32(&spi->dev,
 | |
| 					     "rx-sample-delay-ns",
 | |
| 					     &rx_sample_dly_ns) != 0)
 | |
| 			/* Use default controller value */
 | |
| 			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
 | |
| 		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
 | |
| 							NSEC_PER_SEC /
 | |
| 							dws->max_freq);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update CR0 data each time the setup callback is invoked since
 | |
| 	 * the device parameters could have been changed, for instance, by
 | |
| 	 * the MMC SPI driver or something else.
 | |
| 	 */
 | |
| 	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dw_spi_cleanup(struct spi_device *spi)
 | |
| {
 | |
| 	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
 | |
| 
 | |
| 	kfree(chip);
 | |
| 	spi_set_ctldata(spi, NULL);
 | |
| }
 | |
| 
 | |
| /* Restart the controller, disable all interrupts, clean rx fifo */
 | |
| static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
 | |
| {
 | |
| 	dw_spi_reset_chip(dws);
 | |
| 
 | |
| 	/*
 | |
| 	 * Retrieve the Synopsys component version if it hasn't been specified
 | |
| 	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
 | |
| 	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
 | |
| 	 */
 | |
| 	if (!dws->ver) {
 | |
| 		dws->ver = dw_readl(dws, DW_SPI_VERSION);
 | |
| 
 | |
| 		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
 | |
| 			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
 | |
| 			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
 | |
| 			DW_SPI_GET_BYTE(dws->ver, 1));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to detect the number of native chip-selects if the platform
 | |
| 	 * driver didn't set it up. There can be up to 16 lines configured.
 | |
| 	 */
 | |
| 	if (!dws->num_cs) {
 | |
| 		u32 ser;
 | |
| 
 | |
| 		dw_writel(dws, DW_SPI_SER, 0xffff);
 | |
| 		ser = dw_readl(dws, DW_SPI_SER);
 | |
| 		dw_writel(dws, DW_SPI_SER, 0);
 | |
| 
 | |
| 		dws->num_cs = hweight16(ser);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to detect the FIFO depth if not set by interface driver,
 | |
| 	 * the depth could be from 2 to 256 from HW spec
 | |
| 	 */
 | |
| 	if (!dws->fifo_len) {
 | |
| 		u32 fifo;
 | |
| 
 | |
| 		for (fifo = 1; fifo < 256; fifo++) {
 | |
| 			dw_writel(dws, DW_SPI_TXFTLR, fifo);
 | |
| 			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
 | |
| 				break;
 | |
| 		}
 | |
| 		dw_writel(dws, DW_SPI_TXFTLR, 0);
 | |
| 
 | |
| 		dws->fifo_len = (fifo == 1) ? 0 : fifo;
 | |
| 		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
 | |
| 	 * writability. Note DWC SSI controller also has the extended DFS, but
 | |
| 	 * with zero offset.
 | |
| 	 */
 | |
| 	if (dw_spi_ip_is(dws, PSSI)) {
 | |
| 		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
 | |
| 
 | |
| 		dw_spi_enable_chip(dws, 0);
 | |
| 		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
 | |
| 		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
 | |
| 		dw_writel(dws, DW_SPI_CTRLR0, tmp);
 | |
| 		dw_spi_enable_chip(dws, 1);
 | |
| 
 | |
| 		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
 | |
| 			dws->caps |= DW_SPI_CAP_DFS32;
 | |
| 			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
 | |
| 			dev_dbg(dev, "Detected 32-bits max data frame size\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		dws->caps |= DW_SPI_CAP_DFS32;
 | |
| 	}
 | |
| 
 | |
| 	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
 | |
| 	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
 | |
| 		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
 | |
| }
 | |
| 
 | |
| int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
 | |
| {
 | |
| 	struct spi_controller *host;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!dws)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	host = spi_alloc_host(dev, 0);
 | |
| 	if (!host)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	device_set_node(&host->dev, dev_fwnode(dev));
 | |
| 
 | |
| 	dws->host = host;
 | |
| 	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
 | |
| 
 | |
| 	spi_controller_set_devdata(host, dws);
 | |
| 
 | |
| 	/* Basic HW init */
 | |
| 	dw_spi_hw_init(dev, dws);
 | |
| 
 | |
| 	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
 | |
| 			  host);
 | |
| 	if (ret < 0 && ret != -ENOTCONN) {
 | |
| 		dev_err(dev, "can not get IRQ\n");
 | |
| 		goto err_free_host;
 | |
| 	}
 | |
| 
 | |
| 	dw_spi_init_mem_ops(dws);
 | |
| 
 | |
| 	host->use_gpio_descriptors = true;
 | |
| 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
 | |
| 	if (dws->caps & DW_SPI_CAP_DFS32)
 | |
| 		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 | |
| 	else
 | |
| 		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 | |
| 	host->bus_num = dws->bus_num;
 | |
| 	host->num_chipselect = dws->num_cs;
 | |
| 	host->setup = dw_spi_setup;
 | |
| 	host->cleanup = dw_spi_cleanup;
 | |
| 	if (dws->set_cs)
 | |
| 		host->set_cs = dws->set_cs;
 | |
| 	else
 | |
| 		host->set_cs = dw_spi_set_cs;
 | |
| 	host->transfer_one = dw_spi_transfer_one;
 | |
| 	host->handle_err = dw_spi_handle_err;
 | |
| 	if (dws->mem_ops.exec_op)
 | |
| 		host->mem_ops = &dws->mem_ops;
 | |
| 	host->max_speed_hz = dws->max_freq;
 | |
| 	host->flags = SPI_CONTROLLER_GPIO_SS;
 | |
| 	host->auto_runtime_pm = true;
 | |
| 
 | |
| 	/* Get default rx sample delay */
 | |
| 	device_property_read_u32(dev, "rx-sample-delay-ns",
 | |
| 				 &dws->def_rx_sample_dly_ns);
 | |
| 
 | |
| 	if (dws->dma_ops && dws->dma_ops->dma_init) {
 | |
| 		ret = dws->dma_ops->dma_init(dev, dws);
 | |
| 		if (ret == -EPROBE_DEFER) {
 | |
| 			goto err_free_irq;
 | |
| 		} else if (ret) {
 | |
| 			dev_warn(dev, "DMA init failed\n");
 | |
| 		} else {
 | |
| 			host->can_dma = dws->dma_ops->can_dma;
 | |
| 			host->flags |= SPI_CONTROLLER_MUST_TX;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = spi_register_controller(host);
 | |
| 	if (ret) {
 | |
| 		dev_err_probe(dev, ret, "problem registering spi host\n");
 | |
| 		goto err_dma_exit;
 | |
| 	}
 | |
| 
 | |
| 	dw_spi_debugfs_init(dws);
 | |
| 	return 0;
 | |
| 
 | |
| err_dma_exit:
 | |
| 	if (dws->dma_ops && dws->dma_ops->dma_exit)
 | |
| 		dws->dma_ops->dma_exit(dws);
 | |
| 	dw_spi_enable_chip(dws, 0);
 | |
| err_free_irq:
 | |
| 	free_irq(dws->irq, host);
 | |
| err_free_host:
 | |
| 	spi_controller_put(host);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
 | |
| 
 | |
| void dw_spi_remove_host(struct dw_spi *dws)
 | |
| {
 | |
| 	dw_spi_debugfs_remove(dws);
 | |
| 
 | |
| 	spi_unregister_controller(dws->host);
 | |
| 
 | |
| 	if (dws->dma_ops && dws->dma_ops->dma_exit)
 | |
| 		dws->dma_ops->dma_exit(dws);
 | |
| 
 | |
| 	dw_spi_shutdown_chip(dws);
 | |
| 
 | |
| 	free_irq(dws->irq, dws->host);
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
 | |
| 
 | |
| int dw_spi_suspend_host(struct dw_spi *dws)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_controller_suspend(dws->host);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dw_spi_shutdown_chip(dws);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
 | |
| 
 | |
| int dw_spi_resume_host(struct dw_spi *dws)
 | |
| {
 | |
| 	dw_spi_hw_init(&dws->host->dev, dws);
 | |
| 	return spi_controller_resume(dws->host);
 | |
| }
 | |
| EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
 | |
| 
 | |
| MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
 | |
| MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
 | |
| MODULE_LICENSE("GPL v2");
 |