mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 e56d090310
			
		
	
	
		e56d090310
		
	
	
	
	
		
			
			RCU tasklist_lock and RCU signal handling: send signals RCU-read-locked instead of tasklist_lock read-locked. This is a scalability improvement on SMP and a preemption-latency improvement under PREEMPT_RCU. Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: William Irwin <wli@holomorphy.com> Cc: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			292 lines
		
	
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			292 lines
		
	
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic pidhash and scalable, time-bounded PID allocator
 | |
|  *
 | |
|  * (C) 2002-2003 William Irwin, IBM
 | |
|  * (C) 2004 William Irwin, Oracle
 | |
|  * (C) 2002-2004 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * pid-structures are backing objects for tasks sharing a given ID to chain
 | |
|  * against. There is very little to them aside from hashing them and
 | |
|  * parking tasks using given ID's on a list.
 | |
|  *
 | |
|  * The hash is always changed with the tasklist_lock write-acquired,
 | |
|  * and the hash is only accessed with the tasklist_lock at least
 | |
|  * read-acquired, so there's no additional SMP locking needed here.
 | |
|  *
 | |
|  * We have a list of bitmap pages, which bitmaps represent the PID space.
 | |
|  * Allocating and freeing PIDs is completely lockless. The worst-case
 | |
|  * allocation scenario when all but one out of 1 million PIDs possible are
 | |
|  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | |
|  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/hash.h>
 | |
| 
 | |
| #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
 | |
| static struct hlist_head *pid_hash[PIDTYPE_MAX];
 | |
| static int pidhash_shift;
 | |
| 
 | |
| int pid_max = PID_MAX_DEFAULT;
 | |
| int last_pid;
 | |
| 
 | |
| #define RESERVED_PIDS		300
 | |
| 
 | |
| int pid_max_min = RESERVED_PIDS + 1;
 | |
| int pid_max_max = PID_MAX_LIMIT;
 | |
| 
 | |
| #define PIDMAP_ENTRIES		((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8)
 | |
| #define BITS_PER_PAGE		(PAGE_SIZE*8)
 | |
| #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 | |
| #define mk_pid(map, off)	(((map) - pidmap_array)*BITS_PER_PAGE + (off))
 | |
| #define find_next_offset(map, off)					\
 | |
| 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 | |
| 
 | |
| /*
 | |
|  * PID-map pages start out as NULL, they get allocated upon
 | |
|  * first use and are never deallocated. This way a low pid_max
 | |
|  * value does not cause lots of bitmaps to be allocated, but
 | |
|  * the scheme scales to up to 4 million PIDs, runtime.
 | |
|  */
 | |
| typedef struct pidmap {
 | |
| 	atomic_t nr_free;
 | |
| 	void *page;
 | |
| } pidmap_t;
 | |
| 
 | |
| static pidmap_t pidmap_array[PIDMAP_ENTRIES] =
 | |
| 	 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };
 | |
| 
 | |
| static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | |
| 
 | |
| fastcall void free_pidmap(int pid)
 | |
| {
 | |
| 	pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE;
 | |
| 	int offset = pid & BITS_PER_PAGE_MASK;
 | |
| 
 | |
| 	clear_bit(offset, map->page);
 | |
| 	atomic_inc(&map->nr_free);
 | |
| }
 | |
| 
 | |
| int alloc_pidmap(void)
 | |
| {
 | |
| 	int i, offset, max_scan, pid, last = last_pid;
 | |
| 	pidmap_t *map;
 | |
| 
 | |
| 	pid = last + 1;
 | |
| 	if (pid >= pid_max)
 | |
| 		pid = RESERVED_PIDS;
 | |
| 	offset = pid & BITS_PER_PAGE_MASK;
 | |
| 	map = &pidmap_array[pid/BITS_PER_PAGE];
 | |
| 	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
 | |
| 	for (i = 0; i <= max_scan; ++i) {
 | |
| 		if (unlikely(!map->page)) {
 | |
| 			unsigned long page = get_zeroed_page(GFP_KERNEL);
 | |
| 			/*
 | |
| 			 * Free the page if someone raced with us
 | |
| 			 * installing it:
 | |
| 			 */
 | |
| 			spin_lock(&pidmap_lock);
 | |
| 			if (map->page)
 | |
| 				free_page(page);
 | |
| 			else
 | |
| 				map->page = (void *)page;
 | |
| 			spin_unlock(&pidmap_lock);
 | |
| 			if (unlikely(!map->page))
 | |
| 				break;
 | |
| 		}
 | |
| 		if (likely(atomic_read(&map->nr_free))) {
 | |
| 			do {
 | |
| 				if (!test_and_set_bit(offset, map->page)) {
 | |
| 					atomic_dec(&map->nr_free);
 | |
| 					last_pid = pid;
 | |
| 					return pid;
 | |
| 				}
 | |
| 				offset = find_next_offset(map, offset);
 | |
| 				pid = mk_pid(map, offset);
 | |
| 			/*
 | |
| 			 * find_next_offset() found a bit, the pid from it
 | |
| 			 * is in-bounds, and if we fell back to the last
 | |
| 			 * bitmap block and the final block was the same
 | |
| 			 * as the starting point, pid is before last_pid.
 | |
| 			 */
 | |
| 			} while (offset < BITS_PER_PAGE && pid < pid_max &&
 | |
| 					(i != max_scan || pid < last ||
 | |
| 					    !((last+1) & BITS_PER_PAGE_MASK)));
 | |
| 		}
 | |
| 		if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) {
 | |
| 			++map;
 | |
| 			offset = 0;
 | |
| 		} else {
 | |
| 			map = &pidmap_array[0];
 | |
| 			offset = RESERVED_PIDS;
 | |
| 			if (unlikely(last == offset))
 | |
| 				break;
 | |
| 		}
 | |
| 		pid = mk_pid(map, offset);
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| struct pid * fastcall find_pid(enum pid_type type, int nr)
 | |
| {
 | |
| 	struct hlist_node *elem;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(pid, elem,
 | |
| 			&pid_hash[type][pid_hashfn(nr)], pid_chain) {
 | |
| 		if (pid->nr == nr)
 | |
| 			return pid;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int fastcall attach_pid(task_t *task, enum pid_type type, int nr)
 | |
| {
 | |
| 	struct pid *pid, *task_pid;
 | |
| 
 | |
| 	task_pid = &task->pids[type];
 | |
| 	pid = find_pid(type, nr);
 | |
| 	task_pid->nr = nr;
 | |
| 	if (pid == NULL) {
 | |
| 		INIT_LIST_HEAD(&task_pid->pid_list);
 | |
| 		hlist_add_head_rcu(&task_pid->pid_chain,
 | |
| 				   &pid_hash[type][pid_hashfn(nr)]);
 | |
| 	} else {
 | |
| 		INIT_HLIST_NODE(&task_pid->pid_chain);
 | |
| 		list_add_tail_rcu(&task_pid->pid_list, &pid->pid_list);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static fastcall int __detach_pid(task_t *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid, *pid_next;
 | |
| 	int nr = 0;
 | |
| 
 | |
| 	pid = &task->pids[type];
 | |
| 	if (!hlist_unhashed(&pid->pid_chain)) {
 | |
| 
 | |
| 		if (list_empty(&pid->pid_list)) {
 | |
| 			nr = pid->nr;
 | |
| 			hlist_del_rcu(&pid->pid_chain);
 | |
| 		} else {
 | |
| 			pid_next = list_entry(pid->pid_list.next,
 | |
| 						struct pid, pid_list);
 | |
| 			/* insert next pid from pid_list to hash */
 | |
| 			hlist_replace_rcu(&pid->pid_chain,
 | |
| 					  &pid_next->pid_chain);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_del_rcu(&pid->pid_list);
 | |
| 	pid->nr = 0;
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| 
 | |
| void fastcall detach_pid(task_t *task, enum pid_type type)
 | |
| {
 | |
| 	int tmp, nr;
 | |
| 
 | |
| 	nr = __detach_pid(task, type);
 | |
| 	if (!nr)
 | |
| 		return;
 | |
| 
 | |
| 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | |
| 		if (tmp != type && find_pid(tmp, nr))
 | |
| 			return;
 | |
| 
 | |
| 	free_pidmap(nr);
 | |
| }
 | |
| 
 | |
| task_t *find_task_by_pid_type(int type, int nr)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	pid = find_pid(type, nr);
 | |
| 	if (!pid)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return pid_task(&pid->pid_list, type);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(find_task_by_pid_type);
 | |
| 
 | |
| /*
 | |
|  * This function switches the PIDs if a non-leader thread calls
 | |
|  * sys_execve() - this must be done without releasing the PID.
 | |
|  * (which a detach_pid() would eventually do.)
 | |
|  */
 | |
| void switch_exec_pids(task_t *leader, task_t *thread)
 | |
| {
 | |
| 	__detach_pid(leader, PIDTYPE_PID);
 | |
| 	__detach_pid(leader, PIDTYPE_TGID);
 | |
| 	__detach_pid(leader, PIDTYPE_PGID);
 | |
| 	__detach_pid(leader, PIDTYPE_SID);
 | |
| 
 | |
| 	__detach_pid(thread, PIDTYPE_PID);
 | |
| 	__detach_pid(thread, PIDTYPE_TGID);
 | |
| 
 | |
| 	leader->pid = leader->tgid = thread->pid;
 | |
| 	thread->pid = thread->tgid;
 | |
| 
 | |
| 	attach_pid(thread, PIDTYPE_PID, thread->pid);
 | |
| 	attach_pid(thread, PIDTYPE_TGID, thread->tgid);
 | |
| 	attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp);
 | |
| 	attach_pid(thread, PIDTYPE_SID, thread->signal->session);
 | |
| 	list_add_tail(&thread->tasks, &init_task.tasks);
 | |
| 
 | |
| 	attach_pid(leader, PIDTYPE_PID, leader->pid);
 | |
| 	attach_pid(leader, PIDTYPE_TGID, leader->tgid);
 | |
| 	attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp);
 | |
| 	attach_pid(leader, PIDTYPE_SID, leader->signal->session);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The pid hash table is scaled according to the amount of memory in the
 | |
|  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 | |
|  * more.
 | |
|  */
 | |
| void __init pidhash_init(void)
 | |
| {
 | |
| 	int i, j, pidhash_size;
 | |
| 	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
 | |
| 
 | |
| 	pidhash_shift = max(4, fls(megabytes * 4));
 | |
| 	pidhash_shift = min(12, pidhash_shift);
 | |
| 	pidhash_size = 1 << pidhash_shift;
 | |
| 
 | |
| 	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
 | |
| 		pidhash_size, pidhash_shift,
 | |
| 		PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head));
 | |
| 
 | |
| 	for (i = 0; i < PIDTYPE_MAX; i++) {
 | |
| 		pid_hash[i] = alloc_bootmem(pidhash_size *
 | |
| 					sizeof(*(pid_hash[i])));
 | |
| 		if (!pid_hash[i])
 | |
| 			panic("Could not alloc pidhash!\n");
 | |
| 		for (j = 0; j < pidhash_size; j++)
 | |
| 			INIT_HLIST_HEAD(&pid_hash[i][j]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init pidmap_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL);
 | |
| 	set_bit(0, pidmap_array->page);
 | |
| 	atomic_dec(&pidmap_array->nr_free);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate PID 0, and hash it via all PID types:
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < PIDTYPE_MAX; i++)
 | |
| 		attach_pid(current, i, 0);
 | |
| }
 |