mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 457c899653
			
		
	
	
		457c899653
		
	
	
	
	
		
			
			Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1129 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1129 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/mm/oom_kill.c
 | |
|  * 
 | |
|  *  Copyright (C)  1998,2000  Rik van Riel
 | |
|  *	Thanks go out to Claus Fischer for some serious inspiration and
 | |
|  *	for goading me into coding this file...
 | |
|  *  Copyright (C)  2010  Google, Inc.
 | |
|  *	Rewritten by David Rientjes
 | |
|  *
 | |
|  *  The routines in this file are used to kill a process when
 | |
|  *  we're seriously out of memory. This gets called from __alloc_pages()
 | |
|  *  in mm/page_alloc.c when we really run out of memory.
 | |
|  *
 | |
|  *  Since we won't call these routines often (on a well-configured
 | |
|  *  machine) this file will double as a 'coding guide' and a signpost
 | |
|  *  for newbie kernel hackers. It features several pointers to major
 | |
|  *  kernel subsystems and hints as to where to find out what things do.
 | |
|  */
 | |
| 
 | |
| #include <linux/oom.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include "internal.h"
 | |
| #include "slab.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/oom.h>
 | |
| 
 | |
| int sysctl_panic_on_oom;
 | |
| int sysctl_oom_kill_allocating_task;
 | |
| int sysctl_oom_dump_tasks = 1;
 | |
| 
 | |
| /*
 | |
|  * Serializes oom killer invocations (out_of_memory()) from all contexts to
 | |
|  * prevent from over eager oom killing (e.g. when the oom killer is invoked
 | |
|  * from different domains).
 | |
|  *
 | |
|  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
 | |
|  * and mark_oom_victim
 | |
|  */
 | |
| DEFINE_MUTEX(oom_lock);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /**
 | |
|  * has_intersects_mems_allowed() - check task eligiblity for kill
 | |
|  * @start: task struct of which task to consider
 | |
|  * @mask: nodemask passed to page allocator for mempolicy ooms
 | |
|  *
 | |
|  * Task eligibility is determined by whether or not a candidate task, @tsk,
 | |
|  * shares the same mempolicy nodes as current if it is bound by such a policy
 | |
|  * and whether or not it has the same set of allowed cpuset nodes.
 | |
|  */
 | |
| static bool has_intersects_mems_allowed(struct task_struct *start,
 | |
| 					const nodemask_t *mask)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_thread(start, tsk) {
 | |
| 		if (mask) {
 | |
| 			/*
 | |
| 			 * If this is a mempolicy constrained oom, tsk's
 | |
| 			 * cpuset is irrelevant.  Only return true if its
 | |
| 			 * mempolicy intersects current, otherwise it may be
 | |
| 			 * needlessly killed.
 | |
| 			 */
 | |
| 			ret = mempolicy_nodemask_intersects(tsk, mask);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This is not a mempolicy constrained oom, so only
 | |
| 			 * check the mems of tsk's cpuset.
 | |
| 			 */
 | |
| 			ret = cpuset_mems_allowed_intersects(current, tsk);
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static bool has_intersects_mems_allowed(struct task_struct *tsk,
 | |
| 					const nodemask_t *mask)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif /* CONFIG_NUMA */
 | |
| 
 | |
| /*
 | |
|  * The process p may have detached its own ->mm while exiting or through
 | |
|  * use_mm(), but one or more of its subthreads may still have a valid
 | |
|  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 | |
|  * task_lock() held.
 | |
|  */
 | |
| struct task_struct *find_lock_task_mm(struct task_struct *p)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	for_each_thread(p, t) {
 | |
| 		task_lock(t);
 | |
| 		if (likely(t->mm))
 | |
| 			goto found;
 | |
| 		task_unlock(t);
 | |
| 	}
 | |
| 	t = NULL;
 | |
| found:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * order == -1 means the oom kill is required by sysrq, otherwise only
 | |
|  * for display purposes.
 | |
|  */
 | |
| static inline bool is_sysrq_oom(struct oom_control *oc)
 | |
| {
 | |
| 	return oc->order == -1;
 | |
| }
 | |
| 
 | |
| static inline bool is_memcg_oom(struct oom_control *oc)
 | |
| {
 | |
| 	return oc->memcg != NULL;
 | |
| }
 | |
| 
 | |
| /* return true if the task is not adequate as candidate victim task. */
 | |
| static bool oom_unkillable_task(struct task_struct *p,
 | |
| 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
 | |
| {
 | |
| 	if (is_global_init(p))
 | |
| 		return true;
 | |
| 	if (p->flags & PF_KTHREAD)
 | |
| 		return true;
 | |
| 
 | |
| 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
 | |
| 	if (memcg && !task_in_mem_cgroup(p, memcg))
 | |
| 		return true;
 | |
| 
 | |
| 	/* p may not have freeable memory in nodemask */
 | |
| 	if (!has_intersects_mems_allowed(p, nodemask))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
 | |
|  * than all user memory (LRU pages)
 | |
|  */
 | |
| static bool is_dump_unreclaim_slabs(void)
 | |
| {
 | |
| 	unsigned long nr_lru;
 | |
| 
 | |
| 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 | |
| 		 global_node_page_state(NR_INACTIVE_ANON) +
 | |
| 		 global_node_page_state(NR_ACTIVE_FILE) +
 | |
| 		 global_node_page_state(NR_INACTIVE_FILE) +
 | |
| 		 global_node_page_state(NR_ISOLATED_ANON) +
 | |
| 		 global_node_page_state(NR_ISOLATED_FILE) +
 | |
| 		 global_node_page_state(NR_UNEVICTABLE);
 | |
| 
 | |
| 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * oom_badness - heuristic function to determine which candidate task to kill
 | |
|  * @p: task struct of which task we should calculate
 | |
|  * @totalpages: total present RAM allowed for page allocation
 | |
|  * @memcg: task's memory controller, if constrained
 | |
|  * @nodemask: nodemask passed to page allocator for mempolicy ooms
 | |
|  *
 | |
|  * The heuristic for determining which task to kill is made to be as simple and
 | |
|  * predictable as possible.  The goal is to return the highest value for the
 | |
|  * task consuming the most memory to avoid subsequent oom failures.
 | |
|  */
 | |
| unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
 | |
| 			  const nodemask_t *nodemask, unsigned long totalpages)
 | |
| {
 | |
| 	long points;
 | |
| 	long adj;
 | |
| 
 | |
| 	if (oom_unkillable_task(p, memcg, nodemask))
 | |
| 		return 0;
 | |
| 
 | |
| 	p = find_lock_task_mm(p);
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not even consider tasks which are explicitly marked oom
 | |
| 	 * unkillable or have been already oom reaped or the are in
 | |
| 	 * the middle of vfork
 | |
| 	 */
 | |
| 	adj = (long)p->signal->oom_score_adj;
 | |
| 	if (adj == OOM_SCORE_ADJ_MIN ||
 | |
| 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 | |
| 			in_vfork(p)) {
 | |
| 		task_unlock(p);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The baseline for the badness score is the proportion of RAM that each
 | |
| 	 * task's rss, pagetable and swap space use.
 | |
| 	 */
 | |
| 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 | |
| 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 | |
| 	task_unlock(p);
 | |
| 
 | |
| 	/* Normalize to oom_score_adj units */
 | |
| 	adj *= totalpages / 1000;
 | |
| 	points += adj;
 | |
| 
 | |
| 	/*
 | |
| 	 * Never return 0 for an eligible task regardless of the root bonus and
 | |
| 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
 | |
| 	 */
 | |
| 	return points > 0 ? points : 1;
 | |
| }
 | |
| 
 | |
| static const char * const oom_constraint_text[] = {
 | |
| 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 | |
| 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 | |
| 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 | |
| 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Determine the type of allocation constraint.
 | |
|  */
 | |
| static enum oom_constraint constrained_alloc(struct oom_control *oc)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct zoneref *z;
 | |
| 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
 | |
| 	bool cpuset_limited = false;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (is_memcg_oom(oc)) {
 | |
| 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 | |
| 		return CONSTRAINT_MEMCG;
 | |
| 	}
 | |
| 
 | |
| 	/* Default to all available memory */
 | |
| 	oc->totalpages = totalram_pages() + total_swap_pages;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_NUMA))
 | |
| 		return CONSTRAINT_NONE;
 | |
| 
 | |
| 	if (!oc->zonelist)
 | |
| 		return CONSTRAINT_NONE;
 | |
| 	/*
 | |
| 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 | |
| 	 * to kill current.We have to random task kill in this case.
 | |
| 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 | |
| 	 */
 | |
| 	if (oc->gfp_mask & __GFP_THISNODE)
 | |
| 		return CONSTRAINT_NONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 | |
| 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 | |
| 	 * is enforced in get_page_from_freelist().
 | |
| 	 */
 | |
| 	if (oc->nodemask &&
 | |
| 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 | |
| 		oc->totalpages = total_swap_pages;
 | |
| 		for_each_node_mask(nid, *oc->nodemask)
 | |
| 			oc->totalpages += node_spanned_pages(nid);
 | |
| 		return CONSTRAINT_MEMORY_POLICY;
 | |
| 	}
 | |
| 
 | |
| 	/* Check this allocation failure is caused by cpuset's wall function */
 | |
| 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 | |
| 			high_zoneidx, oc->nodemask)
 | |
| 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 | |
| 			cpuset_limited = true;
 | |
| 
 | |
| 	if (cpuset_limited) {
 | |
| 		oc->totalpages = total_swap_pages;
 | |
| 		for_each_node_mask(nid, cpuset_current_mems_allowed)
 | |
| 			oc->totalpages += node_spanned_pages(nid);
 | |
| 		return CONSTRAINT_CPUSET;
 | |
| 	}
 | |
| 	return CONSTRAINT_NONE;
 | |
| }
 | |
| 
 | |
| static int oom_evaluate_task(struct task_struct *task, void *arg)
 | |
| {
 | |
| 	struct oom_control *oc = arg;
 | |
| 	unsigned long points;
 | |
| 
 | |
| 	if (oom_unkillable_task(task, NULL, oc->nodemask))
 | |
| 		goto next;
 | |
| 
 | |
| 	/*
 | |
| 	 * This task already has access to memory reserves and is being killed.
 | |
| 	 * Don't allow any other task to have access to the reserves unless
 | |
| 	 * the task has MMF_OOM_SKIP because chances that it would release
 | |
| 	 * any memory is quite low.
 | |
| 	 */
 | |
| 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 | |
| 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 | |
| 			goto next;
 | |
| 		goto abort;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If task is allocating a lot of memory and has been marked to be
 | |
| 	 * killed first if it triggers an oom, then select it.
 | |
| 	 */
 | |
| 	if (oom_task_origin(task)) {
 | |
| 		points = ULONG_MAX;
 | |
| 		goto select;
 | |
| 	}
 | |
| 
 | |
| 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
 | |
| 	if (!points || points < oc->chosen_points)
 | |
| 		goto next;
 | |
| 
 | |
| 	/* Prefer thread group leaders for display purposes */
 | |
| 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
 | |
| 		goto next;
 | |
| select:
 | |
| 	if (oc->chosen)
 | |
| 		put_task_struct(oc->chosen);
 | |
| 	get_task_struct(task);
 | |
| 	oc->chosen = task;
 | |
| 	oc->chosen_points = points;
 | |
| next:
 | |
| 	return 0;
 | |
| abort:
 | |
| 	if (oc->chosen)
 | |
| 		put_task_struct(oc->chosen);
 | |
| 	oc->chosen = (void *)-1UL;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simple selection loop. We choose the process with the highest number of
 | |
|  * 'points'. In case scan was aborted, oc->chosen is set to -1.
 | |
|  */
 | |
| static void select_bad_process(struct oom_control *oc)
 | |
| {
 | |
| 	if (is_memcg_oom(oc))
 | |
| 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 | |
| 	else {
 | |
| 		struct task_struct *p;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		for_each_process(p)
 | |
| 			if (oom_evaluate_task(p, oc))
 | |
| 				break;
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dump_tasks - dump current memory state of all system tasks
 | |
|  * @memcg: current's memory controller, if constrained
 | |
|  * @nodemask: nodemask passed to page allocator for mempolicy ooms
 | |
|  *
 | |
|  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 | |
|  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 | |
|  * are not shown.
 | |
|  * State information includes task's pid, uid, tgid, vm size, rss,
 | |
|  * pgtables_bytes, swapents, oom_score_adj value, and name.
 | |
|  */
 | |
| static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	pr_info("Tasks state (memory values in pages):\n");
 | |
| 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(p) {
 | |
| 		if (oom_unkillable_task(p, memcg, nodemask))
 | |
| 			continue;
 | |
| 
 | |
| 		task = find_lock_task_mm(p);
 | |
| 		if (!task) {
 | |
| 			/*
 | |
| 			 * This is a kthread or all of p's threads have already
 | |
| 			 * detached their mm's.  There's no need to report
 | |
| 			 * them; they can't be oom killed anyway.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
 | |
| 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
 | |
| 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 | |
| 			mm_pgtables_bytes(task->mm),
 | |
| 			get_mm_counter(task->mm, MM_SWAPENTS),
 | |
| 			task->signal->oom_score_adj, task->comm);
 | |
| 		task_unlock(task);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
 | |
| {
 | |
| 	/* one line summary of the oom killer context. */
 | |
| 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 | |
| 			oom_constraint_text[oc->constraint],
 | |
| 			nodemask_pr_args(oc->nodemask));
 | |
| 	cpuset_print_current_mems_allowed();
 | |
| 	mem_cgroup_print_oom_context(oc->memcg, victim);
 | |
| 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 | |
| 		from_kuid(&init_user_ns, task_uid(victim)));
 | |
| }
 | |
| 
 | |
| static void dump_header(struct oom_control *oc, struct task_struct *p)
 | |
| {
 | |
| 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 | |
| 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 | |
| 			current->signal->oom_score_adj);
 | |
| 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 | |
| 		pr_warn("COMPACTION is disabled!!!\n");
 | |
| 
 | |
| 	dump_stack();
 | |
| 	if (is_memcg_oom(oc))
 | |
| 		mem_cgroup_print_oom_meminfo(oc->memcg);
 | |
| 	else {
 | |
| 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
 | |
| 		if (is_dump_unreclaim_slabs())
 | |
| 			dump_unreclaimable_slab();
 | |
| 	}
 | |
| 	if (sysctl_oom_dump_tasks)
 | |
| 		dump_tasks(oc->memcg, oc->nodemask);
 | |
| 	if (p)
 | |
| 		dump_oom_summary(oc, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Number of OOM victims in flight
 | |
|  */
 | |
| static atomic_t oom_victims = ATOMIC_INIT(0);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 | |
| 
 | |
| static bool oom_killer_disabled __read_mostly;
 | |
| 
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| /*
 | |
|  * task->mm can be NULL if the task is the exited group leader.  So to
 | |
|  * determine whether the task is using a particular mm, we examine all the
 | |
|  * task's threads: if one of those is using this mm then this task was also
 | |
|  * using it.
 | |
|  */
 | |
| bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	for_each_thread(p, t) {
 | |
| 		struct mm_struct *t_mm = READ_ONCE(t->mm);
 | |
| 		if (t_mm)
 | |
| 			return t_mm == mm;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 | |
|  * victim (if that is possible) to help the OOM killer to move on.
 | |
|  */
 | |
| static struct task_struct *oom_reaper_th;
 | |
| static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 | |
| static struct task_struct *oom_reaper_list;
 | |
| static DEFINE_SPINLOCK(oom_reaper_lock);
 | |
| 
 | |
| bool __oom_reap_task_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell all users of get_user/copy_from_user etc... that the content
 | |
| 	 * is no longer stable. No barriers really needed because unmapping
 | |
| 	 * should imply barriers already and the reader would hit a page fault
 | |
| 	 * if it stumbled over a reaped memory.
 | |
| 	 */
 | |
| 	set_bit(MMF_UNSTABLE, &mm->flags);
 | |
| 
 | |
| 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
 | |
| 		if (!can_madv_dontneed_vma(vma))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only anonymous pages have a good chance to be dropped
 | |
| 		 * without additional steps which we cannot afford as we
 | |
| 		 * are OOM already.
 | |
| 		 *
 | |
| 		 * We do not even care about fs backed pages because all
 | |
| 		 * which are reclaimable have already been reclaimed and
 | |
| 		 * we do not want to block exit_mmap by keeping mm ref
 | |
| 		 * count elevated without a good reason.
 | |
| 		 */
 | |
| 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 | |
| 			struct mmu_notifier_range range;
 | |
| 			struct mmu_gather tlb;
 | |
| 
 | |
| 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 | |
| 						vma, mm, vma->vm_start,
 | |
| 						vma->vm_end);
 | |
| 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
 | |
| 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 | |
| 				tlb_finish_mmu(&tlb, range.start, range.end);
 | |
| 				ret = false;
 | |
| 				continue;
 | |
| 			}
 | |
| 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 | |
| 			mmu_notifier_invalidate_range_end(&range);
 | |
| 			tlb_finish_mmu(&tlb, range.start, range.end);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reaps the address space of the give task.
 | |
|  *
 | |
|  * Returns true on success and false if none or part of the address space
 | |
|  * has been reclaimed and the caller should retry later.
 | |
|  */
 | |
| static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 | |
| {
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (!down_read_trylock(&mm->mmap_sem)) {
 | |
| 		trace_skip_task_reaping(tsk->pid);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 | |
| 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 | |
| 	 * under mmap_sem for reading because it serializes against the
 | |
| 	 * down_write();up_write() cycle in exit_mmap().
 | |
| 	 */
 | |
| 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 | |
| 		trace_skip_task_reaping(tsk->pid);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	trace_start_task_reaping(tsk->pid);
 | |
| 
 | |
| 	/* failed to reap part of the address space. Try again later */
 | |
| 	ret = __oom_reap_task_mm(mm);
 | |
| 	if (!ret)
 | |
| 		goto out_finish;
 | |
| 
 | |
| 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 | |
| 			task_pid_nr(tsk), tsk->comm,
 | |
| 			K(get_mm_counter(mm, MM_ANONPAGES)),
 | |
| 			K(get_mm_counter(mm, MM_FILEPAGES)),
 | |
| 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 | |
| out_finish:
 | |
| 	trace_finish_task_reaping(tsk->pid);
 | |
| out_unlock:
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define MAX_OOM_REAP_RETRIES 10
 | |
| static void oom_reap_task(struct task_struct *tsk)
 | |
| {
 | |
| 	int attempts = 0;
 | |
| 	struct mm_struct *mm = tsk->signal->oom_mm;
 | |
| 
 | |
| 	/* Retry the down_read_trylock(mmap_sem) a few times */
 | |
| 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 | |
| 		schedule_timeout_idle(HZ/10);
 | |
| 
 | |
| 	if (attempts <= MAX_OOM_REAP_RETRIES ||
 | |
| 	    test_bit(MMF_OOM_SKIP, &mm->flags))
 | |
| 		goto done;
 | |
| 
 | |
| 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 | |
| 		task_pid_nr(tsk), tsk->comm);
 | |
| 	debug_show_all_locks();
 | |
| 
 | |
| done:
 | |
| 	tsk->oom_reaper_list = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hide this mm from OOM killer because it has been either reaped or
 | |
| 	 * somebody can't call up_write(mmap_sem).
 | |
| 	 */
 | |
| 	set_bit(MMF_OOM_SKIP, &mm->flags);
 | |
| 
 | |
| 	/* Drop a reference taken by wake_oom_reaper */
 | |
| 	put_task_struct(tsk);
 | |
| }
 | |
| 
 | |
| static int oom_reaper(void *unused)
 | |
| {
 | |
| 	while (true) {
 | |
| 		struct task_struct *tsk = NULL;
 | |
| 
 | |
| 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 | |
| 		spin_lock(&oom_reaper_lock);
 | |
| 		if (oom_reaper_list != NULL) {
 | |
| 			tsk = oom_reaper_list;
 | |
| 			oom_reaper_list = tsk->oom_reaper_list;
 | |
| 		}
 | |
| 		spin_unlock(&oom_reaper_lock);
 | |
| 
 | |
| 		if (tsk)
 | |
| 			oom_reap_task(tsk);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void wake_oom_reaper(struct task_struct *tsk)
 | |
| {
 | |
| 	/* mm is already queued? */
 | |
| 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 | |
| 		return;
 | |
| 
 | |
| 	get_task_struct(tsk);
 | |
| 
 | |
| 	spin_lock(&oom_reaper_lock);
 | |
| 	tsk->oom_reaper_list = oom_reaper_list;
 | |
| 	oom_reaper_list = tsk;
 | |
| 	spin_unlock(&oom_reaper_lock);
 | |
| 	trace_wake_reaper(tsk->pid);
 | |
| 	wake_up(&oom_reaper_wait);
 | |
| }
 | |
| 
 | |
| static int __init oom_init(void)
 | |
| {
 | |
| 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(oom_init)
 | |
| #else
 | |
| static inline void wake_oom_reaper(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| /**
 | |
|  * mark_oom_victim - mark the given task as OOM victim
 | |
|  * @tsk: task to mark
 | |
|  *
 | |
|  * Has to be called with oom_lock held and never after
 | |
|  * oom has been disabled already.
 | |
|  *
 | |
|  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 | |
|  * under task_lock or operate on the current).
 | |
|  */
 | |
| static void mark_oom_victim(struct task_struct *tsk)
 | |
| {
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 
 | |
| 	WARN_ON(oom_killer_disabled);
 | |
| 	/* OOM killer might race with memcg OOM */
 | |
| 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 | |
| 		return;
 | |
| 
 | |
| 	/* oom_mm is bound to the signal struct life time. */
 | |
| 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
 | |
| 		mmgrab(tsk->signal->oom_mm);
 | |
| 		set_bit(MMF_OOM_VICTIM, &mm->flags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the task is woken up from uninterruptible sleep
 | |
| 	 * if it is frozen because OOM killer wouldn't be able to free
 | |
| 	 * any memory and livelock. freezing_slow_path will tell the freezer
 | |
| 	 * that TIF_MEMDIE tasks should be ignored.
 | |
| 	 */
 | |
| 	__thaw_task(tsk);
 | |
| 	atomic_inc(&oom_victims);
 | |
| 	trace_mark_victim(tsk->pid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * exit_oom_victim - note the exit of an OOM victim
 | |
|  */
 | |
| void exit_oom_victim(void)
 | |
| {
 | |
| 	clear_thread_flag(TIF_MEMDIE);
 | |
| 
 | |
| 	if (!atomic_dec_return(&oom_victims))
 | |
| 		wake_up_all(&oom_victims_wait);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * oom_killer_enable - enable OOM killer
 | |
|  */
 | |
| void oom_killer_enable(void)
 | |
| {
 | |
| 	oom_killer_disabled = false;
 | |
| 	pr_info("OOM killer enabled.\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * oom_killer_disable - disable OOM killer
 | |
|  * @timeout: maximum timeout to wait for oom victims in jiffies
 | |
|  *
 | |
|  * Forces all page allocations to fail rather than trigger OOM killer.
 | |
|  * Will block and wait until all OOM victims are killed or the given
 | |
|  * timeout expires.
 | |
|  *
 | |
|  * The function cannot be called when there are runnable user tasks because
 | |
|  * the userspace would see unexpected allocation failures as a result. Any
 | |
|  * new usage of this function should be consulted with MM people.
 | |
|  *
 | |
|  * Returns true if successful and false if the OOM killer cannot be
 | |
|  * disabled.
 | |
|  */
 | |
| bool oom_killer_disable(signed long timeout)
 | |
| {
 | |
| 	signed long ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to not race with an ongoing OOM killer. Check that the
 | |
| 	 * current is not killed (possibly due to sharing the victim's memory).
 | |
| 	 */
 | |
| 	if (mutex_lock_killable(&oom_lock))
 | |
| 		return false;
 | |
| 	oom_killer_disabled = true;
 | |
| 	mutex_unlock(&oom_lock);
 | |
| 
 | |
| 	ret = wait_event_interruptible_timeout(oom_victims_wait,
 | |
| 			!atomic_read(&oom_victims), timeout);
 | |
| 	if (ret <= 0) {
 | |
| 		oom_killer_enable();
 | |
| 		return false;
 | |
| 	}
 | |
| 	pr_info("OOM killer disabled.\n");
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool __task_will_free_mem(struct task_struct *task)
 | |
| {
 | |
| 	struct signal_struct *sig = task->signal;
 | |
| 
 | |
| 	/*
 | |
| 	 * A coredumping process may sleep for an extended period in exit_mm(),
 | |
| 	 * so the oom killer cannot assume that the process will promptly exit
 | |
| 	 * and release memory.
 | |
| 	 */
 | |
| 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sig->flags & SIGNAL_GROUP_EXIT)
 | |
| 		return true;
 | |
| 
 | |
| 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks whether the given task is dying or exiting and likely to
 | |
|  * release its address space. This means that all threads and processes
 | |
|  * sharing the same mm have to be killed or exiting.
 | |
|  * Caller has to make sure that task->mm is stable (hold task_lock or
 | |
|  * it operates on the current).
 | |
|  */
 | |
| static bool task_will_free_mem(struct task_struct *task)
 | |
| {
 | |
| 	struct mm_struct *mm = task->mm;
 | |
| 	struct task_struct *p;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip tasks without mm because it might have passed its exit_mm and
 | |
| 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 | |
| 	 * on that for now. We can consider find_lock_task_mm in future.
 | |
| 	 */
 | |
| 	if (!mm)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!__task_will_free_mem(task))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * This task has already been drained by the oom reaper so there are
 | |
| 	 * only small chances it will free some more
 | |
| 	 */
 | |
| 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	if (atomic_read(&mm->mm_users) <= 1)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that all tasks which share the mm with the given tasks
 | |
| 	 * are dying as well to make sure that a) nobody pins its mm and
 | |
| 	 * b) the task is also reapable by the oom reaper.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(p) {
 | |
| 		if (!process_shares_mm(p, mm))
 | |
| 			continue;
 | |
| 		if (same_thread_group(task, p))
 | |
| 			continue;
 | |
| 		ret = __task_will_free_mem(p);
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __oom_kill_process(struct task_struct *victim, const char *message)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct mm_struct *mm;
 | |
| 	bool can_oom_reap = true;
 | |
| 
 | |
| 	p = find_lock_task_mm(victim);
 | |
| 	if (!p) {
 | |
| 		put_task_struct(victim);
 | |
| 		return;
 | |
| 	} else if (victim != p) {
 | |
| 		get_task_struct(p);
 | |
| 		put_task_struct(victim);
 | |
| 		victim = p;
 | |
| 	}
 | |
| 
 | |
| 	/* Get a reference to safely compare mm after task_unlock(victim) */
 | |
| 	mm = victim->mm;
 | |
| 	mmgrab(mm);
 | |
| 
 | |
| 	/* Raise event before sending signal: task reaper must see this */
 | |
| 	count_vm_event(OOM_KILL);
 | |
| 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should send SIGKILL before granting access to memory reserves
 | |
| 	 * in order to prevent the OOM victim from depleting the memory
 | |
| 	 * reserves from the user space under its control.
 | |
| 	 */
 | |
| 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 | |
| 	mark_oom_victim(victim);
 | |
| 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 | |
| 		message, task_pid_nr(victim), victim->comm,
 | |
| 		K(victim->mm->total_vm),
 | |
| 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
 | |
| 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
 | |
| 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 | |
| 	task_unlock(victim);
 | |
| 
 | |
| 	/*
 | |
| 	 * Kill all user processes sharing victim->mm in other thread groups, if
 | |
| 	 * any.  They don't get access to memory reserves, though, to avoid
 | |
| 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
 | |
| 	 * oom killed thread cannot exit because it requires the semaphore and
 | |
| 	 * its contended by another thread trying to allocate memory itself.
 | |
| 	 * That thread will now get access to memory reserves since it has a
 | |
| 	 * pending fatal signal.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	for_each_process(p) {
 | |
| 		if (!process_shares_mm(p, mm))
 | |
| 			continue;
 | |
| 		if (same_thread_group(p, victim))
 | |
| 			continue;
 | |
| 		if (is_global_init(p)) {
 | |
| 			can_oom_reap = false;
 | |
| 			set_bit(MMF_OOM_SKIP, &mm->flags);
 | |
| 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 | |
| 					task_pid_nr(victim), victim->comm,
 | |
| 					task_pid_nr(p), p->comm);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * No use_mm() user needs to read from the userspace so we are
 | |
| 		 * ok to reap it.
 | |
| 		 */
 | |
| 		if (unlikely(p->flags & PF_KTHREAD))
 | |
| 			continue;
 | |
| 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (can_oom_reap)
 | |
| 		wake_oom_reaper(victim);
 | |
| 
 | |
| 	mmdrop(mm);
 | |
| 	put_task_struct(victim);
 | |
| }
 | |
| #undef K
 | |
| 
 | |
| /*
 | |
|  * Kill provided task unless it's secured by setting
 | |
|  * oom_score_adj to OOM_SCORE_ADJ_MIN.
 | |
|  */
 | |
| static int oom_kill_memcg_member(struct task_struct *task, void *message)
 | |
| {
 | |
| 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
 | |
| 	    !is_global_init(task)) {
 | |
| 		get_task_struct(task);
 | |
| 		__oom_kill_process(task, message);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void oom_kill_process(struct oom_control *oc, const char *message)
 | |
| {
 | |
| 	struct task_struct *victim = oc->chosen;
 | |
| 	struct mem_cgroup *oom_group;
 | |
| 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
 | |
| 					      DEFAULT_RATELIMIT_BURST);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is already exiting, don't alarm the sysadmin or kill
 | |
| 	 * its children or threads, just give it access to memory reserves
 | |
| 	 * so it can die quickly
 | |
| 	 */
 | |
| 	task_lock(victim);
 | |
| 	if (task_will_free_mem(victim)) {
 | |
| 		mark_oom_victim(victim);
 | |
| 		wake_oom_reaper(victim);
 | |
| 		task_unlock(victim);
 | |
| 		put_task_struct(victim);
 | |
| 		return;
 | |
| 	}
 | |
| 	task_unlock(victim);
 | |
| 
 | |
| 	if (__ratelimit(&oom_rs))
 | |
| 		dump_header(oc, victim);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we need to kill the entire memory cgroup?
 | |
| 	 * Or even one of the ancestor memory cgroups?
 | |
| 	 * Check this out before killing the victim task.
 | |
| 	 */
 | |
| 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
 | |
| 
 | |
| 	__oom_kill_process(victim, message);
 | |
| 
 | |
| 	/*
 | |
| 	 * If necessary, kill all tasks in the selected memory cgroup.
 | |
| 	 */
 | |
| 	if (oom_group) {
 | |
| 		mem_cgroup_print_oom_group(oom_group);
 | |
| 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
 | |
| 				      (void*)message);
 | |
| 		mem_cgroup_put(oom_group);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
 | |
|  */
 | |
| static void check_panic_on_oom(struct oom_control *oc,
 | |
| 			       enum oom_constraint constraint)
 | |
| {
 | |
| 	if (likely(!sysctl_panic_on_oom))
 | |
| 		return;
 | |
| 	if (sysctl_panic_on_oom != 2) {
 | |
| 		/*
 | |
| 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
 | |
| 		 * does not panic for cpuset, mempolicy, or memcg allocation
 | |
| 		 * failures.
 | |
| 		 */
 | |
| 		if (constraint != CONSTRAINT_NONE)
 | |
| 			return;
 | |
| 	}
 | |
| 	/* Do not panic for oom kills triggered by sysrq */
 | |
| 	if (is_sysrq_oom(oc))
 | |
| 		return;
 | |
| 	dump_header(oc, NULL);
 | |
| 	panic("Out of memory: %s panic_on_oom is enabled\n",
 | |
| 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
 | |
| }
 | |
| 
 | |
| static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
 | |
| 
 | |
| int register_oom_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_register(&oom_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_oom_notifier);
 | |
| 
 | |
| int unregister_oom_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_oom_notifier);
 | |
| 
 | |
| /**
 | |
|  * out_of_memory - kill the "best" process when we run out of memory
 | |
|  * @oc: pointer to struct oom_control
 | |
|  *
 | |
|  * If we run out of memory, we have the choice between either
 | |
|  * killing a random task (bad), letting the system crash (worse)
 | |
|  * OR try to be smart about which process to kill. Note that we
 | |
|  * don't have to be perfect here, we just have to be good.
 | |
|  */
 | |
| bool out_of_memory(struct oom_control *oc)
 | |
| {
 | |
| 	unsigned long freed = 0;
 | |
| 	enum oom_constraint constraint = CONSTRAINT_NONE;
 | |
| 
 | |
| 	if (oom_killer_disabled)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!is_memcg_oom(oc)) {
 | |
| 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
 | |
| 		if (freed > 0)
 | |
| 			/* Got some memory back in the last second. */
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If current has a pending SIGKILL or is exiting, then automatically
 | |
| 	 * select it.  The goal is to allow it to allocate so that it may
 | |
| 	 * quickly exit and free its memory.
 | |
| 	 */
 | |
| 	if (task_will_free_mem(current)) {
 | |
| 		mark_oom_victim(current);
 | |
| 		wake_oom_reaper(current);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The OOM killer does not compensate for IO-less reclaim.
 | |
| 	 * pagefault_out_of_memory lost its gfp context so we have to
 | |
| 	 * make sure exclude 0 mask - all other users should have at least
 | |
| 	 * ___GFP_DIRECT_RECLAIM to get here.
 | |
| 	 */
 | |
| 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if there were limitations on the allocation (only relevant for
 | |
| 	 * NUMA and memcg) that may require different handling.
 | |
| 	 */
 | |
| 	constraint = constrained_alloc(oc);
 | |
| 	if (constraint != CONSTRAINT_MEMORY_POLICY)
 | |
| 		oc->nodemask = NULL;
 | |
| 	check_panic_on_oom(oc, constraint);
 | |
| 
 | |
| 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
 | |
| 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
 | |
| 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
 | |
| 		get_task_struct(current);
 | |
| 		oc->chosen = current;
 | |
| 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	select_bad_process(oc);
 | |
| 	/* Found nothing?!?! */
 | |
| 	if (!oc->chosen) {
 | |
| 		dump_header(oc, NULL);
 | |
| 		pr_warn("Out of memory and no killable processes...\n");
 | |
| 		/*
 | |
| 		 * If we got here due to an actual allocation at the
 | |
| 		 * system level, we cannot survive this and will enter
 | |
| 		 * an endless loop in the allocator. Bail out now.
 | |
| 		 */
 | |
| 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
 | |
| 			panic("System is deadlocked on memory\n");
 | |
| 	}
 | |
| 	if (oc->chosen && oc->chosen != (void *)-1UL)
 | |
| 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
 | |
| 				 "Memory cgroup out of memory");
 | |
| 	return !!oc->chosen;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The pagefault handler calls here because it is out of memory, so kill a
 | |
|  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
 | |
|  * killing is already in progress so do nothing.
 | |
|  */
 | |
| void pagefault_out_of_memory(void)
 | |
| {
 | |
| 	struct oom_control oc = {
 | |
| 		.zonelist = NULL,
 | |
| 		.nodemask = NULL,
 | |
| 		.memcg = NULL,
 | |
| 		.gfp_mask = 0,
 | |
| 		.order = 0,
 | |
| 	};
 | |
| 
 | |
| 	if (mem_cgroup_oom_synchronize(true))
 | |
| 		return;
 | |
| 
 | |
| 	if (!mutex_trylock(&oom_lock))
 | |
| 		return;
 | |
| 	out_of_memory(&oc);
 | |
| 	mutex_unlock(&oom_lock);
 | |
| }
 |