mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 66dabbb65d
			
		
	
	
		66dabbb65d
		
	
	
	
	
		
			
			Instead of returning NULL for all errors, distinguish between: - no entry found and not asked to allocated (-ENOENT) - failed to allocate memory (-ENOMEM) - would block (-EAGAIN) so that callers don't have to guess the error based on the passed in flags. Also pass through the error through the direct callers: filemap_get_folio, filemap_lock_folio filemap_grab_folio and filemap_get_incore_folio. [hch@lst.de: fix null-pointer deref] Link: https://lkml.kernel.org/r/20230310070023.GA13563@lst.de Link: https://lkml.kernel.org/r/20230310043137.GA1624890@u2004 Link: https://lkml.kernel.org/r/20230307143410.28031-8-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs2] Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			4121 lines
		
	
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4121 lines
		
	
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *	linux/mm/filemap.c
 | |
|  *
 | |
|  * Copyright (C) 1994-1999  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the generic file mmap semantics used by
 | |
|  * most "normal" filesystems (but you don't /have/ to use this:
 | |
|  * the NFS filesystem used to do this differently, for example)
 | |
|  */
 | |
| #include <linux/export.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/ramfs.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/pipe_fs_i.h>
 | |
| #include <linux/splice.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/filemap.h>
 | |
| 
 | |
| /*
 | |
|  * FIXME: remove all knowledge of the buffer layer from the core VM
 | |
|  */
 | |
| #include <linux/buffer_head.h> /* for try_to_free_buffers */
 | |
| 
 | |
| #include <asm/mman.h>
 | |
| 
 | |
| /*
 | |
|  * Shared mappings implemented 30.11.1994. It's not fully working yet,
 | |
|  * though.
 | |
|  *
 | |
|  * Shared mappings now work. 15.8.1995  Bruno.
 | |
|  *
 | |
|  * finished 'unifying' the page and buffer cache and SMP-threaded the
 | |
|  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock ordering:
 | |
|  *
 | |
|  *  ->i_mmap_rwsem		(truncate_pagecache)
 | |
|  *    ->private_lock		(__free_pte->block_dirty_folio)
 | |
|  *      ->swap_lock		(exclusive_swap_page, others)
 | |
|  *        ->i_pages lock
 | |
|  *
 | |
|  *  ->i_rwsem
 | |
|  *    ->invalidate_lock		(acquired by fs in truncate path)
 | |
|  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 | |
|  *
 | |
|  *  ->mmap_lock
 | |
|  *    ->i_mmap_rwsem
 | |
|  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
 | |
|  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
 | |
|  *
 | |
|  *  ->mmap_lock
 | |
|  *    ->invalidate_lock		(filemap_fault)
 | |
|  *      ->lock_page		(filemap_fault, access_process_vm)
 | |
|  *
 | |
|  *  ->i_rwsem			(generic_perform_write)
 | |
|  *    ->mmap_lock		(fault_in_readable->do_page_fault)
 | |
|  *
 | |
|  *  bdi->wb.list_lock
 | |
|  *    sb_lock			(fs/fs-writeback.c)
 | |
|  *    ->i_pages lock		(__sync_single_inode)
 | |
|  *
 | |
|  *  ->i_mmap_rwsem
 | |
|  *    ->anon_vma.lock		(vma_merge)
 | |
|  *
 | |
|  *  ->anon_vma.lock
 | |
|  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 | |
|  *
 | |
|  *  ->page_table_lock or pte_lock
 | |
|  *    ->swap_lock		(try_to_unmap_one)
 | |
|  *    ->private_lock		(try_to_unmap_one)
 | |
|  *    ->i_pages lock		(try_to_unmap_one)
 | |
|  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 | |
|  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 | |
|  *    ->private_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 | |
|  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->private_lock		(zap_pte_range->block_dirty_folio)
 | |
|  *
 | |
|  * ->i_mmap_rwsem
 | |
|  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 | |
|  */
 | |
| 
 | |
| static void page_cache_delete(struct address_space *mapping,
 | |
| 				   struct folio *folio, void *shadow)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, folio->index);
 | |
| 	long nr = 1;
 | |
| 
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 
 | |
| 	/* hugetlb pages are represented by a single entry in the xarray */
 | |
| 	if (!folio_test_hugetlb(folio)) {
 | |
| 		xas_set_order(&xas, folio->index, folio_order(folio));
 | |
| 		nr = folio_nr_pages(folio);
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 
 | |
| 	xas_store(&xas, shadow);
 | |
| 	xas_init_marks(&xas);
 | |
| 
 | |
| 	folio->mapping = NULL;
 | |
| 	/* Leave page->index set: truncation lookup relies upon it */
 | |
| 	mapping->nrpages -= nr;
 | |
| }
 | |
| 
 | |
| static void filemap_unaccount_folio(struct address_space *mapping,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	long nr;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 | |
| 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 | |
| 			 current->comm, folio_pfn(folio));
 | |
| 		dump_page(&folio->page, "still mapped when deleted");
 | |
| 		dump_stack();
 | |
| 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 
 | |
| 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 | |
| 			int mapcount = page_mapcount(&folio->page);
 | |
| 
 | |
| 			if (folio_ref_count(folio) >= mapcount + 2) {
 | |
| 				/*
 | |
| 				 * All vmas have already been torn down, so it's
 | |
| 				 * a good bet that actually the page is unmapped
 | |
| 				 * and we'd rather not leak it: if we're wrong,
 | |
| 				 * another bad page check should catch it later.
 | |
| 				 */
 | |
| 				page_mapcount_reset(&folio->page);
 | |
| 				folio_ref_sub(folio, mapcount);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* hugetlb folios do not participate in page cache accounting. */
 | |
| 	if (folio_test_hugetlb(folio))
 | |
| 		return;
 | |
| 
 | |
| 	nr = folio_nr_pages(folio);
 | |
| 
 | |
| 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 | |
| 	if (folio_test_swapbacked(folio)) {
 | |
| 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 | |
| 		if (folio_test_pmd_mappable(folio))
 | |
| 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 | |
| 	} else if (folio_test_pmd_mappable(folio)) {
 | |
| 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 | |
| 		filemap_nr_thps_dec(mapping);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point folio must be either written or cleaned by
 | |
| 	 * truncate.  Dirty folio here signals a bug and loss of
 | |
| 	 * unwritten data - on ordinary filesystems.
 | |
| 	 *
 | |
| 	 * But it's harmless on in-memory filesystems like tmpfs; and can
 | |
| 	 * occur when a driver which did get_user_pages() sets page dirty
 | |
| 	 * before putting it, while the inode is being finally evicted.
 | |
| 	 *
 | |
| 	 * Below fixes dirty accounting after removing the folio entirely
 | |
| 	 * but leaves the dirty flag set: it has no effect for truncated
 | |
| 	 * folio and anyway will be cleared before returning folio to
 | |
| 	 * buddy allocator.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 | |
| 			 mapping_can_writeback(mapping)))
 | |
| 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete a page from the page cache and free it. Caller has to make
 | |
|  * sure the page is locked and that nobody else uses it - or that usage
 | |
|  * is safe.  The caller must hold the i_pages lock.
 | |
|  */
 | |
| void __filemap_remove_folio(struct folio *folio, void *shadow)
 | |
| {
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 
 | |
| 	trace_mm_filemap_delete_from_page_cache(folio);
 | |
| 	filemap_unaccount_folio(mapping, folio);
 | |
| 	page_cache_delete(mapping, folio, shadow);
 | |
| }
 | |
| 
 | |
| void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 | |
| {
 | |
| 	void (*free_folio)(struct folio *);
 | |
| 	int refs = 1;
 | |
| 
 | |
| 	free_folio = mapping->a_ops->free_folio;
 | |
| 	if (free_folio)
 | |
| 		free_folio(folio);
 | |
| 
 | |
| 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
 | |
| 		refs = folio_nr_pages(folio);
 | |
| 	folio_put_refs(folio, refs);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_remove_folio - Remove folio from page cache.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * This must be called only on folios that are locked and have been
 | |
|  * verified to be in the page cache.  It will never put the folio into
 | |
|  * the free list because the caller has a reference on the page.
 | |
|  */
 | |
| void filemap_remove_folio(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 
 | |
| 	BUG_ON(!folio_test_locked(folio));
 | |
| 	spin_lock(&mapping->host->i_lock);
 | |
| 	xa_lock_irq(&mapping->i_pages);
 | |
| 	__filemap_remove_folio(folio, NULL);
 | |
| 	xa_unlock_irq(&mapping->i_pages);
 | |
| 	if (mapping_shrinkable(mapping))
 | |
| 		inode_add_lru(mapping->host);
 | |
| 	spin_unlock(&mapping->host->i_lock);
 | |
| 
 | |
| 	filemap_free_folio(mapping, folio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * page_cache_delete_batch - delete several folios from page cache
 | |
|  * @mapping: the mapping to which folios belong
 | |
|  * @fbatch: batch of folios to delete
 | |
|  *
 | |
|  * The function walks over mapping->i_pages and removes folios passed in
 | |
|  * @fbatch from the mapping. The function expects @fbatch to be sorted
 | |
|  * by page index and is optimised for it to be dense.
 | |
|  * It tolerates holes in @fbatch (mapping entries at those indices are not
 | |
|  * modified).
 | |
|  *
 | |
|  * The function expects the i_pages lock to be held.
 | |
|  */
 | |
| static void page_cache_delete_batch(struct address_space *mapping,
 | |
| 			     struct folio_batch *fbatch)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 | |
| 	long total_pages = 0;
 | |
| 	int i = 0;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 	xas_for_each(&xas, folio, ULONG_MAX) {
 | |
| 		if (i >= folio_batch_count(fbatch))
 | |
| 			break;
 | |
| 
 | |
| 		/* A swap/dax/shadow entry got inserted? Skip it. */
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * A page got inserted in our range? Skip it. We have our
 | |
| 		 * pages locked so they are protected from being removed.
 | |
| 		 * If we see a page whose index is higher than ours, it
 | |
| 		 * means our page has been removed, which shouldn't be
 | |
| 		 * possible because we're holding the PageLock.
 | |
| 		 */
 | |
| 		if (folio != fbatch->folios[i]) {
 | |
| 			VM_BUG_ON_FOLIO(folio->index >
 | |
| 					fbatch->folios[i]->index, folio);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(!folio_test_locked(folio));
 | |
| 
 | |
| 		folio->mapping = NULL;
 | |
| 		/* Leave folio->index set: truncation lookup relies on it */
 | |
| 
 | |
| 		i++;
 | |
| 		xas_store(&xas, NULL);
 | |
| 		total_pages += folio_nr_pages(folio);
 | |
| 	}
 | |
| 	mapping->nrpages -= total_pages;
 | |
| }
 | |
| 
 | |
| void delete_from_page_cache_batch(struct address_space *mapping,
 | |
| 				  struct folio_batch *fbatch)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!folio_batch_count(fbatch))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&mapping->host->i_lock);
 | |
| 	xa_lock_irq(&mapping->i_pages);
 | |
| 	for (i = 0; i < folio_batch_count(fbatch); i++) {
 | |
| 		struct folio *folio = fbatch->folios[i];
 | |
| 
 | |
| 		trace_mm_filemap_delete_from_page_cache(folio);
 | |
| 		filemap_unaccount_folio(mapping, folio);
 | |
| 	}
 | |
| 	page_cache_delete_batch(mapping, fbatch);
 | |
| 	xa_unlock_irq(&mapping->i_pages);
 | |
| 	if (mapping_shrinkable(mapping))
 | |
| 		inode_add_lru(mapping->host);
 | |
| 	spin_unlock(&mapping->host->i_lock);
 | |
| 
 | |
| 	for (i = 0; i < folio_batch_count(fbatch); i++)
 | |
| 		filemap_free_folio(mapping, fbatch->folios[i]);
 | |
| }
 | |
| 
 | |
| int filemap_check_errors(struct address_space *mapping)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 | |
| 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		ret = -ENOSPC;
 | |
| 	if (test_bit(AS_EIO, &mapping->flags) &&
 | |
| 	    test_and_clear_bit(AS_EIO, &mapping->flags))
 | |
| 		ret = -EIO;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_check_errors);
 | |
| 
 | |
| static int filemap_check_and_keep_errors(struct address_space *mapping)
 | |
| {
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_bit(AS_EIO, &mapping->flags))
 | |
| 		return -EIO;
 | |
| 	if (test_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 | |
|  * @mapping:	address space structure to write
 | |
|  * @wbc:	the writeback_control controlling the writeout
 | |
|  *
 | |
|  * Call writepages on the mapping using the provided wbc to control the
 | |
|  * writeout.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int filemap_fdatawrite_wbc(struct address_space *mapping,
 | |
| 			   struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mapping_can_writeback(mapping) ||
 | |
| 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 | |
| 		return 0;
 | |
| 
 | |
| 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 | |
| 	ret = do_writepages(mapping, wbc);
 | |
| 	wbc_detach_inode(wbc);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 | |
| 
 | |
| /**
 | |
|  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 | |
|  * @mapping:	address space structure to write
 | |
|  * @start:	offset in bytes where the range starts
 | |
|  * @end:	offset in bytes where the range ends (inclusive)
 | |
|  * @sync_mode:	enable synchronous operation
 | |
|  *
 | |
|  * Start writeback against all of a mapping's dirty pages that lie
 | |
|  * within the byte offsets <start, end> inclusive.
 | |
|  *
 | |
|  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | |
|  * opposed to a regular memory cleansing writeback.  The difference between
 | |
|  * these two operations is that if a dirty page/buffer is encountered, it must
 | |
|  * be waited upon, and not just skipped over.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end, int sync_mode)
 | |
| {
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = sync_mode,
 | |
| 		.nr_to_write = LONG_MAX,
 | |
| 		.range_start = start,
 | |
| 		.range_end = end,
 | |
| 	};
 | |
| 
 | |
| 	return filemap_fdatawrite_wbc(mapping, &wbc);
 | |
| }
 | |
| 
 | |
| static inline int __filemap_fdatawrite(struct address_space *mapping,
 | |
| 	int sync_mode)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 | |
| }
 | |
| 
 | |
| int filemap_fdatawrite(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite);
 | |
| 
 | |
| int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_flush - mostly a non-blocking flush
 | |
|  * @mapping:	target address_space
 | |
|  *
 | |
|  * This is a mostly non-blocking flush.  Not suitable for data-integrity
 | |
|  * purposes - I/O may not be started against all dirty pages.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int filemap_flush(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_flush);
 | |
| 
 | |
| /**
 | |
|  * filemap_range_has_page - check if a page exists in range.
 | |
|  * @mapping:           address space within which to check
 | |
|  * @start_byte:        offset in bytes where the range starts
 | |
|  * @end_byte:          offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Find at least one page in the range supplied, usually used to check if
 | |
|  * direct writing in this range will trigger a writeback.
 | |
|  *
 | |
|  * Return: %true if at least one page exists in the specified range,
 | |
|  * %false otherwise.
 | |
|  */
 | |
| bool filemap_range_has_page(struct address_space *mapping,
 | |
| 			   loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 | |
| 	pgoff_t max = end_byte >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (end_byte < start_byte)
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		folio = xas_find(&xas, max);
 | |
| 		if (xas_retry(&xas, folio))
 | |
| 			continue;
 | |
| 		/* Shadow entries don't count */
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * We don't need to try to pin this page; we're about to
 | |
| 		 * release the RCU lock anyway.  It is enough to know that
 | |
| 		 * there was a page here recently.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return folio != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_range_has_page);
 | |
| 
 | |
| static void __filemap_fdatawait_range(struct address_space *mapping,
 | |
| 				     loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	pgoff_t index = start_byte >> PAGE_SHIFT;
 | |
| 	pgoff_t end = end_byte >> PAGE_SHIFT;
 | |
| 	struct folio_batch fbatch;
 | |
| 	unsigned nr_folios;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 
 | |
| 	while (index <= end) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 | |
| 				PAGECACHE_TAG_WRITEBACK, &fbatch);
 | |
| 
 | |
| 		if (!nr_folios)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_folios; i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			folio_wait_writeback(folio);
 | |
| 			folio_clear_error(folio);
 | |
| 		}
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_range - wait for writeback to complete
 | |
|  * @mapping:		address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * in the given range and wait for all of them.  Check error status of
 | |
|  * the address space and return it.
 | |
|  *
 | |
|  * Since the error status of the address space is cleared by this function,
 | |
|  * callers are responsible for checking the return value and handling and/or
 | |
|  * reporting the error.
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 | |
| 			    loff_t end_byte)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return filemap_check_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 | |
|  * @mapping:		address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space in the
 | |
|  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 | |
|  * this function does not clear error status of the address space.
 | |
|  *
 | |
|  * Use this function if callers don't handle errors themselves.  Expected
 | |
|  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 | |
|  * fsfreeze(8)
 | |
|  */
 | |
| int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 | |
| 		loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return filemap_check_and_keep_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 | |
| 
 | |
| /**
 | |
|  * file_fdatawait_range - wait for writeback to complete
 | |
|  * @file:		file pointing to address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the address space that file
 | |
|  * refers to, in the given range and wait for all of them.  Check error
 | |
|  * status of the address space vs. the file->f_wb_err cursor and return it.
 | |
|  *
 | |
|  * Since the error status of the file is advanced by this function,
 | |
|  * callers are responsible for checking the return value and handling and/or
 | |
|  * reporting the error.
 | |
|  *
 | |
|  * Return: error status of the address space vs. the file->f_wb_err cursor.
 | |
|  */
 | |
| int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return file_check_and_advance_wb_err(file);
 | |
| }
 | |
| EXPORT_SYMBOL(file_fdatawait_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 | |
|  * @mapping: address space structure to wait for
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * and wait for all of them.  Unlike filemap_fdatawait(), this function
 | |
|  * does not clear error status of the address space.
 | |
|  *
 | |
|  * Use this function if callers don't handle errors themselves.  Expected
 | |
|  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 | |
|  * fsfreeze(8)
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_fdatawait_keep_errors(struct address_space *mapping)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 | |
| 	return filemap_check_and_keep_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 | |
| 
 | |
| /* Returns true if writeback might be needed or already in progress. */
 | |
| static bool mapping_needs_writeback(struct address_space *mapping)
 | |
| {
 | |
| 	return mapping->nrpages;
 | |
| }
 | |
| 
 | |
| bool filemap_range_has_writeback(struct address_space *mapping,
 | |
| 				 loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 | |
| 	pgoff_t max = end_byte >> PAGE_SHIFT;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (end_byte < start_byte)
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each(&xas, folio, max) {
 | |
| 		if (xas_retry(&xas, folio))
 | |
| 			continue;
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 | |
| 				folio_test_writeback(folio))
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return folio != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 | |
| 
 | |
| /**
 | |
|  * filemap_write_and_wait_range - write out & wait on a file range
 | |
|  * @mapping:	the address_space for the pages
 | |
|  * @lstart:	offset in bytes where the range starts
 | |
|  * @lend:	offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Write out and wait upon file offsets lstart->lend, inclusive.
 | |
|  *
 | |
|  * Note that @lend is inclusive (describes the last byte to be written) so
 | |
|  * that this function can be used to write to the very end-of-file (end = -1).
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_write_and_wait_range(struct address_space *mapping,
 | |
| 				 loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int err = 0, err2;
 | |
| 
 | |
| 	if (lend < lstart)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mapping_needs_writeback(mapping)) {
 | |
| 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						 WB_SYNC_ALL);
 | |
| 		/*
 | |
| 		 * Even if the above returned error, the pages may be
 | |
| 		 * written partially (e.g. -ENOSPC), so we wait for it.
 | |
| 		 * But the -EIO is special case, it may indicate the worst
 | |
| 		 * thing (e.g. bug) happened, so we avoid waiting for it.
 | |
| 		 */
 | |
| 		if (err != -EIO)
 | |
| 			__filemap_fdatawait_range(mapping, lstart, lend);
 | |
| 	}
 | |
| 	err2 = filemap_check_errors(mapping);
 | |
| 	if (!err)
 | |
| 		err = err2;
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_write_and_wait_range);
 | |
| 
 | |
| void __filemap_set_wb_err(struct address_space *mapping, int err)
 | |
| {
 | |
| 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 | |
| 
 | |
| 	trace_filemap_set_wb_err(mapping, eseq);
 | |
| }
 | |
| EXPORT_SYMBOL(__filemap_set_wb_err);
 | |
| 
 | |
| /**
 | |
|  * file_check_and_advance_wb_err - report wb error (if any) that was previously
 | |
|  * 				   and advance wb_err to current one
 | |
|  * @file: struct file on which the error is being reported
 | |
|  *
 | |
|  * When userland calls fsync (or something like nfsd does the equivalent), we
 | |
|  * want to report any writeback errors that occurred since the last fsync (or
 | |
|  * since the file was opened if there haven't been any).
 | |
|  *
 | |
|  * Grab the wb_err from the mapping. If it matches what we have in the file,
 | |
|  * then just quickly return 0. The file is all caught up.
 | |
|  *
 | |
|  * If it doesn't match, then take the mapping value, set the "seen" flag in
 | |
|  * it and try to swap it into place. If it works, or another task beat us
 | |
|  * to it with the new value, then update the f_wb_err and return the error
 | |
|  * portion. The error at this point must be reported via proper channels
 | |
|  * (a'la fsync, or NFS COMMIT operation, etc.).
 | |
|  *
 | |
|  * While we handle mapping->wb_err with atomic operations, the f_wb_err
 | |
|  * value is protected by the f_lock since we must ensure that it reflects
 | |
|  * the latest value swapped in for this file descriptor.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int file_check_and_advance_wb_err(struct file *file)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	errseq_t old = READ_ONCE(file->f_wb_err);
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	/* Locklessly handle the common case where nothing has changed */
 | |
| 	if (errseq_check(&mapping->wb_err, old)) {
 | |
| 		/* Something changed, must use slow path */
 | |
| 		spin_lock(&file->f_lock);
 | |
| 		old = file->f_wb_err;
 | |
| 		err = errseq_check_and_advance(&mapping->wb_err,
 | |
| 						&file->f_wb_err);
 | |
| 		trace_file_check_and_advance_wb_err(file, old);
 | |
| 		spin_unlock(&file->f_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're mostly using this function as a drop in replacement for
 | |
| 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 | |
| 	 * that the legacy code would have had on these flags.
 | |
| 	 */
 | |
| 	clear_bit(AS_EIO, &mapping->flags);
 | |
| 	clear_bit(AS_ENOSPC, &mapping->flags);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(file_check_and_advance_wb_err);
 | |
| 
 | |
| /**
 | |
|  * file_write_and_wait_range - write out & wait on a file range
 | |
|  * @file:	file pointing to address_space with pages
 | |
|  * @lstart:	offset in bytes where the range starts
 | |
|  * @lend:	offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Write out and wait upon file offsets lstart->lend, inclusive.
 | |
|  *
 | |
|  * Note that @lend is inclusive (describes the last byte to be written) so
 | |
|  * that this function can be used to write to the very end-of-file (end = -1).
 | |
|  *
 | |
|  * After writing out and waiting on the data, we check and advance the
 | |
|  * f_wb_err cursor to the latest value, and return any errors detected there.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int err = 0, err2;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (lend < lstart)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mapping_needs_writeback(mapping)) {
 | |
| 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						 WB_SYNC_ALL);
 | |
| 		/* See comment of filemap_write_and_wait() */
 | |
| 		if (err != -EIO)
 | |
| 			__filemap_fdatawait_range(mapping, lstart, lend);
 | |
| 	}
 | |
| 	err2 = file_check_and_advance_wb_err(file);
 | |
| 	if (!err)
 | |
| 		err = err2;
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(file_write_and_wait_range);
 | |
| 
 | |
| /**
 | |
|  * replace_page_cache_folio - replace a pagecache folio with a new one
 | |
|  * @old:	folio to be replaced
 | |
|  * @new:	folio to replace with
 | |
|  *
 | |
|  * This function replaces a folio in the pagecache with a new one.  On
 | |
|  * success it acquires the pagecache reference for the new folio and
 | |
|  * drops it for the old folio.  Both the old and new folios must be
 | |
|  * locked.  This function does not add the new folio to the LRU, the
 | |
|  * caller must do that.
 | |
|  *
 | |
|  * The remove + add is atomic.  This function cannot fail.
 | |
|  */
 | |
| void replace_page_cache_folio(struct folio *old, struct folio *new)
 | |
| {
 | |
| 	struct address_space *mapping = old->mapping;
 | |
| 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 | |
| 	pgoff_t offset = old->index;
 | |
| 	XA_STATE(xas, &mapping->i_pages, offset);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 | |
| 	VM_BUG_ON_FOLIO(new->mapping, new);
 | |
| 
 | |
| 	folio_get(new);
 | |
| 	new->mapping = mapping;
 | |
| 	new->index = offset;
 | |
| 
 | |
| 	mem_cgroup_migrate(old, new);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_store(&xas, new);
 | |
| 
 | |
| 	old->mapping = NULL;
 | |
| 	/* hugetlb pages do not participate in page cache accounting. */
 | |
| 	if (!folio_test_hugetlb(old))
 | |
| 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 | |
| 	if (!folio_test_hugetlb(new))
 | |
| 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 | |
| 	if (folio_test_swapbacked(old))
 | |
| 		__lruvec_stat_sub_folio(old, NR_SHMEM);
 | |
| 	if (folio_test_swapbacked(new))
 | |
| 		__lruvec_stat_add_folio(new, NR_SHMEM);
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	if (free_folio)
 | |
| 		free_folio(old);
 | |
| 	folio_put(old);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 | |
| 
 | |
| noinline int __filemap_add_folio(struct address_space *mapping,
 | |
| 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	int huge = folio_test_hugetlb(folio);
 | |
| 	bool charged = false;
 | |
| 	long nr = 1;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 
 | |
| 	if (!huge) {
 | |
| 		int error = mem_cgroup_charge(folio, NULL, gfp);
 | |
| 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		charged = true;
 | |
| 		xas_set_order(&xas, index, folio_order(folio));
 | |
| 		nr = folio_nr_pages(folio);
 | |
| 	}
 | |
| 
 | |
| 	gfp &= GFP_RECLAIM_MASK;
 | |
| 	folio_ref_add(folio, nr);
 | |
| 	folio->mapping = mapping;
 | |
| 	folio->index = xas.xa_index;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 | |
| 		void *entry, *old = NULL;
 | |
| 
 | |
| 		if (order > folio_order(folio))
 | |
| 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 | |
| 					order, gfp);
 | |
| 		xas_lock_irq(&xas);
 | |
| 		xas_for_each_conflict(&xas, entry) {
 | |
| 			old = entry;
 | |
| 			if (!xa_is_value(entry)) {
 | |
| 				xas_set_err(&xas, -EEXIST);
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (old) {
 | |
| 			if (shadowp)
 | |
| 				*shadowp = old;
 | |
| 			/* entry may have been split before we acquired lock */
 | |
| 			order = xa_get_order(xas.xa, xas.xa_index);
 | |
| 			if (order > folio_order(folio)) {
 | |
| 				/* How to handle large swap entries? */
 | |
| 				BUG_ON(shmem_mapping(mapping));
 | |
| 				xas_split(&xas, old, order);
 | |
| 				xas_reset(&xas);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		xas_store(&xas, folio);
 | |
| 		if (xas_error(&xas))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		mapping->nrpages += nr;
 | |
| 
 | |
| 		/* hugetlb pages do not participate in page cache accounting */
 | |
| 		if (!huge) {
 | |
| 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 | |
| 			if (folio_test_pmd_mappable(folio))
 | |
| 				__lruvec_stat_mod_folio(folio,
 | |
| 						NR_FILE_THPS, nr);
 | |
| 		}
 | |
| unlock:
 | |
| 		xas_unlock_irq(&xas);
 | |
| 	} while (xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	if (xas_error(&xas))
 | |
| 		goto error;
 | |
| 
 | |
| 	trace_mm_filemap_add_to_page_cache(folio);
 | |
| 	return 0;
 | |
| error:
 | |
| 	if (charged)
 | |
| 		mem_cgroup_uncharge(folio);
 | |
| 	folio->mapping = NULL;
 | |
| 	/* Leave page->index set: truncation relies upon it */
 | |
| 	folio_put_refs(folio, nr);
 | |
| 	return xas_error(&xas);
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 | |
| 
 | |
| int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 | |
| 				pgoff_t index, gfp_t gfp)
 | |
| {
 | |
| 	void *shadow = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	__folio_set_locked(folio);
 | |
| 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 | |
| 	if (unlikely(ret))
 | |
| 		__folio_clear_locked(folio);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * The folio might have been evicted from cache only
 | |
| 		 * recently, in which case it should be activated like
 | |
| 		 * any other repeatedly accessed folio.
 | |
| 		 * The exception is folios getting rewritten; evicting other
 | |
| 		 * data from the working set, only to cache data that will
 | |
| 		 * get overwritten with something else, is a waste of memory.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(folio_test_active(folio));
 | |
| 		if (!(gfp & __GFP_WRITE) && shadow)
 | |
| 			workingset_refault(folio, shadow);
 | |
| 		folio_add_lru(folio);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(filemap_add_folio);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 | |
| {
 | |
| 	int n;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (cpuset_do_page_mem_spread()) {
 | |
| 		unsigned int cpuset_mems_cookie;
 | |
| 		do {
 | |
| 			cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 			n = cpuset_mem_spread_node();
 | |
| 			folio = __folio_alloc_node(gfp, order, n);
 | |
| 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| 
 | |
| 		return folio;
 | |
| 	}
 | |
| 	return folio_alloc(gfp, order);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_alloc_folio);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 | |
|  *
 | |
|  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 | |
|  *
 | |
|  * @mapping1: the first mapping to lock
 | |
|  * @mapping2: the second mapping to lock
 | |
|  */
 | |
| void filemap_invalidate_lock_two(struct address_space *mapping1,
 | |
| 				 struct address_space *mapping2)
 | |
| {
 | |
| 	if (mapping1 > mapping2)
 | |
| 		swap(mapping1, mapping2);
 | |
| 	if (mapping1)
 | |
| 		down_write(&mapping1->invalidate_lock);
 | |
| 	if (mapping2 && mapping1 != mapping2)
 | |
| 		down_write_nested(&mapping2->invalidate_lock, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_invalidate_lock_two);
 | |
| 
 | |
| /*
 | |
|  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
 | |
|  *
 | |
|  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
 | |
|  *
 | |
|  * @mapping1: the first mapping to unlock
 | |
|  * @mapping2: the second mapping to unlock
 | |
|  */
 | |
| void filemap_invalidate_unlock_two(struct address_space *mapping1,
 | |
| 				   struct address_space *mapping2)
 | |
| {
 | |
| 	if (mapping1)
 | |
| 		up_write(&mapping1->invalidate_lock);
 | |
| 	if (mapping2 && mapping1 != mapping2)
 | |
| 		up_write(&mapping2->invalidate_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_invalidate_unlock_two);
 | |
| 
 | |
| /*
 | |
|  * In order to wait for pages to become available there must be
 | |
|  * waitqueues associated with pages. By using a hash table of
 | |
|  * waitqueues where the bucket discipline is to maintain all
 | |
|  * waiters on the same queue and wake all when any of the pages
 | |
|  * become available, and for the woken contexts to check to be
 | |
|  * sure the appropriate page became available, this saves space
 | |
|  * at a cost of "thundering herd" phenomena during rare hash
 | |
|  * collisions.
 | |
|  */
 | |
| #define PAGE_WAIT_TABLE_BITS 8
 | |
| #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 | |
| static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 | |
| 
 | |
| static wait_queue_head_t *folio_waitqueue(struct folio *folio)
 | |
| {
 | |
| 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
 | |
| }
 | |
| 
 | |
| void __init pagecache_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 | |
| 		init_waitqueue_head(&folio_wait_table[i]);
 | |
| 
 | |
| 	page_writeback_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The page wait code treats the "wait->flags" somewhat unusually, because
 | |
|  * we have multiple different kinds of waits, not just the usual "exclusive"
 | |
|  * one.
 | |
|  *
 | |
|  * We have:
 | |
|  *
 | |
|  *  (a) no special bits set:
 | |
|  *
 | |
|  *	We're just waiting for the bit to be released, and when a waker
 | |
|  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
 | |
|  *	and remove it from the wait queue.
 | |
|  *
 | |
|  *	Simple and straightforward.
 | |
|  *
 | |
|  *  (b) WQ_FLAG_EXCLUSIVE:
 | |
|  *
 | |
|  *	The waiter is waiting to get the lock, and only one waiter should
 | |
|  *	be woken up to avoid any thundering herd behavior. We'll set the
 | |
|  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
 | |
|  *
 | |
|  *	This is the traditional exclusive wait.
 | |
|  *
 | |
|  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
 | |
|  *
 | |
|  *	The waiter is waiting to get the bit, and additionally wants the
 | |
|  *	lock to be transferred to it for fair lock behavior. If the lock
 | |
|  *	cannot be taken, we stop walking the wait queue without waking
 | |
|  *	the waiter.
 | |
|  *
 | |
|  *	This is the "fair lock handoff" case, and in addition to setting
 | |
|  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
 | |
|  *	that it now has the lock.
 | |
|  */
 | |
| static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 	struct wait_page_key *key = arg;
 | |
| 	struct wait_page_queue *wait_page
 | |
| 		= container_of(wait, struct wait_page_queue, wait);
 | |
| 
 | |
| 	if (!wake_page_match(wait_page, key))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a lock handoff wait, we get the bit for it, and
 | |
| 	 * stop walking (and do not wake it up) if we can't.
 | |
| 	 */
 | |
| 	flags = wait->flags;
 | |
| 	if (flags & WQ_FLAG_EXCLUSIVE) {
 | |
| 		if (test_bit(key->bit_nr, &key->folio->flags))
 | |
| 			return -1;
 | |
| 		if (flags & WQ_FLAG_CUSTOM) {
 | |
| 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
 | |
| 				return -1;
 | |
| 			flags |= WQ_FLAG_DONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are holding the wait-queue lock, but the waiter that
 | |
| 	 * is waiting for this will be checking the flags without
 | |
| 	 * any locking.
 | |
| 	 *
 | |
| 	 * So update the flags atomically, and wake up the waiter
 | |
| 	 * afterwards to avoid any races. This store-release pairs
 | |
| 	 * with the load-acquire in folio_wait_bit_common().
 | |
| 	 */
 | |
| 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
 | |
| 	wake_up_state(wait->private, mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have successfully done what we're waiting for,
 | |
| 	 * and we can unconditionally remove the wait entry.
 | |
| 	 *
 | |
| 	 * Note that this pairs with the "finish_wait()" in the
 | |
| 	 * waiter, and has to be the absolute last thing we do.
 | |
| 	 * After this list_del_init(&wait->entry) the wait entry
 | |
| 	 * might be de-allocated and the process might even have
 | |
| 	 * exited.
 | |
| 	 */
 | |
| 	list_del_init_careful(&wait->entry);
 | |
| 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
 | |
| }
 | |
| 
 | |
| static void folio_wake_bit(struct folio *folio, int bit_nr)
 | |
| {
 | |
| 	wait_queue_head_t *q = folio_waitqueue(folio);
 | |
| 	struct wait_page_key key;
 | |
| 	unsigned long flags;
 | |
| 	wait_queue_entry_t bookmark;
 | |
| 
 | |
| 	key.folio = folio;
 | |
| 	key.bit_nr = bit_nr;
 | |
| 	key.page_match = 0;
 | |
| 
 | |
| 	bookmark.flags = 0;
 | |
| 	bookmark.private = NULL;
 | |
| 	bookmark.func = NULL;
 | |
| 	INIT_LIST_HEAD(&bookmark.entry);
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | |
| 
 | |
| 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
 | |
| 		/*
 | |
| 		 * Take a breather from holding the lock,
 | |
| 		 * allow pages that finish wake up asynchronously
 | |
| 		 * to acquire the lock and remove themselves
 | |
| 		 * from wait queue
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&q->lock, flags);
 | |
| 		cpu_relax();
 | |
| 		spin_lock_irqsave(&q->lock, flags);
 | |
| 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible to miss clearing waiters here, when we woke our page
 | |
| 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
 | |
| 	 * That's okay, it's a rare case. The next waker will clear it.
 | |
| 	 *
 | |
| 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
 | |
| 	 * other), the flag may be cleared in the course of freeing the page;
 | |
| 	 * but that is not required for correctness.
 | |
| 	 */
 | |
| 	if (!waitqueue_active(q) || !key.page_match)
 | |
| 		folio_clear_waiters(folio);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| 
 | |
| static void folio_wake(struct folio *folio, int bit)
 | |
| {
 | |
| 	if (!folio_test_waiters(folio))
 | |
| 		return;
 | |
| 	folio_wake_bit(folio, bit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A choice of three behaviors for folio_wait_bit_common():
 | |
|  */
 | |
| enum behavior {
 | |
| 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
 | |
| 			 * __folio_lock() waiting on then setting PG_locked.
 | |
| 			 */
 | |
| 	SHARED,		/* Hold ref to page and check the bit when woken, like
 | |
| 			 * folio_wait_writeback() waiting on PG_writeback.
 | |
| 			 */
 | |
| 	DROP,		/* Drop ref to page before wait, no check when woken,
 | |
| 			 * like folio_put_wait_locked() on PG_locked.
 | |
| 			 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Attempt to check (or get) the folio flag, and mark us done
 | |
|  * if successful.
 | |
|  */
 | |
| static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
 | |
| 					struct wait_queue_entry *wait)
 | |
| {
 | |
| 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
 | |
| 		if (test_and_set_bit(bit_nr, &folio->flags))
 | |
| 			return false;
 | |
| 	} else if (test_bit(bit_nr, &folio->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* How many times do we accept lock stealing from under a waiter? */
 | |
| int sysctl_page_lock_unfairness = 5;
 | |
| 
 | |
| static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
 | |
| 		int state, enum behavior behavior)
 | |
| {
 | |
| 	wait_queue_head_t *q = folio_waitqueue(folio);
 | |
| 	int unfairness = sysctl_page_lock_unfairness;
 | |
| 	struct wait_page_queue wait_page;
 | |
| 	wait_queue_entry_t *wait = &wait_page.wait;
 | |
| 	bool thrashing = false;
 | |
| 	unsigned long pflags;
 | |
| 	bool in_thrashing;
 | |
| 
 | |
| 	if (bit_nr == PG_locked &&
 | |
| 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
 | |
| 		delayacct_thrashing_start(&in_thrashing);
 | |
| 		psi_memstall_enter(&pflags);
 | |
| 		thrashing = true;
 | |
| 	}
 | |
| 
 | |
| 	init_wait(wait);
 | |
| 	wait->func = wake_page_function;
 | |
| 	wait_page.folio = folio;
 | |
| 	wait_page.bit_nr = bit_nr;
 | |
| 
 | |
| repeat:
 | |
| 	wait->flags = 0;
 | |
| 	if (behavior == EXCLUSIVE) {
 | |
| 		wait->flags = WQ_FLAG_EXCLUSIVE;
 | |
| 		if (--unfairness < 0)
 | |
| 			wait->flags |= WQ_FLAG_CUSTOM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do one last check whether we can get the
 | |
| 	 * page bit synchronously.
 | |
| 	 *
 | |
| 	 * Do the folio_set_waiters() marking before that
 | |
| 	 * to let any waker we _just_ missed know they
 | |
| 	 * need to wake us up (otherwise they'll never
 | |
| 	 * even go to the slow case that looks at the
 | |
| 	 * page queue), and add ourselves to the wait
 | |
| 	 * queue if we need to sleep.
 | |
| 	 *
 | |
| 	 * This part needs to be done under the queue
 | |
| 	 * lock to avoid races.
 | |
| 	 */
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	folio_set_waiters(folio);
 | |
| 	if (!folio_trylock_flag(folio, bit_nr, wait))
 | |
| 		__add_wait_queue_entry_tail(q, wait);
 | |
| 	spin_unlock_irq(&q->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * From now on, all the logic will be based on
 | |
| 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
 | |
| 	 * see whether the page bit testing has already
 | |
| 	 * been done by the wake function.
 | |
| 	 *
 | |
| 	 * We can drop our reference to the folio.
 | |
| 	 */
 | |
| 	if (behavior == DROP)
 | |
| 		folio_put(folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that until the "finish_wait()", or until
 | |
| 	 * we see the WQ_FLAG_WOKEN flag, we need to
 | |
| 	 * be very careful with the 'wait->flags', because
 | |
| 	 * we may race with a waker that sets them.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		unsigned int flags;
 | |
| 
 | |
| 		set_current_state(state);
 | |
| 
 | |
| 		/* Loop until we've been woken or interrupted */
 | |
| 		flags = smp_load_acquire(&wait->flags);
 | |
| 		if (!(flags & WQ_FLAG_WOKEN)) {
 | |
| 			if (signal_pending_state(state, current))
 | |
| 				break;
 | |
| 
 | |
| 			io_schedule();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* If we were non-exclusive, we're done */
 | |
| 		if (behavior != EXCLUSIVE)
 | |
| 			break;
 | |
| 
 | |
| 		/* If the waker got the lock for us, we're done */
 | |
| 		if (flags & WQ_FLAG_DONE)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Otherwise, if we're getting the lock, we need to
 | |
| 		 * try to get it ourselves.
 | |
| 		 *
 | |
| 		 * And if that fails, we'll have to retry this all.
 | |
| 		 */
 | |
| 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		wait->flags |= WQ_FLAG_DONE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a signal happened, this 'finish_wait()' may remove the last
 | |
| 	 * waiter from the wait-queues, but the folio waiters bit will remain
 | |
| 	 * set. That's ok. The next wakeup will take care of it, and trying
 | |
| 	 * to do it here would be difficult and prone to races.
 | |
| 	 */
 | |
| 	finish_wait(q, wait);
 | |
| 
 | |
| 	if (thrashing) {
 | |
| 		delayacct_thrashing_end(&in_thrashing);
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE! The wait->flags weren't stable until we've done the
 | |
| 	 * 'finish_wait()', and we could have exited the loop above due
 | |
| 	 * to a signal, and had a wakeup event happen after the signal
 | |
| 	 * test but before the 'finish_wait()'.
 | |
| 	 *
 | |
| 	 * So only after the finish_wait() can we reliably determine
 | |
| 	 * if we got woken up or not, so we can now figure out the final
 | |
| 	 * return value based on that state without races.
 | |
| 	 *
 | |
| 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
 | |
| 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
 | |
| 	 */
 | |
| 	if (behavior == EXCLUSIVE)
 | |
| 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
 | |
| 
 | |
| 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MIGRATION
 | |
| /**
 | |
|  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
 | |
|  * @entry: migration swap entry.
 | |
|  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
 | |
|  *        for pte entries, pass NULL for pmd entries.
 | |
|  * @ptl: already locked ptl. This function will drop the lock.
 | |
|  *
 | |
|  * Wait for a migration entry referencing the given page to be removed. This is
 | |
|  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
 | |
|  * this can be called without taking a reference on the page. Instead this
 | |
|  * should be called while holding the ptl for the migration entry referencing
 | |
|  * the page.
 | |
|  *
 | |
|  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
 | |
|  *
 | |
|  * This follows the same logic as folio_wait_bit_common() so see the comments
 | |
|  * there.
 | |
|  */
 | |
| void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
 | |
| 				spinlock_t *ptl)
 | |
| {
 | |
| 	struct wait_page_queue wait_page;
 | |
| 	wait_queue_entry_t *wait = &wait_page.wait;
 | |
| 	bool thrashing = false;
 | |
| 	unsigned long pflags;
 | |
| 	bool in_thrashing;
 | |
| 	wait_queue_head_t *q;
 | |
| 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
 | |
| 
 | |
| 	q = folio_waitqueue(folio);
 | |
| 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
 | |
| 		delayacct_thrashing_start(&in_thrashing);
 | |
| 		psi_memstall_enter(&pflags);
 | |
| 		thrashing = true;
 | |
| 	}
 | |
| 
 | |
| 	init_wait(wait);
 | |
| 	wait->func = wake_page_function;
 | |
| 	wait_page.folio = folio;
 | |
| 	wait_page.bit_nr = PG_locked;
 | |
| 	wait->flags = 0;
 | |
| 
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	folio_set_waiters(folio);
 | |
| 	if (!folio_trylock_flag(folio, PG_locked, wait))
 | |
| 		__add_wait_queue_entry_tail(q, wait);
 | |
| 	spin_unlock_irq(&q->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If a migration entry exists for the page the migration path must hold
 | |
| 	 * a valid reference to the page, and it must take the ptl to remove the
 | |
| 	 * migration entry. So the page is valid until the ptl is dropped.
 | |
| 	 */
 | |
| 	if (ptep)
 | |
| 		pte_unmap_unlock(ptep, ptl);
 | |
| 	else
 | |
| 		spin_unlock(ptl);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned int flags;
 | |
| 
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 
 | |
| 		/* Loop until we've been woken or interrupted */
 | |
| 		flags = smp_load_acquire(&wait->flags);
 | |
| 		if (!(flags & WQ_FLAG_WOKEN)) {
 | |
| 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
 | |
| 				break;
 | |
| 
 | |
| 			io_schedule();
 | |
| 			continue;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	finish_wait(q, wait);
 | |
| 
 | |
| 	if (thrashing) {
 | |
| 		delayacct_thrashing_end(&in_thrashing);
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void folio_wait_bit(struct folio *folio, int bit_nr)
 | |
| {
 | |
| 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_wait_bit);
 | |
| 
 | |
| int folio_wait_bit_killable(struct folio *folio, int bit_nr)
 | |
| {
 | |
| 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_wait_bit_killable);
 | |
| 
 | |
| /**
 | |
|  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
 | |
|  * @folio: The folio to wait for.
 | |
|  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
 | |
|  *
 | |
|  * The caller should hold a reference on @folio.  They expect the page to
 | |
|  * become unlocked relatively soon, but do not wish to hold up migration
 | |
|  * (for example) by holding the reference while waiting for the folio to
 | |
|  * come unlocked.  After this function returns, the caller should not
 | |
|  * dereference @folio.
 | |
|  *
 | |
|  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
 | |
|  */
 | |
| static int folio_put_wait_locked(struct folio *folio, int state)
 | |
| {
 | |
| 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
 | |
|  * @folio: Folio defining the wait queue of interest
 | |
|  * @waiter: Waiter to add to the queue
 | |
|  *
 | |
|  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
 | |
|  */
 | |
| void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
 | |
| {
 | |
| 	wait_queue_head_t *q = folio_waitqueue(folio);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue_entry_tail(q, waiter);
 | |
| 	folio_set_waiters(folio);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_add_wait_queue);
 | |
| 
 | |
| #ifndef clear_bit_unlock_is_negative_byte
 | |
| 
 | |
| /*
 | |
|  * PG_waiters is the high bit in the same byte as PG_lock.
 | |
|  *
 | |
|  * On x86 (and on many other architectures), we can clear PG_lock and
 | |
|  * test the sign bit at the same time. But if the architecture does
 | |
|  * not support that special operation, we just do this all by hand
 | |
|  * instead.
 | |
|  *
 | |
|  * The read of PG_waiters has to be after (or concurrently with) PG_locked
 | |
|  * being cleared, but a memory barrier should be unnecessary since it is
 | |
|  * in the same byte as PG_locked.
 | |
|  */
 | |
| static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 | |
| {
 | |
| 	clear_bit_unlock(nr, mem);
 | |
| 	/* smp_mb__after_atomic(); */
 | |
| 	return test_bit(PG_waiters, mem);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * folio_unlock - Unlock a locked folio.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Unlocks the folio and wakes up any thread sleeping on the page lock.
 | |
|  *
 | |
|  * Context: May be called from interrupt or process context.  May not be
 | |
|  * called from NMI context.
 | |
|  */
 | |
| void folio_unlock(struct folio *folio)
 | |
| {
 | |
| 	/* Bit 7 allows x86 to check the byte's sign bit */
 | |
| 	BUILD_BUG_ON(PG_waiters != 7);
 | |
| 	BUILD_BUG_ON(PG_locked > 7);
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
 | |
| 		folio_wake_bit(folio, PG_locked);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_unlock);
 | |
| 
 | |
| /**
 | |
|  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
 | |
|  * it.  The folio reference held for PG_private_2 being set is released.
 | |
|  *
 | |
|  * This is, for example, used when a netfs folio is being written to a local
 | |
|  * disk cache, thereby allowing writes to the cache for the same folio to be
 | |
|  * serialised.
 | |
|  */
 | |
| void folio_end_private_2(struct folio *folio)
 | |
| {
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
 | |
| 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
 | |
| 	folio_wake_bit(folio, PG_private_2);
 | |
| 	folio_put(folio);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_end_private_2);
 | |
| 
 | |
| /**
 | |
|  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
 | |
|  * @folio: The folio to wait on.
 | |
|  *
 | |
|  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
 | |
|  */
 | |
| void folio_wait_private_2(struct folio *folio)
 | |
| {
 | |
| 	while (folio_test_private_2(folio))
 | |
| 		folio_wait_bit(folio, PG_private_2);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_wait_private_2);
 | |
| 
 | |
| /**
 | |
|  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
 | |
|  * @folio: The folio to wait on.
 | |
|  *
 | |
|  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
 | |
|  * fatal signal is received by the calling task.
 | |
|  *
 | |
|  * Return:
 | |
|  * - 0 if successful.
 | |
|  * - -EINTR if a fatal signal was encountered.
 | |
|  */
 | |
| int folio_wait_private_2_killable(struct folio *folio)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (folio_test_private_2(folio)) {
 | |
| 		ret = folio_wait_bit_killable(folio, PG_private_2);
 | |
| 		if (ret < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_wait_private_2_killable);
 | |
| 
 | |
| /**
 | |
|  * folio_end_writeback - End writeback against a folio.
 | |
|  * @folio: The folio.
 | |
|  */
 | |
| void folio_end_writeback(struct folio *folio)
 | |
| {
 | |
| 	/*
 | |
| 	 * folio_test_clear_reclaim() could be used here but it is an
 | |
| 	 * atomic operation and overkill in this particular case. Failing
 | |
| 	 * to shuffle a folio marked for immediate reclaim is too mild
 | |
| 	 * a gain to justify taking an atomic operation penalty at the
 | |
| 	 * end of every folio writeback.
 | |
| 	 */
 | |
| 	if (folio_test_reclaim(folio)) {
 | |
| 		folio_clear_reclaim(folio);
 | |
| 		folio_rotate_reclaimable(folio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Writeback does not hold a folio reference of its own, relying
 | |
| 	 * on truncation to wait for the clearing of PG_writeback.
 | |
| 	 * But here we must make sure that the folio is not freed and
 | |
| 	 * reused before the folio_wake().
 | |
| 	 */
 | |
| 	folio_get(folio);
 | |
| 	if (!__folio_end_writeback(folio))
 | |
| 		BUG();
 | |
| 
 | |
| 	smp_mb__after_atomic();
 | |
| 	folio_wake(folio, PG_writeback);
 | |
| 	acct_reclaim_writeback(folio);
 | |
| 	folio_put(folio);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_end_writeback);
 | |
| 
 | |
| /*
 | |
|  * After completing I/O on a page, call this routine to update the page
 | |
|  * flags appropriately
 | |
|  */
 | |
| void page_endio(struct page *page, bool is_write, int err)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	if (!is_write) {
 | |
| 		if (!err) {
 | |
| 			folio_mark_uptodate(folio);
 | |
| 		} else {
 | |
| 			folio_clear_uptodate(folio);
 | |
| 			folio_set_error(folio);
 | |
| 		}
 | |
| 		folio_unlock(folio);
 | |
| 	} else {
 | |
| 		if (err) {
 | |
| 			struct address_space *mapping;
 | |
| 
 | |
| 			folio_set_error(folio);
 | |
| 			mapping = folio_mapping(folio);
 | |
| 			if (mapping)
 | |
| 				mapping_set_error(mapping, err);
 | |
| 		}
 | |
| 		folio_end_writeback(folio);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(page_endio);
 | |
| 
 | |
| /**
 | |
|  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
 | |
|  * @folio: The folio to lock
 | |
|  */
 | |
| void __folio_lock(struct folio *folio)
 | |
| {
 | |
| 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
 | |
| 				EXCLUSIVE);
 | |
| }
 | |
| EXPORT_SYMBOL(__folio_lock);
 | |
| 
 | |
| int __folio_lock_killable(struct folio *folio)
 | |
| {
 | |
| 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
 | |
| 					EXCLUSIVE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__folio_lock_killable);
 | |
| 
 | |
| static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
 | |
| {
 | |
| 	struct wait_queue_head *q = folio_waitqueue(folio);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	wait->folio = folio;
 | |
| 	wait->bit_nr = PG_locked;
 | |
| 
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	__add_wait_queue_entry_tail(q, &wait->wait);
 | |
| 	folio_set_waiters(folio);
 | |
| 	ret = !folio_trylock(folio);
 | |
| 	/*
 | |
| 	 * If we were successful now, we know we're still on the
 | |
| 	 * waitqueue as we're still under the lock. This means it's
 | |
| 	 * safe to remove and return success, we know the callback
 | |
| 	 * isn't going to trigger.
 | |
| 	 */
 | |
| 	if (!ret)
 | |
| 		__remove_wait_queue(q, &wait->wait);
 | |
| 	else
 | |
| 		ret = -EIOCBQUEUED;
 | |
| 	spin_unlock_irq(&q->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return values:
 | |
|  * true - folio is locked; mmap_lock is still held.
 | |
|  * false - folio is not locked.
 | |
|  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
 | |
|  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 | |
|  *     which case mmap_lock is still held.
 | |
|  *
 | |
|  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
 | |
|  * with the folio locked and the mmap_lock unperturbed.
 | |
|  */
 | |
| bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
 | |
| 			 unsigned int flags)
 | |
| {
 | |
| 	if (fault_flag_allow_retry_first(flags)) {
 | |
| 		/*
 | |
| 		 * CAUTION! In this case, mmap_lock is not released
 | |
| 		 * even though return 0.
 | |
| 		 */
 | |
| 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 | |
| 			return false;
 | |
| 
 | |
| 		mmap_read_unlock(mm);
 | |
| 		if (flags & FAULT_FLAG_KILLABLE)
 | |
| 			folio_wait_locked_killable(folio);
 | |
| 		else
 | |
| 			folio_wait_locked(folio);
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (flags & FAULT_FLAG_KILLABLE) {
 | |
| 		bool ret;
 | |
| 
 | |
| 		ret = __folio_lock_killable(folio);
 | |
| 		if (ret) {
 | |
| 			mmap_read_unlock(mm);
 | |
| 			return false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		__folio_lock(folio);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_cache_next_miss() - Find the next gap in the page cache.
 | |
|  * @mapping: Mapping.
 | |
|  * @index: Index.
 | |
|  * @max_scan: Maximum range to search.
 | |
|  *
 | |
|  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 | |
|  * gap with the lowest index.
 | |
|  *
 | |
|  * This function may be called under the rcu_read_lock.  However, this will
 | |
|  * not atomically search a snapshot of the cache at a single point in time.
 | |
|  * For example, if a gap is created at index 5, then subsequently a gap is
 | |
|  * created at index 10, page_cache_next_miss covering both indices may
 | |
|  * return 10 if called under the rcu_read_lock.
 | |
|  *
 | |
|  * Return: The index of the gap if found, otherwise an index outside the
 | |
|  * range specified (in which case 'return - index >= max_scan' will be true).
 | |
|  * In the rare case of index wrap-around, 0 will be returned.
 | |
|  */
 | |
| pgoff_t page_cache_next_miss(struct address_space *mapping,
 | |
| 			     pgoff_t index, unsigned long max_scan)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	while (max_scan--) {
 | |
| 		void *entry = xas_next(&xas);
 | |
| 		if (!entry || xa_is_value(entry))
 | |
| 			break;
 | |
| 		if (xas.xa_index == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return xas.xa_index;
 | |
| }
 | |
| EXPORT_SYMBOL(page_cache_next_miss);
 | |
| 
 | |
| /**
 | |
|  * page_cache_prev_miss() - Find the previous gap in the page cache.
 | |
|  * @mapping: Mapping.
 | |
|  * @index: Index.
 | |
|  * @max_scan: Maximum range to search.
 | |
|  *
 | |
|  * Search the range [max(index - max_scan + 1, 0), index] for the
 | |
|  * gap with the highest index.
 | |
|  *
 | |
|  * This function may be called under the rcu_read_lock.  However, this will
 | |
|  * not atomically search a snapshot of the cache at a single point in time.
 | |
|  * For example, if a gap is created at index 10, then subsequently a gap is
 | |
|  * created at index 5, page_cache_prev_miss() covering both indices may
 | |
|  * return 5 if called under the rcu_read_lock.
 | |
|  *
 | |
|  * Return: The index of the gap if found, otherwise an index outside the
 | |
|  * range specified (in which case 'index - return >= max_scan' will be true).
 | |
|  * In the rare case of wrap-around, ULONG_MAX will be returned.
 | |
|  */
 | |
| pgoff_t page_cache_prev_miss(struct address_space *mapping,
 | |
| 			     pgoff_t index, unsigned long max_scan)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	while (max_scan--) {
 | |
| 		void *entry = xas_prev(&xas);
 | |
| 		if (!entry || xa_is_value(entry))
 | |
| 			break;
 | |
| 		if (xas.xa_index == ULONG_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return xas.xa_index;
 | |
| }
 | |
| EXPORT_SYMBOL(page_cache_prev_miss);
 | |
| 
 | |
| /*
 | |
|  * Lockless page cache protocol:
 | |
|  * On the lookup side:
 | |
|  * 1. Load the folio from i_pages
 | |
|  * 2. Increment the refcount if it's not zero
 | |
|  * 3. If the folio is not found by xas_reload(), put the refcount and retry
 | |
|  *
 | |
|  * On the removal side:
 | |
|  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
 | |
|  * B. Remove the page from i_pages
 | |
|  * C. Return the page to the page allocator
 | |
|  *
 | |
|  * This means that any page may have its reference count temporarily
 | |
|  * increased by a speculative page cache (or fast GUP) lookup as it can
 | |
|  * be allocated by another user before the RCU grace period expires.
 | |
|  * Because the refcount temporarily acquired here may end up being the
 | |
|  * last refcount on the page, any page allocation must be freeable by
 | |
|  * folio_put().
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * filemap_get_entry - Get a page cache entry.
 | |
|  * @mapping: the address_space to search
 | |
|  * @index: The page cache index.
 | |
|  *
 | |
|  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
 | |
|  * it is returned with an increased refcount.  If it is a shadow entry
 | |
|  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
 | |
|  * it is returned without further action.
 | |
|  *
 | |
|  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
 | |
|  */
 | |
| void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| repeat:
 | |
| 	xas_reset(&xas);
 | |
| 	folio = xas_load(&xas);
 | |
| 	if (xas_retry(&xas, folio))
 | |
| 		goto repeat;
 | |
| 	/*
 | |
| 	 * A shadow entry of a recently evicted page, or a swap entry from
 | |
| 	 * shmem/tmpfs.  Return it without attempting to raise page count.
 | |
| 	 */
 | |
| 	if (!folio || xa_is_value(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!folio_try_get_rcu(folio))
 | |
| 		goto repeat;
 | |
| 
 | |
| 	if (unlikely(folio != xas_reload(&xas))) {
 | |
| 		folio_put(folio);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __filemap_get_folio - Find and get a reference to a folio.
 | |
|  * @mapping: The address_space to search.
 | |
|  * @index: The page index.
 | |
|  * @fgp_flags: %FGP flags modify how the folio is returned.
 | |
|  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
 | |
|  *
 | |
|  * Looks up the page cache entry at @mapping & @index.
 | |
|  *
 | |
|  * @fgp_flags can be zero or more of these flags:
 | |
|  *
 | |
|  * * %FGP_ACCESSED - The folio will be marked accessed.
 | |
|  * * %FGP_LOCK - The folio is returned locked.
 | |
|  * * %FGP_CREAT - If no page is present then a new page is allocated using
 | |
|  *   @gfp and added to the page cache and the VM's LRU list.
 | |
|  *   The page is returned locked and with an increased refcount.
 | |
|  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 | |
|  *   page is already in cache.  If the page was allocated, unlock it before
 | |
|  *   returning so the caller can do the same dance.
 | |
|  * * %FGP_WRITE - The page will be written to by the caller.
 | |
|  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
 | |
|  * * %FGP_NOWAIT - Don't get blocked by page lock.
 | |
|  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
 | |
|  *
 | |
|  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 | |
|  * if the %GFP flags specified for %FGP_CREAT are atomic.
 | |
|  *
 | |
|  * If there is a page cache page, it is returned with an increased refcount.
 | |
|  *
 | |
|  * Return: The found folio or an ERR_PTR() otherwise.
 | |
|  */
 | |
| struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
 | |
| 		int fgp_flags, gfp_t gfp)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| repeat:
 | |
| 	folio = filemap_get_entry(mapping, index);
 | |
| 	if (xa_is_value(folio))
 | |
| 		folio = NULL;
 | |
| 	if (!folio)
 | |
| 		goto no_page;
 | |
| 
 | |
| 	if (fgp_flags & FGP_LOCK) {
 | |
| 		if (fgp_flags & FGP_NOWAIT) {
 | |
| 			if (!folio_trylock(folio)) {
 | |
| 				folio_put(folio);
 | |
| 				return ERR_PTR(-EAGAIN);
 | |
| 			}
 | |
| 		} else {
 | |
| 			folio_lock(folio);
 | |
| 		}
 | |
| 
 | |
| 		/* Has the page been truncated? */
 | |
| 		if (unlikely(folio->mapping != mapping)) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
 | |
| 	}
 | |
| 
 | |
| 	if (fgp_flags & FGP_ACCESSED)
 | |
| 		folio_mark_accessed(folio);
 | |
| 	else if (fgp_flags & FGP_WRITE) {
 | |
| 		/* Clear idle flag for buffer write */
 | |
| 		if (folio_test_idle(folio))
 | |
| 			folio_clear_idle(folio);
 | |
| 	}
 | |
| 
 | |
| 	if (fgp_flags & FGP_STABLE)
 | |
| 		folio_wait_stable(folio);
 | |
| no_page:
 | |
| 	if (!folio && (fgp_flags & FGP_CREAT)) {
 | |
| 		int err;
 | |
| 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
 | |
| 			gfp |= __GFP_WRITE;
 | |
| 		if (fgp_flags & FGP_NOFS)
 | |
| 			gfp &= ~__GFP_FS;
 | |
| 		if (fgp_flags & FGP_NOWAIT) {
 | |
| 			gfp &= ~GFP_KERNEL;
 | |
| 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
 | |
| 		}
 | |
| 
 | |
| 		folio = filemap_alloc_folio(gfp, 0);
 | |
| 		if (!folio)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
 | |
| 			fgp_flags |= FGP_LOCK;
 | |
| 
 | |
| 		/* Init accessed so avoid atomic mark_page_accessed later */
 | |
| 		if (fgp_flags & FGP_ACCESSED)
 | |
| 			__folio_set_referenced(folio);
 | |
| 
 | |
| 		err = filemap_add_folio(mapping, folio, index, gfp);
 | |
| 		if (unlikely(err)) {
 | |
| 			folio_put(folio);
 | |
| 			folio = NULL;
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * filemap_add_folio locks the page, and for mmap
 | |
| 		 * we expect an unlocked page.
 | |
| 		 */
 | |
| 		if (folio && (fgp_flags & FGP_FOR_MMAP))
 | |
| 			folio_unlock(folio);
 | |
| 	}
 | |
| 
 | |
| 	if (!folio)
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	return folio;
 | |
| }
 | |
| EXPORT_SYMBOL(__filemap_get_folio);
 | |
| 
 | |
| static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
 | |
| 		xa_mark_t mark)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| retry:
 | |
| 	if (mark == XA_PRESENT)
 | |
| 		folio = xas_find(xas, max);
 | |
| 	else
 | |
| 		folio = xas_find_marked(xas, max, mark);
 | |
| 
 | |
| 	if (xas_retry(xas, folio))
 | |
| 		goto retry;
 | |
| 	/*
 | |
| 	 * A shadow entry of a recently evicted page, a swap
 | |
| 	 * entry from shmem/tmpfs or a DAX entry.  Return it
 | |
| 	 * without attempting to raise page count.
 | |
| 	 */
 | |
| 	if (!folio || xa_is_value(folio))
 | |
| 		return folio;
 | |
| 
 | |
| 	if (!folio_try_get_rcu(folio))
 | |
| 		goto reset;
 | |
| 
 | |
| 	if (unlikely(folio != xas_reload(xas))) {
 | |
| 		folio_put(folio);
 | |
| 		goto reset;
 | |
| 	}
 | |
| 
 | |
| 	return folio;
 | |
| reset:
 | |
| 	xas_reset(xas);
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_get_entries - gang pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page cache index
 | |
|  * @end:	The final page index (inclusive).
 | |
|  * @fbatch:	Where the resulting entries are placed.
 | |
|  * @indices:	The cache indices corresponding to the entries in @entries
 | |
|  *
 | |
|  * find_get_entries() will search for and return a batch of entries in
 | |
|  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
 | |
|  * takes a reference on any actual folios it returns.
 | |
|  *
 | |
|  * The entries have ascending indexes.  The indices may not be consecutive
 | |
|  * due to not-present entries or large folios.
 | |
|  *
 | |
|  * Any shadow entries of evicted folios, or swap entries from
 | |
|  * shmem/tmpfs, are included in the returned array.
 | |
|  *
 | |
|  * Return: The number of entries which were found.
 | |
|  */
 | |
| unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 | |
| 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
 | |
| 		indices[fbatch->nr] = xas.xa_index;
 | |
| 		if (!folio_batch_add(fbatch, folio))
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (folio_batch_count(fbatch)) {
 | |
| 		unsigned long nr = 1;
 | |
| 		int idx = folio_batch_count(fbatch) - 1;
 | |
| 
 | |
| 		folio = fbatch->folios[idx];
 | |
| 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
 | |
| 			nr = folio_nr_pages(folio);
 | |
| 		*start = indices[idx] + nr;
 | |
| 	}
 | |
| 	return folio_batch_count(fbatch);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_lock_entries - Find a batch of pagecache entries.
 | |
|  * @mapping:	The address_space to search.
 | |
|  * @start:	The starting page cache index.
 | |
|  * @end:	The final page index (inclusive).
 | |
|  * @fbatch:	Where the resulting entries are placed.
 | |
|  * @indices:	The cache indices of the entries in @fbatch.
 | |
|  *
 | |
|  * find_lock_entries() will return a batch of entries from @mapping.
 | |
|  * Swap, shadow and DAX entries are included.  Folios are returned
 | |
|  * locked and with an incremented refcount.  Folios which are locked
 | |
|  * by somebody else or under writeback are skipped.  Folios which are
 | |
|  * partially outside the range are not returned.
 | |
|  *
 | |
|  * The entries have ascending indexes.  The indices may not be consecutive
 | |
|  * due to not-present entries, large folios, folios which could not be
 | |
|  * locked or folios under writeback.
 | |
|  *
 | |
|  * Return: The number of entries which were found.
 | |
|  */
 | |
| unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 | |
| 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
 | |
| 		if (!xa_is_value(folio)) {
 | |
| 			if (folio->index < *start)
 | |
| 				goto put;
 | |
| 			if (folio->index + folio_nr_pages(folio) - 1 > end)
 | |
| 				goto put;
 | |
| 			if (!folio_trylock(folio))
 | |
| 				goto put;
 | |
| 			if (folio->mapping != mapping ||
 | |
| 			    folio_test_writeback(folio))
 | |
| 				goto unlock;
 | |
| 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
 | |
| 					folio);
 | |
| 		}
 | |
| 		indices[fbatch->nr] = xas.xa_index;
 | |
| 		if (!folio_batch_add(fbatch, folio))
 | |
| 			break;
 | |
| 		continue;
 | |
| unlock:
 | |
| 		folio_unlock(folio);
 | |
| put:
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (folio_batch_count(fbatch)) {
 | |
| 		unsigned long nr = 1;
 | |
| 		int idx = folio_batch_count(fbatch) - 1;
 | |
| 
 | |
| 		folio = fbatch->folios[idx];
 | |
| 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
 | |
| 			nr = folio_nr_pages(folio);
 | |
| 		*start = indices[idx] + nr;
 | |
| 	}
 | |
| 	return folio_batch_count(fbatch);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_get_folios - Get a batch of folios
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @end:	The final page index (inclusive)
 | |
|  * @fbatch:	The batch to fill.
 | |
|  *
 | |
|  * Search for and return a batch of folios in the mapping starting at
 | |
|  * index @start and up to index @end (inclusive).  The folios are returned
 | |
|  * in @fbatch with an elevated reference count.
 | |
|  *
 | |
|  * The first folio may start before @start; if it does, it will contain
 | |
|  * @start.  The final folio may extend beyond @end; if it does, it will
 | |
|  * contain @end.  The folios have ascending indices.  There may be gaps
 | |
|  * between the folios if there are indices which have no folio in the
 | |
|  * page cache.  If folios are added to or removed from the page cache
 | |
|  * while this is running, they may or may not be found by this call.
 | |
|  *
 | |
|  * Return: The number of folios which were found.
 | |
|  * We also update @start to index the next folio for the traversal.
 | |
|  */
 | |
| unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
 | |
| 		pgoff_t end, struct folio_batch *fbatch)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
 | |
| 		/* Skip over shadow, swap and DAX entries */
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		if (!folio_batch_add(fbatch, folio)) {
 | |
| 			unsigned long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 			if (folio_test_hugetlb(folio))
 | |
| 				nr = 1;
 | |
| 			*start = folio->index + nr;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We come here when there is no page beyond @end. We take care to not
 | |
| 	 * overflow the index @start as it confuses some of the callers. This
 | |
| 	 * breaks the iteration when there is a page at index -1 but that is
 | |
| 	 * already broken anyway.
 | |
| 	 */
 | |
| 	if (end == (pgoff_t)-1)
 | |
| 		*start = (pgoff_t)-1;
 | |
| 	else
 | |
| 		*start = end + 1;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return folio_batch_count(fbatch);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_get_folios);
 | |
| 
 | |
| static inline
 | |
| bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
 | |
| {
 | |
| 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
 | |
| 		return false;
 | |
| 	if (index >= max)
 | |
| 		return false;
 | |
| 	return index < folio->index + folio_nr_pages(folio) - 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_get_folios_contig - Get a batch of contiguous folios
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @end:	The final page index (inclusive)
 | |
|  * @fbatch:	The batch to fill
 | |
|  *
 | |
|  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
 | |
|  * except the returned folios are guaranteed to be contiguous. This may
 | |
|  * not return all contiguous folios if the batch gets filled up.
 | |
|  *
 | |
|  * Return: The number of folios found.
 | |
|  * Also update @start to be positioned for traversal of the next folio.
 | |
|  */
 | |
| 
 | |
| unsigned filemap_get_folios_contig(struct address_space *mapping,
 | |
| 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	unsigned long nr;
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
 | |
| 			folio = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, folio))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * If the entry has been swapped out, we can stop looking.
 | |
| 		 * No current caller is looking for DAX entries.
 | |
| 		 */
 | |
| 		if (xa_is_value(folio))
 | |
| 			goto update_start;
 | |
| 
 | |
| 		if (!folio_try_get_rcu(folio))
 | |
| 			goto retry;
 | |
| 
 | |
| 		if (unlikely(folio != xas_reload(&xas)))
 | |
| 			goto put_folio;
 | |
| 
 | |
| 		if (!folio_batch_add(fbatch, folio)) {
 | |
| 			nr = folio_nr_pages(folio);
 | |
| 
 | |
| 			if (folio_test_hugetlb(folio))
 | |
| 				nr = 1;
 | |
| 			*start = folio->index + nr;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		continue;
 | |
| put_folio:
 | |
| 		folio_put(folio);
 | |
| 
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 
 | |
| update_start:
 | |
| 	nr = folio_batch_count(fbatch);
 | |
| 
 | |
| 	if (nr) {
 | |
| 		folio = fbatch->folios[nr - 1];
 | |
| 		if (folio_test_hugetlb(folio))
 | |
| 			*start = folio->index + 1;
 | |
| 		else
 | |
| 			*start = folio->index + folio_nr_pages(folio);
 | |
| 	}
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return folio_batch_count(fbatch);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_get_folios_contig);
 | |
| 
 | |
| /**
 | |
|  * filemap_get_folios_tag - Get a batch of folios matching @tag
 | |
|  * @mapping:    The address_space to search
 | |
|  * @start:      The starting page index
 | |
|  * @end:        The final page index (inclusive)
 | |
|  * @tag:        The tag index
 | |
|  * @fbatch:     The batch to fill
 | |
|  *
 | |
|  * Same as filemap_get_folios(), but only returning folios tagged with @tag.
 | |
|  *
 | |
|  * Return: The number of folios found.
 | |
|  * Also update @start to index the next folio for traversal.
 | |
|  */
 | |
| unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
 | |
| 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
 | |
| 		/*
 | |
| 		 * Shadow entries should never be tagged, but this iteration
 | |
| 		 * is lockless so there is a window for page reclaim to evict
 | |
| 		 * a page we saw tagged. Skip over it.
 | |
| 		 */
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		if (!folio_batch_add(fbatch, folio)) {
 | |
| 			unsigned long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 			if (folio_test_hugetlb(folio))
 | |
| 				nr = 1;
 | |
| 			*start = folio->index + nr;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We come here when there is no page beyond @end. We take care to not
 | |
| 	 * overflow the index @start as it confuses some of the callers. This
 | |
| 	 * breaks the iteration when there is a page at index -1 but that is
 | |
| 	 * already broke anyway.
 | |
| 	 */
 | |
| 	if (end == (pgoff_t)-1)
 | |
| 		*start = (pgoff_t)-1;
 | |
| 	else
 | |
| 		*start = end + 1;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return folio_batch_count(fbatch);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_get_folios_tag);
 | |
| 
 | |
| /*
 | |
|  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 | |
|  * a _large_ part of the i/o request. Imagine the worst scenario:
 | |
|  *
 | |
|  *      ---R__________________________________________B__________
 | |
|  *         ^ reading here                             ^ bad block(assume 4k)
 | |
|  *
 | |
|  * read(R) => miss => readahead(R...B) => media error => frustrating retries
 | |
|  * => failing the whole request => read(R) => read(R+1) =>
 | |
|  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 | |
|  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 | |
|  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 | |
|  *
 | |
|  * It is going insane. Fix it by quickly scaling down the readahead size.
 | |
|  */
 | |
| static void shrink_readahead_size_eio(struct file_ra_state *ra)
 | |
| {
 | |
| 	ra->ra_pages /= 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * filemap_get_read_batch - Get a batch of folios for read
 | |
|  *
 | |
|  * Get a batch of folios which represent a contiguous range of bytes in
 | |
|  * the file.  No exceptional entries will be returned.  If @index is in
 | |
|  * the middle of a folio, the entire folio will be returned.  The last
 | |
|  * folio in the batch may have the readahead flag set or the uptodate flag
 | |
|  * clear so that the caller can take the appropriate action.
 | |
|  */
 | |
| static void filemap_get_read_batch(struct address_space *mapping,
 | |
| 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, folio))
 | |
| 			continue;
 | |
| 		if (xas.xa_index > max || xa_is_value(folio))
 | |
| 			break;
 | |
| 		if (xa_is_sibling(folio))
 | |
| 			break;
 | |
| 		if (!folio_try_get_rcu(folio))
 | |
| 			goto retry;
 | |
| 
 | |
| 		if (unlikely(folio != xas_reload(&xas)))
 | |
| 			goto put_folio;
 | |
| 
 | |
| 		if (!folio_batch_add(fbatch, folio))
 | |
| 			break;
 | |
| 		if (!folio_test_uptodate(folio))
 | |
| 			break;
 | |
| 		if (folio_test_readahead(folio))
 | |
| 			break;
 | |
| 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
 | |
| 		continue;
 | |
| put_folio:
 | |
| 		folio_put(folio);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int filemap_read_folio(struct file *file, filler_t filler,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	bool workingset = folio_test_workingset(folio);
 | |
| 	unsigned long pflags;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * A previous I/O error may have been due to temporary failures,
 | |
| 	 * eg. multipath errors.  PG_error will be set again if read_folio
 | |
| 	 * fails.
 | |
| 	 */
 | |
| 	folio_clear_error(folio);
 | |
| 
 | |
| 	/* Start the actual read. The read will unlock the page. */
 | |
| 	if (unlikely(workingset))
 | |
| 		psi_memstall_enter(&pflags);
 | |
| 	error = filler(file, folio);
 | |
| 	if (unlikely(workingset))
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = folio_wait_locked_killable(folio);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (folio_test_uptodate(folio))
 | |
| 		return 0;
 | |
| 	if (file)
 | |
| 		shrink_readahead_size_eio(&file->f_ra);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static bool filemap_range_uptodate(struct address_space *mapping,
 | |
| 		loff_t pos, size_t count, struct folio *folio,
 | |
| 		bool need_uptodate)
 | |
| {
 | |
| 	if (folio_test_uptodate(folio))
 | |
| 		return true;
 | |
| 	/* pipes can't handle partially uptodate pages */
 | |
| 	if (need_uptodate)
 | |
| 		return false;
 | |
| 	if (!mapping->a_ops->is_partially_uptodate)
 | |
| 		return false;
 | |
| 	if (mapping->host->i_blkbits >= folio_shift(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	if (folio_pos(folio) > pos) {
 | |
| 		count -= folio_pos(folio) - pos;
 | |
| 		pos = 0;
 | |
| 	} else {
 | |
| 		pos -= folio_pos(folio);
 | |
| 	}
 | |
| 
 | |
| 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
 | |
| }
 | |
| 
 | |
| static int filemap_update_page(struct kiocb *iocb,
 | |
| 		struct address_space *mapping, size_t count,
 | |
| 		struct folio *folio, bool need_uptodate)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		if (!filemap_invalidate_trylock_shared(mapping))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		filemap_invalidate_lock_shared(mapping);
 | |
| 	}
 | |
| 
 | |
| 	if (!folio_trylock(folio)) {
 | |
| 		error = -EAGAIN;
 | |
| 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
 | |
| 			goto unlock_mapping;
 | |
| 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
 | |
| 			filemap_invalidate_unlock_shared(mapping);
 | |
| 			/*
 | |
| 			 * This is where we usually end up waiting for a
 | |
| 			 * previously submitted readahead to finish.
 | |
| 			 */
 | |
| 			folio_put_wait_locked(folio, TASK_KILLABLE);
 | |
| 			return AOP_TRUNCATED_PAGE;
 | |
| 		}
 | |
| 		error = __folio_lock_async(folio, iocb->ki_waitq);
 | |
| 		if (error)
 | |
| 			goto unlock_mapping;
 | |
| 	}
 | |
| 
 | |
| 	error = AOP_TRUNCATED_PAGE;
 | |
| 	if (!folio->mapping)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	error = 0;
 | |
| 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
 | |
| 				   need_uptodate))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	error = -EAGAIN;
 | |
| 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
 | |
| 			folio);
 | |
| 	goto unlock_mapping;
 | |
| unlock:
 | |
| 	folio_unlock(folio);
 | |
| unlock_mapping:
 | |
| 	filemap_invalidate_unlock_shared(mapping);
 | |
| 	if (error == AOP_TRUNCATED_PAGE)
 | |
| 		folio_put(folio);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int filemap_create_folio(struct file *file,
 | |
| 		struct address_space *mapping, pgoff_t index,
 | |
| 		struct folio_batch *fbatch)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	int error;
 | |
| 
 | |
| 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
 | |
| 	if (!folio)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
 | |
| 	 * here assures we cannot instantiate and bring uptodate new
 | |
| 	 * pagecache folios after evicting page cache during truncate
 | |
| 	 * and before actually freeing blocks.	Note that we could
 | |
| 	 * release invalidate_lock after inserting the folio into
 | |
| 	 * the page cache as the locked folio would then be enough to
 | |
| 	 * synchronize with hole punching. But there are code paths
 | |
| 	 * such as filemap_update_page() filling in partially uptodate
 | |
| 	 * pages or ->readahead() that need to hold invalidate_lock
 | |
| 	 * while mapping blocks for IO so let's hold the lock here as
 | |
| 	 * well to keep locking rules simple.
 | |
| 	 */
 | |
| 	filemap_invalidate_lock_shared(mapping);
 | |
| 	error = filemap_add_folio(mapping, folio, index,
 | |
| 			mapping_gfp_constraint(mapping, GFP_KERNEL));
 | |
| 	if (error == -EEXIST)
 | |
| 		error = AOP_TRUNCATED_PAGE;
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 
 | |
| 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
 | |
| 	if (error)
 | |
| 		goto error;
 | |
| 
 | |
| 	filemap_invalidate_unlock_shared(mapping);
 | |
| 	folio_batch_add(fbatch, folio);
 | |
| 	return 0;
 | |
| error:
 | |
| 	filemap_invalidate_unlock_shared(mapping);
 | |
| 	folio_put(folio);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int filemap_readahead(struct kiocb *iocb, struct file *file,
 | |
| 		struct address_space *mapping, struct folio *folio,
 | |
| 		pgoff_t last_index)
 | |
| {
 | |
| 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOIO)
 | |
| 		return -EAGAIN;
 | |
| 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int filemap_get_pages(struct kiocb *iocb, size_t count,
 | |
| 		struct folio_batch *fbatch, bool need_uptodate)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
 | |
| 	pgoff_t last_index;
 | |
| 	struct folio *folio;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* "last_index" is the index of the page beyond the end of the read */
 | |
| 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
 | |
| retry:
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
 | |
| 	if (!folio_batch_count(fbatch)) {
 | |
| 		if (iocb->ki_flags & IOCB_NOIO)
 | |
| 			return -EAGAIN;
 | |
| 		page_cache_sync_readahead(mapping, ra, filp, index,
 | |
| 				last_index - index);
 | |
| 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
 | |
| 	}
 | |
| 	if (!folio_batch_count(fbatch)) {
 | |
| 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
 | |
| 			return -EAGAIN;
 | |
| 		err = filemap_create_folio(filp, mapping,
 | |
| 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
 | |
| 		if (err == AOP_TRUNCATED_PAGE)
 | |
| 			goto retry;
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
 | |
| 	if (folio_test_readahead(folio)) {
 | |
| 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
 | |
| 		if (err)
 | |
| 			goto err;
 | |
| 	}
 | |
| 	if (!folio_test_uptodate(folio)) {
 | |
| 		if ((iocb->ki_flags & IOCB_WAITQ) &&
 | |
| 		    folio_batch_count(fbatch) > 1)
 | |
| 			iocb->ki_flags |= IOCB_NOWAIT;
 | |
| 		err = filemap_update_page(iocb, mapping, count, folio,
 | |
| 					  need_uptodate);
 | |
| 		if (err)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	if (err < 0)
 | |
| 		folio_put(folio);
 | |
| 	if (likely(--fbatch->nr))
 | |
| 		return 0;
 | |
| 	if (err == AOP_TRUNCATED_PAGE)
 | |
| 		goto retry;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
 | |
| {
 | |
| 	unsigned int shift = folio_shift(folio);
 | |
| 
 | |
| 	return (pos1 >> shift == pos2 >> shift);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_read - Read data from the page cache.
 | |
|  * @iocb: The iocb to read.
 | |
|  * @iter: Destination for the data.
 | |
|  * @already_read: Number of bytes already read by the caller.
 | |
|  *
 | |
|  * Copies data from the page cache.  If the data is not currently present,
 | |
|  * uses the readahead and read_folio address_space operations to fetch it.
 | |
|  *
 | |
|  * Return: Total number of bytes copied, including those already read by
 | |
|  * the caller.  If an error happens before any bytes are copied, returns
 | |
|  * a negative error number.
 | |
|  */
 | |
| ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
 | |
| 		ssize_t already_read)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct folio_batch fbatch;
 | |
| 	int i, error = 0;
 | |
| 	bool writably_mapped;
 | |
| 	loff_t isize, end_offset;
 | |
| 
 | |
| 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
 | |
| 		return 0;
 | |
| 	if (unlikely(!iov_iter_count(iter)))
 | |
| 		return 0;
 | |
| 
 | |
| 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 | |
| 	folio_batch_init(&fbatch);
 | |
| 
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * If we've already successfully copied some data, then we
 | |
| 		 * can no longer safely return -EIOCBQUEUED. Hence mark
 | |
| 		 * an async read NOWAIT at that point.
 | |
| 		 */
 | |
| 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
 | |
| 			iocb->ki_flags |= IOCB_NOWAIT;
 | |
| 
 | |
| 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
 | |
| 			break;
 | |
| 
 | |
| 		error = filemap_get_pages(iocb, iter->count, &fbatch,
 | |
| 					  iov_iter_is_pipe(iter));
 | |
| 		if (error < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * i_size must be checked after we know the pages are Uptodate.
 | |
| 		 *
 | |
| 		 * Checking i_size after the check allows us to calculate
 | |
| 		 * the correct value for "nr", which means the zero-filled
 | |
| 		 * part of the page is not copied back to userspace (unless
 | |
| 		 * another truncate extends the file - this is desired though).
 | |
| 		 */
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (unlikely(iocb->ki_pos >= isize))
 | |
| 			goto put_folios;
 | |
| 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Once we start copying data, we don't want to be touching any
 | |
| 		 * cachelines that might be contended:
 | |
| 		 */
 | |
| 		writably_mapped = mapping_writably_mapped(mapping);
 | |
| 
 | |
| 		/*
 | |
| 		 * When a read accesses the same folio several times, only
 | |
| 		 * mark it as accessed the first time.
 | |
| 		 */
 | |
| 		if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
 | |
| 							fbatch.folios[0]))
 | |
| 			folio_mark_accessed(fbatch.folios[0]);
 | |
| 
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 			size_t fsize = folio_size(folio);
 | |
| 			size_t offset = iocb->ki_pos & (fsize - 1);
 | |
| 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
 | |
| 					     fsize - offset);
 | |
| 			size_t copied;
 | |
| 
 | |
| 			if (end_offset < folio_pos(folio))
 | |
| 				break;
 | |
| 			if (i > 0)
 | |
| 				folio_mark_accessed(folio);
 | |
| 			/*
 | |
| 			 * If users can be writing to this folio using arbitrary
 | |
| 			 * virtual addresses, take care of potential aliasing
 | |
| 			 * before reading the folio on the kernel side.
 | |
| 			 */
 | |
| 			if (writably_mapped)
 | |
| 				flush_dcache_folio(folio);
 | |
| 
 | |
| 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 | |
| 
 | |
| 			already_read += copied;
 | |
| 			iocb->ki_pos += copied;
 | |
| 			ra->prev_pos = iocb->ki_pos;
 | |
| 
 | |
| 			if (copied < bytes) {
 | |
| 				error = -EFAULT;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| put_folios:
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++)
 | |
| 			folio_put(fbatch.folios[i]);
 | |
| 		folio_batch_init(&fbatch);
 | |
| 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
 | |
| 
 | |
| 	file_accessed(filp);
 | |
| 
 | |
| 	return already_read ? already_read : error;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(filemap_read);
 | |
| 
 | |
| /**
 | |
|  * generic_file_read_iter - generic filesystem read routine
 | |
|  * @iocb:	kernel I/O control block
 | |
|  * @iter:	destination for the data read
 | |
|  *
 | |
|  * This is the "read_iter()" routine for all filesystems
 | |
|  * that can use the page cache directly.
 | |
|  *
 | |
|  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
 | |
|  * be returned when no data can be read without waiting for I/O requests
 | |
|  * to complete; it doesn't prevent readahead.
 | |
|  *
 | |
|  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
 | |
|  * requests shall be made for the read or for readahead.  When no data
 | |
|  * can be read, -EAGAIN shall be returned.  When readahead would be
 | |
|  * triggered, a partial, possibly empty read shall be returned.
 | |
|  *
 | |
|  * Return:
 | |
|  * * number of bytes copied, even for partial reads
 | |
|  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
 | |
|  */
 | |
| ssize_t
 | |
| generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 | |
| {
 | |
| 	size_t count = iov_iter_count(iter);
 | |
| 	ssize_t retval = 0;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return 0; /* skip atime */
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		struct file *file = iocb->ki_filp;
 | |
| 		struct address_space *mapping = file->f_mapping;
 | |
| 		struct inode *inode = mapping->host;
 | |
| 
 | |
| 		if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
 | |
| 						iocb->ki_pos + count - 1))
 | |
| 				return -EAGAIN;
 | |
| 		} else {
 | |
| 			retval = filemap_write_and_wait_range(mapping,
 | |
| 						iocb->ki_pos,
 | |
| 					        iocb->ki_pos + count - 1);
 | |
| 			if (retval < 0)
 | |
| 				return retval;
 | |
| 		}
 | |
| 
 | |
| 		file_accessed(file);
 | |
| 
 | |
| 		retval = mapping->a_ops->direct_IO(iocb, iter);
 | |
| 		if (retval >= 0) {
 | |
| 			iocb->ki_pos += retval;
 | |
| 			count -= retval;
 | |
| 		}
 | |
| 		if (retval != -EIOCBQUEUED)
 | |
| 			iov_iter_revert(iter, count - iov_iter_count(iter));
 | |
| 
 | |
| 		/*
 | |
| 		 * Btrfs can have a short DIO read if we encounter
 | |
| 		 * compressed extents, so if there was an error, or if
 | |
| 		 * we've already read everything we wanted to, or if
 | |
| 		 * there was a short read because we hit EOF, go ahead
 | |
| 		 * and return.  Otherwise fallthrough to buffered io for
 | |
| 		 * the rest of the read.  Buffered reads will not work for
 | |
| 		 * DAX files, so don't bother trying.
 | |
| 		 */
 | |
| 		if (retval < 0 || !count || IS_DAX(inode))
 | |
| 			return retval;
 | |
| 		if (iocb->ki_pos >= i_size_read(inode))
 | |
| 			return retval;
 | |
| 	}
 | |
| 
 | |
| 	return filemap_read(iocb, iter, retval);
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_read_iter);
 | |
| 
 | |
| /*
 | |
|  * Splice subpages from a folio into a pipe.
 | |
|  */
 | |
| size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
 | |
| 			      struct folio *folio, loff_t fpos, size_t size)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
 | |
| 
 | |
| 	page = folio_page(folio, offset / PAGE_SIZE);
 | |
| 	size = min(size, folio_size(folio) - offset);
 | |
| 	offset %= PAGE_SIZE;
 | |
| 
 | |
| 	while (spliced < size &&
 | |
| 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
 | |
| 		struct pipe_buffer *buf = pipe_head_buf(pipe);
 | |
| 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
 | |
| 
 | |
| 		*buf = (struct pipe_buffer) {
 | |
| 			.ops	= &page_cache_pipe_buf_ops,
 | |
| 			.page	= page,
 | |
| 			.offset	= offset,
 | |
| 			.len	= part,
 | |
| 		};
 | |
| 		folio_get(folio);
 | |
| 		pipe->head++;
 | |
| 		page++;
 | |
| 		spliced += part;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	return spliced;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
 | |
|  * a pipe.
 | |
|  */
 | |
| ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
 | |
| 			    struct pipe_inode_info *pipe,
 | |
| 			    size_t len, unsigned int flags)
 | |
| {
 | |
| 	struct folio_batch fbatch;
 | |
| 	struct kiocb iocb;
 | |
| 	size_t total_spliced = 0, used, npages;
 | |
| 	loff_t isize, end_offset;
 | |
| 	bool writably_mapped;
 | |
| 	int i, error = 0;
 | |
| 
 | |
| 	init_sync_kiocb(&iocb, in);
 | |
| 	iocb.ki_pos = *ppos;
 | |
| 
 | |
| 	/* Work out how much data we can actually add into the pipe */
 | |
| 	used = pipe_occupancy(pipe->head, pipe->tail);
 | |
| 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
 | |
| 	len = min_t(size_t, len, npages * PAGE_SIZE);
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (*ppos >= i_size_read(file_inode(in)))
 | |
| 			break;
 | |
| 
 | |
| 		iocb.ki_pos = *ppos;
 | |
| 		error = filemap_get_pages(&iocb, len, &fbatch, true);
 | |
| 		if (error < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * i_size must be checked after we know the pages are Uptodate.
 | |
| 		 *
 | |
| 		 * Checking i_size after the check allows us to calculate
 | |
| 		 * the correct value for "nr", which means the zero-filled
 | |
| 		 * part of the page is not copied back to userspace (unless
 | |
| 		 * another truncate extends the file - this is desired though).
 | |
| 		 */
 | |
| 		isize = i_size_read(file_inode(in));
 | |
| 		if (unlikely(*ppos >= isize))
 | |
| 			break;
 | |
| 		end_offset = min_t(loff_t, isize, *ppos + len);
 | |
| 
 | |
| 		/*
 | |
| 		 * Once we start copying data, we don't want to be touching any
 | |
| 		 * cachelines that might be contended:
 | |
| 		 */
 | |
| 		writably_mapped = mapping_writably_mapped(in->f_mapping);
 | |
| 
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 			size_t n;
 | |
| 
 | |
| 			if (folio_pos(folio) >= end_offset)
 | |
| 				goto out;
 | |
| 			folio_mark_accessed(folio);
 | |
| 
 | |
| 			/*
 | |
| 			 * If users can be writing to this folio using arbitrary
 | |
| 			 * virtual addresses, take care of potential aliasing
 | |
| 			 * before reading the folio on the kernel side.
 | |
| 			 */
 | |
| 			if (writably_mapped)
 | |
| 				flush_dcache_folio(folio);
 | |
| 
 | |
| 			n = min_t(loff_t, len, isize - *ppos);
 | |
| 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
 | |
| 			if (!n)
 | |
| 				goto out;
 | |
| 			len -= n;
 | |
| 			total_spliced += n;
 | |
| 			*ppos += n;
 | |
| 			in->f_ra.prev_pos = *ppos;
 | |
| 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		folio_batch_release(&fbatch);
 | |
| 	} while (len);
 | |
| 
 | |
| out:
 | |
| 	folio_batch_release(&fbatch);
 | |
| 	file_accessed(in);
 | |
| 
 | |
| 	return total_spliced ? total_spliced : error;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_splice_read);
 | |
| 
 | |
| static inline loff_t folio_seek_hole_data(struct xa_state *xas,
 | |
| 		struct address_space *mapping, struct folio *folio,
 | |
| 		loff_t start, loff_t end, bool seek_data)
 | |
| {
 | |
| 	const struct address_space_operations *ops = mapping->a_ops;
 | |
| 	size_t offset, bsz = i_blocksize(mapping->host);
 | |
| 
 | |
| 	if (xa_is_value(folio) || folio_test_uptodate(folio))
 | |
| 		return seek_data ? start : end;
 | |
| 	if (!ops->is_partially_uptodate)
 | |
| 		return seek_data ? end : start;
 | |
| 
 | |
| 	xas_pause(xas);
 | |
| 	rcu_read_unlock();
 | |
| 	folio_lock(folio);
 | |
| 	if (unlikely(folio->mapping != mapping))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
 | |
| 
 | |
| 	do {
 | |
| 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
 | |
| 							seek_data)
 | |
| 			break;
 | |
| 		start = (start + bsz) & ~(bsz - 1);
 | |
| 		offset += bsz;
 | |
| 	} while (offset < folio_size(folio));
 | |
| unlock:
 | |
| 	folio_unlock(folio);
 | |
| 	rcu_read_lock();
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
 | |
| {
 | |
| 	if (xa_is_value(folio))
 | |
| 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
 | |
| 	return folio_size(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
 | |
|  * @mapping: Address space to search.
 | |
|  * @start: First byte to consider.
 | |
|  * @end: Limit of search (exclusive).
 | |
|  * @whence: Either SEEK_HOLE or SEEK_DATA.
 | |
|  *
 | |
|  * If the page cache knows which blocks contain holes and which blocks
 | |
|  * contain data, your filesystem can use this function to implement
 | |
|  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
 | |
|  * entirely memory-based such as tmpfs, and filesystems which support
 | |
|  * unwritten extents.
 | |
|  *
 | |
|  * Return: The requested offset on success, or -ENXIO if @whence specifies
 | |
|  * SEEK_DATA and there is no data after @start.  There is an implicit hole
 | |
|  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
 | |
|  * and @end contain data.
 | |
|  */
 | |
| loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
 | |
| 		loff_t end, int whence)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
 | |
| 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
 | |
| 	bool seek_data = (whence == SEEK_DATA);
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	if (end <= start)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
 | |
| 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
 | |
| 		size_t seek_size;
 | |
| 
 | |
| 		if (start < pos) {
 | |
| 			if (!seek_data)
 | |
| 				goto unlock;
 | |
| 			start = pos;
 | |
| 		}
 | |
| 
 | |
| 		seek_size = seek_folio_size(&xas, folio);
 | |
| 		pos = round_up((u64)pos + 1, seek_size);
 | |
| 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
 | |
| 				seek_data);
 | |
| 		if (start < pos)
 | |
| 			goto unlock;
 | |
| 		if (start >= end)
 | |
| 			break;
 | |
| 		if (seek_size > PAGE_SIZE)
 | |
| 			xas_set(&xas, pos >> PAGE_SHIFT);
 | |
| 		if (!xa_is_value(folio))
 | |
| 			folio_put(folio);
 | |
| 	}
 | |
| 	if (seek_data)
 | |
| 		start = -ENXIO;
 | |
| unlock:
 | |
| 	rcu_read_unlock();
 | |
| 	if (folio && !xa_is_value(folio))
 | |
| 		folio_put(folio);
 | |
| 	if (start > end)
 | |
| 		return end;
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #define MMAP_LOTSAMISS  (100)
 | |
| /*
 | |
|  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
 | |
|  * @vmf - the vm_fault for this fault.
 | |
|  * @folio - the folio to lock.
 | |
|  * @fpin - the pointer to the file we may pin (or is already pinned).
 | |
|  *
 | |
|  * This works similar to lock_folio_or_retry in that it can drop the
 | |
|  * mmap_lock.  It differs in that it actually returns the folio locked
 | |
|  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
 | |
|  * to drop the mmap_lock then fpin will point to the pinned file and
 | |
|  * needs to be fput()'ed at a later point.
 | |
|  */
 | |
| static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
 | |
| 				     struct file **fpin)
 | |
| {
 | |
| 	if (folio_trylock(folio))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
 | |
| 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
 | |
| 	 * is supposed to work. We have way too many special cases..
 | |
| 	 */
 | |
| 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 | |
| 		return 0;
 | |
| 
 | |
| 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
 | |
| 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
 | |
| 		if (__folio_lock_killable(folio)) {
 | |
| 			/*
 | |
| 			 * We didn't have the right flags to drop the mmap_lock,
 | |
| 			 * but all fault_handlers only check for fatal signals
 | |
| 			 * if we return VM_FAULT_RETRY, so we need to drop the
 | |
| 			 * mmap_lock here and return 0 if we don't have a fpin.
 | |
| 			 */
 | |
| 			if (*fpin == NULL)
 | |
| 				mmap_read_unlock(vmf->vma->vm_mm);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else
 | |
| 		__folio_lock(folio);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronous readahead happens when we don't even find a page in the page
 | |
|  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 | |
|  * to drop the mmap sem we return the file that was pinned in order for us to do
 | |
|  * that.  If we didn't pin a file then we return NULL.  The file that is
 | |
|  * returned needs to be fput()'ed when we're done with it.
 | |
|  */
 | |
| static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
 | |
| 	struct file *fpin = NULL;
 | |
| 	unsigned long vm_flags = vmf->vma->vm_flags;
 | |
| 	unsigned int mmap_miss;
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	/* Use the readahead code, even if readahead is disabled */
 | |
| 	if (vm_flags & VM_HUGEPAGE) {
 | |
| 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
 | |
| 		ra->size = HPAGE_PMD_NR;
 | |
| 		/*
 | |
| 		 * Fetch two PMD folios, so we get the chance to actually
 | |
| 		 * readahead, unless we've been told not to.
 | |
| 		 */
 | |
| 		if (!(vm_flags & VM_RAND_READ))
 | |
| 			ra->size *= 2;
 | |
| 		ra->async_size = HPAGE_PMD_NR;
 | |
| 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
 | |
| 		return fpin;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (vm_flags & VM_RAND_READ)
 | |
| 		return fpin;
 | |
| 	if (!ra->ra_pages)
 | |
| 		return fpin;
 | |
| 
 | |
| 	if (vm_flags & VM_SEQ_READ) {
 | |
| 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 		page_cache_sync_ra(&ractl, ra->ra_pages);
 | |
| 		return fpin;
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid banging the cache line if not needed */
 | |
| 	mmap_miss = READ_ONCE(ra->mmap_miss);
 | |
| 	if (mmap_miss < MMAP_LOTSAMISS * 10)
 | |
| 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we miss much more than hit in this file? If so,
 | |
| 	 * stop bothering with read-ahead. It will only hurt.
 | |
| 	 */
 | |
| 	if (mmap_miss > MMAP_LOTSAMISS)
 | |
| 		return fpin;
 | |
| 
 | |
| 	/*
 | |
| 	 * mmap read-around
 | |
| 	 */
 | |
| 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
 | |
| 	ra->size = ra->ra_pages;
 | |
| 	ra->async_size = ra->ra_pages / 4;
 | |
| 	ractl._index = ra->start;
 | |
| 	page_cache_ra_order(&ractl, ra, 0);
 | |
| 	return fpin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Asynchronous readahead happens when we find the page and PG_readahead,
 | |
|  * so we want to possibly extend the readahead further.  We return the file that
 | |
|  * was pinned if we have to drop the mmap_lock in order to do IO.
 | |
|  */
 | |
| static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
 | |
| 					    struct folio *folio)
 | |
| {
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
 | |
| 	struct file *fpin = NULL;
 | |
| 	unsigned int mmap_miss;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
 | |
| 		return fpin;
 | |
| 
 | |
| 	mmap_miss = READ_ONCE(ra->mmap_miss);
 | |
| 	if (mmap_miss)
 | |
| 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
 | |
| 
 | |
| 	if (folio_test_readahead(folio)) {
 | |
| 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
 | |
| 	}
 | |
| 	return fpin;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fault - read in file data for page fault handling
 | |
|  * @vmf:	struct vm_fault containing details of the fault
 | |
|  *
 | |
|  * filemap_fault() is invoked via the vma operations vector for a
 | |
|  * mapped memory region to read in file data during a page fault.
 | |
|  *
 | |
|  * The goto's are kind of ugly, but this streamlines the normal case of having
 | |
|  * it in the page cache, and handles the special cases reasonably without
 | |
|  * having a lot of duplicated code.
 | |
|  *
 | |
|  * vma->vm_mm->mmap_lock must be held on entry.
 | |
|  *
 | |
|  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
 | |
|  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 | |
|  *
 | |
|  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
 | |
|  * has not been released.
 | |
|  *
 | |
|  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 | |
|  *
 | |
|  * Return: bitwise-OR of %VM_FAULT_ codes.
 | |
|  */
 | |
| vm_fault_t filemap_fault(struct vm_fault *vmf)
 | |
| {
 | |
| 	int error;
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file *fpin = NULL;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t max_idx, index = vmf->pgoff;
 | |
| 	struct folio *folio;
 | |
| 	vm_fault_t ret = 0;
 | |
| 	bool mapping_locked = false;
 | |
| 
 | |
| 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 	if (unlikely(index >= max_idx))
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we have something in the page cache already?
 | |
| 	 */
 | |
| 	folio = filemap_get_folio(mapping, index);
 | |
| 	if (likely(!IS_ERR(folio))) {
 | |
| 		/*
 | |
| 		 * We found the page, so try async readahead before waiting for
 | |
| 		 * the lock.
 | |
| 		 */
 | |
| 		if (!(vmf->flags & FAULT_FLAG_TRIED))
 | |
| 			fpin = do_async_mmap_readahead(vmf, folio);
 | |
| 		if (unlikely(!folio_test_uptodate(folio))) {
 | |
| 			filemap_invalidate_lock_shared(mapping);
 | |
| 			mapping_locked = true;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* No page in the page cache at all */
 | |
| 		count_vm_event(PGMAJFAULT);
 | |
| 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
 | |
| 		ret = VM_FAULT_MAJOR;
 | |
| 		fpin = do_sync_mmap_readahead(vmf);
 | |
| retry_find:
 | |
| 		/*
 | |
| 		 * See comment in filemap_create_folio() why we need
 | |
| 		 * invalidate_lock
 | |
| 		 */
 | |
| 		if (!mapping_locked) {
 | |
| 			filemap_invalidate_lock_shared(mapping);
 | |
| 			mapping_locked = true;
 | |
| 		}
 | |
| 		folio = __filemap_get_folio(mapping, index,
 | |
| 					  FGP_CREAT|FGP_FOR_MMAP,
 | |
| 					  vmf->gfp_mask);
 | |
| 		if (IS_ERR(folio)) {
 | |
| 			if (fpin)
 | |
| 				goto out_retry;
 | |
| 			filemap_invalidate_unlock_shared(mapping);
 | |
| 			return VM_FAULT_OOM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
 | |
| 		goto out_retry;
 | |
| 
 | |
| 	/* Did it get truncated? */
 | |
| 	if (unlikely(folio->mapping != mapping)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		goto retry_find;
 | |
| 	}
 | |
| 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a locked page in the page cache, now we need to check
 | |
| 	 * that it's up-to-date. If not, it is going to be due to an error.
 | |
| 	 */
 | |
| 	if (unlikely(!folio_test_uptodate(folio))) {
 | |
| 		/*
 | |
| 		 * The page was in cache and uptodate and now it is not.
 | |
| 		 * Strange but possible since we didn't hold the page lock all
 | |
| 		 * the time. Let's drop everything get the invalidate lock and
 | |
| 		 * try again.
 | |
| 		 */
 | |
| 		if (!mapping_locked) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			goto retry_find;
 | |
| 		}
 | |
| 		goto page_not_uptodate;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We've made it this far and we had to drop our mmap_lock, now is the
 | |
| 	 * time to return to the upper layer and have it re-find the vma and
 | |
| 	 * redo the fault.
 | |
| 	 */
 | |
| 	if (fpin) {
 | |
| 		folio_unlock(folio);
 | |
| 		goto out_retry;
 | |
| 	}
 | |
| 	if (mapping_locked)
 | |
| 		filemap_invalidate_unlock_shared(mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * Found the page and have a reference on it.
 | |
| 	 * We must recheck i_size under page lock.
 | |
| 	 */
 | |
| 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 	if (unlikely(index >= max_idx)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	vmf->page = folio_file_page(folio, index);
 | |
| 	return ret | VM_FAULT_LOCKED;
 | |
| 
 | |
| page_not_uptodate:
 | |
| 	/*
 | |
| 	 * Umm, take care of errors if the page isn't up-to-date.
 | |
| 	 * Try to re-read it _once_. We do this synchronously,
 | |
| 	 * because there really aren't any performance issues here
 | |
| 	 * and we need to check for errors.
 | |
| 	 */
 | |
| 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
 | |
| 	if (fpin)
 | |
| 		goto out_retry;
 | |
| 	folio_put(folio);
 | |
| 
 | |
| 	if (!error || error == AOP_TRUNCATED_PAGE)
 | |
| 		goto retry_find;
 | |
| 	filemap_invalidate_unlock_shared(mapping);
 | |
| 
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| 
 | |
| out_retry:
 | |
| 	/*
 | |
| 	 * We dropped the mmap_lock, we need to return to the fault handler to
 | |
| 	 * re-find the vma and come back and find our hopefully still populated
 | |
| 	 * page.
 | |
| 	 */
 | |
| 	if (folio)
 | |
| 		folio_put(folio);
 | |
| 	if (mapping_locked)
 | |
| 		filemap_invalidate_unlock_shared(mapping);
 | |
| 	if (fpin)
 | |
| 		fput(fpin);
 | |
| 	return ret | VM_FAULT_RETRY;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fault);
 | |
| 
 | |
| static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
 | |
| 		pgoff_t start)
 | |
| {
 | |
| 	struct mm_struct *mm = vmf->vma->vm_mm;
 | |
| 
 | |
| 	/* Huge page is mapped? No need to proceed. */
 | |
| 	if (pmd_trans_huge(*vmf->pmd)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
 | |
| 		struct page *page = folio_file_page(folio, start);
 | |
| 		vm_fault_t ret = do_set_pmd(vmf, page);
 | |
| 		if (!ret) {
 | |
| 			/* The page is mapped successfully, reference consumed. */
 | |
| 			folio_unlock(folio);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_none(*vmf->pmd))
 | |
| 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
 | |
| 
 | |
| 	/* See comment in handle_pte_fault() */
 | |
| 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct folio *next_uptodate_page(struct folio *folio,
 | |
| 				       struct address_space *mapping,
 | |
| 				       struct xa_state *xas, pgoff_t end_pgoff)
 | |
| {
 | |
| 	unsigned long max_idx;
 | |
| 
 | |
| 	do {
 | |
| 		if (!folio)
 | |
| 			return NULL;
 | |
| 		if (xas_retry(xas, folio))
 | |
| 			continue;
 | |
| 		if (xa_is_value(folio))
 | |
| 			continue;
 | |
| 		if (folio_test_locked(folio))
 | |
| 			continue;
 | |
| 		if (!folio_try_get_rcu(folio))
 | |
| 			continue;
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(folio != xas_reload(xas)))
 | |
| 			goto skip;
 | |
| 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
 | |
| 			goto skip;
 | |
| 		if (!folio_trylock(folio))
 | |
| 			goto skip;
 | |
| 		if (folio->mapping != mapping)
 | |
| 			goto unlock;
 | |
| 		if (!folio_test_uptodate(folio))
 | |
| 			goto unlock;
 | |
| 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
 | |
| 		if (xas->xa_index >= max_idx)
 | |
| 			goto unlock;
 | |
| 		return folio;
 | |
| unlock:
 | |
| 		folio_unlock(folio);
 | |
| skip:
 | |
| 		folio_put(folio);
 | |
| 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct folio *first_map_page(struct address_space *mapping,
 | |
| 					  struct xa_state *xas,
 | |
| 					  pgoff_t end_pgoff)
 | |
| {
 | |
| 	return next_uptodate_page(xas_find(xas, end_pgoff),
 | |
| 				  mapping, xas, end_pgoff);
 | |
| }
 | |
| 
 | |
| static inline struct folio *next_map_page(struct address_space *mapping,
 | |
| 					 struct xa_state *xas,
 | |
| 					 pgoff_t end_pgoff)
 | |
| {
 | |
| 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
 | |
| 				  mapping, xas, end_pgoff);
 | |
| }
 | |
| 
 | |
| vm_fault_t filemap_map_pages(struct vm_fault *vmf,
 | |
| 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	pgoff_t last_pgoff = start_pgoff;
 | |
| 	unsigned long addr;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
 | |
| 	struct folio *folio;
 | |
| 	struct page *page;
 | |
| 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
 | |
| 	vm_fault_t ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	folio = first_map_page(mapping, &xas, end_pgoff);
 | |
| 	if (!folio)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
 | |
| 	do {
 | |
| again:
 | |
| 		page = folio_file_page(folio, xas.xa_index);
 | |
| 		if (PageHWPoison(page))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (mmap_miss > 0)
 | |
| 			mmap_miss--;
 | |
| 
 | |
| 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
 | |
| 		vmf->pte += xas.xa_index - last_pgoff;
 | |
| 		last_pgoff = xas.xa_index;
 | |
| 
 | |
| 		/*
 | |
| 		 * NOTE: If there're PTE markers, we'll leave them to be
 | |
| 		 * handled in the specific fault path, and it'll prohibit the
 | |
| 		 * fault-around logic.
 | |
| 		 */
 | |
| 		if (!pte_none(*vmf->pte))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		/* We're about to handle the fault */
 | |
| 		if (vmf->address == addr)
 | |
| 			ret = VM_FAULT_NOPAGE;
 | |
| 
 | |
| 		do_set_pte(vmf, page, addr);
 | |
| 		/* no need to invalidate: a not-present page won't be cached */
 | |
| 		update_mmu_cache(vma, addr, vmf->pte);
 | |
| 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
 | |
| 			xas.xa_index++;
 | |
| 			folio_ref_inc(folio);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		folio_unlock(folio);
 | |
| 		continue;
 | |
| unlock:
 | |
| 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
 | |
| 			xas.xa_index++;
 | |
| 			goto again;
 | |
| 		}
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
 | |
| 	pte_unmap_unlock(vmf->pte, vmf->ptl);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_map_pages);
 | |
| 
 | |
| vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	struct folio *folio = page_folio(vmf->page);
 | |
| 	vm_fault_t ret = VM_FAULT_LOCKED;
 | |
| 
 | |
| 	sb_start_pagefault(mapping->host->i_sb);
 | |
| 	file_update_time(vmf->vma->vm_file);
 | |
| 	folio_lock(folio);
 | |
| 	if (folio->mapping != mapping) {
 | |
| 		folio_unlock(folio);
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We mark the folio dirty already here so that when freeze is in
 | |
| 	 * progress, we are guaranteed that writeback during freezing will
 | |
| 	 * see the dirty folio and writeprotect it again.
 | |
| 	 */
 | |
| 	folio_mark_dirty(folio);
 | |
| 	folio_wait_stable(folio);
 | |
| out:
 | |
| 	sb_end_pagefault(mapping->host->i_sb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct vm_operations_struct generic_file_vm_ops = {
 | |
| 	.fault		= filemap_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= filemap_page_mkwrite,
 | |
| };
 | |
| 
 | |
| /* This is used for a general mmap of a disk file */
 | |
| 
 | |
| int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->read_folio)
 | |
| 		return -ENOEXEC;
 | |
| 	file_accessed(file);
 | |
| 	vma->vm_ops = &generic_file_vm_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for filesystems which do not implement ->writepage.
 | |
|  */
 | |
| int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 | |
| 		return -EINVAL;
 | |
| 	return generic_file_mmap(file, vma);
 | |
| }
 | |
| #else
 | |
| vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| EXPORT_SYMBOL(filemap_page_mkwrite);
 | |
| EXPORT_SYMBOL(generic_file_mmap);
 | |
| EXPORT_SYMBOL(generic_file_readonly_mmap);
 | |
| 
 | |
| static struct folio *do_read_cache_folio(struct address_space *mapping,
 | |
| 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!filler)
 | |
| 		filler = mapping->a_ops->read_folio;
 | |
| repeat:
 | |
| 	folio = filemap_get_folio(mapping, index);
 | |
| 	if (IS_ERR(folio)) {
 | |
| 		folio = filemap_alloc_folio(gfp, 0);
 | |
| 		if (!folio)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		err = filemap_add_folio(mapping, folio, index, gfp);
 | |
| 		if (unlikely(err)) {
 | |
| 			folio_put(folio);
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 			/* Presumably ENOMEM for xarray node */
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 
 | |
| 		goto filler;
 | |
| 	}
 | |
| 	if (folio_test_uptodate(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!folio_trylock(folio)) {
 | |
| 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* Folio was truncated from mapping */
 | |
| 	if (!folio->mapping) {
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* Someone else locked and filled the page in a very small window */
 | |
| 	if (folio_test_uptodate(folio)) {
 | |
| 		folio_unlock(folio);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| filler:
 | |
| 	err = filemap_read_folio(file, filler, folio);
 | |
| 	if (err) {
 | |
| 		folio_put(folio);
 | |
| 		if (err == AOP_TRUNCATED_PAGE)
 | |
| 			goto repeat;
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	folio_mark_accessed(folio);
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_cache_folio - Read into page cache, fill it if needed.
 | |
|  * @mapping: The address_space to read from.
 | |
|  * @index: The index to read.
 | |
|  * @filler: Function to perform the read, or NULL to use aops->read_folio().
 | |
|  * @file: Passed to filler function, may be NULL if not required.
 | |
|  *
 | |
|  * Read one page into the page cache.  If it succeeds, the folio returned
 | |
|  * will contain @index, but it may not be the first page of the folio.
 | |
|  *
 | |
|  * If the filler function returns an error, it will be returned to the
 | |
|  * caller.
 | |
|  *
 | |
|  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
 | |
|  * Return: An uptodate folio on success, ERR_PTR() on failure.
 | |
|  */
 | |
| struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
 | |
| 		filler_t filler, struct file *file)
 | |
| {
 | |
| 	return do_read_cache_folio(mapping, index, filler, file,
 | |
| 			mapping_gfp_mask(mapping));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_folio);
 | |
| 
 | |
| /**
 | |
|  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
 | |
|  * @mapping:	The address_space for the folio.
 | |
|  * @index:	The index that the allocated folio will contain.
 | |
|  * @gfp:	The page allocator flags to use if allocating.
 | |
|  *
 | |
|  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
 | |
|  * any new memory allocations done using the specified allocation flags.
 | |
|  *
 | |
|  * The most likely error from this function is EIO, but ENOMEM is
 | |
|  * possible and so is EINTR.  If ->read_folio returns another error,
 | |
|  * that will be returned to the caller.
 | |
|  *
 | |
|  * The function expects mapping->invalidate_lock to be already held.
 | |
|  *
 | |
|  * Return: Uptodate folio on success, ERR_PTR() on failure.
 | |
|  */
 | |
| struct folio *mapping_read_folio_gfp(struct address_space *mapping,
 | |
| 		pgoff_t index, gfp_t gfp)
 | |
| {
 | |
| 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(mapping_read_folio_gfp);
 | |
| 
 | |
| static struct page *do_read_cache_page(struct address_space *mapping,
 | |
| 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
 | |
| {
 | |
| 	struct folio *folio;
 | |
| 
 | |
| 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
 | |
| 	if (IS_ERR(folio))
 | |
| 		return &folio->page;
 | |
| 	return folio_file_page(folio, index);
 | |
| }
 | |
| 
 | |
| struct page *read_cache_page(struct address_space *mapping,
 | |
| 			pgoff_t index, filler_t *filler, struct file *file)
 | |
| {
 | |
| 	return do_read_cache_page(mapping, index, filler, file,
 | |
| 			mapping_gfp_mask(mapping));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page);
 | |
| 
 | |
| /**
 | |
|  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @gfp:	the page allocator flags to use if allocating
 | |
|  *
 | |
|  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
 | |
|  * any new page allocations done using the specified allocation flags.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  *
 | |
|  * The function expects mapping->invalidate_lock to be already held.
 | |
|  *
 | |
|  * Return: up to date page on success, ERR_PTR() on failure.
 | |
|  */
 | |
| struct page *read_cache_page_gfp(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page_gfp);
 | |
| 
 | |
| /*
 | |
|  * Warn about a page cache invalidation failure during a direct I/O write.
 | |
|  */
 | |
| void dio_warn_stale_pagecache(struct file *filp)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
 | |
| 	char pathname[128];
 | |
| 	char *path;
 | |
| 
 | |
| 	errseq_set(&filp->f_mapping->wb_err, -EIO);
 | |
| 	if (__ratelimit(&_rs)) {
 | |
| 		path = file_path(filp, pathname, sizeof(pathname));
 | |
| 		if (IS_ERR(path))
 | |
| 			path = "(unknown)";
 | |
| 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
 | |
| 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
 | |
| 			current->comm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ssize_t
 | |
| generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file	*file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode	*inode = mapping->host;
 | |
| 	loff_t		pos = iocb->ki_pos;
 | |
| 	ssize_t		written;
 | |
| 	size_t		write_len;
 | |
| 	pgoff_t		end;
 | |
| 
 | |
| 	write_len = iov_iter_count(from);
 | |
| 	end = (pos + write_len - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		/* If there are pages to writeback, return */
 | |
| 		if (filemap_range_has_page(file->f_mapping, pos,
 | |
| 					   pos + write_len - 1))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		written = filemap_write_and_wait_range(mapping, pos,
 | |
| 							pos + write_len - 1);
 | |
| 		if (written)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After a write we want buffered reads to be sure to go to disk to get
 | |
| 	 * the new data.  We invalidate clean cached page from the region we're
 | |
| 	 * about to write.  We do this *before* the write so that we can return
 | |
| 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
 | |
| 	 */
 | |
| 	written = invalidate_inode_pages2_range(mapping,
 | |
| 					pos >> PAGE_SHIFT, end);
 | |
| 	/*
 | |
| 	 * If a page can not be invalidated, return 0 to fall back
 | |
| 	 * to buffered write.
 | |
| 	 */
 | |
| 	if (written) {
 | |
| 		if (written == -EBUSY)
 | |
| 			return 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	written = mapping->a_ops->direct_IO(iocb, from);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, try again to invalidate clean pages which might have been
 | |
| 	 * cached by non-direct readahead, or faulted in by get_user_pages()
 | |
| 	 * if the source of the write was an mmap'ed region of the file
 | |
| 	 * we're writing.  Either one is a pretty crazy thing to do,
 | |
| 	 * so we don't support it 100%.  If this invalidation
 | |
| 	 * fails, tough, the write still worked...
 | |
| 	 *
 | |
| 	 * Most of the time we do not need this since dio_complete() will do
 | |
| 	 * the invalidation for us. However there are some file systems that
 | |
| 	 * do not end up with dio_complete() being called, so let's not break
 | |
| 	 * them by removing it completely.
 | |
| 	 *
 | |
| 	 * Noticeable example is a blkdev_direct_IO().
 | |
| 	 *
 | |
| 	 * Skip invalidation for async writes or if mapping has no pages.
 | |
| 	 */
 | |
| 	if (written > 0 && mapping->nrpages &&
 | |
| 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
 | |
| 		dio_warn_stale_pagecache(file);
 | |
| 
 | |
| 	if (written > 0) {
 | |
| 		pos += written;
 | |
| 		write_len -= written;
 | |
| 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 | |
| 			i_size_write(inode, pos);
 | |
| 			mark_inode_dirty(inode);
 | |
| 		}
 | |
| 		iocb->ki_pos = pos;
 | |
| 	}
 | |
| 	if (written != -EIOCBQUEUED)
 | |
| 		iov_iter_revert(from, write_len - iov_iter_count(from));
 | |
| out:
 | |
| 	return written;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_direct_write);
 | |
| 
 | |
| ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	loff_t pos = iocb->ki_pos;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	const struct address_space_operations *a_ops = mapping->a_ops;
 | |
| 	long status = 0;
 | |
| 	ssize_t written = 0;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		unsigned long offset;	/* Offset into pagecache page */
 | |
| 		unsigned long bytes;	/* Bytes to write to page */
 | |
| 		size_t copied;		/* Bytes copied from user */
 | |
| 		void *fsdata = NULL;
 | |
| 
 | |
| 		offset = (pos & (PAGE_SIZE - 1));
 | |
| 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
 | |
| 						iov_iter_count(i));
 | |
| 
 | |
| again:
 | |
| 		/*
 | |
| 		 * Bring in the user page that we will copy from _first_.
 | |
| 		 * Otherwise there's a nasty deadlock on copying from the
 | |
| 		 * same page as we're writing to, without it being marked
 | |
| 		 * up-to-date.
 | |
| 		 */
 | |
| 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
 | |
| 			status = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			status = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		status = a_ops->write_begin(file, mapping, pos, bytes,
 | |
| 						&page, &fsdata);
 | |
| 		if (unlikely(status < 0))
 | |
| 			break;
 | |
| 
 | |
| 		if (mapping_writably_mapped(mapping))
 | |
| 			flush_dcache_page(page);
 | |
| 
 | |
| 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
 | |
| 		flush_dcache_page(page);
 | |
| 
 | |
| 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
 | |
| 						page, fsdata);
 | |
| 		if (unlikely(status != copied)) {
 | |
| 			iov_iter_revert(i, copied - max(status, 0L));
 | |
| 			if (unlikely(status < 0))
 | |
| 				break;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(status == 0)) {
 | |
| 			/*
 | |
| 			 * A short copy made ->write_end() reject the
 | |
| 			 * thing entirely.  Might be memory poisoning
 | |
| 			 * halfway through, might be a race with munmap,
 | |
| 			 * might be severe memory pressure.
 | |
| 			 */
 | |
| 			if (copied)
 | |
| 				bytes = copied;
 | |
| 			goto again;
 | |
| 		}
 | |
| 		pos += status;
 | |
| 		written += status;
 | |
| 
 | |
| 		balance_dirty_pages_ratelimited(mapping);
 | |
| 	} while (iov_iter_count(i));
 | |
| 
 | |
| 	return written ? written : status;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_perform_write);
 | |
| 
 | |
| /**
 | |
|  * __generic_file_write_iter - write data to a file
 | |
|  * @iocb:	IO state structure (file, offset, etc.)
 | |
|  * @from:	iov_iter with data to write
 | |
|  *
 | |
|  * This function does all the work needed for actually writing data to a
 | |
|  * file. It does all basic checks, removes SUID from the file, updates
 | |
|  * modification times and calls proper subroutines depending on whether we
 | |
|  * do direct IO or a standard buffered write.
 | |
|  *
 | |
|  * It expects i_rwsem to be grabbed unless we work on a block device or similar
 | |
|  * object which does not need locking at all.
 | |
|  *
 | |
|  * This function does *not* take care of syncing data in case of O_SYNC write.
 | |
|  * A caller has to handle it. This is mainly due to the fact that we want to
 | |
|  * avoid syncing under i_rwsem.
 | |
|  *
 | |
|  * Return:
 | |
|  * * number of bytes written, even for truncated writes
 | |
|  * * negative error code if no data has been written at all
 | |
|  */
 | |
| ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode 	*inode = mapping->host;
 | |
| 	ssize_t		written = 0;
 | |
| 	ssize_t		err;
 | |
| 	ssize_t		status;
 | |
| 
 | |
| 	/* We can write back this queue in page reclaim */
 | |
| 	current->backing_dev_info = inode_to_bdi(inode);
 | |
| 	err = file_remove_privs(file);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = file_update_time(file);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		loff_t pos, endbyte;
 | |
| 
 | |
| 		written = generic_file_direct_write(iocb, from);
 | |
| 		/*
 | |
| 		 * If the write stopped short of completing, fall back to
 | |
| 		 * buffered writes.  Some filesystems do this for writes to
 | |
| 		 * holes, for example.  For DAX files, a buffered write will
 | |
| 		 * not succeed (even if it did, DAX does not handle dirty
 | |
| 		 * page-cache pages correctly).
 | |
| 		 */
 | |
| 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
 | |
| 			goto out;
 | |
| 
 | |
| 		pos = iocb->ki_pos;
 | |
| 		status = generic_perform_write(iocb, from);
 | |
| 		/*
 | |
| 		 * If generic_perform_write() returned a synchronous error
 | |
| 		 * then we want to return the number of bytes which were
 | |
| 		 * direct-written, or the error code if that was zero.  Note
 | |
| 		 * that this differs from normal direct-io semantics, which
 | |
| 		 * will return -EFOO even if some bytes were written.
 | |
| 		 */
 | |
| 		if (unlikely(status < 0)) {
 | |
| 			err = status;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We need to ensure that the page cache pages are written to
 | |
| 		 * disk and invalidated to preserve the expected O_DIRECT
 | |
| 		 * semantics.
 | |
| 		 */
 | |
| 		endbyte = pos + status - 1;
 | |
| 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
 | |
| 		if (err == 0) {
 | |
| 			iocb->ki_pos = endbyte + 1;
 | |
| 			written += status;
 | |
| 			invalidate_mapping_pages(mapping,
 | |
| 						 pos >> PAGE_SHIFT,
 | |
| 						 endbyte >> PAGE_SHIFT);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We don't know how much we wrote, so just return
 | |
| 			 * the number of bytes which were direct-written
 | |
| 			 */
 | |
| 		}
 | |
| 	} else {
 | |
| 		written = generic_perform_write(iocb, from);
 | |
| 		if (likely(written > 0))
 | |
| 			iocb->ki_pos += written;
 | |
| 	}
 | |
| out:
 | |
| 	current->backing_dev_info = NULL;
 | |
| 	return written ? written : err;
 | |
| }
 | |
| EXPORT_SYMBOL(__generic_file_write_iter);
 | |
| 
 | |
| /**
 | |
|  * generic_file_write_iter - write data to a file
 | |
|  * @iocb:	IO state structure
 | |
|  * @from:	iov_iter with data to write
 | |
|  *
 | |
|  * This is a wrapper around __generic_file_write_iter() to be used by most
 | |
|  * filesystems. It takes care of syncing the file in case of O_SYNC file
 | |
|  * and acquires i_rwsem as needed.
 | |
|  * Return:
 | |
|  * * negative error code if no data has been written at all of
 | |
|  *   vfs_fsync_range() failed for a synchronous write
 | |
|  * * number of bytes written, even for truncated writes
 | |
|  */
 | |
| ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	ret = generic_write_checks(iocb, from);
 | |
| 	if (ret > 0)
 | |
| 		ret = __generic_file_write_iter(iocb, from);
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	if (ret > 0)
 | |
| 		ret = generic_write_sync(iocb, ret);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_write_iter);
 | |
| 
 | |
| /**
 | |
|  * filemap_release_folio() - Release fs-specific metadata on a folio.
 | |
|  * @folio: The folio which the kernel is trying to free.
 | |
|  * @gfp: Memory allocation flags (and I/O mode).
 | |
|  *
 | |
|  * The address_space is trying to release any data attached to a folio
 | |
|  * (presumably at folio->private).
 | |
|  *
 | |
|  * This will also be called if the private_2 flag is set on a page,
 | |
|  * indicating that the folio has other metadata associated with it.
 | |
|  *
 | |
|  * The @gfp argument specifies whether I/O may be performed to release
 | |
|  * this page (__GFP_IO), and whether the call may block
 | |
|  * (__GFP_RECLAIM & __GFP_FS).
 | |
|  *
 | |
|  * Return: %true if the release was successful, otherwise %false.
 | |
|  */
 | |
| bool filemap_release_folio(struct folio *folio, gfp_t gfp)
 | |
| {
 | |
| 	struct address_space * const mapping = folio->mapping;
 | |
| 
 | |
| 	BUG_ON(!folio_test_locked(folio));
 | |
| 	if (folio_test_writeback(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	if (mapping && mapping->a_ops->release_folio)
 | |
| 		return mapping->a_ops->release_folio(folio, gfp);
 | |
| 	return try_to_free_buffers(folio);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_release_folio);
 |