linux/tools/testing/selftests/ptp/testptp.c
Rahul Rameshbabu c3b60ab7a4 ptp: Add .getmaxphase callback to ptp_clock_info
Enables advertisement of the maximum offset supported by the phase control
functionality of PHCs. The callback is used to return an error if an offset
not supported by the PHC is used in ADJ_OFFSET. The ioctls
PTP_CLOCK_GETCAPS and PTP_CLOCK_GETCAPS2 now advertise the maximum offset a
PHC's phase control functionality is capable of supporting. Introduce new
sysfs node, max_phase_adjustment.

Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Maciek Machnikowski <maciek@machnikowski.net>
Signed-off-by: Rahul Rameshbabu <rrameshbabu@nvidia.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-20 09:02:33 +01:00

540 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PTP 1588 clock support - User space test program
*
* Copyright (C) 2010 OMICRON electronics GmbH
*/
#define _GNU_SOURCE
#define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <linux/ptp_clock.h>
#define DEVICE "/dev/ptp0"
#ifndef ADJ_SETOFFSET
#define ADJ_SETOFFSET 0x0100
#endif
#ifndef CLOCK_INVALID
#define CLOCK_INVALID -1
#endif
#define NSEC_PER_SEC 1000000000LL
/* clock_adjtime is not available in GLIBC < 2.14 */
#if !__GLIBC_PREREQ(2, 14)
#include <sys/syscall.h>
static int clock_adjtime(clockid_t id, struct timex *tx)
{
return syscall(__NR_clock_adjtime, id, tx);
}
#endif
static void show_flag_test(int rq_index, unsigned int flags, int err)
{
printf("PTP_EXTTS_REQUEST%c flags 0x%08x : (%d) %s\n",
rq_index ? '1' + rq_index : ' ',
flags, err, strerror(errno));
/* sigh, uClibc ... */
errno = 0;
}
static void do_flag_test(int fd, unsigned int index)
{
struct ptp_extts_request extts_request;
unsigned long request[2] = {
PTP_EXTTS_REQUEST,
PTP_EXTTS_REQUEST2,
};
unsigned int enable_flags[5] = {
PTP_ENABLE_FEATURE,
PTP_ENABLE_FEATURE | PTP_RISING_EDGE,
PTP_ENABLE_FEATURE | PTP_FALLING_EDGE,
PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE,
PTP_ENABLE_FEATURE | (PTP_EXTTS_VALID_FLAGS + 1),
};
int err, i, j;
memset(&extts_request, 0, sizeof(extts_request));
extts_request.index = index;
for (i = 0; i < 2; i++) {
for (j = 0; j < 5; j++) {
extts_request.flags = enable_flags[j];
err = ioctl(fd, request[i], &extts_request);
show_flag_test(i, extts_request.flags, err);
extts_request.flags = 0;
err = ioctl(fd, request[i], &extts_request);
}
}
}
static clockid_t get_clockid(int fd)
{
#define CLOCKFD 3
return (((unsigned int) ~fd) << 3) | CLOCKFD;
}
static long ppb_to_scaled_ppm(int ppb)
{
/*
* The 'freq' field in the 'struct timex' is in parts per
* million, but with a 16 bit binary fractional field.
* Instead of calculating either one of
*
* scaled_ppm = (ppb / 1000) << 16 [1]
* scaled_ppm = (ppb << 16) / 1000 [2]
*
* we simply use double precision math, in order to avoid the
* truncation in [1] and the possible overflow in [2].
*/
return (long) (ppb * 65.536);
}
static int64_t pctns(struct ptp_clock_time *t)
{
return t->sec * NSEC_PER_SEC + t->nsec;
}
static void usage(char *progname)
{
fprintf(stderr,
"usage: %s [options]\n"
" -c query the ptp clock's capabilities\n"
" -d name device to open\n"
" -e val read 'val' external time stamp events\n"
" -f val adjust the ptp clock frequency by 'val' ppb\n"
" -g get the ptp clock time\n"
" -h prints this message\n"
" -i val index for event/trigger\n"
" -k val measure the time offset between system and phc clock\n"
" for 'val' times (Maximum 25)\n"
" -l list the current pin configuration\n"
" -L pin,val configure pin index 'pin' with function 'val'\n"
" the channel index is taken from the '-i' option\n"
" 'val' specifies the auxiliary function:\n"
" 0 - none\n"
" 1 - external time stamp\n"
" 2 - periodic output\n"
" -n val shift the ptp clock time by 'val' nanoseconds\n"
" -o val phase offset (in nanoseconds) to be provided to the PHC servo\n"
" -p val enable output with a period of 'val' nanoseconds\n"
" -H val set output phase to 'val' nanoseconds (requires -p)\n"
" -w val set output pulse width to 'val' nanoseconds (requires -p)\n"
" -P val enable or disable (val=1|0) the system clock PPS\n"
" -s set the ptp clock time from the system time\n"
" -S set the system time from the ptp clock time\n"
" -t val shift the ptp clock time by 'val' seconds\n"
" -T val set the ptp clock time to 'val' seconds\n"
" -z test combinations of rising/falling external time stamp flags\n",
progname);
}
int main(int argc, char *argv[])
{
struct ptp_clock_caps caps;
struct ptp_extts_event event;
struct ptp_extts_request extts_request;
struct ptp_perout_request perout_request;
struct ptp_pin_desc desc;
struct timespec ts;
struct timex tx;
struct ptp_clock_time *pct;
struct ptp_sys_offset *sysoff;
char *progname;
unsigned int i;
int c, cnt, fd;
char *device = DEVICE;
clockid_t clkid;
int adjfreq = 0x7fffffff;
int adjtime = 0;
int adjns = 0;
int adjphase = 0;
int capabilities = 0;
int extts = 0;
int flagtest = 0;
int gettime = 0;
int index = 0;
int list_pins = 0;
int pct_offset = 0;
int n_samples = 0;
int pin_index = -1, pin_func;
int pps = -1;
int seconds = 0;
int settime = 0;
int64_t t1, t2, tp;
int64_t interval, offset;
int64_t perout_phase = -1;
int64_t pulsewidth = -1;
int64_t perout = -1;
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv, "cd:e:f:ghH:i:k:lL:n:o:p:P:sSt:T:w:z"))) {
switch (c) {
case 'c':
capabilities = 1;
break;
case 'd':
device = optarg;
break;
case 'e':
extts = atoi(optarg);
break;
case 'f':
adjfreq = atoi(optarg);
break;
case 'g':
gettime = 1;
break;
case 'H':
perout_phase = atoll(optarg);
break;
case 'i':
index = atoi(optarg);
break;
case 'k':
pct_offset = 1;
n_samples = atoi(optarg);
break;
case 'l':
list_pins = 1;
break;
case 'L':
cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
if (cnt != 2) {
usage(progname);
return -1;
}
break;
case 'n':
adjns = atoi(optarg);
break;
case 'o':
adjphase = atoi(optarg);
break;
case 'p':
perout = atoll(optarg);
break;
case 'P':
pps = atoi(optarg);
break;
case 's':
settime = 1;
break;
case 'S':
settime = 2;
break;
case 't':
adjtime = atoi(optarg);
break;
case 'T':
settime = 3;
seconds = atoi(optarg);
break;
case 'w':
pulsewidth = atoi(optarg);
break;
case 'z':
flagtest = 1;
break;
case 'h':
usage(progname);
return 0;
case '?':
default:
usage(progname);
return -1;
}
}
fd = open(device, O_RDWR);
if (fd < 0) {
fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
return -1;
}
clkid = get_clockid(fd);
if (CLOCK_INVALID == clkid) {
fprintf(stderr, "failed to read clock id\n");
return -1;
}
if (capabilities) {
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
printf("capabilities:\n"
" %d maximum frequency adjustment (ppb)\n"
" %d programmable alarms\n"
" %d external time stamp channels\n"
" %d programmable periodic signals\n"
" %d pulse per second\n"
" %d programmable pins\n"
" %d cross timestamping\n"
" %d adjust_phase\n"
" %d maximum phase adjustment (ns)\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
caps.pps,
caps.n_pins,
caps.cross_timestamping,
caps.adjust_phase,
caps.max_phase_adj);
}
}
if (0x7fffffff != adjfreq) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_FREQUENCY;
tx.freq = ppb_to_scaled_ppm(adjfreq);
if (clock_adjtime(clkid, &tx)) {
perror("clock_adjtime");
} else {
puts("frequency adjustment okay");
}
}
if (adjtime || adjns) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_SETOFFSET | ADJ_NANO;
tx.time.tv_sec = adjtime;
tx.time.tv_usec = adjns;
while (tx.time.tv_usec < 0) {
tx.time.tv_sec -= 1;
tx.time.tv_usec += NSEC_PER_SEC;
}
if (clock_adjtime(clkid, &tx) < 0) {
perror("clock_adjtime");
} else {
puts("time shift okay");
}
}
if (adjphase) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_OFFSET | ADJ_NANO;
tx.offset = adjphase;
if (clock_adjtime(clkid, &tx) < 0) {
perror("clock_adjtime");
} else {
puts("phase adjustment okay");
}
}
if (gettime) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
} else {
printf("clock time: %ld.%09ld or %s",
ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
}
}
if (settime == 1) {
clock_gettime(CLOCK_REALTIME, &ts);
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 2) {
clock_gettime(clkid, &ts);
if (clock_settime(CLOCK_REALTIME, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 3) {
ts.tv_sec = seconds;
ts.tv_nsec = 0;
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (pin_index >= 0) {
memset(&desc, 0, sizeof(desc));
desc.index = pin_index;
desc.func = pin_func;
desc.chan = index;
if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
perror("PTP_PIN_SETFUNC");
} else {
puts("set pin function okay");
}
}
if (extts) {
memset(&extts_request, 0, sizeof(extts_request));
extts_request.index = index;
extts_request.flags = PTP_ENABLE_FEATURE;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
extts = 0;
} else {
puts("external time stamp request okay");
}
for (; extts; extts--) {
cnt = read(fd, &event, sizeof(event));
if (cnt != sizeof(event)) {
perror("read");
break;
}
printf("event index %u at %lld.%09u\n", event.index,
event.t.sec, event.t.nsec);
fflush(stdout);
}
/* Disable the feature again. */
extts_request.flags = 0;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
}
}
if (flagtest) {
do_flag_test(fd, index);
}
if (list_pins) {
int n_pins = 0;
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
n_pins = caps.n_pins;
}
for (i = 0; i < n_pins; i++) {
desc.index = i;
if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
perror("PTP_PIN_GETFUNC");
break;
}
printf("name %s index %u func %u chan %u\n",
desc.name, desc.index, desc.func, desc.chan);
}
}
if (pulsewidth >= 0 && perout < 0) {
puts("-w can only be specified together with -p");
return -1;
}
if (perout_phase >= 0 && perout < 0) {
puts("-H can only be specified together with -p");
return -1;
}
if (perout >= 0) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
return -1;
}
memset(&perout_request, 0, sizeof(perout_request));
perout_request.index = index;
perout_request.period.sec = perout / NSEC_PER_SEC;
perout_request.period.nsec = perout % NSEC_PER_SEC;
perout_request.flags = 0;
if (pulsewidth >= 0) {
perout_request.flags |= PTP_PEROUT_DUTY_CYCLE;
perout_request.on.sec = pulsewidth / NSEC_PER_SEC;
perout_request.on.nsec = pulsewidth % NSEC_PER_SEC;
}
if (perout_phase >= 0) {
perout_request.flags |= PTP_PEROUT_PHASE;
perout_request.phase.sec = perout_phase / NSEC_PER_SEC;
perout_request.phase.nsec = perout_phase % NSEC_PER_SEC;
} else {
perout_request.start.sec = ts.tv_sec + 2;
perout_request.start.nsec = 0;
}
if (ioctl(fd, PTP_PEROUT_REQUEST2, &perout_request)) {
perror("PTP_PEROUT_REQUEST");
} else {
puts("periodic output request okay");
}
}
if (pps != -1) {
int enable = pps ? 1 : 0;
if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
perror("PTP_ENABLE_PPS");
} else {
puts("pps for system time request okay");
}
}
if (pct_offset) {
if (n_samples <= 0 || n_samples > 25) {
puts("n_samples should be between 1 and 25");
usage(progname);
return -1;
}
sysoff = calloc(1, sizeof(*sysoff));
if (!sysoff) {
perror("calloc");
return -1;
}
sysoff->n_samples = n_samples;
if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
perror("PTP_SYS_OFFSET");
else
puts("system and phc clock time offset request okay");
pct = &sysoff->ts[0];
for (i = 0; i < sysoff->n_samples; i++) {
t1 = pctns(pct+2*i);
tp = pctns(pct+2*i+1);
t2 = pctns(pct+2*i+2);
interval = t2 - t1;
offset = (t2 + t1) / 2 - tp;
printf("system time: %lld.%09u\n",
(pct+2*i)->sec, (pct+2*i)->nsec);
printf("phc time: %lld.%09u\n",
(pct+2*i+1)->sec, (pct+2*i+1)->nsec);
printf("system time: %lld.%09u\n",
(pct+2*i+2)->sec, (pct+2*i+2)->nsec);
printf("system/phc clock time offset is %" PRId64 " ns\n"
"system clock time delay is %" PRId64 " ns\n",
offset, interval);
}
free(sysoff);
}
close(fd);
return 0;
}