mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 478dc89cf3
			
		
	
	
		478dc89cf3
		
	
	
	
	
		
			
			On CONFIG_CONTEXT_TRACKING kernels that have context tracking disabled at runtime (which includes most distro kernels), we still have the overhead of a call to enter_from_user_mode in interrupt and exception entries. If jump labels are available, this uses the jump label infrastructure to skip the call. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/73ee804fff48cd8c66b65b724f9f728a11a8c686.1447361906.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			1488 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			1488 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/x86_64/entry.S
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 | |
|  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
 | |
|  *
 | |
|  * entry.S contains the system-call and fault low-level handling routines.
 | |
|  *
 | |
|  * Some of this is documented in Documentation/x86/entry_64.txt
 | |
|  *
 | |
|  * A note on terminology:
 | |
|  * - iret frame:	Architecture defined interrupt frame from SS to RIP
 | |
|  *			at the top of the kernel process stack.
 | |
|  *
 | |
|  * Some macro usage:
 | |
|  * - ENTRY/END:		Define functions in the symbol table.
 | |
|  * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 | |
|  * - idtentry:		Define exception entry points.
 | |
|  */
 | |
| #include <linux/linkage.h>
 | |
| #include <asm/segment.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/errno.h>
 | |
| #include "calling.h"
 | |
| #include <asm/asm-offsets.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/thread_info.h>
 | |
| #include <asm/hw_irq.h>
 | |
| #include <asm/page_types.h>
 | |
| #include <asm/irqflags.h>
 | |
| #include <asm/paravirt.h>
 | |
| #include <asm/percpu.h>
 | |
| #include <asm/asm.h>
 | |
| #include <asm/smap.h>
 | |
| #include <asm/pgtable_types.h>
 | |
| #include <linux/err.h>
 | |
| 
 | |
| /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
 | |
| #include <linux/elf-em.h>
 | |
| #define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
 | |
| #define __AUDIT_ARCH_64BIT			0x80000000
 | |
| #define __AUDIT_ARCH_LE				0x40000000
 | |
| 
 | |
| .code64
 | |
| .section .entry.text, "ax"
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| ENTRY(native_usergs_sysret64)
 | |
| 	swapgs
 | |
| 	sysretq
 | |
| ENDPROC(native_usergs_sysret64)
 | |
| #endif /* CONFIG_PARAVIRT */
 | |
| 
 | |
| .macro TRACE_IRQS_IRETQ
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
 | |
| 	jnc	1f
 | |
| 	TRACE_IRQS_ON
 | |
| 1:
 | |
| #endif
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * When dynamic function tracer is enabled it will add a breakpoint
 | |
|  * to all locations that it is about to modify, sync CPUs, update
 | |
|  * all the code, sync CPUs, then remove the breakpoints. In this time
 | |
|  * if lockdep is enabled, it might jump back into the debug handler
 | |
|  * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 | |
|  *
 | |
|  * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 | |
|  * make sure the stack pointer does not get reset back to the top
 | |
|  * of the debug stack, and instead just reuses the current stack.
 | |
|  */
 | |
| #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
 | |
| 
 | |
| .macro TRACE_IRQS_OFF_DEBUG
 | |
| 	call	debug_stack_set_zero
 | |
| 	TRACE_IRQS_OFF
 | |
| 	call	debug_stack_reset
 | |
| .endm
 | |
| 
 | |
| .macro TRACE_IRQS_ON_DEBUG
 | |
| 	call	debug_stack_set_zero
 | |
| 	TRACE_IRQS_ON
 | |
| 	call	debug_stack_reset
 | |
| .endm
 | |
| 
 | |
| .macro TRACE_IRQS_IRETQ_DEBUG
 | |
| 	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
 | |
| 	jnc	1f
 | |
| 	TRACE_IRQS_ON_DEBUG
 | |
| 1:
 | |
| .endm
 | |
| 
 | |
| #else
 | |
| # define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
 | |
| # define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
 | |
| # define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
 | |
|  *
 | |
|  * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
 | |
|  * then loads new ss, cs, and rip from previously programmed MSRs.
 | |
|  * rflags gets masked by a value from another MSR (so CLD and CLAC
 | |
|  * are not needed). SYSCALL does not save anything on the stack
 | |
|  * and does not change rsp.
 | |
|  *
 | |
|  * Registers on entry:
 | |
|  * rax  system call number
 | |
|  * rcx  return address
 | |
|  * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
 | |
|  * rdi  arg0
 | |
|  * rsi  arg1
 | |
|  * rdx  arg2
 | |
|  * r10  arg3 (needs to be moved to rcx to conform to C ABI)
 | |
|  * r8   arg4
 | |
|  * r9   arg5
 | |
|  * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
 | |
|  *
 | |
|  * Only called from user space.
 | |
|  *
 | |
|  * When user can change pt_regs->foo always force IRET. That is because
 | |
|  * it deals with uncanonical addresses better. SYSRET has trouble
 | |
|  * with them due to bugs in both AMD and Intel CPUs.
 | |
|  */
 | |
| 
 | |
| ENTRY(entry_SYSCALL_64)
 | |
| 	/*
 | |
| 	 * Interrupts are off on entry.
 | |
| 	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
 | |
| 	 * it is too small to ever cause noticeable irq latency.
 | |
| 	 */
 | |
| 	SWAPGS_UNSAFE_STACK
 | |
| 	/*
 | |
| 	 * A hypervisor implementation might want to use a label
 | |
| 	 * after the swapgs, so that it can do the swapgs
 | |
| 	 * for the guest and jump here on syscall.
 | |
| 	 */
 | |
| GLOBAL(entry_SYSCALL_64_after_swapgs)
 | |
| 
 | |
| 	movq	%rsp, PER_CPU_VAR(rsp_scratch)
 | |
| 	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 | |
| 
 | |
| 	/* Construct struct pt_regs on stack */
 | |
| 	pushq	$__USER_DS			/* pt_regs->ss */
 | |
| 	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
 | |
| 	/*
 | |
| 	 * Re-enable interrupts.
 | |
| 	 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
 | |
| 	 * must execute atomically in the face of possible interrupt-driven
 | |
| 	 * task preemption. We must enable interrupts only after we're done
 | |
| 	 * with using rsp_scratch:
 | |
| 	 */
 | |
| 	ENABLE_INTERRUPTS(CLBR_NONE)
 | |
| 	pushq	%r11				/* pt_regs->flags */
 | |
| 	pushq	$__USER_CS			/* pt_regs->cs */
 | |
| 	pushq	%rcx				/* pt_regs->ip */
 | |
| 	pushq	%rax				/* pt_regs->orig_ax */
 | |
| 	pushq	%rdi				/* pt_regs->di */
 | |
| 	pushq	%rsi				/* pt_regs->si */
 | |
| 	pushq	%rdx				/* pt_regs->dx */
 | |
| 	pushq	%rcx				/* pt_regs->cx */
 | |
| 	pushq	$-ENOSYS			/* pt_regs->ax */
 | |
| 	pushq	%r8				/* pt_regs->r8 */
 | |
| 	pushq	%r9				/* pt_regs->r9 */
 | |
| 	pushq	%r10				/* pt_regs->r10 */
 | |
| 	pushq	%r11				/* pt_regs->r11 */
 | |
| 	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
 | |
| 
 | |
| 	testl	$_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
 | |
| 	jnz	tracesys
 | |
| entry_SYSCALL_64_fastpath:
 | |
| #if __SYSCALL_MASK == ~0
 | |
| 	cmpq	$__NR_syscall_max, %rax
 | |
| #else
 | |
| 	andl	$__SYSCALL_MASK, %eax
 | |
| 	cmpl	$__NR_syscall_max, %eax
 | |
| #endif
 | |
| 	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
 | |
| 	movq	%r10, %rcx
 | |
| 	call	*sys_call_table(, %rax, 8)
 | |
| 	movq	%rax, RAX(%rsp)
 | |
| 1:
 | |
| /*
 | |
|  * Syscall return path ending with SYSRET (fast path).
 | |
|  * Has incompletely filled pt_regs.
 | |
|  */
 | |
| 	LOCKDEP_SYS_EXIT
 | |
| 	/*
 | |
| 	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
 | |
| 	 * it is too small to ever cause noticeable irq latency.
 | |
| 	 */
 | |
| 	DISABLE_INTERRUPTS(CLBR_NONE)
 | |
| 
 | |
| 	/*
 | |
| 	 * We must check ti flags with interrupts (or at least preemption)
 | |
| 	 * off because we must *never* return to userspace without
 | |
| 	 * processing exit work that is enqueued if we're preempted here.
 | |
| 	 * In particular, returning to userspace with any of the one-shot
 | |
| 	 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
 | |
| 	 * very bad.
 | |
| 	 */
 | |
| 	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
 | |
| 	jnz	int_ret_from_sys_call_irqs_off	/* Go to the slow path */
 | |
| 
 | |
| 	RESTORE_C_REGS_EXCEPT_RCX_R11
 | |
| 	movq	RIP(%rsp), %rcx
 | |
| 	movq	EFLAGS(%rsp), %r11
 | |
| 	movq	RSP(%rsp), %rsp
 | |
| 	/*
 | |
| 	 * 64-bit SYSRET restores rip from rcx,
 | |
| 	 * rflags from r11 (but RF and VM bits are forced to 0),
 | |
| 	 * cs and ss are loaded from MSRs.
 | |
| 	 * Restoration of rflags re-enables interrupts.
 | |
| 	 *
 | |
| 	 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
 | |
| 	 * descriptor is not reinitialized.  This means that we should
 | |
| 	 * avoid SYSRET with SS == NULL, which could happen if we schedule,
 | |
| 	 * exit the kernel, and re-enter using an interrupt vector.  (All
 | |
| 	 * interrupt entries on x86_64 set SS to NULL.)  We prevent that
 | |
| 	 * from happening by reloading SS in __switch_to.  (Actually
 | |
| 	 * detecting the failure in 64-bit userspace is tricky but can be
 | |
| 	 * done.)
 | |
| 	 */
 | |
| 	USERGS_SYSRET64
 | |
| 
 | |
| GLOBAL(int_ret_from_sys_call_irqs_off)
 | |
| 	TRACE_IRQS_ON
 | |
| 	ENABLE_INTERRUPTS(CLBR_NONE)
 | |
| 	jmp int_ret_from_sys_call
 | |
| 
 | |
| 	/* Do syscall entry tracing */
 | |
| tracesys:
 | |
| 	movq	%rsp, %rdi
 | |
| 	movl	$AUDIT_ARCH_X86_64, %esi
 | |
| 	call	syscall_trace_enter_phase1
 | |
| 	test	%rax, %rax
 | |
| 	jnz	tracesys_phase2			/* if needed, run the slow path */
 | |
| 	RESTORE_C_REGS_EXCEPT_RAX		/* else restore clobbered regs */
 | |
| 	movq	ORIG_RAX(%rsp), %rax
 | |
| 	jmp	entry_SYSCALL_64_fastpath	/* and return to the fast path */
 | |
| 
 | |
| tracesys_phase2:
 | |
| 	SAVE_EXTRA_REGS
 | |
| 	movq	%rsp, %rdi
 | |
| 	movl	$AUDIT_ARCH_X86_64, %esi
 | |
| 	movq	%rax, %rdx
 | |
| 	call	syscall_trace_enter_phase2
 | |
| 
 | |
| 	/*
 | |
| 	 * Reload registers from stack in case ptrace changed them.
 | |
| 	 * We don't reload %rax because syscall_trace_entry_phase2() returned
 | |
| 	 * the value it wants us to use in the table lookup.
 | |
| 	 */
 | |
| 	RESTORE_C_REGS_EXCEPT_RAX
 | |
| 	RESTORE_EXTRA_REGS
 | |
| #if __SYSCALL_MASK == ~0
 | |
| 	cmpq	$__NR_syscall_max, %rax
 | |
| #else
 | |
| 	andl	$__SYSCALL_MASK, %eax
 | |
| 	cmpl	$__NR_syscall_max, %eax
 | |
| #endif
 | |
| 	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
 | |
| 	movq	%r10, %rcx			/* fixup for C */
 | |
| 	call	*sys_call_table(, %rax, 8)
 | |
| 	movq	%rax, RAX(%rsp)
 | |
| 1:
 | |
| 	/* Use IRET because user could have changed pt_regs->foo */
 | |
| 
 | |
| /*
 | |
|  * Syscall return path ending with IRET.
 | |
|  * Has correct iret frame.
 | |
|  */
 | |
| GLOBAL(int_ret_from_sys_call)
 | |
| 	SAVE_EXTRA_REGS
 | |
| 	movq	%rsp, %rdi
 | |
| 	call	syscall_return_slowpath	/* returns with IRQs disabled */
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 	TRACE_IRQS_IRETQ		/* we're about to change IF */
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to use SYSRET instead of IRET if we're returning to
 | |
| 	 * a completely clean 64-bit userspace context.
 | |
| 	 */
 | |
| 	movq	RCX(%rsp), %rcx
 | |
| 	movq	RIP(%rsp), %r11
 | |
| 	cmpq	%rcx, %r11			/* RCX == RIP */
 | |
| 	jne	opportunistic_sysret_failed
 | |
| 
 | |
| 	/*
 | |
| 	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 | |
| 	 * in kernel space.  This essentially lets the user take over
 | |
| 	 * the kernel, since userspace controls RSP.
 | |
| 	 *
 | |
| 	 * If width of "canonical tail" ever becomes variable, this will need
 | |
| 	 * to be updated to remain correct on both old and new CPUs.
 | |
| 	 */
 | |
| 	.ifne __VIRTUAL_MASK_SHIFT - 47
 | |
| 	.error "virtual address width changed -- SYSRET checks need update"
 | |
| 	.endif
 | |
| 
 | |
| 	/* Change top 16 bits to be the sign-extension of 47th bit */
 | |
| 	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 | |
| 	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 | |
| 
 | |
| 	/* If this changed %rcx, it was not canonical */
 | |
| 	cmpq	%rcx, %r11
 | |
| 	jne	opportunistic_sysret_failed
 | |
| 
 | |
| 	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
 | |
| 	jne	opportunistic_sysret_failed
 | |
| 
 | |
| 	movq	R11(%rsp), %r11
 | |
| 	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
 | |
| 	jne	opportunistic_sysret_failed
 | |
| 
 | |
| 	/*
 | |
| 	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
 | |
| 	 * restoring TF results in a trap from userspace immediately after
 | |
| 	 * SYSRET.  This would cause an infinite loop whenever #DB happens
 | |
| 	 * with register state that satisfies the opportunistic SYSRET
 | |
| 	 * conditions.  For example, single-stepping this user code:
 | |
| 	 *
 | |
| 	 *           movq	$stuck_here, %rcx
 | |
| 	 *           pushfq
 | |
| 	 *           popq %r11
 | |
| 	 *   stuck_here:
 | |
| 	 *
 | |
| 	 * would never get past 'stuck_here'.
 | |
| 	 */
 | |
| 	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 | |
| 	jnz	opportunistic_sysret_failed
 | |
| 
 | |
| 	/* nothing to check for RSP */
 | |
| 
 | |
| 	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
 | |
| 	jne	opportunistic_sysret_failed
 | |
| 
 | |
| 	/*
 | |
| 	 * We win! This label is here just for ease of understanding
 | |
| 	 * perf profiles. Nothing jumps here.
 | |
| 	 */
 | |
| syscall_return_via_sysret:
 | |
| 	/* rcx and r11 are already restored (see code above) */
 | |
| 	RESTORE_C_REGS_EXCEPT_RCX_R11
 | |
| 	movq	RSP(%rsp), %rsp
 | |
| 	USERGS_SYSRET64
 | |
| 
 | |
| opportunistic_sysret_failed:
 | |
| 	SWAPGS
 | |
| 	jmp	restore_c_regs_and_iret
 | |
| END(entry_SYSCALL_64)
 | |
| 
 | |
| 
 | |
| 	.macro FORK_LIKE func
 | |
| ENTRY(stub_\func)
 | |
| 	SAVE_EXTRA_REGS 8
 | |
| 	jmp	sys_\func
 | |
| END(stub_\func)
 | |
| 	.endm
 | |
| 
 | |
| 	FORK_LIKE  clone
 | |
| 	FORK_LIKE  fork
 | |
| 	FORK_LIKE  vfork
 | |
| 
 | |
| ENTRY(stub_execve)
 | |
| 	call	sys_execve
 | |
| return_from_execve:
 | |
| 	testl	%eax, %eax
 | |
| 	jz	1f
 | |
| 	/* exec failed, can use fast SYSRET code path in this case */
 | |
| 	ret
 | |
| 1:
 | |
| 	/* must use IRET code path (pt_regs->cs may have changed) */
 | |
| 	addq	$8, %rsp
 | |
| 	ZERO_EXTRA_REGS
 | |
| 	movq	%rax, RAX(%rsp)
 | |
| 	jmp	int_ret_from_sys_call
 | |
| END(stub_execve)
 | |
| /*
 | |
|  * Remaining execve stubs are only 7 bytes long.
 | |
|  * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
 | |
|  */
 | |
| 	.align	8
 | |
| GLOBAL(stub_execveat)
 | |
| 	call	sys_execveat
 | |
| 	jmp	return_from_execve
 | |
| END(stub_execveat)
 | |
| 
 | |
| #if defined(CONFIG_X86_X32_ABI)
 | |
| 	.align	8
 | |
| GLOBAL(stub_x32_execve)
 | |
| 	call	compat_sys_execve
 | |
| 	jmp	return_from_execve
 | |
| END(stub_x32_execve)
 | |
| 	.align	8
 | |
| GLOBAL(stub_x32_execveat)
 | |
| 	call	compat_sys_execveat
 | |
| 	jmp	return_from_execve
 | |
| END(stub_x32_execveat)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sigreturn is special because it needs to restore all registers on return.
 | |
|  * This cannot be done with SYSRET, so use the IRET return path instead.
 | |
|  */
 | |
| ENTRY(stub_rt_sigreturn)
 | |
| 	/*
 | |
| 	 * SAVE_EXTRA_REGS result is not normally needed:
 | |
| 	 * sigreturn overwrites all pt_regs->GPREGS.
 | |
| 	 * But sigreturn can fail (!), and there is no easy way to detect that.
 | |
| 	 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
 | |
| 	 * we SAVE_EXTRA_REGS here.
 | |
| 	 */
 | |
| 	SAVE_EXTRA_REGS 8
 | |
| 	call	sys_rt_sigreturn
 | |
| return_from_stub:
 | |
| 	addq	$8, %rsp
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 	movq	%rax, RAX(%rsp)
 | |
| 	jmp	int_ret_from_sys_call
 | |
| END(stub_rt_sigreturn)
 | |
| 
 | |
| #ifdef CONFIG_X86_X32_ABI
 | |
| ENTRY(stub_x32_rt_sigreturn)
 | |
| 	SAVE_EXTRA_REGS 8
 | |
| 	call	sys32_x32_rt_sigreturn
 | |
| 	jmp	return_from_stub
 | |
| END(stub_x32_rt_sigreturn)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A newly forked process directly context switches into this address.
 | |
|  *
 | |
|  * rdi: prev task we switched from
 | |
|  */
 | |
| ENTRY(ret_from_fork)
 | |
| 
 | |
| 	LOCK ; btr $TIF_FORK, TI_flags(%r8)
 | |
| 
 | |
| 	pushq	$0x0002
 | |
| 	popfq					/* reset kernel eflags */
 | |
| 
 | |
| 	call	schedule_tail			/* rdi: 'prev' task parameter */
 | |
| 
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 
 | |
| 	testb	$3, CS(%rsp)			/* from kernel_thread? */
 | |
| 
 | |
| 	/*
 | |
| 	 * By the time we get here, we have no idea whether our pt_regs,
 | |
| 	 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
 | |
| 	 * the slow path, or one of the 32-bit compat paths.
 | |
| 	 * Use IRET code path to return, since it can safely handle
 | |
| 	 * all of the above.
 | |
| 	 */
 | |
| 	jnz	int_ret_from_sys_call
 | |
| 
 | |
| 	/*
 | |
| 	 * We came from kernel_thread
 | |
| 	 * nb: we depend on RESTORE_EXTRA_REGS above
 | |
| 	 */
 | |
| 	movq	%rbp, %rdi
 | |
| 	call	*%rbx
 | |
| 	movl	$0, RAX(%rsp)
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 	jmp	int_ret_from_sys_call
 | |
| END(ret_from_fork)
 | |
| 
 | |
| /*
 | |
|  * Build the entry stubs with some assembler magic.
 | |
|  * We pack 1 stub into every 8-byte block.
 | |
|  */
 | |
| 	.align 8
 | |
| ENTRY(irq_entries_start)
 | |
|     vector=FIRST_EXTERNAL_VECTOR
 | |
|     .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 | |
| 	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
 | |
|     vector=vector+1
 | |
| 	jmp	common_interrupt
 | |
| 	.align	8
 | |
|     .endr
 | |
| END(irq_entries_start)
 | |
| 
 | |
| /*
 | |
|  * Interrupt entry/exit.
 | |
|  *
 | |
|  * Interrupt entry points save only callee clobbered registers in fast path.
 | |
|  *
 | |
|  * Entry runs with interrupts off.
 | |
|  */
 | |
| 
 | |
| /* 0(%rsp): ~(interrupt number) */
 | |
| 	.macro interrupt func
 | |
| 	cld
 | |
| 	ALLOC_PT_GPREGS_ON_STACK
 | |
| 	SAVE_C_REGS
 | |
| 	SAVE_EXTRA_REGS
 | |
| 
 | |
| 	testb	$3, CS(%rsp)
 | |
| 	jz	1f
 | |
| 
 | |
| 	/*
 | |
| 	 * IRQ from user mode.  Switch to kernel gsbase and inform context
 | |
| 	 * tracking that we're in kernel mode.
 | |
| 	 */
 | |
| 	SWAPGS
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to tell lockdep that IRQs are off.  We can't do this until
 | |
| 	 * we fix gsbase, and we should do it before enter_from_user_mode
 | |
| 	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
 | |
| 	 * the simplest way to handle it is to just call it twice if
 | |
| 	 * we enter from user mode.  There's no reason to optimize this since
 | |
| 	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
 | |
| 	 */
 | |
| 	TRACE_IRQS_OFF
 | |
| 
 | |
| 	CALL_enter_from_user_mode
 | |
| 
 | |
| 1:
 | |
| 	/*
 | |
| 	 * Save previous stack pointer, optionally switch to interrupt stack.
 | |
| 	 * irq_count is used to check if a CPU is already on an interrupt stack
 | |
| 	 * or not. While this is essentially redundant with preempt_count it is
 | |
| 	 * a little cheaper to use a separate counter in the PDA (short of
 | |
| 	 * moving irq_enter into assembly, which would be too much work)
 | |
| 	 */
 | |
| 	movq	%rsp, %rdi
 | |
| 	incl	PER_CPU_VAR(irq_count)
 | |
| 	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
 | |
| 	pushq	%rdi
 | |
| 	/* We entered an interrupt context - irqs are off: */
 | |
| 	TRACE_IRQS_OFF
 | |
| 
 | |
| 	call	\func	/* rdi points to pt_regs */
 | |
| 	.endm
 | |
| 
 | |
| 	/*
 | |
| 	 * The interrupt stubs push (~vector+0x80) onto the stack and
 | |
| 	 * then jump to common_interrupt.
 | |
| 	 */
 | |
| 	.p2align CONFIG_X86_L1_CACHE_SHIFT
 | |
| common_interrupt:
 | |
| 	ASM_CLAC
 | |
| 	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
 | |
| 	interrupt do_IRQ
 | |
| 	/* 0(%rsp): old RSP */
 | |
| ret_from_intr:
 | |
| 	DISABLE_INTERRUPTS(CLBR_NONE)
 | |
| 	TRACE_IRQS_OFF
 | |
| 	decl	PER_CPU_VAR(irq_count)
 | |
| 
 | |
| 	/* Restore saved previous stack */
 | |
| 	popq	%rsp
 | |
| 
 | |
| 	testb	$3, CS(%rsp)
 | |
| 	jz	retint_kernel
 | |
| 
 | |
| 	/* Interrupt came from user space */
 | |
| GLOBAL(retint_user)
 | |
| 	mov	%rsp,%rdi
 | |
| 	call	prepare_exit_to_usermode
 | |
| 	TRACE_IRQS_IRETQ
 | |
| 	SWAPGS
 | |
| 	jmp	restore_regs_and_iret
 | |
| 
 | |
| /* Returning to kernel space */
 | |
| retint_kernel:
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	/* Interrupts are off */
 | |
| 	/* Check if we need preemption */
 | |
| 	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
 | |
| 	jnc	1f
 | |
| 0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
 | |
| 	jnz	1f
 | |
| 	call	preempt_schedule_irq
 | |
| 	jmp	0b
 | |
| 1:
 | |
| #endif
 | |
| 	/*
 | |
| 	 * The iretq could re-enable interrupts:
 | |
| 	 */
 | |
| 	TRACE_IRQS_IRETQ
 | |
| 
 | |
| /*
 | |
|  * At this label, code paths which return to kernel and to user,
 | |
|  * which come from interrupts/exception and from syscalls, merge.
 | |
|  */
 | |
| GLOBAL(restore_regs_and_iret)
 | |
| 	RESTORE_EXTRA_REGS
 | |
| restore_c_regs_and_iret:
 | |
| 	RESTORE_C_REGS
 | |
| 	REMOVE_PT_GPREGS_FROM_STACK 8
 | |
| 	INTERRUPT_RETURN
 | |
| 
 | |
| ENTRY(native_iret)
 | |
| 	/*
 | |
| 	 * Are we returning to a stack segment from the LDT?  Note: in
 | |
| 	 * 64-bit mode SS:RSP on the exception stack is always valid.
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_ESPFIX64
 | |
| 	testb	$4, (SS-RIP)(%rsp)
 | |
| 	jnz	native_irq_return_ldt
 | |
| #endif
 | |
| 
 | |
| .global native_irq_return_iret
 | |
| native_irq_return_iret:
 | |
| 	/*
 | |
| 	 * This may fault.  Non-paranoid faults on return to userspace are
 | |
| 	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 | |
| 	 * Double-faults due to espfix64 are handled in do_double_fault.
 | |
| 	 * Other faults here are fatal.
 | |
| 	 */
 | |
| 	iretq
 | |
| 
 | |
| #ifdef CONFIG_X86_ESPFIX64
 | |
| native_irq_return_ldt:
 | |
| 	pushq	%rax
 | |
| 	pushq	%rdi
 | |
| 	SWAPGS
 | |
| 	movq	PER_CPU_VAR(espfix_waddr), %rdi
 | |
| 	movq	%rax, (0*8)(%rdi)		/* RAX */
 | |
| 	movq	(2*8)(%rsp), %rax		/* RIP */
 | |
| 	movq	%rax, (1*8)(%rdi)
 | |
| 	movq	(3*8)(%rsp), %rax		/* CS */
 | |
| 	movq	%rax, (2*8)(%rdi)
 | |
| 	movq	(4*8)(%rsp), %rax		/* RFLAGS */
 | |
| 	movq	%rax, (3*8)(%rdi)
 | |
| 	movq	(6*8)(%rsp), %rax		/* SS */
 | |
| 	movq	%rax, (5*8)(%rdi)
 | |
| 	movq	(5*8)(%rsp), %rax		/* RSP */
 | |
| 	movq	%rax, (4*8)(%rdi)
 | |
| 	andl	$0xffff0000, %eax
 | |
| 	popq	%rdi
 | |
| 	orq	PER_CPU_VAR(espfix_stack), %rax
 | |
| 	SWAPGS
 | |
| 	movq	%rax, %rsp
 | |
| 	popq	%rax
 | |
| 	jmp	native_irq_return_iret
 | |
| #endif
 | |
| END(common_interrupt)
 | |
| 
 | |
| /*
 | |
|  * APIC interrupts.
 | |
|  */
 | |
| .macro apicinterrupt3 num sym do_sym
 | |
| ENTRY(\sym)
 | |
| 	ASM_CLAC
 | |
| 	pushq	$~(\num)
 | |
| .Lcommon_\sym:
 | |
| 	interrupt \do_sym
 | |
| 	jmp	ret_from_intr
 | |
| END(\sym)
 | |
| .endm
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| #define trace(sym) trace_##sym
 | |
| #define smp_trace(sym) smp_trace_##sym
 | |
| 
 | |
| .macro trace_apicinterrupt num sym
 | |
| apicinterrupt3 \num trace(\sym) smp_trace(\sym)
 | |
| .endm
 | |
| #else
 | |
| .macro trace_apicinterrupt num sym do_sym
 | |
| .endm
 | |
| #endif
 | |
| 
 | |
| .macro apicinterrupt num sym do_sym
 | |
| apicinterrupt3 \num \sym \do_sym
 | |
| trace_apicinterrupt \num \sym
 | |
| .endm
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
 | |
| apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_UV
 | |
| apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
 | |
| #endif
 | |
| 
 | |
| apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
 | |
| apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
 | |
| 
 | |
| #ifdef CONFIG_HAVE_KVM
 | |
| apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
 | |
| apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE_THRESHOLD
 | |
| apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE_AMD
 | |
| apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_THERMAL_VECTOR
 | |
| apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
 | |
| apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
 | |
| apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
 | |
| #endif
 | |
| 
 | |
| apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
 | |
| apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
 | |
| 
 | |
| #ifdef CONFIG_IRQ_WORK
 | |
| apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Exception entry points.
 | |
|  */
 | |
| #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
 | |
| 
 | |
| .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
 | |
| ENTRY(\sym)
 | |
| 	/* Sanity check */
 | |
| 	.if \shift_ist != -1 && \paranoid == 0
 | |
| 	.error "using shift_ist requires paranoid=1"
 | |
| 	.endif
 | |
| 
 | |
| 	ASM_CLAC
 | |
| 	PARAVIRT_ADJUST_EXCEPTION_FRAME
 | |
| 
 | |
| 	.ifeq \has_error_code
 | |
| 	pushq	$-1				/* ORIG_RAX: no syscall to restart */
 | |
| 	.endif
 | |
| 
 | |
| 	ALLOC_PT_GPREGS_ON_STACK
 | |
| 
 | |
| 	.if \paranoid
 | |
| 	.if \paranoid == 1
 | |
| 	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
 | |
| 	jnz	1f
 | |
| 	.endif
 | |
| 	call	paranoid_entry
 | |
| 	.else
 | |
| 	call	error_entry
 | |
| 	.endif
 | |
| 	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
 | |
| 
 | |
| 	.if \paranoid
 | |
| 	.if \shift_ist != -1
 | |
| 	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
 | |
| 	.else
 | |
| 	TRACE_IRQS_OFF
 | |
| 	.endif
 | |
| 	.endif
 | |
| 
 | |
| 	movq	%rsp, %rdi			/* pt_regs pointer */
 | |
| 
 | |
| 	.if \has_error_code
 | |
| 	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
 | |
| 	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
 | |
| 	.else
 | |
| 	xorl	%esi, %esi			/* no error code */
 | |
| 	.endif
 | |
| 
 | |
| 	.if \shift_ist != -1
 | |
| 	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 | |
| 	.endif
 | |
| 
 | |
| 	call	\do_sym
 | |
| 
 | |
| 	.if \shift_ist != -1
 | |
| 	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
 | |
| 	.endif
 | |
| 
 | |
| 	/* these procedures expect "no swapgs" flag in ebx */
 | |
| 	.if \paranoid
 | |
| 	jmp	paranoid_exit
 | |
| 	.else
 | |
| 	jmp	error_exit
 | |
| 	.endif
 | |
| 
 | |
| 	.if \paranoid == 1
 | |
| 	/*
 | |
| 	 * Paranoid entry from userspace.  Switch stacks and treat it
 | |
| 	 * as a normal entry.  This means that paranoid handlers
 | |
| 	 * run in real process context if user_mode(regs).
 | |
| 	 */
 | |
| 1:
 | |
| 	call	error_entry
 | |
| 
 | |
| 
 | |
| 	movq	%rsp, %rdi			/* pt_regs pointer */
 | |
| 	call	sync_regs
 | |
| 	movq	%rax, %rsp			/* switch stack */
 | |
| 
 | |
| 	movq	%rsp, %rdi			/* pt_regs pointer */
 | |
| 
 | |
| 	.if \has_error_code
 | |
| 	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
 | |
| 	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
 | |
| 	.else
 | |
| 	xorl	%esi, %esi			/* no error code */
 | |
| 	.endif
 | |
| 
 | |
| 	call	\do_sym
 | |
| 
 | |
| 	jmp	error_exit			/* %ebx: no swapgs flag */
 | |
| 	.endif
 | |
| END(\sym)
 | |
| .endm
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| .macro trace_idtentry sym do_sym has_error_code:req
 | |
| idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
 | |
| idtentry \sym \do_sym has_error_code=\has_error_code
 | |
| .endm
 | |
| #else
 | |
| .macro trace_idtentry sym do_sym has_error_code:req
 | |
| idtentry \sym \do_sym has_error_code=\has_error_code
 | |
| .endm
 | |
| #endif
 | |
| 
 | |
| idtentry divide_error			do_divide_error			has_error_code=0
 | |
| idtentry overflow			do_overflow			has_error_code=0
 | |
| idtentry bounds				do_bounds			has_error_code=0
 | |
| idtentry invalid_op			do_invalid_op			has_error_code=0
 | |
| idtentry device_not_available		do_device_not_available		has_error_code=0
 | |
| idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
 | |
| idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
 | |
| idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
 | |
| idtentry segment_not_present		do_segment_not_present		has_error_code=1
 | |
| idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
 | |
| idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
 | |
| idtentry alignment_check		do_alignment_check		has_error_code=1
 | |
| idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Reload gs selector with exception handling
 | |
| 	 * edi:  new selector
 | |
| 	 */
 | |
| ENTRY(native_load_gs_index)
 | |
| 	pushfq
 | |
| 	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
 | |
| 	SWAPGS
 | |
| gs_change:
 | |
| 	movl	%edi, %gs
 | |
| 2:	mfence					/* workaround */
 | |
| 	SWAPGS
 | |
| 	popfq
 | |
| 	ret
 | |
| END(native_load_gs_index)
 | |
| 
 | |
| 	_ASM_EXTABLE(gs_change, bad_gs)
 | |
| 	.section .fixup, "ax"
 | |
| 	/* running with kernelgs */
 | |
| bad_gs:
 | |
| 	SWAPGS					/* switch back to user gs */
 | |
| 	xorl	%eax, %eax
 | |
| 	movl	%eax, %gs
 | |
| 	jmp	2b
 | |
| 	.previous
 | |
| 
 | |
| /* Call softirq on interrupt stack. Interrupts are off. */
 | |
| ENTRY(do_softirq_own_stack)
 | |
| 	pushq	%rbp
 | |
| 	mov	%rsp, %rbp
 | |
| 	incl	PER_CPU_VAR(irq_count)
 | |
| 	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
 | |
| 	push	%rbp				/* frame pointer backlink */
 | |
| 	call	__do_softirq
 | |
| 	leaveq
 | |
| 	decl	PER_CPU_VAR(irq_count)
 | |
| 	ret
 | |
| END(do_softirq_own_stack)
 | |
| 
 | |
| #ifdef CONFIG_XEN
 | |
| idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
 | |
| 
 | |
| /*
 | |
|  * A note on the "critical region" in our callback handler.
 | |
|  * We want to avoid stacking callback handlers due to events occurring
 | |
|  * during handling of the last event. To do this, we keep events disabled
 | |
|  * until we've done all processing. HOWEVER, we must enable events before
 | |
|  * popping the stack frame (can't be done atomically) and so it would still
 | |
|  * be possible to get enough handler activations to overflow the stack.
 | |
|  * Although unlikely, bugs of that kind are hard to track down, so we'd
 | |
|  * like to avoid the possibility.
 | |
|  * So, on entry to the handler we detect whether we interrupted an
 | |
|  * existing activation in its critical region -- if so, we pop the current
 | |
|  * activation and restart the handler using the previous one.
 | |
|  */
 | |
| ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */
 | |
| 
 | |
| /*
 | |
|  * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 | |
|  * see the correct pointer to the pt_regs
 | |
|  */
 | |
| 	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
 | |
| 11:	incl	PER_CPU_VAR(irq_count)
 | |
| 	movq	%rsp, %rbp
 | |
| 	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
 | |
| 	pushq	%rbp				/* frame pointer backlink */
 | |
| 	call	xen_evtchn_do_upcall
 | |
| 	popq	%rsp
 | |
| 	decl	PER_CPU_VAR(irq_count)
 | |
| #ifndef CONFIG_PREEMPT
 | |
| 	call	xen_maybe_preempt_hcall
 | |
| #endif
 | |
| 	jmp	error_exit
 | |
| END(xen_do_hypervisor_callback)
 | |
| 
 | |
| /*
 | |
|  * Hypervisor uses this for application faults while it executes.
 | |
|  * We get here for two reasons:
 | |
|  *  1. Fault while reloading DS, ES, FS or GS
 | |
|  *  2. Fault while executing IRET
 | |
|  * Category 1 we do not need to fix up as Xen has already reloaded all segment
 | |
|  * registers that could be reloaded and zeroed the others.
 | |
|  * Category 2 we fix up by killing the current process. We cannot use the
 | |
|  * normal Linux return path in this case because if we use the IRET hypercall
 | |
|  * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 | |
|  * We distinguish between categories by comparing each saved segment register
 | |
|  * with its current contents: any discrepancy means we in category 1.
 | |
|  */
 | |
| ENTRY(xen_failsafe_callback)
 | |
| 	movl	%ds, %ecx
 | |
| 	cmpw	%cx, 0x10(%rsp)
 | |
| 	jne	1f
 | |
| 	movl	%es, %ecx
 | |
| 	cmpw	%cx, 0x18(%rsp)
 | |
| 	jne	1f
 | |
| 	movl	%fs, %ecx
 | |
| 	cmpw	%cx, 0x20(%rsp)
 | |
| 	jne	1f
 | |
| 	movl	%gs, %ecx
 | |
| 	cmpw	%cx, 0x28(%rsp)
 | |
| 	jne	1f
 | |
| 	/* All segments match their saved values => Category 2 (Bad IRET). */
 | |
| 	movq	(%rsp), %rcx
 | |
| 	movq	8(%rsp), %r11
 | |
| 	addq	$0x30, %rsp
 | |
| 	pushq	$0				/* RIP */
 | |
| 	pushq	%r11
 | |
| 	pushq	%rcx
 | |
| 	jmp	general_protection
 | |
| 1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 | |
| 	movq	(%rsp), %rcx
 | |
| 	movq	8(%rsp), %r11
 | |
| 	addq	$0x30, %rsp
 | |
| 	pushq	$-1 /* orig_ax = -1 => not a system call */
 | |
| 	ALLOC_PT_GPREGS_ON_STACK
 | |
| 	SAVE_C_REGS
 | |
| 	SAVE_EXTRA_REGS
 | |
| 	jmp	error_exit
 | |
| END(xen_failsafe_callback)
 | |
| 
 | |
| apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
 | |
| 	xen_hvm_callback_vector xen_evtchn_do_upcall
 | |
| 
 | |
| #endif /* CONFIG_XEN */
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
 | |
| 	hyperv_callback_vector hyperv_vector_handler
 | |
| #endif /* CONFIG_HYPERV */
 | |
| 
 | |
| idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
 | |
| idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
 | |
| idtentry stack_segment		do_stack_segment	has_error_code=1
 | |
| 
 | |
| #ifdef CONFIG_XEN
 | |
| idtentry xen_debug		do_debug		has_error_code=0
 | |
| idtentry xen_int3		do_int3			has_error_code=0
 | |
| idtentry xen_stack_segment	do_stack_segment	has_error_code=1
 | |
| #endif
 | |
| 
 | |
| idtentry general_protection	do_general_protection	has_error_code=1
 | |
| trace_idtentry page_fault	do_page_fault		has_error_code=1
 | |
| 
 | |
| #ifdef CONFIG_KVM_GUEST
 | |
| idtentry async_page_fault	do_async_page_fault	has_error_code=1
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE
 | |
| idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Save all registers in pt_regs, and switch gs if needed.
 | |
|  * Use slow, but surefire "are we in kernel?" check.
 | |
|  * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 | |
|  */
 | |
| ENTRY(paranoid_entry)
 | |
| 	cld
 | |
| 	SAVE_C_REGS 8
 | |
| 	SAVE_EXTRA_REGS 8
 | |
| 	movl	$1, %ebx
 | |
| 	movl	$MSR_GS_BASE, %ecx
 | |
| 	rdmsr
 | |
| 	testl	%edx, %edx
 | |
| 	js	1f				/* negative -> in kernel */
 | |
| 	SWAPGS
 | |
| 	xorl	%ebx, %ebx
 | |
| 1:	ret
 | |
| END(paranoid_entry)
 | |
| 
 | |
| /*
 | |
|  * "Paranoid" exit path from exception stack.  This is invoked
 | |
|  * only on return from non-NMI IST interrupts that came
 | |
|  * from kernel space.
 | |
|  *
 | |
|  * We may be returning to very strange contexts (e.g. very early
 | |
|  * in syscall entry), so checking for preemption here would
 | |
|  * be complicated.  Fortunately, we there's no good reason
 | |
|  * to try to handle preemption here.
 | |
|  *
 | |
|  * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
 | |
|  */
 | |
| ENTRY(paranoid_exit)
 | |
| 	DISABLE_INTERRUPTS(CLBR_NONE)
 | |
| 	TRACE_IRQS_OFF_DEBUG
 | |
| 	testl	%ebx, %ebx			/* swapgs needed? */
 | |
| 	jnz	paranoid_exit_no_swapgs
 | |
| 	TRACE_IRQS_IRETQ
 | |
| 	SWAPGS_UNSAFE_STACK
 | |
| 	jmp	paranoid_exit_restore
 | |
| paranoid_exit_no_swapgs:
 | |
| 	TRACE_IRQS_IRETQ_DEBUG
 | |
| paranoid_exit_restore:
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 	RESTORE_C_REGS
 | |
| 	REMOVE_PT_GPREGS_FROM_STACK 8
 | |
| 	INTERRUPT_RETURN
 | |
| END(paranoid_exit)
 | |
| 
 | |
| /*
 | |
|  * Save all registers in pt_regs, and switch gs if needed.
 | |
|  * Return: EBX=0: came from user mode; EBX=1: otherwise
 | |
|  */
 | |
| ENTRY(error_entry)
 | |
| 	cld
 | |
| 	SAVE_C_REGS 8
 | |
| 	SAVE_EXTRA_REGS 8
 | |
| 	xorl	%ebx, %ebx
 | |
| 	testb	$3, CS+8(%rsp)
 | |
| 	jz	.Lerror_kernelspace
 | |
| 
 | |
| .Lerror_entry_from_usermode_swapgs:
 | |
| 	/*
 | |
| 	 * We entered from user mode or we're pretending to have entered
 | |
| 	 * from user mode due to an IRET fault.
 | |
| 	 */
 | |
| 	SWAPGS
 | |
| 
 | |
| .Lerror_entry_from_usermode_after_swapgs:
 | |
| 	/*
 | |
| 	 * We need to tell lockdep that IRQs are off.  We can't do this until
 | |
| 	 * we fix gsbase, and we should do it before enter_from_user_mode
 | |
| 	 * (which can take locks).
 | |
| 	 */
 | |
| 	TRACE_IRQS_OFF
 | |
| 	CALL_enter_from_user_mode
 | |
| 	ret
 | |
| 
 | |
| .Lerror_entry_done:
 | |
| 	TRACE_IRQS_OFF
 | |
| 	ret
 | |
| 
 | |
| 	/*
 | |
| 	 * There are two places in the kernel that can potentially fault with
 | |
| 	 * usergs. Handle them here.  B stepping K8s sometimes report a
 | |
| 	 * truncated RIP for IRET exceptions returning to compat mode. Check
 | |
| 	 * for these here too.
 | |
| 	 */
 | |
| .Lerror_kernelspace:
 | |
| 	incl	%ebx
 | |
| 	leaq	native_irq_return_iret(%rip), %rcx
 | |
| 	cmpq	%rcx, RIP+8(%rsp)
 | |
| 	je	.Lerror_bad_iret
 | |
| 	movl	%ecx, %eax			/* zero extend */
 | |
| 	cmpq	%rax, RIP+8(%rsp)
 | |
| 	je	.Lbstep_iret
 | |
| 	cmpq	$gs_change, RIP+8(%rsp)
 | |
| 	jne	.Lerror_entry_done
 | |
| 
 | |
| 	/*
 | |
| 	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
 | |
| 	 * gsbase and proceed.  We'll fix up the exception and land in
 | |
| 	 * gs_change's error handler with kernel gsbase.
 | |
| 	 */
 | |
| 	jmp	.Lerror_entry_from_usermode_swapgs
 | |
| 
 | |
| .Lbstep_iret:
 | |
| 	/* Fix truncated RIP */
 | |
| 	movq	%rcx, RIP+8(%rsp)
 | |
| 	/* fall through */
 | |
| 
 | |
| .Lerror_bad_iret:
 | |
| 	/*
 | |
| 	 * We came from an IRET to user mode, so we have user gsbase.
 | |
| 	 * Switch to kernel gsbase:
 | |
| 	 */
 | |
| 	SWAPGS
 | |
| 
 | |
| 	/*
 | |
| 	 * Pretend that the exception came from user mode: set up pt_regs
 | |
| 	 * as if we faulted immediately after IRET and clear EBX so that
 | |
| 	 * error_exit knows that we will be returning to user mode.
 | |
| 	 */
 | |
| 	mov	%rsp, %rdi
 | |
| 	call	fixup_bad_iret
 | |
| 	mov	%rax, %rsp
 | |
| 	decl	%ebx
 | |
| 	jmp	.Lerror_entry_from_usermode_after_swapgs
 | |
| END(error_entry)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * On entry, EBS is a "return to kernel mode" flag:
 | |
|  *   1: already in kernel mode, don't need SWAPGS
 | |
|  *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 | |
|  */
 | |
| ENTRY(error_exit)
 | |
| 	movl	%ebx, %eax
 | |
| 	DISABLE_INTERRUPTS(CLBR_NONE)
 | |
| 	TRACE_IRQS_OFF
 | |
| 	testl	%eax, %eax
 | |
| 	jnz	retint_kernel
 | |
| 	jmp	retint_user
 | |
| END(error_exit)
 | |
| 
 | |
| /* Runs on exception stack */
 | |
| ENTRY(nmi)
 | |
| 	/*
 | |
| 	 * Fix up the exception frame if we're on Xen.
 | |
| 	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
 | |
| 	 * one value to the stack on native, so it may clobber the rdx
 | |
| 	 * scratch slot, but it won't clobber any of the important
 | |
| 	 * slots past it.
 | |
| 	 *
 | |
| 	 * Xen is a different story, because the Xen frame itself overlaps
 | |
| 	 * the "NMI executing" variable.
 | |
| 	 */
 | |
| 	PARAVIRT_ADJUST_EXCEPTION_FRAME
 | |
| 
 | |
| 	/*
 | |
| 	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
 | |
| 	 * the iretq it performs will take us out of NMI context.
 | |
| 	 * This means that we can have nested NMIs where the next
 | |
| 	 * NMI is using the top of the stack of the previous NMI. We
 | |
| 	 * can't let it execute because the nested NMI will corrupt the
 | |
| 	 * stack of the previous NMI. NMI handlers are not re-entrant
 | |
| 	 * anyway.
 | |
| 	 *
 | |
| 	 * To handle this case we do the following:
 | |
| 	 *  Check the a special location on the stack that contains
 | |
| 	 *  a variable that is set when NMIs are executing.
 | |
| 	 *  The interrupted task's stack is also checked to see if it
 | |
| 	 *  is an NMI stack.
 | |
| 	 *  If the variable is not set and the stack is not the NMI
 | |
| 	 *  stack then:
 | |
| 	 *    o Set the special variable on the stack
 | |
| 	 *    o Copy the interrupt frame into an "outermost" location on the
 | |
| 	 *      stack
 | |
| 	 *    o Copy the interrupt frame into an "iret" location on the stack
 | |
| 	 *    o Continue processing the NMI
 | |
| 	 *  If the variable is set or the previous stack is the NMI stack:
 | |
| 	 *    o Modify the "iret" location to jump to the repeat_nmi
 | |
| 	 *    o return back to the first NMI
 | |
| 	 *
 | |
| 	 * Now on exit of the first NMI, we first clear the stack variable
 | |
| 	 * The NMI stack will tell any nested NMIs at that point that it is
 | |
| 	 * nested. Then we pop the stack normally with iret, and if there was
 | |
| 	 * a nested NMI that updated the copy interrupt stack frame, a
 | |
| 	 * jump will be made to the repeat_nmi code that will handle the second
 | |
| 	 * NMI.
 | |
| 	 *
 | |
| 	 * However, espfix prevents us from directly returning to userspace
 | |
| 	 * with a single IRET instruction.  Similarly, IRET to user mode
 | |
| 	 * can fault.  We therefore handle NMIs from user space like
 | |
| 	 * other IST entries.
 | |
| 	 */
 | |
| 
 | |
| 	/* Use %rdx as our temp variable throughout */
 | |
| 	pushq	%rdx
 | |
| 
 | |
| 	testb	$3, CS-RIP+8(%rsp)
 | |
| 	jz	.Lnmi_from_kernel
 | |
| 
 | |
| 	/*
 | |
| 	 * NMI from user mode.  We need to run on the thread stack, but we
 | |
| 	 * can't go through the normal entry paths: NMIs are masked, and
 | |
| 	 * we don't want to enable interrupts, because then we'll end
 | |
| 	 * up in an awkward situation in which IRQs are on but NMIs
 | |
| 	 * are off.
 | |
| 	 *
 | |
| 	 * We also must not push anything to the stack before switching
 | |
| 	 * stacks lest we corrupt the "NMI executing" variable.
 | |
| 	 */
 | |
| 
 | |
| 	SWAPGS_UNSAFE_STACK
 | |
| 	cld
 | |
| 	movq	%rsp, %rdx
 | |
| 	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
 | |
| 	pushq	5*8(%rdx)	/* pt_regs->ss */
 | |
| 	pushq	4*8(%rdx)	/* pt_regs->rsp */
 | |
| 	pushq	3*8(%rdx)	/* pt_regs->flags */
 | |
| 	pushq	2*8(%rdx)	/* pt_regs->cs */
 | |
| 	pushq	1*8(%rdx)	/* pt_regs->rip */
 | |
| 	pushq   $-1		/* pt_regs->orig_ax */
 | |
| 	pushq   %rdi		/* pt_regs->di */
 | |
| 	pushq   %rsi		/* pt_regs->si */
 | |
| 	pushq   (%rdx)		/* pt_regs->dx */
 | |
| 	pushq   %rcx		/* pt_regs->cx */
 | |
| 	pushq   %rax		/* pt_regs->ax */
 | |
| 	pushq   %r8		/* pt_regs->r8 */
 | |
| 	pushq   %r9		/* pt_regs->r9 */
 | |
| 	pushq   %r10		/* pt_regs->r10 */
 | |
| 	pushq   %r11		/* pt_regs->r11 */
 | |
| 	pushq	%rbx		/* pt_regs->rbx */
 | |
| 	pushq	%rbp		/* pt_regs->rbp */
 | |
| 	pushq	%r12		/* pt_regs->r12 */
 | |
| 	pushq	%r13		/* pt_regs->r13 */
 | |
| 	pushq	%r14		/* pt_regs->r14 */
 | |
| 	pushq	%r15		/* pt_regs->r15 */
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point we no longer need to worry about stack damage
 | |
| 	 * due to nesting -- we're on the normal thread stack and we're
 | |
| 	 * done with the NMI stack.
 | |
| 	 */
 | |
| 
 | |
| 	movq	%rsp, %rdi
 | |
| 	movq	$-1, %rsi
 | |
| 	call	do_nmi
 | |
| 
 | |
| 	/*
 | |
| 	 * Return back to user mode.  We must *not* do the normal exit
 | |
| 	 * work, because we don't want to enable interrupts.  Fortunately,
 | |
| 	 * do_nmi doesn't modify pt_regs.
 | |
| 	 */
 | |
| 	SWAPGS
 | |
| 	jmp	restore_c_regs_and_iret
 | |
| 
 | |
| .Lnmi_from_kernel:
 | |
| 	/*
 | |
| 	 * Here's what our stack frame will look like:
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | original SS                                             |
 | |
| 	 * | original Return RSP                                     |
 | |
| 	 * | original RFLAGS                                         |
 | |
| 	 * | original CS                                             |
 | |
| 	 * | original RIP                                            |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | temp storage for rdx                                    |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | "NMI executing" variable                                |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | iret SS          } Copied from "outermost" frame        |
 | |
| 	 * | iret Return RSP  } on each loop iteration; overwritten  |
 | |
| 	 * | iret RFLAGS      } by a nested NMI to force another     |
 | |
| 	 * | iret CS          } iteration if needed.                 |
 | |
| 	 * | iret RIP         }                                      |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | outermost SS          } initialized in first_nmi;       |
 | |
| 	 * | outermost Return RSP  } will not be changed before      |
 | |
| 	 * | outermost RFLAGS      } NMI processing is done.         |
 | |
| 	 * | outermost CS          } Copied to "iret" frame on each  |
 | |
| 	 * | outermost RIP         } iteration.                      |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 * | pt_regs                                                 |
 | |
| 	 * +---------------------------------------------------------+
 | |
| 	 *
 | |
| 	 * The "original" frame is used by hardware.  Before re-enabling
 | |
| 	 * NMIs, we need to be done with it, and we need to leave enough
 | |
| 	 * space for the asm code here.
 | |
| 	 *
 | |
| 	 * We return by executing IRET while RSP points to the "iret" frame.
 | |
| 	 * That will either return for real or it will loop back into NMI
 | |
| 	 * processing.
 | |
| 	 *
 | |
| 	 * The "outermost" frame is copied to the "iret" frame on each
 | |
| 	 * iteration of the loop, so each iteration starts with the "iret"
 | |
| 	 * frame pointing to the final return target.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether we're a nested NMI.
 | |
| 	 *
 | |
| 	 * If we interrupted kernel code between repeat_nmi and
 | |
| 	 * end_repeat_nmi, then we are a nested NMI.  We must not
 | |
| 	 * modify the "iret" frame because it's being written by
 | |
| 	 * the outer NMI.  That's okay; the outer NMI handler is
 | |
| 	 * about to about to call do_nmi anyway, so we can just
 | |
| 	 * resume the outer NMI.
 | |
| 	 */
 | |
| 
 | |
| 	movq	$repeat_nmi, %rdx
 | |
| 	cmpq	8(%rsp), %rdx
 | |
| 	ja	1f
 | |
| 	movq	$end_repeat_nmi, %rdx
 | |
| 	cmpq	8(%rsp), %rdx
 | |
| 	ja	nested_nmi_out
 | |
| 1:
 | |
| 
 | |
| 	/*
 | |
| 	 * Now check "NMI executing".  If it's set, then we're nested.
 | |
| 	 * This will not detect if we interrupted an outer NMI just
 | |
| 	 * before IRET.
 | |
| 	 */
 | |
| 	cmpl	$1, -8(%rsp)
 | |
| 	je	nested_nmi
 | |
| 
 | |
| 	/*
 | |
| 	 * Now test if the previous stack was an NMI stack.  This covers
 | |
| 	 * the case where we interrupt an outer NMI after it clears
 | |
| 	 * "NMI executing" but before IRET.  We need to be careful, though:
 | |
| 	 * there is one case in which RSP could point to the NMI stack
 | |
| 	 * despite there being no NMI active: naughty userspace controls
 | |
| 	 * RSP at the very beginning of the SYSCALL targets.  We can
 | |
| 	 * pull a fast one on naughty userspace, though: we program
 | |
| 	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
 | |
| 	 * if it controls the kernel's RSP.  We set DF before we clear
 | |
| 	 * "NMI executing".
 | |
| 	 */
 | |
| 	lea	6*8(%rsp), %rdx
 | |
| 	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
 | |
| 	cmpq	%rdx, 4*8(%rsp)
 | |
| 	/* If the stack pointer is above the NMI stack, this is a normal NMI */
 | |
| 	ja	first_nmi
 | |
| 
 | |
| 	subq	$EXCEPTION_STKSZ, %rdx
 | |
| 	cmpq	%rdx, 4*8(%rsp)
 | |
| 	/* If it is below the NMI stack, it is a normal NMI */
 | |
| 	jb	first_nmi
 | |
| 
 | |
| 	/* Ah, it is within the NMI stack. */
 | |
| 
 | |
| 	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
 | |
| 	jz	first_nmi	/* RSP was user controlled. */
 | |
| 
 | |
| 	/* This is a nested NMI. */
 | |
| 
 | |
| nested_nmi:
 | |
| 	/*
 | |
| 	 * Modify the "iret" frame to point to repeat_nmi, forcing another
 | |
| 	 * iteration of NMI handling.
 | |
| 	 */
 | |
| 	subq	$8, %rsp
 | |
| 	leaq	-10*8(%rsp), %rdx
 | |
| 	pushq	$__KERNEL_DS
 | |
| 	pushq	%rdx
 | |
| 	pushfq
 | |
| 	pushq	$__KERNEL_CS
 | |
| 	pushq	$repeat_nmi
 | |
| 
 | |
| 	/* Put stack back */
 | |
| 	addq	$(6*8), %rsp
 | |
| 
 | |
| nested_nmi_out:
 | |
| 	popq	%rdx
 | |
| 
 | |
| 	/* We are returning to kernel mode, so this cannot result in a fault. */
 | |
| 	INTERRUPT_RETURN
 | |
| 
 | |
| first_nmi:
 | |
| 	/* Restore rdx. */
 | |
| 	movq	(%rsp), %rdx
 | |
| 
 | |
| 	/* Make room for "NMI executing". */
 | |
| 	pushq	$0
 | |
| 
 | |
| 	/* Leave room for the "iret" frame */
 | |
| 	subq	$(5*8), %rsp
 | |
| 
 | |
| 	/* Copy the "original" frame to the "outermost" frame */
 | |
| 	.rept 5
 | |
| 	pushq	11*8(%rsp)
 | |
| 	.endr
 | |
| 
 | |
| 	/* Everything up to here is safe from nested NMIs */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_ENTRY
 | |
| 	/*
 | |
| 	 * For ease of testing, unmask NMIs right away.  Disabled by
 | |
| 	 * default because IRET is very expensive.
 | |
| 	 */
 | |
| 	pushq	$0		/* SS */
 | |
| 	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
 | |
| 	addq	$8, (%rsp)	/* Fix up RSP */
 | |
| 	pushfq			/* RFLAGS */
 | |
| 	pushq	$__KERNEL_CS	/* CS */
 | |
| 	pushq	$1f		/* RIP */
 | |
| 	INTERRUPT_RETURN	/* continues at repeat_nmi below */
 | |
| 1:
 | |
| #endif
 | |
| 
 | |
| repeat_nmi:
 | |
| 	/*
 | |
| 	 * If there was a nested NMI, the first NMI's iret will return
 | |
| 	 * here. But NMIs are still enabled and we can take another
 | |
| 	 * nested NMI. The nested NMI checks the interrupted RIP to see
 | |
| 	 * if it is between repeat_nmi and end_repeat_nmi, and if so
 | |
| 	 * it will just return, as we are about to repeat an NMI anyway.
 | |
| 	 * This makes it safe to copy to the stack frame that a nested
 | |
| 	 * NMI will update.
 | |
| 	 *
 | |
| 	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
 | |
| 	 * we're repeating an NMI, gsbase has the same value that it had on
 | |
| 	 * the first iteration.  paranoid_entry will load the kernel
 | |
| 	 * gsbase if needed before we call do_nmi.  "NMI executing"
 | |
| 	 * is zero.
 | |
| 	 */
 | |
| 	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
 | |
| 	 * here must not modify the "iret" frame while we're writing to
 | |
| 	 * it or it will end up containing garbage.
 | |
| 	 */
 | |
| 	addq	$(10*8), %rsp
 | |
| 	.rept 5
 | |
| 	pushq	-6*8(%rsp)
 | |
| 	.endr
 | |
| 	subq	$(5*8), %rsp
 | |
| end_repeat_nmi:
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything below this point can be preempted by a nested NMI.
 | |
| 	 * If this happens, then the inner NMI will change the "iret"
 | |
| 	 * frame to point back to repeat_nmi.
 | |
| 	 */
 | |
| 	pushq	$-1				/* ORIG_RAX: no syscall to restart */
 | |
| 	ALLOC_PT_GPREGS_ON_STACK
 | |
| 
 | |
| 	/*
 | |
| 	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
 | |
| 	 * as we should not be calling schedule in NMI context.
 | |
| 	 * Even with normal interrupts enabled. An NMI should not be
 | |
| 	 * setting NEED_RESCHED or anything that normal interrupts and
 | |
| 	 * exceptions might do.
 | |
| 	 */
 | |
| 	call	paranoid_entry
 | |
| 
 | |
| 	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
 | |
| 	movq	%rsp, %rdi
 | |
| 	movq	$-1, %rsi
 | |
| 	call	do_nmi
 | |
| 
 | |
| 	testl	%ebx, %ebx			/* swapgs needed? */
 | |
| 	jnz	nmi_restore
 | |
| nmi_swapgs:
 | |
| 	SWAPGS_UNSAFE_STACK
 | |
| nmi_restore:
 | |
| 	RESTORE_EXTRA_REGS
 | |
| 	RESTORE_C_REGS
 | |
| 
 | |
| 	/* Point RSP at the "iret" frame. */
 | |
| 	REMOVE_PT_GPREGS_FROM_STACK 6*8
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear "NMI executing".  Set DF first so that we can easily
 | |
| 	 * distinguish the remaining code between here and IRET from
 | |
| 	 * the SYSCALL entry and exit paths.  On a native kernel, we
 | |
| 	 * could just inspect RIP, but, on paravirt kernels,
 | |
| 	 * INTERRUPT_RETURN can translate into a jump into a
 | |
| 	 * hypercall page.
 | |
| 	 */
 | |
| 	std
 | |
| 	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
 | |
| 
 | |
| 	/*
 | |
| 	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
 | |
| 	 * stack in a single instruction.  We are returning to kernel
 | |
| 	 * mode, so this cannot result in a fault.
 | |
| 	 */
 | |
| 	INTERRUPT_RETURN
 | |
| END(nmi)
 | |
| 
 | |
| ENTRY(ignore_sysret)
 | |
| 	mov	$-ENOSYS, %eax
 | |
| 	sysret
 | |
| END(ignore_sysret)
 |