mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 28e92f9903
			
		
	
	
		28e92f9903
		
	
	
	
	
		
			
			Pull RCU updates from Paul McKenney: - Bitmap parsing support for "all" as an alias for all bits - Documentation updates - Miscellaneous fixes, including some that overlap into mm and lockdep - kvfree_rcu() updates - mem_dump_obj() updates, with acks from one of the slab-allocator maintainers - RCU NOCB CPU updates, including limited deoffloading - SRCU updates - Tasks-RCU updates - Torture-test updates * 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits) tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states rcu: Add missing __releases() annotation rcu: Remove obsolete rcu_read_unlock() deadlock commentary rcu: Improve comments describing RCU read-side critical sections rcu: Create an unrcu_pointer() to remove __rcu from a pointer srcu: Early test SRCU polling start rcu: Fix various typos in comments rcu/nocb: Unify timers rcu/nocb: Prepare for fine-grained deferred wakeup rcu/nocb: Only cancel nocb timer if not polling rcu/nocb: Delete bypass_timer upon nocb_gp wakeup rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup rcu/nocb: Allow de-offloading rdp leader rcu/nocb: Directly call __wake_nocb_gp() from bypass timer rcu: Don't penalize priority boosting when there is nothing to boost rcu: Point to documentation of ordering guarantees rcu: Make rcu_gp_cleanup() be noinline for tracing rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP ...
		
			
				
	
	
		
			2998 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2998 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0+ */
 | |
| /*
 | |
|  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 | |
|  * Internal non-public definitions that provide either classic
 | |
|  * or preemptible semantics.
 | |
|  *
 | |
|  * Copyright Red Hat, 2009
 | |
|  * Copyright IBM Corporation, 2009
 | |
|  *
 | |
|  * Author: Ingo Molnar <mingo@elte.hu>
 | |
|  *	   Paul E. McKenney <paulmck@linux.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include "../locking/rtmutex_common.h"
 | |
| 
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 | |
| static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
 | |
| static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
 | |
| {
 | |
| 	return lockdep_is_held(&rdp->nocb_lock);
 | |
| }
 | |
| 
 | |
| static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
 | |
| {
 | |
| 	/* Race on early boot between thread creation and assignment */
 | |
| 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
 | |
| 		return true;
 | |
| 
 | |
| 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
 | |
| 		if (in_task())
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
 | |
| {
 | |
| 	/*
 | |
| 	 * In order to read the offloaded state of an rdp is a safe
 | |
| 	 * and stable way and prevent from its value to be changed
 | |
| 	 * under us, we must either hold the barrier mutex, the cpu
 | |
| 	 * hotplug lock (read or write) or the nocb lock. Local
 | |
| 	 * non-preemptible reads are also safe. NOCB kthreads and
 | |
| 	 * timers have their own means of synchronization against the
 | |
| 	 * offloaded state updaters.
 | |
| 	 */
 | |
| 	RCU_LOCKDEP_WARN(
 | |
| 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
 | |
| 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
 | |
| 		  rcu_lockdep_is_held_nocb(rdp) ||
 | |
| 		  (rdp == this_cpu_ptr(&rcu_data) &&
 | |
| 		   !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
 | |
| 		  rcu_current_is_nocb_kthread(rdp)),
 | |
| 		"Unsafe read of RCU_NOCB offloaded state"
 | |
| 	);
 | |
| 
 | |
| 	return rcu_segcblist_is_offloaded(&rdp->cblist);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the RCU kernel configuration parameters and print informative
 | |
|  * messages about anything out of the ordinary.
 | |
|  */
 | |
| static void __init rcu_bootup_announce_oddness(void)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_RCU_TRACE))
 | |
| 		pr_info("\tRCU event tracing is enabled.\n");
 | |
| 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
 | |
| 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
 | |
| 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
 | |
| 			RCU_FANOUT);
 | |
| 	if (rcu_fanout_exact)
 | |
| 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
 | |
| 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
 | |
| 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
 | |
| 	if (IS_ENABLED(CONFIG_PROVE_RCU))
 | |
| 		pr_info("\tRCU lockdep checking is enabled.\n");
 | |
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
 | |
| 		pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
 | |
| 	if (RCU_NUM_LVLS >= 4)
 | |
| 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
 | |
| 	if (RCU_FANOUT_LEAF != 16)
 | |
| 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
 | |
| 			RCU_FANOUT_LEAF);
 | |
| 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
 | |
| 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
 | |
| 			rcu_fanout_leaf);
 | |
| 	if (nr_cpu_ids != NR_CPUS)
 | |
| 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
 | |
| 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
 | |
| #endif
 | |
| 	if (blimit != DEFAULT_RCU_BLIMIT)
 | |
| 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
 | |
| 	if (qhimark != DEFAULT_RCU_QHIMARK)
 | |
| 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
 | |
| 	if (qlowmark != DEFAULT_RCU_QLOMARK)
 | |
| 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
 | |
| 	if (qovld != DEFAULT_RCU_QOVLD)
 | |
| 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
 | |
| 	if (jiffies_till_first_fqs != ULONG_MAX)
 | |
| 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
 | |
| 	if (jiffies_till_next_fqs != ULONG_MAX)
 | |
| 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
 | |
| 	if (jiffies_till_sched_qs != ULONG_MAX)
 | |
| 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
 | |
| 	if (rcu_kick_kthreads)
 | |
| 		pr_info("\tKick kthreads if too-long grace period.\n");
 | |
| 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
 | |
| 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
 | |
| 	if (gp_preinit_delay)
 | |
| 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
 | |
| 	if (gp_init_delay)
 | |
| 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
 | |
| 	if (gp_cleanup_delay)
 | |
| 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
 | |
| 	if (!use_softirq)
 | |
| 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
 | |
| 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 | |
| 		pr_info("\tRCU debug extended QS entry/exit.\n");
 | |
| 	rcupdate_announce_bootup_oddness();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| 
 | |
| static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
 | |
| static void rcu_read_unlock_special(struct task_struct *t);
 | |
| 
 | |
| /*
 | |
|  * Tell them what RCU they are running.
 | |
|  */
 | |
| static void __init rcu_bootup_announce(void)
 | |
| {
 | |
| 	pr_info("Preemptible hierarchical RCU implementation.\n");
 | |
| 	rcu_bootup_announce_oddness();
 | |
| }
 | |
| 
 | |
| /* Flags for rcu_preempt_ctxt_queue() decision table. */
 | |
| #define RCU_GP_TASKS	0x8
 | |
| #define RCU_EXP_TASKS	0x4
 | |
| #define RCU_GP_BLKD	0x2
 | |
| #define RCU_EXP_BLKD	0x1
 | |
| 
 | |
| /*
 | |
|  * Queues a task preempted within an RCU-preempt read-side critical
 | |
|  * section into the appropriate location within the ->blkd_tasks list,
 | |
|  * depending on the states of any ongoing normal and expedited grace
 | |
|  * periods.  The ->gp_tasks pointer indicates which element the normal
 | |
|  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 | |
|  * indicates which element the expedited grace period is waiting on (again,
 | |
|  * NULL if none).  If a grace period is waiting on a given element in the
 | |
|  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 | |
|  * adding a task to the tail of the list blocks any grace period that is
 | |
|  * already waiting on one of the elements.  In contrast, adding a task
 | |
|  * to the head of the list won't block any grace period that is already
 | |
|  * waiting on one of the elements.
 | |
|  *
 | |
|  * This queuing is imprecise, and can sometimes make an ongoing grace
 | |
|  * period wait for a task that is not strictly speaking blocking it.
 | |
|  * Given the choice, we needlessly block a normal grace period rather than
 | |
|  * blocking an expedited grace period.
 | |
|  *
 | |
|  * Note that an endless sequence of expedited grace periods still cannot
 | |
|  * indefinitely postpone a normal grace period.  Eventually, all of the
 | |
|  * fixed number of preempted tasks blocking the normal grace period that are
 | |
|  * not also blocking the expedited grace period will resume and complete
 | |
|  * their RCU read-side critical sections.  At that point, the ->gp_tasks
 | |
|  * pointer will equal the ->exp_tasks pointer, at which point the end of
 | |
|  * the corresponding expedited grace period will also be the end of the
 | |
|  * normal grace period.
 | |
|  */
 | |
| static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 | |
| 	__releases(rnp->lock) /* But leaves rrupts disabled. */
 | |
| {
 | |
| 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 | |
| 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 | |
| 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 | |
| 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	WARN_ON_ONCE(rdp->mynode != rnp);
 | |
| 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 | |
| 	/* RCU better not be waiting on newly onlined CPUs! */
 | |
| 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 | |
| 		     rdp->grpmask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Decide where to queue the newly blocked task.  In theory,
 | |
| 	 * this could be an if-statement.  In practice, when I tried
 | |
| 	 * that, it was quite messy.
 | |
| 	 */
 | |
| 	switch (blkd_state) {
 | |
| 	case 0:
 | |
| 	case                RCU_EXP_TASKS:
 | |
| 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 | |
| 	case RCU_GP_TASKS:
 | |
| 	case RCU_GP_TASKS + RCU_EXP_TASKS:
 | |
| 
 | |
| 		/*
 | |
| 		 * Blocking neither GP, or first task blocking the normal
 | |
| 		 * GP but not blocking the already-waiting expedited GP.
 | |
| 		 * Queue at the head of the list to avoid unnecessarily
 | |
| 		 * blocking the already-waiting GPs.
 | |
| 		 */
 | |
| 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 | |
| 		break;
 | |
| 
 | |
| 	case                                              RCU_EXP_BLKD:
 | |
| 	case                                RCU_GP_BLKD:
 | |
| 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 | |
| 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 | |
| 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 | |
| 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 | |
| 
 | |
| 		/*
 | |
| 		 * First task arriving that blocks either GP, or first task
 | |
| 		 * arriving that blocks the expedited GP (with the normal
 | |
| 		 * GP already waiting), or a task arriving that blocks
 | |
| 		 * both GPs with both GPs already waiting.  Queue at the
 | |
| 		 * tail of the list to avoid any GP waiting on any of the
 | |
| 		 * already queued tasks that are not blocking it.
 | |
| 		 */
 | |
| 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 | |
| 		break;
 | |
| 
 | |
| 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 | |
| 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 | |
| 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 | |
| 
 | |
| 		/*
 | |
| 		 * Second or subsequent task blocking the expedited GP.
 | |
| 		 * The task either does not block the normal GP, or is the
 | |
| 		 * first task blocking the normal GP.  Queue just after
 | |
| 		 * the first task blocking the expedited GP.
 | |
| 		 */
 | |
| 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 | |
| 		break;
 | |
| 
 | |
| 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 | |
| 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 | |
| 
 | |
| 		/*
 | |
| 		 * Second or subsequent task blocking the normal GP.
 | |
| 		 * The task does not block the expedited GP. Queue just
 | |
| 		 * after the first task blocking the normal GP.
 | |
| 		 */
 | |
| 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 
 | |
| 		/* Yet another exercise in excessive paranoia. */
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have now queued the task.  If it was the first one to
 | |
| 	 * block either grace period, update the ->gp_tasks and/or
 | |
| 	 * ->exp_tasks pointers, respectively, to reference the newly
 | |
| 	 * blocked tasks.
 | |
| 	 */
 | |
| 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 | |
| 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 | |
| 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 | |
| 	}
 | |
| 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 | |
| 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 | |
| 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 | |
| 		     !(rnp->qsmask & rdp->grpmask));
 | |
| 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 | |
| 		     !(rnp->expmask & rdp->grpmask));
 | |
| 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Report the quiescent state for the expedited GP.  This expedited
 | |
| 	 * GP should not be able to end until we report, so there should be
 | |
| 	 * no need to check for a subsequent expedited GP.  (Though we are
 | |
| 	 * still in a quiescent state in any case.)
 | |
| 	 */
 | |
| 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 | |
| 		rcu_report_exp_rdp(rdp);
 | |
| 	else
 | |
| 		WARN_ON_ONCE(rdp->exp_deferred_qs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record a preemptible-RCU quiescent state for the specified CPU.
 | |
|  * Note that this does not necessarily mean that the task currently running
 | |
|  * on the CPU is in a quiescent state:  Instead, it means that the current
 | |
|  * grace period need not wait on any RCU read-side critical section that
 | |
|  * starts later on this CPU.  It also means that if the current task is
 | |
|  * in an RCU read-side critical section, it has already added itself to
 | |
|  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 | |
|  * current task, there might be any number of other tasks blocked while
 | |
|  * in an RCU read-side critical section.
 | |
|  *
 | |
|  * Callers to this function must disable preemption.
 | |
|  */
 | |
| static void rcu_qs(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 | |
| 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 | |
| 		trace_rcu_grace_period(TPS("rcu_preempt"),
 | |
| 				       __this_cpu_read(rcu_data.gp_seq),
 | |
| 				       TPS("cpuqs"));
 | |
| 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 | |
| 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 | |
| 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have entered the scheduler, and the current task might soon be
 | |
|  * context-switched away from.  If this task is in an RCU read-side
 | |
|  * critical section, we will no longer be able to rely on the CPU to
 | |
|  * record that fact, so we enqueue the task on the blkd_tasks list.
 | |
|  * The task will dequeue itself when it exits the outermost enclosing
 | |
|  * RCU read-side critical section.  Therefore, the current grace period
 | |
|  * cannot be permitted to complete until the blkd_tasks list entries
 | |
|  * predating the current grace period drain, in other words, until
 | |
|  * rnp->gp_tasks becomes NULL.
 | |
|  *
 | |
|  * Caller must disable interrupts.
 | |
|  */
 | |
| void rcu_note_context_switch(bool preempt)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	trace_rcu_utilization(TPS("Start context switch"));
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 | |
| 	if (rcu_preempt_depth() > 0 &&
 | |
| 	    !t->rcu_read_unlock_special.b.blocked) {
 | |
| 
 | |
| 		/* Possibly blocking in an RCU read-side critical section. */
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock_rcu_node(rnp);
 | |
| 		t->rcu_read_unlock_special.b.blocked = true;
 | |
| 		t->rcu_blocked_node = rnp;
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify the CPU's sanity, trace the preemption, and
 | |
| 		 * then queue the task as required based on the states
 | |
| 		 * of any ongoing and expedited grace periods.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 | |
| 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 | |
| 		trace_rcu_preempt_task(rcu_state.name,
 | |
| 				       t->pid,
 | |
| 				       (rnp->qsmask & rdp->grpmask)
 | |
| 				       ? rnp->gp_seq
 | |
| 				       : rcu_seq_snap(&rnp->gp_seq));
 | |
| 		rcu_preempt_ctxt_queue(rnp, rdp);
 | |
| 	} else {
 | |
| 		rcu_preempt_deferred_qs(t);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Either we were not in an RCU read-side critical section to
 | |
| 	 * begin with, or we have now recorded that critical section
 | |
| 	 * globally.  Either way, we can now note a quiescent state
 | |
| 	 * for this CPU.  Again, if we were in an RCU read-side critical
 | |
| 	 * section, and if that critical section was blocking the current
 | |
| 	 * grace period, then the fact that the task has been enqueued
 | |
| 	 * means that we continue to block the current grace period.
 | |
| 	 */
 | |
| 	rcu_qs();
 | |
| 	if (rdp->exp_deferred_qs)
 | |
| 		rcu_report_exp_rdp(rdp);
 | |
| 	rcu_tasks_qs(current, preempt);
 | |
| 	trace_rcu_utilization(TPS("End context switch"));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 | |
| 
 | |
| /*
 | |
|  * Check for preempted RCU readers blocking the current grace period
 | |
|  * for the specified rcu_node structure.  If the caller needs a reliable
 | |
|  * answer, it must hold the rcu_node's ->lock.
 | |
|  */
 | |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 | |
| {
 | |
| 	return READ_ONCE(rnp->gp_tasks) != NULL;
 | |
| }
 | |
| 
 | |
| /* limit value for ->rcu_read_lock_nesting. */
 | |
| #define RCU_NEST_PMAX (INT_MAX / 2)
 | |
| 
 | |
| static void rcu_preempt_read_enter(void)
 | |
| {
 | |
| 	current->rcu_read_lock_nesting++;
 | |
| }
 | |
| 
 | |
| static int rcu_preempt_read_exit(void)
 | |
| {
 | |
| 	return --current->rcu_read_lock_nesting;
 | |
| }
 | |
| 
 | |
| static void rcu_preempt_depth_set(int val)
 | |
| {
 | |
| 	current->rcu_read_lock_nesting = val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preemptible RCU implementation for rcu_read_lock().
 | |
|  * Just increment ->rcu_read_lock_nesting, shared state will be updated
 | |
|  * if we block.
 | |
|  */
 | |
| void __rcu_read_lock(void)
 | |
| {
 | |
| 	rcu_preempt_read_enter();
 | |
| 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 | |
| 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 | |
| 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
 | |
| 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
 | |
| 	barrier();  /* critical section after entry code. */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__rcu_read_lock);
 | |
| 
 | |
| /*
 | |
|  * Preemptible RCU implementation for rcu_read_unlock().
 | |
|  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 | |
|  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 | |
|  * invoke rcu_read_unlock_special() to clean up after a context switch
 | |
|  * in an RCU read-side critical section and other special cases.
 | |
|  */
 | |
| void __rcu_read_unlock(void)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	barrier();  // critical section before exit code.
 | |
| 	if (rcu_preempt_read_exit() == 0) {
 | |
| 		barrier();  // critical-section exit before .s check.
 | |
| 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 | |
| 			rcu_read_unlock_special(t);
 | |
| 	}
 | |
| 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 | |
| 		int rrln = rcu_preempt_depth();
 | |
| 
 | |
| 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 | |
| 
 | |
| /*
 | |
|  * Advance a ->blkd_tasks-list pointer to the next entry, instead
 | |
|  * returning NULL if at the end of the list.
 | |
|  */
 | |
| static struct list_head *rcu_next_node_entry(struct task_struct *t,
 | |
| 					     struct rcu_node *rnp)
 | |
| {
 | |
| 	struct list_head *np;
 | |
| 
 | |
| 	np = t->rcu_node_entry.next;
 | |
| 	if (np == &rnp->blkd_tasks)
 | |
| 		np = NULL;
 | |
| 	return np;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the specified rcu_node structure has tasks that were
 | |
|  * preempted within an RCU read-side critical section.
 | |
|  */
 | |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	return !list_empty(&rnp->blkd_tasks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Report deferred quiescent states.  The deferral time can
 | |
|  * be quite short, for example, in the case of the call from
 | |
|  * rcu_read_unlock_special().
 | |
|  */
 | |
| static void
 | |
| rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 | |
| {
 | |
| 	bool empty_exp;
 | |
| 	bool empty_norm;
 | |
| 	bool empty_exp_now;
 | |
| 	struct list_head *np;
 | |
| 	bool drop_boost_mutex = false;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	union rcu_special special;
 | |
| 
 | |
| 	/*
 | |
| 	 * If RCU core is waiting for this CPU to exit its critical section,
 | |
| 	 * report the fact that it has exited.  Because irqs are disabled,
 | |
| 	 * t->rcu_read_unlock_special cannot change.
 | |
| 	 */
 | |
| 	special = t->rcu_read_unlock_special;
 | |
| 	rdp = this_cpu_ptr(&rcu_data);
 | |
| 	if (!special.s && !rdp->exp_deferred_qs) {
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	t->rcu_read_unlock_special.s = 0;
 | |
| 	if (special.b.need_qs) {
 | |
| 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
 | |
| 			rcu_report_qs_rdp(rdp);
 | |
| 			udelay(rcu_unlock_delay);
 | |
| 		} else {
 | |
| 			rcu_qs();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Respond to a request by an expedited grace period for a
 | |
| 	 * quiescent state from this CPU.  Note that requests from
 | |
| 	 * tasks are handled when removing the task from the
 | |
| 	 * blocked-tasks list below.
 | |
| 	 */
 | |
| 	if (rdp->exp_deferred_qs)
 | |
| 		rcu_report_exp_rdp(rdp);
 | |
| 
 | |
| 	/* Clean up if blocked during RCU read-side critical section. */
 | |
| 	if (special.b.blocked) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove this task from the list it blocked on.  The task
 | |
| 		 * now remains queued on the rcu_node corresponding to the
 | |
| 		 * CPU it first blocked on, so there is no longer any need
 | |
| 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 | |
| 		 */
 | |
| 		rnp = t->rcu_blocked_node;
 | |
| 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | |
| 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 | |
| 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 | |
| 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 | |
| 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 | |
| 			     (!empty_norm || rnp->qsmask));
 | |
| 		empty_exp = sync_rcu_exp_done(rnp);
 | |
| 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 | |
| 		np = rcu_next_node_entry(t, rnp);
 | |
| 		list_del_init(&t->rcu_node_entry);
 | |
| 		t->rcu_blocked_node = NULL;
 | |
| 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 | |
| 						rnp->gp_seq, t->pid);
 | |
| 		if (&t->rcu_node_entry == rnp->gp_tasks)
 | |
| 			WRITE_ONCE(rnp->gp_tasks, np);
 | |
| 		if (&t->rcu_node_entry == rnp->exp_tasks)
 | |
| 			WRITE_ONCE(rnp->exp_tasks, np);
 | |
| 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 | |
| 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 | |
| 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 | |
| 			if (&t->rcu_node_entry == rnp->boost_tasks)
 | |
| 				WRITE_ONCE(rnp->boost_tasks, np);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this was the last task on the current list, and if
 | |
| 		 * we aren't waiting on any CPUs, report the quiescent state.
 | |
| 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 | |
| 		 * so we must take a snapshot of the expedited state.
 | |
| 		 */
 | |
| 		empty_exp_now = sync_rcu_exp_done(rnp);
 | |
| 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 | |
| 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 | |
| 							 rnp->gp_seq,
 | |
| 							 0, rnp->qsmask,
 | |
| 							 rnp->level,
 | |
| 							 rnp->grplo,
 | |
| 							 rnp->grphi,
 | |
| 							 !!rnp->gp_tasks);
 | |
| 			rcu_report_unblock_qs_rnp(rnp, flags);
 | |
| 		} else {
 | |
| 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		}
 | |
| 
 | |
| 		/* Unboost if we were boosted. */
 | |
| 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 | |
| 			rt_mutex_futex_unlock(&rnp->boost_mtx);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this was the last task on the expedited lists,
 | |
| 		 * then we need to report up the rcu_node hierarchy.
 | |
| 		 */
 | |
| 		if (!empty_exp && empty_exp_now)
 | |
| 			rcu_report_exp_rnp(rnp, true);
 | |
| 	} else {
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is a deferred quiescent-state pending, and are we also not in
 | |
|  * an RCU read-side critical section?  It is the caller's responsibility
 | |
|  * to ensure it is otherwise safe to report any deferred quiescent
 | |
|  * states.  The reason for this is that it is safe to report a
 | |
|  * quiescent state during context switch even though preemption
 | |
|  * is disabled.  This function cannot be expected to understand these
 | |
|  * nuances, so the caller must handle them.
 | |
|  */
 | |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 | |
| {
 | |
| 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 | |
| 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 | |
| 	       rcu_preempt_depth() == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Report a deferred quiescent state if needed and safe to do so.
 | |
|  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 | |
|  * not being in an RCU read-side critical section.  The caller must
 | |
|  * evaluate safety in terms of interrupt, softirq, and preemption
 | |
|  * disabling.
 | |
|  */
 | |
| static void rcu_preempt_deferred_qs(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!rcu_preempt_need_deferred_qs(t))
 | |
| 		return;
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_preempt_deferred_qs_irqrestore(t, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Minimal handler to give the scheduler a chance to re-evaluate.
 | |
|  */
 | |
| static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 | |
| {
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 | |
| 	rdp->defer_qs_iw_pending = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle special cases during rcu_read_unlock(), such as needing to
 | |
|  * notify RCU core processing or task having blocked during the RCU
 | |
|  * read-side critical section.
 | |
|  */
 | |
| static void rcu_read_unlock_special(struct task_struct *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	bool irqs_were_disabled;
 | |
| 	bool preempt_bh_were_disabled =
 | |
| 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 | |
| 
 | |
| 	/* NMI handlers cannot block and cannot safely manipulate state. */
 | |
| 	if (in_nmi())
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	irqs_were_disabled = irqs_disabled_flags(flags);
 | |
| 	if (preempt_bh_were_disabled || irqs_were_disabled) {
 | |
| 		bool expboost; // Expedited GP in flight or possible boosting.
 | |
| 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 		struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 | |
| 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
 | |
| 			   IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 | |
| 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
 | |
| 			    t->rcu_blocked_node);
 | |
| 		// Need to defer quiescent state until everything is enabled.
 | |
| 		if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
 | |
| 			// Using softirq, safe to awaken, and either the
 | |
| 			// wakeup is free or there is either an expedited
 | |
| 			// GP in flight or a potential need to deboost.
 | |
| 			raise_softirq_irqoff(RCU_SOFTIRQ);
 | |
| 		} else {
 | |
| 			// Enabling BH or preempt does reschedule, so...
 | |
| 			// Also if no expediting and no possible deboosting,
 | |
| 			// slow is OK.  Plus nohz_full CPUs eventually get
 | |
| 			// tick enabled.
 | |
| 			set_tsk_need_resched(current);
 | |
| 			set_preempt_need_resched();
 | |
| 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 | |
| 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
 | |
| 				// Get scheduler to re-evaluate and call hooks.
 | |
| 				// If !IRQ_WORK, FQS scan will eventually IPI.
 | |
| 				init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
 | |
| 				rdp->defer_qs_iw_pending = true;
 | |
| 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 | |
| 			}
 | |
| 		}
 | |
| 		local_irq_restore(flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	rcu_preempt_deferred_qs_irqrestore(t, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the list of blocked tasks for the newly completed grace
 | |
|  * period is in fact empty.  It is a serious bug to complete a grace
 | |
|  * period that still has RCU readers blocked!  This function must be
 | |
|  * invoked -before- updating this rnp's ->gp_seq.
 | |
|  *
 | |
|  * Also, if there are blocked tasks on the list, they automatically
 | |
|  * block the newly created grace period, so set up ->gp_tasks accordingly.
 | |
|  */
 | |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 | |
| 		dump_blkd_tasks(rnp, 10);
 | |
| 	if (rcu_preempt_has_tasks(rnp) &&
 | |
| 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 | |
| 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 | |
| 		t = container_of(rnp->gp_tasks, struct task_struct,
 | |
| 				 rcu_node_entry);
 | |
| 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 | |
| 						rnp->gp_seq, t->pid);
 | |
| 	}
 | |
| 	WARN_ON_ONCE(rnp->qsmask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for a quiescent state from the current CPU, including voluntary
 | |
|  * context switches for Tasks RCU.  When a task blocks, the task is
 | |
|  * recorded in the corresponding CPU's rcu_node structure, which is checked
 | |
|  * elsewhere, hence this function need only check for quiescent states
 | |
|  * related to the current CPU, not to those related to tasks.
 | |
|  */
 | |
| static void rcu_flavor_sched_clock_irq(int user)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (user || rcu_is_cpu_rrupt_from_idle()) {
 | |
| 		rcu_note_voluntary_context_switch(current);
 | |
| 	}
 | |
| 	if (rcu_preempt_depth() > 0 ||
 | |
| 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 | |
| 		/* No QS, force context switch if deferred. */
 | |
| 		if (rcu_preempt_need_deferred_qs(t)) {
 | |
| 			set_tsk_need_resched(t);
 | |
| 			set_preempt_need_resched();
 | |
| 		}
 | |
| 	} else if (rcu_preempt_need_deferred_qs(t)) {
 | |
| 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 | |
| 		return;
 | |
| 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 | |
| 		rcu_qs(); /* Report immediate QS. */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 | |
| 	if (rcu_preempt_depth() > 0 &&
 | |
| 	    __this_cpu_read(rcu_data.core_needs_qs) &&
 | |
| 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 | |
| 	    !t->rcu_read_unlock_special.b.need_qs &&
 | |
| 	    time_after(jiffies, rcu_state.gp_start + HZ))
 | |
| 		t->rcu_read_unlock_special.b.need_qs = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for a task exiting while in a preemptible-RCU read-side
 | |
|  * critical section, clean up if so.  No need to issue warnings, as
 | |
|  * debug_check_no_locks_held() already does this if lockdep is enabled.
 | |
|  * Besides, if this function does anything other than just immediately
 | |
|  * return, there was a bug of some sort.  Spewing warnings from this
 | |
|  * function is like as not to simply obscure important prior warnings.
 | |
|  */
 | |
| void exit_rcu(void)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 
 | |
| 	if (unlikely(!list_empty(¤t->rcu_node_entry))) {
 | |
| 		rcu_preempt_depth_set(1);
 | |
| 		barrier();
 | |
| 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 | |
| 	} else if (unlikely(rcu_preempt_depth())) {
 | |
| 		rcu_preempt_depth_set(1);
 | |
| 	} else {
 | |
| 		return;
 | |
| 	}
 | |
| 	__rcu_read_unlock();
 | |
| 	rcu_preempt_deferred_qs(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dump the blocked-tasks state, but limit the list dump to the
 | |
|  * specified number of elements.
 | |
|  */
 | |
| static void
 | |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int i;
 | |
| 	struct list_head *lhp;
 | |
| 	bool onl;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp1;
 | |
| 
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 | |
| 		__func__, rnp->grplo, rnp->grphi, rnp->level,
 | |
| 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 | |
| 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 | |
| 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 | |
| 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 | |
| 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 | |
| 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 | |
| 		READ_ONCE(rnp->exp_tasks));
 | |
| 	pr_info("%s: ->blkd_tasks", __func__);
 | |
| 	i = 0;
 | |
| 	list_for_each(lhp, &rnp->blkd_tasks) {
 | |
| 		pr_cont(" %p", lhp);
 | |
| 		if (++i >= ncheck)
 | |
| 			break;
 | |
| 	}
 | |
| 	pr_cont("\n");
 | |
| 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 | |
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 | |
| 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 | |
| 			cpu, ".o"[onl],
 | |
| 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 | |
| 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_PREEMPT_RCU */
 | |
| 
 | |
| /*
 | |
|  * If strict grace periods are enabled, and if the calling
 | |
|  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
 | |
|  * report that quiescent state and, if requested, spin for a bit.
 | |
|  */
 | |
| void rcu_read_unlock_strict(void)
 | |
| {
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
 | |
| 	   irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
 | |
| 		return;
 | |
| 	rdp = this_cpu_ptr(&rcu_data);
 | |
| 	rcu_report_qs_rdp(rdp);
 | |
| 	udelay(rcu_unlock_delay);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
 | |
| 
 | |
| /*
 | |
|  * Tell them what RCU they are running.
 | |
|  */
 | |
| static void __init rcu_bootup_announce(void)
 | |
| {
 | |
| 	pr_info("Hierarchical RCU implementation.\n");
 | |
| 	rcu_bootup_announce_oddness();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 | |
|  * how many quiescent states passed, just if there was at least one since
 | |
|  * the start of the grace period, this just sets a flag.  The caller must
 | |
|  * have disabled preemption.
 | |
|  */
 | |
| static void rcu_qs(void)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 | |
| 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 | |
| 		return;
 | |
| 	trace_rcu_grace_period(TPS("rcu_sched"),
 | |
| 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 | |
| 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 | |
| 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 | |
| 		return;
 | |
| 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 | |
| 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register an urgently needed quiescent state.  If there is an
 | |
|  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 | |
|  * dyntick-idle quiescent state visible to other CPUs, which will in
 | |
|  * some cases serve for expedited as well as normal grace periods.
 | |
|  * Either way, register a lightweight quiescent state.
 | |
|  */
 | |
| void rcu_all_qs(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 | |
| 		return;
 | |
| 	preempt_disable();
 | |
| 	/* Load rcu_urgent_qs before other flags. */
 | |
| 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 | |
| 		preempt_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 | |
| 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 | |
| 		local_irq_save(flags);
 | |
| 		rcu_momentary_dyntick_idle();
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 	rcu_qs();
 | |
| 	preempt_enable();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_all_qs);
 | |
| 
 | |
| /*
 | |
|  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 | |
|  */
 | |
| void rcu_note_context_switch(bool preempt)
 | |
| {
 | |
| 	trace_rcu_utilization(TPS("Start context switch"));
 | |
| 	rcu_qs();
 | |
| 	/* Load rcu_urgent_qs before other flags. */
 | |
| 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 | |
| 		goto out;
 | |
| 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 | |
| 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 | |
| 		rcu_momentary_dyntick_idle();
 | |
| 	rcu_tasks_qs(current, preempt);
 | |
| out:
 | |
| 	trace_rcu_utilization(TPS("End context switch"));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, there are never any preempted
 | |
|  * RCU readers.
 | |
|  */
 | |
| static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because there is no preemptible RCU, there can be no readers blocked.
 | |
|  */
 | |
| static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because there is no preemptible RCU, there can be no deferred quiescent
 | |
|  * states.
 | |
|  */
 | |
| static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 | |
| 
 | |
| /*
 | |
|  * Because there is no preemptible RCU, there can be no readers blocked,
 | |
|  * so there is no need to check for blocked tasks.  So check only for
 | |
|  * bogus qsmask values.
 | |
|  */
 | |
| static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 | |
| {
 | |
| 	WARN_ON_ONCE(rnp->qsmask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if this CPU is in a non-context-switch quiescent state,
 | |
|  * namely user mode and idle loop.
 | |
|  */
 | |
| static void rcu_flavor_sched_clock_irq(int user)
 | |
| {
 | |
| 	if (user || rcu_is_cpu_rrupt_from_idle()) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Get here if this CPU took its interrupt from user
 | |
| 		 * mode or from the idle loop, and if this is not a
 | |
| 		 * nested interrupt.  In this case, the CPU is in
 | |
| 		 * a quiescent state, so note it.
 | |
| 		 *
 | |
| 		 * No memory barrier is required here because rcu_qs()
 | |
| 		 * references only CPU-local variables that other CPUs
 | |
| 		 * neither access nor modify, at least not while the
 | |
| 		 * corresponding CPU is online.
 | |
| 		 */
 | |
| 
 | |
| 		rcu_qs();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because preemptible RCU does not exist, tasks cannot possibly exit
 | |
|  * while in preemptible RCU read-side critical sections.
 | |
|  */
 | |
| void exit_rcu(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 | |
|  */
 | |
| static void
 | |
| dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 | |
| {
 | |
| 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 | |
| 
 | |
| /*
 | |
|  * If boosting, set rcuc kthreads to realtime priority.
 | |
|  */
 | |
| static void rcu_cpu_kthread_setup(unsigned int cpu)
 | |
| {
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 	struct sched_param sp;
 | |
| 
 | |
| 	sp.sched_priority = kthread_prio;
 | |
| 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 | |
| #endif /* #ifdef CONFIG_RCU_BOOST */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_RCU_BOOST
 | |
| 
 | |
| /*
 | |
|  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 | |
|  * or ->boost_tasks, advancing the pointer to the next task in the
 | |
|  * ->blkd_tasks list.
 | |
|  *
 | |
|  * Note that irqs must be enabled: boosting the task can block.
 | |
|  * Returns 1 if there are more tasks needing to be boosted.
 | |
|  */
 | |
| static int rcu_boost(struct rcu_node *rnp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *t;
 | |
| 	struct list_head *tb;
 | |
| 
 | |
| 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 | |
| 	    READ_ONCE(rnp->boost_tasks) == NULL)
 | |
| 		return 0;  /* Nothing left to boost. */
 | |
| 
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Recheck under the lock: all tasks in need of boosting
 | |
| 	 * might exit their RCU read-side critical sections on their own.
 | |
| 	 */
 | |
| 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Preferentially boost tasks blocking expedited grace periods.
 | |
| 	 * This cannot starve the normal grace periods because a second
 | |
| 	 * expedited grace period must boost all blocked tasks, including
 | |
| 	 * those blocking the pre-existing normal grace period.
 | |
| 	 */
 | |
| 	if (rnp->exp_tasks != NULL)
 | |
| 		tb = rnp->exp_tasks;
 | |
| 	else
 | |
| 		tb = rnp->boost_tasks;
 | |
| 
 | |
| 	/*
 | |
| 	 * We boost task t by manufacturing an rt_mutex that appears to
 | |
| 	 * be held by task t.  We leave a pointer to that rt_mutex where
 | |
| 	 * task t can find it, and task t will release the mutex when it
 | |
| 	 * exits its outermost RCU read-side critical section.  Then
 | |
| 	 * simply acquiring this artificial rt_mutex will boost task
 | |
| 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 | |
| 	 *
 | |
| 	 * Note that task t must acquire rnp->lock to remove itself from
 | |
| 	 * the ->blkd_tasks list, which it will do from exit() if from
 | |
| 	 * nowhere else.  We therefore are guaranteed that task t will
 | |
| 	 * stay around at least until we drop rnp->lock.  Note that
 | |
| 	 * rnp->lock also resolves races between our priority boosting
 | |
| 	 * and task t's exiting its outermost RCU read-side critical
 | |
| 	 * section.
 | |
| 	 */
 | |
| 	t = container_of(tb, struct task_struct, rcu_node_entry);
 | |
| 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	/* Lock only for side effect: boosts task t's priority. */
 | |
| 	rt_mutex_lock(&rnp->boost_mtx);
 | |
| 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 | |
| 	rnp->n_boosts++;
 | |
| 
 | |
| 	return READ_ONCE(rnp->exp_tasks) != NULL ||
 | |
| 	       READ_ONCE(rnp->boost_tasks) != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority-boosting kthread, one per leaf rcu_node.
 | |
|  */
 | |
| static int rcu_boost_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_node *rnp = (struct rcu_node *)arg;
 | |
| 	int spincnt = 0;
 | |
| 	int more2boost;
 | |
| 
 | |
| 	trace_rcu_utilization(TPS("Start boost kthread@init"));
 | |
| 	for (;;) {
 | |
| 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
 | |
| 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
 | |
| 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
 | |
| 			 READ_ONCE(rnp->exp_tasks));
 | |
| 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
 | |
| 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
 | |
| 		more2boost = rcu_boost(rnp);
 | |
| 		if (more2boost)
 | |
| 			spincnt++;
 | |
| 		else
 | |
| 			spincnt = 0;
 | |
| 		if (spincnt > 10) {
 | |
| 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
 | |
| 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
 | |
| 			schedule_timeout_idle(2);
 | |
| 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
 | |
| 			spincnt = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	/* NOTREACHED */
 | |
| 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to see if it is time to start boosting RCU readers that are
 | |
|  * blocking the current grace period, and, if so, tell the per-rcu_node
 | |
|  * kthread to start boosting them.  If there is an expedited grace
 | |
|  * period in progress, it is always time to boost.
 | |
|  *
 | |
|  * The caller must hold rnp->lock, which this function releases.
 | |
|  * The ->boost_kthread_task is immortal, so we don't need to worry
 | |
|  * about it going away.
 | |
|  */
 | |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	raw_lockdep_assert_held_rcu_node(rnp);
 | |
| 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (rnp->exp_tasks != NULL ||
 | |
| 	    (rnp->gp_tasks != NULL &&
 | |
| 	     rnp->boost_tasks == NULL &&
 | |
| 	     rnp->qsmask == 0 &&
 | |
| 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
 | |
| 		if (rnp->exp_tasks == NULL)
 | |
| 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 		rcu_wake_cond(rnp->boost_kthread_task,
 | |
| 			      READ_ONCE(rnp->boost_kthread_status));
 | |
| 	} else {
 | |
| 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the current CPU running the RCU-callbacks kthread?
 | |
|  * Caller must have preemption disabled.
 | |
|  */
 | |
| static bool rcu_is_callbacks_kthread(void)
 | |
| {
 | |
| 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
 | |
| }
 | |
| 
 | |
| #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
 | |
| 
 | |
| /*
 | |
|  * Do priority-boost accounting for the start of a new grace period.
 | |
|  */
 | |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
 | |
| {
 | |
| 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create an RCU-boost kthread for the specified node if one does not
 | |
|  * already exist.  We only create this kthread for preemptible RCU.
 | |
|  * Returns zero if all is well, a negated errno otherwise.
 | |
|  */
 | |
| static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int rnp_index = rnp - rcu_get_root();
 | |
| 	struct sched_param sp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
 | |
| 		return;
 | |
| 
 | |
| 	rcu_state.boost = 1;
 | |
| 
 | |
| 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
 | |
| 			   "rcub/%d", rnp_index);
 | |
| 	if (WARN_ON_ONCE(IS_ERR(t)))
 | |
| 		return;
 | |
| 
 | |
| 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 | |
| 	rnp->boost_kthread_task = t;
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| 	sp.sched_priority = kthread_prio;
 | |
| 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 | |
| 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 | |
|  * served by the rcu_node in question.  The CPU hotplug lock is still
 | |
|  * held, so the value of rnp->qsmaskinit will be stable.
 | |
|  *
 | |
|  * We don't include outgoingcpu in the affinity set, use -1 if there is
 | |
|  * no outgoing CPU.  If there are no CPUs left in the affinity set,
 | |
|  * this function allows the kthread to execute on any CPU.
 | |
|  */
 | |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
 | |
| {
 | |
| 	struct task_struct *t = rnp->boost_kthread_task;
 | |
| 	unsigned long mask = rcu_rnp_online_cpus(rnp);
 | |
| 	cpumask_var_t cm;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
 | |
| 		return;
 | |
| 	for_each_leaf_node_possible_cpu(rnp, cpu)
 | |
| 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
 | |
| 		    cpu != outgoingcpu)
 | |
| 			cpumask_set_cpu(cpu, cm);
 | |
| 	if (cpumask_weight(cm) == 0)
 | |
| 		cpumask_setall(cm);
 | |
| 	set_cpus_allowed_ptr(t, cm);
 | |
| 	free_cpumask_var(cm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spawn boost kthreads -- called as soon as the scheduler is running.
 | |
|  */
 | |
| static void __init rcu_spawn_boost_kthreads(void)
 | |
| {
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	rcu_for_each_leaf_node(rnp)
 | |
| 		if (rcu_rnp_online_cpus(rnp))
 | |
| 			rcu_spawn_one_boost_kthread(rnp);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 | |
| 	__releases(rnp->lock)
 | |
| {
 | |
| 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 | |
| }
 | |
| 
 | |
| static bool rcu_is_callbacks_kthread(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void __init rcu_spawn_boost_kthreads(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_BOOST */
 | |
| 
 | |
| #if !defined(CONFIG_RCU_FAST_NO_HZ)
 | |
| 
 | |
| /*
 | |
|  * Check to see if any future non-offloaded RCU-related work will need
 | |
|  * to be done by the current CPU, even if none need be done immediately,
 | |
|  * returning 1 if so.  This function is part of the RCU implementation;
 | |
|  * it is -not- an exported member of the RCU API.
 | |
|  *
 | |
|  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
 | |
|  * CPU has RCU callbacks queued.
 | |
|  */
 | |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt)
 | |
| {
 | |
| 	*nextevt = KTIME_MAX;
 | |
| 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 | |
| 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 | |
|  * after it.
 | |
|  */
 | |
| static void rcu_cleanup_after_idle(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
 | |
|  * is nothing.
 | |
|  */
 | |
| static void rcu_prepare_for_idle(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 | |
| 
 | |
| /*
 | |
|  * This code is invoked when a CPU goes idle, at which point we want
 | |
|  * to have the CPU do everything required for RCU so that it can enter
 | |
|  * the energy-efficient dyntick-idle mode.
 | |
|  *
 | |
|  * The following preprocessor symbol controls this:
 | |
|  *
 | |
|  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 | |
|  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 | |
|  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 | |
|  *	benchmarkers who might otherwise be tempted to set this to a large
 | |
|  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 | |
|  *	system.  And if you are -that- concerned about energy efficiency,
 | |
|  *	just power the system down and be done with it!
 | |
|  *
 | |
|  * The value below works well in practice.  If future workloads require
 | |
|  * adjustment, they can be converted into kernel config parameters, though
 | |
|  * making the state machine smarter might be a better option.
 | |
|  */
 | |
| #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
 | |
| 
 | |
| static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
 | |
| module_param(rcu_idle_gp_delay, int, 0644);
 | |
| 
 | |
| /*
 | |
|  * Try to advance callbacks on the current CPU, but only if it has been
 | |
|  * awhile since the last time we did so.  Afterwards, if there are any
 | |
|  * callbacks ready for immediate invocation, return true.
 | |
|  */
 | |
| static bool __maybe_unused rcu_try_advance_all_cbs(void)
 | |
| {
 | |
| 	bool cbs_ready = false;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 	struct rcu_node *rnp;
 | |
| 
 | |
| 	/* Exit early if we advanced recently. */
 | |
| 	if (jiffies == rdp->last_advance_all)
 | |
| 		return false;
 | |
| 	rdp->last_advance_all = jiffies;
 | |
| 
 | |
| 	rnp = rdp->mynode;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother checking unless a grace period has
 | |
| 	 * completed since we last checked and there are
 | |
| 	 * callbacks not yet ready to invoke.
 | |
| 	 */
 | |
| 	if ((rcu_seq_completed_gp(rdp->gp_seq,
 | |
| 				  rcu_seq_current(&rnp->gp_seq)) ||
 | |
| 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
 | |
| 	    rcu_segcblist_pend_cbs(&rdp->cblist))
 | |
| 		note_gp_changes(rdp);
 | |
| 
 | |
| 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 | |
| 		cbs_ready = true;
 | |
| 	return cbs_ready;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 | |
|  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 | |
|  * caller about what to set the timeout.
 | |
|  *
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| int rcu_needs_cpu(u64 basemono, u64 *nextevt)
 | |
| {
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 	unsigned long dj;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
 | |
| 	if (rcu_segcblist_empty(&rdp->cblist) ||
 | |
| 	    rcu_rdp_is_offloaded(rdp)) {
 | |
| 		*nextevt = KTIME_MAX;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Attempt to advance callbacks. */
 | |
| 	if (rcu_try_advance_all_cbs()) {
 | |
| 		/* Some ready to invoke, so initiate later invocation. */
 | |
| 		invoke_rcu_core();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	rdp->last_accelerate = jiffies;
 | |
| 
 | |
| 	/* Request timer and round. */
 | |
| 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
 | |
| 
 | |
| 	*nextevt = basemono + dj * TICK_NSEC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
 | |
|  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
 | |
|  * major task is to accelerate (that is, assign grace-period numbers to) any
 | |
|  * recently arrived callbacks.
 | |
|  *
 | |
|  * The caller must have disabled interrupts.
 | |
|  */
 | |
| static void rcu_prepare_for_idle(void)
 | |
| {
 | |
| 	bool needwake;
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 	struct rcu_node *rnp;
 | |
| 	int tne;
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rcu_rdp_is_offloaded(rdp))
 | |
| 		return;
 | |
| 
 | |
| 	/* Handle nohz enablement switches conservatively. */
 | |
| 	tne = READ_ONCE(tick_nohz_active);
 | |
| 	if (tne != rdp->tick_nohz_enabled_snap) {
 | |
| 		if (!rcu_segcblist_empty(&rdp->cblist))
 | |
| 			invoke_rcu_core(); /* force nohz to see update. */
 | |
| 		rdp->tick_nohz_enabled_snap = tne;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!tne)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have not yet accelerated this jiffy, accelerate all
 | |
| 	 * callbacks on this CPU.
 | |
| 	 */
 | |
| 	if (rdp->last_accelerate == jiffies)
 | |
| 		return;
 | |
| 	rdp->last_accelerate = jiffies;
 | |
| 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
 | |
| 		rnp = rdp->mynode;
 | |
| 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 | |
| 		needwake = rcu_accelerate_cbs(rnp, rdp);
 | |
| 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | |
| 		if (needwake)
 | |
| 			rcu_gp_kthread_wake();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up for exit from idle.  Attempt to advance callbacks based on
 | |
|  * any grace periods that elapsed while the CPU was idle, and if any
 | |
|  * callbacks are now ready to invoke, initiate invocation.
 | |
|  */
 | |
| static void rcu_cleanup_after_idle(void)
 | |
| {
 | |
| 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rcu_rdp_is_offloaded(rdp))
 | |
| 		return;
 | |
| 	if (rcu_try_advance_all_cbs())
 | |
| 		invoke_rcu_core();
 | |
| }
 | |
| 
 | |
| #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 | |
| 
 | |
| #ifdef CONFIG_RCU_NOCB_CPU
 | |
| 
 | |
| /*
 | |
|  * Offload callback processing from the boot-time-specified set of CPUs
 | |
|  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
 | |
|  * created that pull the callbacks from the corresponding CPU, wait for
 | |
|  * a grace period to elapse, and invoke the callbacks.  These kthreads
 | |
|  * are organized into GP kthreads, which manage incoming callbacks, wait for
 | |
|  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
 | |
|  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
 | |
|  * do a wake_up() on their GP kthread when they insert a callback into any
 | |
|  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
 | |
|  * in which case each kthread actively polls its CPU.  (Which isn't so great
 | |
|  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
 | |
|  *
 | |
|  * This is intended to be used in conjunction with Frederic Weisbecker's
 | |
|  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 | |
|  * running CPU-bound user-mode computations.
 | |
|  *
 | |
|  * Offloading of callbacks can also be used as an energy-efficiency
 | |
|  * measure because CPUs with no RCU callbacks queued are more aggressive
 | |
|  * about entering dyntick-idle mode.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
 | |
|  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
 | |
|  */
 | |
| static int __init rcu_nocb_setup(char *str)
 | |
| {
 | |
| 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
 | |
| 	if (cpulist_parse(str, rcu_nocb_mask)) {
 | |
| 		pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
 | |
| 		cpumask_setall(rcu_nocb_mask);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| __setup("rcu_nocbs=", rcu_nocb_setup);
 | |
| 
 | |
| static int __init parse_rcu_nocb_poll(char *arg)
 | |
| {
 | |
| 	rcu_nocb_poll = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
 | |
| 
 | |
| /*
 | |
|  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
 | |
|  * After all, the main point of bypassing is to avoid lock contention
 | |
|  * on ->nocb_lock, which only can happen at high call_rcu() rates.
 | |
|  */
 | |
| static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
 | |
| module_param(nocb_nobypass_lim_per_jiffy, int, 0);
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
 | |
|  * lock isn't immediately available, increment ->nocb_lock_contended to
 | |
|  * flag the contention.
 | |
|  */
 | |
| static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
 | |
| 	__acquires(&rdp->nocb_bypass_lock)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
 | |
| 		return;
 | |
| 	atomic_inc(&rdp->nocb_lock_contended);
 | |
| 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 | |
| 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
 | |
| 	raw_spin_lock(&rdp->nocb_bypass_lock);
 | |
| 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
 | |
| 	atomic_dec(&rdp->nocb_lock_contended);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Spinwait until the specified rcu_data structure's ->nocb_lock is
 | |
|  * not contended.  Please note that this is extremely special-purpose,
 | |
|  * relying on the fact that at most two kthreads and one CPU contend for
 | |
|  * this lock, and also that the two kthreads are guaranteed to have frequent
 | |
|  * grace-period-duration time intervals between successive acquisitions
 | |
|  * of the lock.  This allows us to use an extremely simple throttling
 | |
|  * mechanism, and further to apply it only to the CPU doing floods of
 | |
|  * call_rcu() invocations.  Don't try this at home!
 | |
|  */
 | |
| static void rcu_nocb_wait_contended(struct rcu_data *rdp)
 | |
| {
 | |
| 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
 | |
| 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally acquire the specified rcu_data structure's
 | |
|  * ->nocb_bypass_lock.
 | |
|  */
 | |
| static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_bypass_lock.
 | |
|  */
 | |
| static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
 | |
| 	__releases(&rdp->nocb_bypass_lock)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	raw_spin_unlock(&rdp->nocb_bypass_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire the specified rcu_data structure's ->nocb_lock, but only
 | |
|  * if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_lock(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (!rcu_rdp_is_offloaded(rdp))
 | |
| 		return;
 | |
| 	raw_spin_lock(&rdp->nocb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_lock, but only
 | |
|  * if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_unlock(struct rcu_data *rdp)
 | |
| {
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		lockdep_assert_irqs_disabled();
 | |
| 		raw_spin_unlock(&rdp->nocb_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the specified rcu_data structure's ->nocb_lock and restore
 | |
|  * interrupts, but only if it corresponds to a no-CBs CPU.
 | |
|  */
 | |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 | |
| 				       unsigned long flags)
 | |
| {
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		lockdep_assert_irqs_disabled();
 | |
| 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 	} else {
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Lockdep check that ->cblist may be safely accessed. */
 | |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 	if (rcu_rdp_is_offloaded(rdp))
 | |
| 		lockdep_assert_held(&rdp->nocb_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 | |
|  * grace period.
 | |
|  */
 | |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 | |
| {
 | |
| 	swake_up_all(sq);
 | |
| }
 | |
| 
 | |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 | |
| {
 | |
| 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
 | |
| 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
 | |
| }
 | |
| 
 | |
| /* Is the specified CPU a no-CBs CPU? */
 | |
| bool rcu_is_nocb_cpu(int cpu)
 | |
| {
 | |
| 	if (cpumask_available(rcu_nocb_mask))
 | |
| 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
 | |
| 			   struct rcu_data *rdp,
 | |
| 			   bool force, unsigned long flags)
 | |
| 	__releases(rdp_gp->nocb_gp_lock)
 | |
| {
 | |
| 	bool needwake = false;
 | |
| 
 | |
| 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
 | |
| 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 				    TPS("AlreadyAwake"));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 | |
| 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 | |
| 		del_timer(&rdp_gp->nocb_timer);
 | |
| 	}
 | |
| 
 | |
| 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
 | |
| 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
 | |
| 		needwake = true;
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	if (needwake) {
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
 | |
| 		wake_up_process(rdp_gp->nocb_gp_kthread);
 | |
| 	}
 | |
| 
 | |
| 	return needwake;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Kick the GP kthread for this NOCB group.
 | |
|  */
 | |
| static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Arrange to wake the GP kthread for this NOCB group at some future
 | |
|  * time when it is safe to do so.
 | |
|  */
 | |
| static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
 | |
| 			       const char *reason)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bypass wakeup overrides previous deferments. In case
 | |
| 	 * of callback storm, no need to wake up too early.
 | |
| 	 */
 | |
| 	if (waketype == RCU_NOCB_WAKE_BYPASS) {
 | |
| 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
 | |
| 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 | |
| 	} else {
 | |
| 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
 | |
| 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
 | |
| 		if (rdp_gp->nocb_defer_wakeup < waketype)
 | |
| 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 | |
|  * However, if there is a callback to be enqueued and if ->nocb_bypass
 | |
|  * proves to be initially empty, just return false because the no-CB GP
 | |
|  * kthread may need to be awakened in this case.
 | |
|  *
 | |
|  * Note that this function always returns true if rhp is NULL.
 | |
|  */
 | |
| static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				     unsigned long j)
 | |
| {
 | |
| 	struct rcu_cblist rcl;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	lockdep_assert_held(&rdp->nocb_bypass_lock);
 | |
| 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
 | |
| 		raw_spin_unlock(&rdp->nocb_bypass_lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
 | |
| 	if (rhp)
 | |
| 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 | |
| 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
 | |
| 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
 | |
| 	WRITE_ONCE(rdp->nocb_bypass_first, j);
 | |
| 	rcu_nocb_bypass_unlock(rdp);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 | |
|  * However, if there is a callback to be enqueued and if ->nocb_bypass
 | |
|  * proves to be initially empty, just return false because the no-CB GP
 | |
|  * kthread may need to be awakened in this case.
 | |
|  *
 | |
|  * Note that this function always returns true if rhp is NULL.
 | |
|  */
 | |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				  unsigned long j)
 | |
| {
 | |
| 	if (!rcu_rdp_is_offloaded(rdp))
 | |
| 		return true;
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	rcu_nocb_bypass_lock(rdp);
 | |
| 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the ->nocb_bypass_lock is immediately available, flush the
 | |
|  * ->nocb_bypass queue into ->cblist.
 | |
|  */
 | |
| static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
 | |
| {
 | |
| 	rcu_lockdep_assert_cblist_protected(rdp);
 | |
| 	if (!rcu_rdp_is_offloaded(rdp) ||
 | |
| 	    !rcu_nocb_bypass_trylock(rdp))
 | |
| 		return;
 | |
| 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See whether it is appropriate to use the ->nocb_bypass list in order
 | |
|  * to control contention on ->nocb_lock.  A limited number of direct
 | |
|  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 | |
|  * is non-empty, further callbacks must be placed into ->nocb_bypass,
 | |
|  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 | |
|  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 | |
|  * used if ->cblist is empty, because otherwise callbacks can be stranded
 | |
|  * on ->nocb_bypass because we cannot count on the current CPU ever again
 | |
|  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 | |
|  * non-empty, the corresponding no-CBs grace-period kthread must not be
 | |
|  * in an indefinite sleep state.
 | |
|  *
 | |
|  * Finally, it is not permitted to use the bypass during early boot,
 | |
|  * as doing so would confuse the auto-initialization code.  Besides
 | |
|  * which, there is no point in worrying about lock contention while
 | |
|  * there is only one CPU in operation.
 | |
|  */
 | |
| static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				bool *was_alldone, unsigned long flags)
 | |
| {
 | |
| 	unsigned long c;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long j = jiffies;
 | |
| 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| 
 | |
| 	// Pure softirq/rcuc based processing: no bypassing, no
 | |
| 	// locking.
 | |
| 	if (!rcu_rdp_is_offloaded(rdp)) {
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// In the process of (de-)offloading: no bypassing, but
 | |
| 	// locking.
 | |
| 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		return false; /* Not offloaded, no bypassing. */
 | |
| 	}
 | |
| 
 | |
| 	// Don't use ->nocb_bypass during early boot.
 | |
| 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// If we have advanced to a new jiffy, reset counts to allow
 | |
| 	// moving back from ->nocb_bypass to ->cblist.
 | |
| 	if (j == rdp->nocb_nobypass_last) {
 | |
| 		c = rdp->nocb_nobypass_count + 1;
 | |
| 	} else {
 | |
| 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
 | |
| 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
 | |
| 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
 | |
| 				 nocb_nobypass_lim_per_jiffy))
 | |
| 			c = 0;
 | |
| 		else if (c > nocb_nobypass_lim_per_jiffy)
 | |
| 			c = nocb_nobypass_lim_per_jiffy;
 | |
| 	}
 | |
| 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
 | |
| 
 | |
| 	// If there hasn't yet been all that many ->cblist enqueues
 | |
| 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
 | |
| 	// ->nocb_bypass first.
 | |
| 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 		if (*was_alldone)
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstQ"));
 | |
| 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
 | |
| 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 		return false; // Caller must enqueue the callback.
 | |
| 	}
 | |
| 
 | |
| 	// If ->nocb_bypass has been used too long or is too full,
 | |
| 	// flush ->nocb_bypass to ->cblist.
 | |
| 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
 | |
| 	    ncbs >= qhimark) {
 | |
| 		rcu_nocb_lock(rdp);
 | |
| 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
 | |
| 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
 | |
| 			if (*was_alldone)
 | |
| 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 						    TPS("FirstQ"));
 | |
| 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 			return false; // Caller must enqueue the callback.
 | |
| 		}
 | |
| 		if (j != rdp->nocb_gp_adv_time &&
 | |
| 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 | |
| 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 | |
| 			rdp->nocb_gp_adv_time = j;
 | |
| 		}
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		return true; // Callback already enqueued.
 | |
| 	}
 | |
| 
 | |
| 	// We need to use the bypass.
 | |
| 	rcu_nocb_wait_contended(rdp);
 | |
| 	rcu_nocb_bypass_lock(rdp);
 | |
| 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
 | |
| 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
 | |
| 	if (!ncbs) {
 | |
| 		WRITE_ONCE(rdp->nocb_bypass_first, j);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
 | |
| 	}
 | |
| 	rcu_nocb_bypass_unlock(rdp);
 | |
| 	smp_mb(); /* Order enqueue before wake. */
 | |
| 	if (ncbs) {
 | |
| 		local_irq_restore(flags);
 | |
| 	} else {
 | |
| 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
 | |
| 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
 | |
| 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstBQwake"));
 | |
| 			__call_rcu_nocb_wake(rdp, true, flags);
 | |
| 		} else {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("FirstBQnoWake"));
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		}
 | |
| 	}
 | |
| 	return true; // Callback already enqueued.
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Awaken the no-CBs grace-period kthread if needed, either due to it
 | |
|  * legitimately being asleep or due to overload conditions.
 | |
|  *
 | |
|  * If warranted, also wake up the kthread servicing this CPUs queues.
 | |
|  */
 | |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
 | |
| 				 unsigned long flags)
 | |
| 				 __releases(rdp->nocb_lock)
 | |
| {
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long j;
 | |
| 	long len;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	// If we are being polled or there is no kthread, just leave.
 | |
| 	t = READ_ONCE(rdp->nocb_gp_kthread);
 | |
| 	if (rcu_nocb_poll || !t) {
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 				    TPS("WakeNotPoll"));
 | |
| 		return;
 | |
| 	}
 | |
| 	// Need to actually to a wakeup.
 | |
| 	len = rcu_segcblist_n_cbs(&rdp->cblist);
 | |
| 	if (was_alldone) {
 | |
| 		rdp->qlen_last_fqs_check = len;
 | |
| 		if (!irqs_disabled_flags(flags)) {
 | |
| 			/* ... if queue was empty ... */
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			wake_nocb_gp(rdp, false);
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("WakeEmpty"));
 | |
| 		} else {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
 | |
| 					   TPS("WakeEmptyIsDeferred"));
 | |
| 		}
 | |
| 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
 | |
| 		/* ... or if many callbacks queued. */
 | |
| 		rdp->qlen_last_fqs_check = len;
 | |
| 		j = jiffies;
 | |
| 		if (j != rdp->nocb_gp_adv_time &&
 | |
| 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
 | |
| 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
 | |
| 			rdp->nocb_gp_adv_time = j;
 | |
| 		}
 | |
| 		smp_mb(); /* Enqueue before timer_pending(). */
 | |
| 		if ((rdp->nocb_cb_sleep ||
 | |
| 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
 | |
| 		    !timer_pending(&rdp->nocb_timer)) {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
 | |
| 					   TPS("WakeOvfIsDeferred"));
 | |
| 		} else {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 | |
| 		}
 | |
| 	} else {
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we ignore this rdp.
 | |
|  *
 | |
|  * We check that without holding the nocb lock but
 | |
|  * we make sure not to miss a freshly offloaded rdp
 | |
|  * with the current ordering:
 | |
|  *
 | |
|  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
 | |
|  * -------------------------   ----------------------------
 | |
|  *    WRITE flags                 LOCK nocb_gp_lock
 | |
|  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
 | |
|  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
 | |
|  *    UNLOCK nocb_gp_lock         READ flags
 | |
|  */
 | |
| static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
 | |
| {
 | |
| 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
 | |
| 
 | |
| 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
 | |
| }
 | |
| 
 | |
| static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
 | |
| 						     bool *needwake_state)
 | |
| {
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 
 | |
| 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
 | |
| 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
 | |
| 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
 | |
| 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
 | |
| 				*needwake_state = true;
 | |
| 		}
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * De-offloading. Clear our flag and notify the de-offload worker.
 | |
| 	 * We will ignore this rdp until it ever gets re-offloaded.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
 | |
| 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
 | |
| 	if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
 | |
| 		*needwake_state = true;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * No-CBs GP kthreads come here to wait for additional callbacks to show up
 | |
|  * or for grace periods to end.
 | |
|  */
 | |
| static void nocb_gp_wait(struct rcu_data *my_rdp)
 | |
| {
 | |
| 	bool bypass = false;
 | |
| 	long bypass_ncbs;
 | |
| 	int __maybe_unused cpu = my_rdp->cpu;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long flags;
 | |
| 	bool gotcbs = false;
 | |
| 	unsigned long j = jiffies;
 | |
| 	bool needwait_gp = false; // This prevents actual uninitialized use.
 | |
| 	bool needwake;
 | |
| 	bool needwake_gp;
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_node *rnp;
 | |
| 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
 | |
| 	bool wasempty = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through the following loop checks for CBs and for the
 | |
| 	 * nearest grace period (if any) to wait for next.  The CB kthreads
 | |
| 	 * and the global grace-period kthread are awakened if needed.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
 | |
| 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
 | |
| 		bool needwake_state = false;
 | |
| 
 | |
| 		if (!nocb_gp_enabled_cb(rdp))
 | |
| 			continue;
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
 | |
| 		rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 		if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			if (needwake_state)
 | |
| 				swake_up_one(&rdp->nocb_state_wq);
 | |
| 			continue;
 | |
| 		}
 | |
| 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 		if (bypass_ncbs &&
 | |
| 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
 | |
| 		     bypass_ncbs > 2 * qhimark)) {
 | |
| 			// Bypass full or old, so flush it.
 | |
| 			(void)rcu_nocb_try_flush_bypass(rdp, j);
 | |
| 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
 | |
| 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
 | |
| 			rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 			if (needwake_state)
 | |
| 				swake_up_one(&rdp->nocb_state_wq);
 | |
| 			continue; /* No callbacks here, try next. */
 | |
| 		}
 | |
| 		if (bypass_ncbs) {
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("Bypass"));
 | |
| 			bypass = true;
 | |
| 		}
 | |
| 		rnp = rdp->mynode;
 | |
| 
 | |
| 		// Advance callbacks if helpful and low contention.
 | |
| 		needwake_gp = false;
 | |
| 		if (!rcu_segcblist_restempty(&rdp->cblist,
 | |
| 					     RCU_NEXT_READY_TAIL) ||
 | |
| 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
 | |
| 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
 | |
| 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
 | |
| 			needwake_gp = rcu_advance_cbs(rnp, rdp);
 | |
| 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
 | |
| 							   RCU_NEXT_READY_TAIL);
 | |
| 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
 | |
| 		}
 | |
| 		// Need to wait on some grace period?
 | |
| 		WARN_ON_ONCE(wasempty &&
 | |
| 			     !rcu_segcblist_restempty(&rdp->cblist,
 | |
| 						      RCU_NEXT_READY_TAIL));
 | |
| 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
 | |
| 			if (!needwait_gp ||
 | |
| 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
 | |
| 				wait_gp_seq = cur_gp_seq;
 | |
| 			needwait_gp = true;
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
 | |
| 					    TPS("NeedWaitGP"));
 | |
| 		}
 | |
| 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
 | |
| 			needwake = rdp->nocb_cb_sleep;
 | |
| 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
 | |
| 			smp_mb(); /* CB invocation -after- GP end. */
 | |
| 		} else {
 | |
| 			needwake = false;
 | |
| 		}
 | |
| 		rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 		if (needwake) {
 | |
| 			swake_up_one(&rdp->nocb_cb_wq);
 | |
| 			gotcbs = true;
 | |
| 		}
 | |
| 		if (needwake_gp)
 | |
| 			rcu_gp_kthread_wake();
 | |
| 		if (needwake_state)
 | |
| 			swake_up_one(&rdp->nocb_state_wq);
 | |
| 	}
 | |
| 
 | |
| 	my_rdp->nocb_gp_bypass = bypass;
 | |
| 	my_rdp->nocb_gp_gp = needwait_gp;
 | |
| 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
 | |
| 
 | |
| 	if (bypass && !rcu_nocb_poll) {
 | |
| 		// At least one child with non-empty ->nocb_bypass, so set
 | |
| 		// timer in order to avoid stranding its callbacks.
 | |
| 		wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
 | |
| 				   TPS("WakeBypassIsDeferred"));
 | |
| 	}
 | |
| 	if (rcu_nocb_poll) {
 | |
| 		/* Polling, so trace if first poll in the series. */
 | |
| 		if (gotcbs)
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
 | |
| 		schedule_timeout_idle(1);
 | |
| 	} else if (!needwait_gp) {
 | |
| 		/* Wait for callbacks to appear. */
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
 | |
| 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
 | |
| 				!READ_ONCE(my_rdp->nocb_gp_sleep));
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
 | |
| 	} else {
 | |
| 		rnp = my_rdp->mynode;
 | |
| 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
 | |
| 		swait_event_interruptible_exclusive(
 | |
| 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
 | |
| 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
 | |
| 			!READ_ONCE(my_rdp->nocb_gp_sleep));
 | |
| 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
 | |
| 	}
 | |
| 	if (!rcu_nocb_poll) {
 | |
| 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
 | |
| 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
 | |
| 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
 | |
| 			del_timer(&my_rdp->nocb_timer);
 | |
| 		}
 | |
| 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
 | |
| 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
 | |
| 	}
 | |
| 	my_rdp->nocb_gp_seq = -1;
 | |
| 	WARN_ON(signal_pending(current));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No-CBs grace-period-wait kthread.  There is one of these per group
 | |
|  * of CPUs, but only once at least one CPU in that group has come online
 | |
|  * at least once since boot.  This kthread checks for newly posted
 | |
|  * callbacks from any of the CPUs it is responsible for, waits for a
 | |
|  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 | |
|  * that then have callback-invocation work to do.
 | |
|  */
 | |
| static int rcu_nocb_gp_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
 | |
| 		nocb_gp_wait(rdp);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool nocb_cb_can_run(struct rcu_data *rdp)
 | |
| {
 | |
| 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
 | |
| 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
 | |
| }
 | |
| 
 | |
| static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
 | |
| {
 | |
| 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoke any ready callbacks from the corresponding no-CBs CPU,
 | |
|  * then, if there are no more, wait for more to appear.
 | |
|  */
 | |
| static void nocb_cb_wait(struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	unsigned long cur_gp_seq;
 | |
| 	unsigned long flags;
 | |
| 	bool needwake_state = false;
 | |
| 	bool needwake_gp = false;
 | |
| 	bool can_sleep = true;
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rcu_momentary_dyntick_idle();
 | |
| 	local_irq_restore(flags);
 | |
| 	/*
 | |
| 	 * Disable BH to provide the expected environment.  Also, when
 | |
| 	 * transitioning to/from NOCB mode, a self-requeuing callback might
 | |
| 	 * be invoked from softirq.  A short grace period could cause both
 | |
| 	 * instances of this callback would execute concurrently.
 | |
| 	 */
 | |
| 	local_bh_disable();
 | |
| 	rcu_do_batch(rdp);
 | |
| 	local_bh_enable();
 | |
| 	lockdep_assert_irqs_enabled();
 | |
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
 | |
| 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
 | |
| 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
 | |
| 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
 | |
| 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 | |
| 	}
 | |
| 
 | |
| 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
 | |
| 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
 | |
| 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
 | |
| 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
 | |
| 				needwake_state = true;
 | |
| 		}
 | |
| 		if (rcu_segcblist_ready_cbs(cblist))
 | |
| 			can_sleep = false;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * De-offloading. Clear our flag and notify the de-offload worker.
 | |
| 		 * We won't touch the callbacks and keep sleeping until we ever
 | |
| 		 * get re-offloaded.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
 | |
| 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
 | |
| 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
 | |
| 			needwake_state = true;
 | |
| 	}
 | |
| 
 | |
| 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
 | |
| 
 | |
| 	if (rdp->nocb_cb_sleep)
 | |
| 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
 | |
| 
 | |
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 	if (needwake_gp)
 | |
| 		rcu_gp_kthread_wake();
 | |
| 
 | |
| 	if (needwake_state)
 | |
| 		swake_up_one(&rdp->nocb_state_wq);
 | |
| 
 | |
| 	do {
 | |
| 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
 | |
| 						    nocb_cb_wait_cond(rdp));
 | |
| 
 | |
| 		// VVV Ensure CB invocation follows _sleep test.
 | |
| 		if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
 | |
| 			WARN_ON(signal_pending(current));
 | |
| 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
 | |
| 		}
 | |
| 	} while (!nocb_cb_can_run(rdp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
 | |
|  * nocb_cb_wait() to do the dirty work.
 | |
|  */
 | |
| static int rcu_nocb_cb_kthread(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 
 | |
| 	// Each pass through this loop does one callback batch, and,
 | |
| 	// if there are no more ready callbacks, waits for them.
 | |
| 	for (;;) {
 | |
| 		nocb_cb_wait(rdp);
 | |
| 		cond_resched_tasks_rcu_qs();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Is a deferred wakeup of rcu_nocb_kthread() required? */
 | |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
 | |
| {
 | |
| 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
 | |
| }
 | |
| 
 | |
| /* Do a deferred wakeup of rcu_nocb_kthread(). */
 | |
| static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
 | |
| 					   struct rcu_data *rdp, int level,
 | |
| 					   unsigned long flags)
 | |
| 	__releases(rdp_gp->nocb_gp_lock)
 | |
| {
 | |
| 	int ndw;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
 | |
| 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	ndw = rdp_gp->nocb_defer_wakeup;
 | |
| 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
 | |
| static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
 | |
| 
 | |
| 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
 | |
| 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
 | |
| 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
 | |
| 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
 | |
|  * This means we do an inexact common-case check.  Note that if
 | |
|  * we miss, ->nocb_timer will eventually clean things up.
 | |
|  */
 | |
| static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 
 | |
| 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
 | |
| 		return false;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
 | |
| }
 | |
| 
 | |
| void rcu_nocb_flush_deferred_wakeup(void)
 | |
| {
 | |
| 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
 | |
| 
 | |
| static int rdp_offload_toggle(struct rcu_data *rdp,
 | |
| 			       bool offload, unsigned long flags)
 | |
| 	__releases(rdp->nocb_lock)
 | |
| {
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
 | |
| 	bool wake_gp = false;
 | |
| 
 | |
| 	rcu_segcblist_offload(cblist, offload);
 | |
| 
 | |
| 	if (rdp->nocb_cb_sleep)
 | |
| 		rdp->nocb_cb_sleep = false;
 | |
| 	rcu_nocb_unlock_irqrestore(rdp, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
 | |
| 	 * have been spuriously set to false already.
 | |
| 	 */
 | |
| 	swake_up_one(&rdp->nocb_cb_wq);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
 | |
| 	if (rdp_gp->nocb_gp_sleep) {
 | |
| 		rdp_gp->nocb_gp_sleep = false;
 | |
| 		wake_gp = true;
 | |
| 	}
 | |
| 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
 | |
| 
 | |
| 	if (wake_gp)
 | |
| 		wake_up_process(rdp_gp->nocb_gp_kthread);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long rcu_nocb_rdp_deoffload(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
 | |
| 
 | |
| 	pr_info("De-offloading %d\n", rdp->cpu);
 | |
| 
 | |
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 	/*
 | |
| 	 * Flush once and for all now. This suffices because we are
 | |
| 	 * running on the target CPU holding ->nocb_lock (thus having
 | |
| 	 * interrupts disabled), and because rdp_offload_toggle()
 | |
| 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
 | |
| 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
 | |
| 	 * return false, which means that future calls to rcu_nocb_try_bypass()
 | |
| 	 * will refuse to put anything into the bypass.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
 | |
| 	ret = rdp_offload_toggle(rdp, false, flags);
 | |
| 	swait_event_exclusive(rdp->nocb_state_wq,
 | |
| 			      !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
 | |
| 							SEGCBLIST_KTHREAD_GP));
 | |
| 	/*
 | |
| 	 * Lock one last time to acquire latest callback updates from kthreads
 | |
| 	 * so we can later handle callbacks locally without locking.
 | |
| 	 */
 | |
| 	rcu_nocb_lock_irqsave(rdp, flags);
 | |
| 	/*
 | |
| 	 * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
 | |
| 	 * lock is released but how about being paranoid for once?
 | |
| 	 */
 | |
| 	rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
 | |
| 	/*
 | |
| 	 * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
 | |
| 	 * rcu_nocb_unlock_irqrestore() anymore.
 | |
| 	 */
 | |
| 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
 | |
| 
 | |
| 	/* Sanity check */
 | |
| 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
 | |
| 
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int rcu_nocb_cpu_deoffload(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&rcu_state.barrier_mutex);
 | |
| 	cpus_read_lock();
 | |
| 	if (rcu_rdp_is_offloaded(rdp)) {
 | |
| 		if (cpu_online(cpu)) {
 | |
| 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
 | |
| 			if (!ret)
 | |
| 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
 | |
| 		} else {
 | |
| 			pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	cpus_read_unlock();
 | |
| 	mutex_unlock(&rcu_state.barrier_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
 | |
| 
 | |
| static long rcu_nocb_rdp_offload(void *arg)
 | |
| {
 | |
| 	struct rcu_data *rdp = arg;
 | |
| 	struct rcu_segcblist *cblist = &rdp->cblist;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
 | |
| 	/*
 | |
| 	 * For now we only support re-offload, ie: the rdp must have been
 | |
| 	 * offloaded on boot first.
 | |
| 	 */
 | |
| 	if (!rdp->nocb_gp_rdp)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pr_info("Offloading %d\n", rdp->cpu);
 | |
| 	/*
 | |
| 	 * Can't use rcu_nocb_lock_irqsave() while we are in
 | |
| 	 * SEGCBLIST_SOFTIRQ_ONLY mode.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We didn't take the nocb lock while working on the
 | |
| 	 * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
 | |
| 	 * Every modifications that have been done previously on
 | |
| 	 * rdp->cblist must be visible remotely by the nocb kthreads
 | |
| 	 * upon wake up after reading the cblist flags.
 | |
| 	 *
 | |
| 	 * The layout against nocb_lock enforces that ordering:
 | |
| 	 *
 | |
| 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
 | |
| 	 * -------------------------   ----------------------------
 | |
| 	 *      WRITE callbacks           rcu_nocb_lock()
 | |
| 	 *      rcu_nocb_lock()           READ flags
 | |
| 	 *      WRITE flags               READ callbacks
 | |
| 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
 | |
| 	 */
 | |
| 	ret = rdp_offload_toggle(rdp, true, flags);
 | |
| 	swait_event_exclusive(rdp->nocb_state_wq,
 | |
| 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
 | |
| 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int rcu_nocb_cpu_offload(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&rcu_state.barrier_mutex);
 | |
| 	cpus_read_lock();
 | |
| 	if (!rcu_rdp_is_offloaded(rdp)) {
 | |
| 		if (cpu_online(cpu)) {
 | |
| 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
 | |
| 			if (!ret)
 | |
| 				cpumask_set_cpu(cpu, rcu_nocb_mask);
 | |
| 		} else {
 | |
| 			pr_info("NOCB: Can't CB-offload an offline CPU\n");
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	cpus_read_unlock();
 | |
| 	mutex_unlock(&rcu_state.barrier_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
 | |
| 
 | |
| void __init rcu_init_nohz(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	bool need_rcu_nocb_mask = false;
 | |
| 	struct rcu_data *rdp;
 | |
| 
 | |
| #if defined(CONFIG_NO_HZ_FULL)
 | |
| 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
 | |
| 		need_rcu_nocb_mask = true;
 | |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */
 | |
| 
 | |
| 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
 | |
| 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
 | |
| 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!cpumask_available(rcu_nocb_mask))
 | |
| 		return;
 | |
| 
 | |
| #if defined(CONFIG_NO_HZ_FULL)
 | |
| 	if (tick_nohz_full_running)
 | |
| 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
 | |
| #endif /* #if defined(CONFIG_NO_HZ_FULL) */
 | |
| 
 | |
| 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
 | |
| 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
 | |
| 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
 | |
| 			    rcu_nocb_mask);
 | |
| 	}
 | |
| 	if (cpumask_empty(rcu_nocb_mask))
 | |
| 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
 | |
| 	else
 | |
| 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
 | |
| 			cpumask_pr_args(rcu_nocb_mask));
 | |
| 	if (rcu_nocb_poll)
 | |
| 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
 | |
| 
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		if (rcu_segcblist_empty(&rdp->cblist))
 | |
| 			rcu_segcblist_init(&rdp->cblist);
 | |
| 		rcu_segcblist_offload(&rdp->cblist, true);
 | |
| 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
 | |
| 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
 | |
| 	}
 | |
| 	rcu_organize_nocb_kthreads();
 | |
| }
 | |
| 
 | |
| /* Initialize per-rcu_data variables for no-CBs CPUs. */
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| 	init_swait_queue_head(&rdp->nocb_cb_wq);
 | |
| 	init_swait_queue_head(&rdp->nocb_gp_wq);
 | |
| 	init_swait_queue_head(&rdp->nocb_state_wq);
 | |
| 	raw_spin_lock_init(&rdp->nocb_lock);
 | |
| 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
 | |
| 	raw_spin_lock_init(&rdp->nocb_gp_lock);
 | |
| 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
 | |
| 	rcu_cblist_init(&rdp->nocb_bypass);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the specified CPU is a no-CBs CPU that does not already have its
 | |
|  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
 | |
|  * for this CPU's group has not yet been created, spawn it as well.
 | |
|  */
 | |
| static void rcu_spawn_one_nocb_kthread(int cpu)
 | |
| {
 | |
| 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 	struct rcu_data *rdp_gp;
 | |
| 	struct task_struct *t;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
 | |
| 	 * then nothing to do.
 | |
| 	 */
 | |
| 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
 | |
| 		return;
 | |
| 
 | |
| 	/* If we didn't spawn the GP kthread first, reorganize! */
 | |
| 	rdp_gp = rdp->nocb_gp_rdp;
 | |
| 	if (!rdp_gp->nocb_gp_kthread) {
 | |
| 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
 | |
| 				"rcuog/%d", rdp_gp->cpu);
 | |
| 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
 | |
| 			return;
 | |
| 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
 | |
| 	}
 | |
| 
 | |
| 	/* Spawn the kthread for this CPU. */
 | |
| 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
 | |
| 			"rcuo%c/%d", rcu_state.abbr, cpu);
 | |
| 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
 | |
| 		return;
 | |
| 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
 | |
| 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the specified CPU is a no-CBs CPU that does not already have its
 | |
|  * rcuo kthread, spawn it.
 | |
|  */
 | |
| static void rcu_spawn_cpu_nocb_kthread(int cpu)
 | |
| {
 | |
| 	if (rcu_scheduler_fully_active)
 | |
| 		rcu_spawn_one_nocb_kthread(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Once the scheduler is running, spawn rcuo kthreads for all online
 | |
|  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 | |
|  * non-boot CPUs come online -- if this changes, we will need to add
 | |
|  * some mutual exclusion.
 | |
|  */
 | |
| static void __init rcu_spawn_nocb_kthreads(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		rcu_spawn_cpu_nocb_kthread(cpu);
 | |
| }
 | |
| 
 | |
| /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
 | |
| static int rcu_nocb_gp_stride = -1;
 | |
| module_param(rcu_nocb_gp_stride, int, 0444);
 | |
| 
 | |
| /*
 | |
|  * Initialize GP-CB relationships for all no-CBs CPU.
 | |
|  */
 | |
| static void __init rcu_organize_nocb_kthreads(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	bool firsttime = true;
 | |
| 	bool gotnocbs = false;
 | |
| 	bool gotnocbscbs = true;
 | |
| 	int ls = rcu_nocb_gp_stride;
 | |
| 	int nl = 0;  /* Next GP kthread. */
 | |
| 	struct rcu_data *rdp;
 | |
| 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
 | |
| 	struct rcu_data *rdp_prev = NULL;
 | |
| 
 | |
| 	if (!cpumask_available(rcu_nocb_mask))
 | |
| 		return;
 | |
| 	if (ls == -1) {
 | |
| 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
 | |
| 		rcu_nocb_gp_stride = ls;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each pass through this loop sets up one rcu_data structure.
 | |
| 	 * Should the corresponding CPU come online in the future, then
 | |
| 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
 | |
| 	 */
 | |
| 	for_each_cpu(cpu, rcu_nocb_mask) {
 | |
| 		rdp = per_cpu_ptr(&rcu_data, cpu);
 | |
| 		if (rdp->cpu >= nl) {
 | |
| 			/* New GP kthread, set up for CBs & next GP. */
 | |
| 			gotnocbs = true;
 | |
| 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
 | |
| 			rdp->nocb_gp_rdp = rdp;
 | |
| 			rdp_gp = rdp;
 | |
| 			if (dump_tree) {
 | |
| 				if (!firsttime)
 | |
| 					pr_cont("%s\n", gotnocbscbs
 | |
| 							? "" : " (self only)");
 | |
| 				gotnocbscbs = false;
 | |
| 				firsttime = false;
 | |
| 				pr_alert("%s: No-CB GP kthread CPU %d:",
 | |
| 					 __func__, cpu);
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Another CB kthread, link to previous GP kthread. */
 | |
| 			gotnocbscbs = true;
 | |
| 			rdp->nocb_gp_rdp = rdp_gp;
 | |
| 			rdp_prev->nocb_next_cb_rdp = rdp;
 | |
| 			if (dump_tree)
 | |
| 				pr_cont(" %d", cpu);
 | |
| 		}
 | |
| 		rdp_prev = rdp;
 | |
| 	}
 | |
| 	if (gotnocbs && dump_tree)
 | |
| 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind the current task to the offloaded CPUs.  If there are no offloaded
 | |
|  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 | |
|  */
 | |
| void rcu_bind_current_to_nocb(void)
 | |
| {
 | |
| 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
 | |
| 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
 | |
| 
 | |
| // The ->on_cpu field is available only in CONFIG_SMP=y, so...
 | |
| #ifdef CONFIG_SMP
 | |
| static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
 | |
| {
 | |
| 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
 | |
| }
 | |
| #else // #ifdef CONFIG_SMP
 | |
| static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
 | |
| {
 | |
| 	return "";
 | |
| }
 | |
| #endif // #else #ifdef CONFIG_SMP
 | |
| 
 | |
| /*
 | |
|  * Dump out nocb grace-period kthread state for the specified rcu_data
 | |
|  * structure.
 | |
|  */
 | |
| static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
 | |
| {
 | |
| 	struct rcu_node *rnp = rdp->mynode;
 | |
| 
 | |
| 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
 | |
| 		rdp->cpu,
 | |
| 		"kK"[!!rdp->nocb_gp_kthread],
 | |
| 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
 | |
| 		"dD"[!!rdp->nocb_defer_wakeup],
 | |
| 		"tT"[timer_pending(&rdp->nocb_timer)],
 | |
| 		"sS"[!!rdp->nocb_gp_sleep],
 | |
| 		".W"[swait_active(&rdp->nocb_gp_wq)],
 | |
| 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
 | |
| 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
 | |
| 		".B"[!!rdp->nocb_gp_bypass],
 | |
| 		".G"[!!rdp->nocb_gp_gp],
 | |
| 		(long)rdp->nocb_gp_seq,
 | |
| 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
 | |
| 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
 | |
| 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
 | |
| 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
 | |
| }
 | |
| 
 | |
| /* Dump out nocb kthread state for the specified rcu_data structure. */
 | |
| static void show_rcu_nocb_state(struct rcu_data *rdp)
 | |
| {
 | |
| 	char bufw[20];
 | |
| 	char bufr[20];
 | |
| 	struct rcu_segcblist *rsclp = &rdp->cblist;
 | |
| 	bool waslocked;
 | |
| 	bool wassleep;
 | |
| 
 | |
| 	if (rdp->nocb_gp_rdp == rdp)
 | |
| 		show_rcu_nocb_gp_state(rdp);
 | |
| 
 | |
| 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
 | |
| 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
 | |
| 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
 | |
| 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
 | |
| 		rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
 | |
| 		"kK"[!!rdp->nocb_cb_kthread],
 | |
| 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
 | |
| 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
 | |
| 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
 | |
| 		"sS"[!!rdp->nocb_cb_sleep],
 | |
| 		".W"[swait_active(&rdp->nocb_cb_wq)],
 | |
| 		jiffies - rdp->nocb_bypass_first,
 | |
| 		jiffies - rdp->nocb_nobypass_last,
 | |
| 		rdp->nocb_nobypass_count,
 | |
| 		".D"[rcu_segcblist_ready_cbs(rsclp)],
 | |
| 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
 | |
| 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
 | |
| 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
 | |
| 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
 | |
| 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
 | |
| 		rcu_segcblist_n_cbs(&rdp->cblist),
 | |
| 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
 | |
| 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
 | |
| 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
 | |
| 
 | |
| 	/* It is OK for GP kthreads to have GP state. */
 | |
| 	if (rdp->nocb_gp_rdp == rdp)
 | |
| 		return;
 | |
| 
 | |
| 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
 | |
| 	wassleep = swait_active(&rdp->nocb_gp_wq);
 | |
| 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
 | |
| 		return;  /* Nothing untoward. */
 | |
| 
 | |
| 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
 | |
| 		"lL"[waslocked],
 | |
| 		"dD"[!!rdp->nocb_defer_wakeup],
 | |
| 		"sS"[!!rdp->nocb_gp_sleep],
 | |
| 		".W"[wassleep]);
 | |
| }
 | |
| 
 | |
| #else /* #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| /* No ->nocb_lock to acquire.  */
 | |
| static void rcu_nocb_lock(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* No ->nocb_lock to release.  */
 | |
| static void rcu_nocb_unlock(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| /* No ->nocb_lock to release.  */
 | |
| static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
 | |
| 				       unsigned long flags)
 | |
| {
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* Lockdep check that ->cblist may be safely accessed. */
 | |
| static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 | |
| {
 | |
| 	lockdep_assert_irqs_disabled();
 | |
| }
 | |
| 
 | |
| static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 | |
| {
 | |
| }
 | |
| 
 | |
| static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void rcu_init_one_nocb(struct rcu_node *rnp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				  unsigned long j)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
 | |
| 				bool *was_alldone, unsigned long flags)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
 | |
| 				 unsigned long flags)
 | |
| {
 | |
| 	WARN_ON_ONCE(1);  /* Should be dead code! */
 | |
| }
 | |
| 
 | |
| static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void rcu_spawn_cpu_nocb_kthread(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void __init rcu_spawn_nocb_kthreads(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void show_rcu_nocb_state(struct rcu_data *rdp)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 | |
| 
 | |
| /*
 | |
|  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 | |
|  * grace-period kthread will do force_quiescent_state() processing?
 | |
|  * The idea is to avoid waking up RCU core processing on such a
 | |
|  * CPU unless the grace period has extended for too long.
 | |
|  *
 | |
|  * This code relies on the fact that all NO_HZ_FULL CPUs are also
 | |
|  * CONFIG_RCU_NOCB_CPU CPUs.
 | |
|  */
 | |
| static bool rcu_nohz_full_cpu(void)
 | |
| {
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	if (tick_nohz_full_cpu(smp_processor_id()) &&
 | |
| 	    (!rcu_gp_in_progress() ||
 | |
| 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
 | |
| 		return true;
 | |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind the RCU grace-period kthreads to the housekeeping CPU.
 | |
|  */
 | |
| static void rcu_bind_gp_kthread(void)
 | |
| {
 | |
| 	if (!tick_nohz_full_enabled())
 | |
| 		return;
 | |
| 	housekeeping_affine(current, HK_FLAG_RCU);
 | |
| }
 | |
| 
 | |
| /* Record the current task on dyntick-idle entry. */
 | |
| static void noinstr rcu_dynticks_task_enter(void)
 | |
| {
 | |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 | |
| 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
 | |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 | |
| }
 | |
| 
 | |
| /* Record no current task on dyntick-idle exit. */
 | |
| static void noinstr rcu_dynticks_task_exit(void)
 | |
| {
 | |
| #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
 | |
| 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
 | |
| #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 | |
| }
 | |
| 
 | |
| /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
 | |
| static void rcu_dynticks_task_trace_enter(void)
 | |
| {
 | |
| #ifdef CONFIG_TASKS_RCU_TRACE
 | |
| 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 | |
| 		current->trc_reader_special.b.need_mb = true;
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
 | |
| }
 | |
| 
 | |
| /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
 | |
| static void rcu_dynticks_task_trace_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_TASKS_RCU_TRACE
 | |
| 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
 | |
| 		current->trc_reader_special.b.need_mb = false;
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
 | |
| }
 |