mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 df51f287b5
			
		
	
	
		df51f287b5
		
	
	
	
	
		
			
			Users may disable HWP in firmware, in which case intel_pstate wouldn't load unless the CPU model is explicitly supported. See also the following past commits: commitd8de7a44e1("cpufreq: intel_pstate: Add Skylake servers support") commit706c532885("cpufreq: intel_pstate: Add Cometlake support in no-HWP mode") commitfbdc21e9b0("cpufreq: intel_pstate: Add Icelake servers support in no-HWP mode") commit71bb5c82aa("cpufreq: intel_pstate: Add Tigerlake support in no-HWP mode") Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
			
				
	
	
		
			3533 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3533 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * intel_pstate.c: Native P state management for Intel processors
 | |
|  *
 | |
|  * (C) Copyright 2012 Intel Corporation
 | |
|  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/cpufreq.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/pm_qos.h>
 | |
| #include <trace/events/power.h>
 | |
| 
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/div64.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/cpu_device_id.h>
 | |
| #include <asm/cpufeature.h>
 | |
| #include <asm/intel-family.h>
 | |
| #include "../drivers/thermal/intel/thermal_interrupt.h"
 | |
| 
 | |
| #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
 | |
| 
 | |
| #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
 | |
| #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
 | |
| #define INTEL_CPUFREQ_TRANSITION_DELAY		500
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| #include <acpi/processor.h>
 | |
| #include <acpi/cppc_acpi.h>
 | |
| #endif
 | |
| 
 | |
| #define FRAC_BITS 8
 | |
| #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
 | |
| #define fp_toint(X) ((X) >> FRAC_BITS)
 | |
| 
 | |
| #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
 | |
| 
 | |
| #define EXT_BITS 6
 | |
| #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
 | |
| #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
 | |
| #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
 | |
| 
 | |
| static inline int32_t mul_fp(int32_t x, int32_t y)
 | |
| {
 | |
| 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
 | |
| }
 | |
| 
 | |
| static inline int32_t div_fp(s64 x, s64 y)
 | |
| {
 | |
| 	return div64_s64((int64_t)x << FRAC_BITS, y);
 | |
| }
 | |
| 
 | |
| static inline int ceiling_fp(int32_t x)
 | |
| {
 | |
| 	int mask, ret;
 | |
| 
 | |
| 	ret = fp_toint(x);
 | |
| 	mask = (1 << FRAC_BITS) - 1;
 | |
| 	if (x & mask)
 | |
| 		ret += 1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline u64 mul_ext_fp(u64 x, u64 y)
 | |
| {
 | |
| 	return (x * y) >> EXT_FRAC_BITS;
 | |
| }
 | |
| 
 | |
| static inline u64 div_ext_fp(u64 x, u64 y)
 | |
| {
 | |
| 	return div64_u64(x << EXT_FRAC_BITS, y);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * struct sample -	Store performance sample
 | |
|  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
 | |
|  *			performance during last sample period
 | |
|  * @busy_scaled:	Scaled busy value which is used to calculate next
 | |
|  *			P state. This can be different than core_avg_perf
 | |
|  *			to account for cpu idle period
 | |
|  * @aperf:		Difference of actual performance frequency clock count
 | |
|  *			read from APERF MSR between last and current sample
 | |
|  * @mperf:		Difference of maximum performance frequency clock count
 | |
|  *			read from MPERF MSR between last and current sample
 | |
|  * @tsc:		Difference of time stamp counter between last and
 | |
|  *			current sample
 | |
|  * @time:		Current time from scheduler
 | |
|  *
 | |
|  * This structure is used in the cpudata structure to store performance sample
 | |
|  * data for choosing next P State.
 | |
|  */
 | |
| struct sample {
 | |
| 	int32_t core_avg_perf;
 | |
| 	int32_t busy_scaled;
 | |
| 	u64 aperf;
 | |
| 	u64 mperf;
 | |
| 	u64 tsc;
 | |
| 	u64 time;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct pstate_data - Store P state data
 | |
|  * @current_pstate:	Current requested P state
 | |
|  * @min_pstate:		Min P state possible for this platform
 | |
|  * @max_pstate:		Max P state possible for this platform
 | |
|  * @max_pstate_physical:This is physical Max P state for a processor
 | |
|  *			This can be higher than the max_pstate which can
 | |
|  *			be limited by platform thermal design power limits
 | |
|  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
 | |
|  * @scaling:		Scaling factor between performance and frequency
 | |
|  * @turbo_pstate:	Max Turbo P state possible for this platform
 | |
|  * @min_freq:		@min_pstate frequency in cpufreq units
 | |
|  * @max_freq:		@max_pstate frequency in cpufreq units
 | |
|  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 | |
|  *
 | |
|  * Stores the per cpu model P state limits and current P state.
 | |
|  */
 | |
| struct pstate_data {
 | |
| 	int	current_pstate;
 | |
| 	int	min_pstate;
 | |
| 	int	max_pstate;
 | |
| 	int	max_pstate_physical;
 | |
| 	int	perf_ctl_scaling;
 | |
| 	int	scaling;
 | |
| 	int	turbo_pstate;
 | |
| 	unsigned int min_freq;
 | |
| 	unsigned int max_freq;
 | |
| 	unsigned int turbo_freq;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct vid_data -	Stores voltage information data
 | |
|  * @min:		VID data for this platform corresponding to
 | |
|  *			the lowest P state
 | |
|  * @max:		VID data corresponding to the highest P State.
 | |
|  * @turbo:		VID data for turbo P state
 | |
|  * @ratio:		Ratio of (vid max - vid min) /
 | |
|  *			(max P state - Min P State)
 | |
|  *
 | |
|  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 | |
|  * This data is used in Atom platforms, where in addition to target P state,
 | |
|  * the voltage data needs to be specified to select next P State.
 | |
|  */
 | |
| struct vid_data {
 | |
| 	int min;
 | |
| 	int max;
 | |
| 	int turbo;
 | |
| 	int32_t ratio;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct global_params - Global parameters, mostly tunable via sysfs.
 | |
|  * @no_turbo:		Whether or not to use turbo P-states.
 | |
|  * @turbo_disabled:	Whether or not turbo P-states are available at all,
 | |
|  *			based on the MSR_IA32_MISC_ENABLE value and whether or
 | |
|  *			not the maximum reported turbo P-state is different from
 | |
|  *			the maximum reported non-turbo one.
 | |
|  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
 | |
|  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 | |
|  *			P-state capacity.
 | |
|  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 | |
|  *			P-state capacity.
 | |
|  */
 | |
| struct global_params {
 | |
| 	bool no_turbo;
 | |
| 	bool turbo_disabled;
 | |
| 	bool turbo_disabled_mf;
 | |
| 	int max_perf_pct;
 | |
| 	int min_perf_pct;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct cpudata -	Per CPU instance data storage
 | |
|  * @cpu:		CPU number for this instance data
 | |
|  * @policy:		CPUFreq policy value
 | |
|  * @update_util:	CPUFreq utility callback information
 | |
|  * @update_util_set:	CPUFreq utility callback is set
 | |
|  * @iowait_boost:	iowait-related boost fraction
 | |
|  * @last_update:	Time of the last update.
 | |
|  * @pstate:		Stores P state limits for this CPU
 | |
|  * @vid:		Stores VID limits for this CPU
 | |
|  * @last_sample_time:	Last Sample time
 | |
|  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
 | |
|  * @prev_aperf:		Last APERF value read from APERF MSR
 | |
|  * @prev_mperf:		Last MPERF value read from MPERF MSR
 | |
|  * @prev_tsc:		Last timestamp counter (TSC) value
 | |
|  * @prev_cummulative_iowait: IO Wait time difference from last and
 | |
|  *			current sample
 | |
|  * @sample:		Storage for storing last Sample data
 | |
|  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 | |
|  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
 | |
|  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 | |
|  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 | |
|  * @epp_powersave:	Last saved HWP energy performance preference
 | |
|  *			(EPP) or energy performance bias (EPB),
 | |
|  *			when policy switched to performance
 | |
|  * @epp_policy:		Last saved policy used to set EPP/EPB
 | |
|  * @epp_default:	Power on default HWP energy performance
 | |
|  *			preference/bias
 | |
|  * @epp_cached		Cached HWP energy-performance preference value
 | |
|  * @hwp_req_cached:	Cached value of the last HWP Request MSR
 | |
|  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
 | |
|  * @last_io_update:	Last time when IO wake flag was set
 | |
|  * @sched_flags:	Store scheduler flags for possible cross CPU update
 | |
|  * @hwp_boost_min:	Last HWP boosted min performance
 | |
|  * @suspended:		Whether or not the driver has been suspended.
 | |
|  * @hwp_notify_work:	workqueue for HWP notifications.
 | |
|  *
 | |
|  * This structure stores per CPU instance data for all CPUs.
 | |
|  */
 | |
| struct cpudata {
 | |
| 	int cpu;
 | |
| 
 | |
| 	unsigned int policy;
 | |
| 	struct update_util_data update_util;
 | |
| 	bool   update_util_set;
 | |
| 
 | |
| 	struct pstate_data pstate;
 | |
| 	struct vid_data vid;
 | |
| 
 | |
| 	u64	last_update;
 | |
| 	u64	last_sample_time;
 | |
| 	u64	aperf_mperf_shift;
 | |
| 	u64	prev_aperf;
 | |
| 	u64	prev_mperf;
 | |
| 	u64	prev_tsc;
 | |
| 	u64	prev_cummulative_iowait;
 | |
| 	struct sample sample;
 | |
| 	int32_t	min_perf_ratio;
 | |
| 	int32_t	max_perf_ratio;
 | |
| #ifdef CONFIG_ACPI
 | |
| 	struct acpi_processor_performance acpi_perf_data;
 | |
| 	bool valid_pss_table;
 | |
| #endif
 | |
| 	unsigned int iowait_boost;
 | |
| 	s16 epp_powersave;
 | |
| 	s16 epp_policy;
 | |
| 	s16 epp_default;
 | |
| 	s16 epp_cached;
 | |
| 	u64 hwp_req_cached;
 | |
| 	u64 hwp_cap_cached;
 | |
| 	u64 last_io_update;
 | |
| 	unsigned int sched_flags;
 | |
| 	u32 hwp_boost_min;
 | |
| 	bool suspended;
 | |
| 	struct delayed_work hwp_notify_work;
 | |
| };
 | |
| 
 | |
| static struct cpudata **all_cpu_data;
 | |
| 
 | |
| /**
 | |
|  * struct pstate_funcs - Per CPU model specific callbacks
 | |
|  * @get_max:		Callback to get maximum non turbo effective P state
 | |
|  * @get_max_physical:	Callback to get maximum non turbo physical P state
 | |
|  * @get_min:		Callback to get minimum P state
 | |
|  * @get_turbo:		Callback to get turbo P state
 | |
|  * @get_scaling:	Callback to get frequency scaling factor
 | |
|  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
 | |
|  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
 | |
|  * @get_val:		Callback to convert P state to actual MSR write value
 | |
|  * @get_vid:		Callback to get VID data for Atom platforms
 | |
|  *
 | |
|  * Core and Atom CPU models have different way to get P State limits. This
 | |
|  * structure is used to store those callbacks.
 | |
|  */
 | |
| struct pstate_funcs {
 | |
| 	int (*get_max)(int cpu);
 | |
| 	int (*get_max_physical)(int cpu);
 | |
| 	int (*get_min)(int cpu);
 | |
| 	int (*get_turbo)(int cpu);
 | |
| 	int (*get_scaling)(void);
 | |
| 	int (*get_cpu_scaling)(int cpu);
 | |
| 	int (*get_aperf_mperf_shift)(void);
 | |
| 	u64 (*get_val)(struct cpudata*, int pstate);
 | |
| 	void (*get_vid)(struct cpudata *);
 | |
| };
 | |
| 
 | |
| static struct pstate_funcs pstate_funcs __read_mostly;
 | |
| 
 | |
| static int hwp_active __read_mostly;
 | |
| static int hwp_mode_bdw __read_mostly;
 | |
| static bool per_cpu_limits __read_mostly;
 | |
| static bool hwp_boost __read_mostly;
 | |
| static bool hwp_forced __read_mostly;
 | |
| 
 | |
| static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| static bool acpi_ppc;
 | |
| #endif
 | |
| 
 | |
| static struct global_params global;
 | |
| 
 | |
| static DEFINE_MUTEX(intel_pstate_driver_lock);
 | |
| static DEFINE_MUTEX(intel_pstate_limits_lock);
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 
 | |
| static bool intel_pstate_acpi_pm_profile_server(void)
 | |
| {
 | |
| 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 | |
| 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool intel_pstate_get_ppc_enable_status(void)
 | |
| {
 | |
| 	if (intel_pstate_acpi_pm_profile_server())
 | |
| 		return true;
 | |
| 
 | |
| 	return acpi_ppc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ACPI_CPPC_LIB
 | |
| 
 | |
| /* The work item is needed to avoid CPU hotplug locking issues */
 | |
| static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	sched_set_itmt_support();
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 | |
| 
 | |
| #define CPPC_MAX_PERF	U8_MAX
 | |
| 
 | |
| static void intel_pstate_set_itmt_prio(int cpu)
 | |
| {
 | |
| 	struct cppc_perf_caps cppc_perf;
 | |
| 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
 | |
| 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
 | |
| 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
 | |
| 	 */
 | |
| 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
 | |
| 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
 | |
| 
 | |
| 	/*
 | |
| 	 * The priorities can be set regardless of whether or not
 | |
| 	 * sched_set_itmt_support(true) has been called and it is valid to
 | |
| 	 * update them at any time after it has been called.
 | |
| 	 */
 | |
| 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 | |
| 
 | |
| 	if (max_highest_perf <= min_highest_perf) {
 | |
| 		if (cppc_perf.highest_perf > max_highest_perf)
 | |
| 			max_highest_perf = cppc_perf.highest_perf;
 | |
| 
 | |
| 		if (cppc_perf.highest_perf < min_highest_perf)
 | |
| 			min_highest_perf = cppc_perf.highest_perf;
 | |
| 
 | |
| 		if (max_highest_perf > min_highest_perf) {
 | |
| 			/*
 | |
| 			 * This code can be run during CPU online under the
 | |
| 			 * CPU hotplug locks, so sched_set_itmt_support()
 | |
| 			 * cannot be called from here.  Queue up a work item
 | |
| 			 * to invoke it.
 | |
| 			 */
 | |
| 			schedule_work(&sched_itmt_work);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int intel_pstate_get_cppc_guaranteed(int cpu)
 | |
| {
 | |
| 	struct cppc_perf_caps cppc_perf;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (cppc_perf.guaranteed_perf)
 | |
| 		return cppc_perf.guaranteed_perf;
 | |
| 
 | |
| 	return cppc_perf.nominal_perf;
 | |
| }
 | |
| #else /* CONFIG_ACPI_CPPC_LIB */
 | |
| static inline void intel_pstate_set_itmt_prio(int cpu)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_ACPI_CPPC_LIB */
 | |
| 
 | |
| static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		intel_pstate_set_itmt_prio(policy->cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!intel_pstate_get_ppc_enable_status())
 | |
| 		return;
 | |
| 
 | |
| 	cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 | |
| 						  policy->cpu);
 | |
| 	if (ret)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 | |
| 	 * guarantee that the states returned by it map to the states in our
 | |
| 	 * list directly.
 | |
| 	 */
 | |
| 	if (cpu->acpi_perf_data.control_register.space_id !=
 | |
| 						ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 | |
| 	 * usual without taking _PSS into account
 | |
| 	 */
 | |
| 	if (cpu->acpi_perf_data.state_count < 2)
 | |
| 		goto err;
 | |
| 
 | |
| 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 | |
| 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 | |
| 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 | |
| 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 | |
| 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 | |
| 			 (u32) cpu->acpi_perf_data.states[i].power,
 | |
| 			 (u32) cpu->acpi_perf_data.states[i].control);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The _PSS table doesn't contain whole turbo frequency range.
 | |
| 	 * This just contains +1 MHZ above the max non turbo frequency,
 | |
| 	 * with control value corresponding to max turbo ratio. But
 | |
| 	 * when cpufreq set policy is called, it will call with this
 | |
| 	 * max frequency, which will cause a reduced performance as
 | |
| 	 * this driver uses real max turbo frequency as the max
 | |
| 	 * frequency. So correct this frequency in _PSS table to
 | |
| 	 * correct max turbo frequency based on the turbo state.
 | |
| 	 * Also need to convert to MHz as _PSS freq is in MHz.
 | |
| 	 */
 | |
| 	if (!global.turbo_disabled)
 | |
| 		cpu->acpi_perf_data.states[0].core_frequency =
 | |
| 					policy->cpuinfo.max_freq / 1000;
 | |
| 	cpu->valid_pss_table = true;
 | |
| 	pr_debug("_PPC limits will be enforced\n");
 | |
| 
 | |
| 	return;
 | |
| 
 | |
|  err:
 | |
| 	cpu->valid_pss_table = false;
 | |
| 	acpi_processor_unregister_performance(policy->cpu);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 
 | |
| 	cpu = all_cpu_data[policy->cpu];
 | |
| 	if (!cpu->valid_pss_table)
 | |
| 		return;
 | |
| 
 | |
| 	acpi_processor_unregister_performance(policy->cpu);
 | |
| }
 | |
| #else /* CONFIG_ACPI */
 | |
| static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool intel_pstate_acpi_pm_profile_server(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_ACPI */
 | |
| 
 | |
| #ifndef CONFIG_ACPI_CPPC_LIB
 | |
| static inline int intel_pstate_get_cppc_guaranteed(int cpu)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| #endif /* CONFIG_ACPI_CPPC_LIB */
 | |
| 
 | |
| /**
 | |
|  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
 | |
|  * @cpu: Target CPU.
 | |
|  *
 | |
|  * On hybrid processors, HWP may expose more performance levels than there are
 | |
|  * P-states accessible through the PERF_CTL interface.  If that happens, the
 | |
|  * scaling factor between HWP performance levels and CPU frequency will be less
 | |
|  * than the scaling factor between P-state values and CPU frequency.
 | |
|  *
 | |
|  * In that case, adjust the CPU parameters used in computations accordingly.
 | |
|  */
 | |
| static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
 | |
| {
 | |
| 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
 | |
| 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
 | |
| 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
 | |
| 	int scaling = cpu->pstate.scaling;
 | |
| 
 | |
| 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
 | |
| 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
 | |
| 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
 | |
| 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
 | |
| 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
 | |
| 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
 | |
| 
 | |
| 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
 | |
| 					   perf_ctl_scaling);
 | |
| 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
 | |
| 					 perf_ctl_scaling);
 | |
| 
 | |
| 	cpu->pstate.max_pstate_physical =
 | |
| 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
 | |
| 				     scaling);
 | |
| 
 | |
| 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
 | |
| 	/*
 | |
| 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
 | |
| 	 * the effective range of HWP performance levels.
 | |
| 	 */
 | |
| 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
 | |
| }
 | |
| 
 | |
| static inline void update_turbo_state(void)
 | |
| {
 | |
| 	u64 misc_en;
 | |
| 	struct cpudata *cpu;
 | |
| 
 | |
| 	cpu = all_cpu_data[0];
 | |
| 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 | |
| 	global.turbo_disabled =
 | |
| 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 | |
| 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 | |
| }
 | |
| 
 | |
| static int min_perf_pct_min(void)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[0];
 | |
| 	int turbo_pstate = cpu->pstate.turbo_pstate;
 | |
| 
 | |
| 	return turbo_pstate ?
 | |
| 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 | |
| }
 | |
| 
 | |
| static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 | |
| {
 | |
| 	u64 epb;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_EPB))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 | |
| 	if (ret)
 | |
| 		return (s16)ret;
 | |
| 
 | |
| 	return (s16)(epb & 0x0f);
 | |
| }
 | |
| 
 | |
| static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 | |
| {
 | |
| 	s16 epp;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 | |
| 		/*
 | |
| 		 * When hwp_req_data is 0, means that caller didn't read
 | |
| 		 * MSR_HWP_REQUEST, so need to read and get EPP.
 | |
| 		 */
 | |
| 		if (!hwp_req_data) {
 | |
| 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 | |
| 					    &hwp_req_data);
 | |
| 			if (epp)
 | |
| 				return epp;
 | |
| 		}
 | |
| 		epp = (hwp_req_data >> 24) & 0xff;
 | |
| 	} else {
 | |
| 		/* When there is no EPP present, HWP uses EPB settings */
 | |
| 		epp = intel_pstate_get_epb(cpu_data);
 | |
| 	}
 | |
| 
 | |
| 	return epp;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_set_epb(int cpu, s16 pref)
 | |
| {
 | |
| 	u64 epb;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_EPB))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	epb = (epb & ~0x0f) | pref;
 | |
| 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * EPP/EPB display strings corresponding to EPP index in the
 | |
|  * energy_perf_strings[]
 | |
|  *	index		String
 | |
|  *-------------------------------------
 | |
|  *	0		default
 | |
|  *	1		performance
 | |
|  *	2		balance_performance
 | |
|  *	3		balance_power
 | |
|  *	4		power
 | |
|  */
 | |
| 
 | |
| enum energy_perf_value_index {
 | |
| 	EPP_INDEX_DEFAULT = 0,
 | |
| 	EPP_INDEX_PERFORMANCE,
 | |
| 	EPP_INDEX_BALANCE_PERFORMANCE,
 | |
| 	EPP_INDEX_BALANCE_POWERSAVE,
 | |
| 	EPP_INDEX_POWERSAVE,
 | |
| };
 | |
| 
 | |
| static const char * const energy_perf_strings[] = {
 | |
| 	[EPP_INDEX_DEFAULT] = "default",
 | |
| 	[EPP_INDEX_PERFORMANCE] = "performance",
 | |
| 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
 | |
| 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
 | |
| 	[EPP_INDEX_POWERSAVE] = "power",
 | |
| 	NULL
 | |
| };
 | |
| static unsigned int epp_values[] = {
 | |
| 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
 | |
| 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
 | |
| 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
 | |
| 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
 | |
| 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
 | |
| };
 | |
| 
 | |
| static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
 | |
| {
 | |
| 	s16 epp;
 | |
| 	int index = -EINVAL;
 | |
| 
 | |
| 	*raw_epp = 0;
 | |
| 	epp = intel_pstate_get_epp(cpu_data, 0);
 | |
| 	if (epp < 0)
 | |
| 		return epp;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 | |
| 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
 | |
| 			return EPP_INDEX_PERFORMANCE;
 | |
| 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
 | |
| 			return EPP_INDEX_BALANCE_PERFORMANCE;
 | |
| 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
 | |
| 			return EPP_INDEX_BALANCE_POWERSAVE;
 | |
| 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
 | |
| 			return EPP_INDEX_POWERSAVE;
 | |
| 		*raw_epp = epp;
 | |
| 		return 0;
 | |
| 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
 | |
| 		/*
 | |
| 		 * Range:
 | |
| 		 *	0x00-0x03	:	Performance
 | |
| 		 *	0x04-0x07	:	Balance performance
 | |
| 		 *	0x08-0x0B	:	Balance power
 | |
| 		 *	0x0C-0x0F	:	Power
 | |
| 		 * The EPB is a 4 bit value, but our ranges restrict the
 | |
| 		 * value which can be set. Here only using top two bits
 | |
| 		 * effectively.
 | |
| 		 */
 | |
| 		index = (epp >> 2) + 1;
 | |
| 	}
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the cached HWP Request MSR value, because in the active mode the
 | |
| 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
 | |
| 	 * intel_pstate_hwp_boost_down() at any time.
 | |
| 	 */
 | |
| 	u64 value = READ_ONCE(cpu->hwp_req_cached);
 | |
| 
 | |
| 	value &= ~GENMASK_ULL(31, 24);
 | |
| 	value |= (u64)epp << 24;
 | |
| 	/*
 | |
| 	 * The only other updater of hwp_req_cached in the active mode,
 | |
| 	 * intel_pstate_hwp_set(), is called under the same lock as this
 | |
| 	 * function, so it cannot run in parallel with the update below.
 | |
| 	 */
 | |
| 	WRITE_ONCE(cpu->hwp_req_cached, value);
 | |
| 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 | |
| 	if (!ret)
 | |
| 		cpu->epp_cached = epp;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 | |
| 					      int pref_index, bool use_raw,
 | |
| 					      u32 raw_epp)
 | |
| {
 | |
| 	int epp = -EINVAL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pref_index)
 | |
| 		epp = cpu_data->epp_default;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 | |
| 		if (use_raw)
 | |
| 			epp = raw_epp;
 | |
| 		else if (epp == -EINVAL)
 | |
| 			epp = epp_values[pref_index];
 | |
| 
 | |
| 		/*
 | |
| 		 * To avoid confusion, refuse to set EPP to any values different
 | |
| 		 * from 0 (performance) if the current policy is "performance",
 | |
| 		 * because those values would be overridden.
 | |
| 		 */
 | |
| 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		ret = intel_pstate_set_epp(cpu_data, epp);
 | |
| 	} else {
 | |
| 		if (epp == -EINVAL)
 | |
| 			epp = (pref_index - 1) << 2;
 | |
| 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t show_energy_performance_available_preferences(
 | |
| 				struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (energy_perf_strings[i] != NULL)
 | |
| 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 | |
| 
 | |
| 	ret += sprintf(&buf[ret], "\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| cpufreq_freq_attr_ro(energy_performance_available_preferences);
 | |
| 
 | |
| static struct cpufreq_driver intel_pstate;
 | |
| 
 | |
| static ssize_t store_energy_performance_preference(
 | |
| 		struct cpufreq_policy *policy, const char *buf, size_t count)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 	char str_preference[21];
 | |
| 	bool raw = false;
 | |
| 	ssize_t ret;
 | |
| 	u32 epp = 0;
 | |
| 
 | |
| 	ret = sscanf(buf, "%20s", str_preference);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = match_string(energy_perf_strings, -1, str_preference);
 | |
| 	if (ret < 0) {
 | |
| 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = kstrtouint(buf, 10, &epp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (epp > 255)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		raw = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This function runs with the policy R/W semaphore held, which
 | |
| 	 * guarantees that the driver pointer will not change while it is
 | |
| 	 * running.
 | |
| 	 */
 | |
| 	if (!intel_pstate_driver)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	if (intel_pstate_driver == &intel_pstate) {
 | |
| 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * In the passive mode the governor needs to be stopped on the
 | |
| 		 * target CPU before the EPP update and restarted after it,
 | |
| 		 * which is super-heavy-weight, so make sure it is worth doing
 | |
| 		 * upfront.
 | |
| 		 */
 | |
| 		if (!raw)
 | |
| 			epp = ret ? epp_values[ret] : cpu->epp_default;
 | |
| 
 | |
| 		if (cpu->epp_cached != epp) {
 | |
| 			int err;
 | |
| 
 | |
| 			cpufreq_stop_governor(policy);
 | |
| 			ret = intel_pstate_set_epp(cpu, epp);
 | |
| 			err = cpufreq_start_governor(policy);
 | |
| 			if (!ret)
 | |
| 				ret = err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	return ret ?: count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_energy_performance_preference(
 | |
| 				struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 | |
| 	int preference, raw_epp;
 | |
| 
 | |
| 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
 | |
| 	if (preference < 0)
 | |
| 		return preference;
 | |
| 
 | |
| 	if (raw_epp)
 | |
| 		return  sprintf(buf, "%d\n", raw_epp);
 | |
| 	else
 | |
| 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 | |
| }
 | |
| 
 | |
| cpufreq_freq_attr_rw(energy_performance_preference);
 | |
| 
 | |
| static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 	int ratio, freq;
 | |
| 
 | |
| 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
 | |
| 	if (ratio <= 0) {
 | |
| 		u64 cap;
 | |
| 
 | |
| 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 | |
| 		ratio = HWP_GUARANTEED_PERF(cap);
 | |
| 	}
 | |
| 
 | |
| 	freq = ratio * cpu->pstate.scaling;
 | |
| 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
 | |
| 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
 | |
| 
 | |
| 	return sprintf(buf, "%d\n", freq);
 | |
| }
 | |
| 
 | |
| cpufreq_freq_attr_ro(base_frequency);
 | |
| 
 | |
| static struct freq_attr *hwp_cpufreq_attrs[] = {
 | |
| 	&energy_performance_preference,
 | |
| 	&energy_performance_available_preferences,
 | |
| 	&base_frequency,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
 | |
| {
 | |
| 	u64 cap;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
 | |
| 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
 | |
| 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
 | |
| 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
 | |
| {
 | |
| 	int scaling = cpu->pstate.scaling;
 | |
| 
 | |
| 	__intel_pstate_get_hwp_cap(cpu);
 | |
| 
 | |
| 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
 | |
| 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
 | |
| 	if (scaling != cpu->pstate.perf_ctl_scaling) {
 | |
| 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
 | |
| 
 | |
| 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
 | |
| 						 perf_ctl_scaling);
 | |
| 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
 | |
| 						   perf_ctl_scaling);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pstate_hwp_set(unsigned int cpu)
 | |
| {
 | |
| 	struct cpudata *cpu_data = all_cpu_data[cpu];
 | |
| 	int max, min;
 | |
| 	u64 value;
 | |
| 	s16 epp;
 | |
| 
 | |
| 	max = cpu_data->max_perf_ratio;
 | |
| 	min = cpu_data->min_perf_ratio;
 | |
| 
 | |
| 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 | |
| 		min = max;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 | |
| 
 | |
| 	value &= ~HWP_MIN_PERF(~0L);
 | |
| 	value |= HWP_MIN_PERF(min);
 | |
| 
 | |
| 	value &= ~HWP_MAX_PERF(~0L);
 | |
| 	value |= HWP_MAX_PERF(max);
 | |
| 
 | |
| 	if (cpu_data->epp_policy == cpu_data->policy)
 | |
| 		goto skip_epp;
 | |
| 
 | |
| 	cpu_data->epp_policy = cpu_data->policy;
 | |
| 
 | |
| 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 | |
| 		epp = intel_pstate_get_epp(cpu_data, value);
 | |
| 		cpu_data->epp_powersave = epp;
 | |
| 		/* If EPP read was failed, then don't try to write */
 | |
| 		if (epp < 0)
 | |
| 			goto skip_epp;
 | |
| 
 | |
| 		epp = 0;
 | |
| 	} else {
 | |
| 		/* skip setting EPP, when saved value is invalid */
 | |
| 		if (cpu_data->epp_powersave < 0)
 | |
| 			goto skip_epp;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to restore EPP when it is not zero. This
 | |
| 		 * means:
 | |
| 		 *  - Policy is not changed
 | |
| 		 *  - user has manually changed
 | |
| 		 *  - Error reading EPB
 | |
| 		 */
 | |
| 		epp = intel_pstate_get_epp(cpu_data, value);
 | |
| 		if (epp)
 | |
| 			goto skip_epp;
 | |
| 
 | |
| 		epp = cpu_data->epp_powersave;
 | |
| 	}
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 | |
| 		value &= ~GENMASK_ULL(31, 24);
 | |
| 		value |= (u64)epp << 24;
 | |
| 	} else {
 | |
| 		intel_pstate_set_epb(cpu, epp);
 | |
| 	}
 | |
| skip_epp:
 | |
| 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
 | |
| 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
 | |
| 
 | |
| static void intel_pstate_hwp_offline(struct cpudata *cpu)
 | |
| {
 | |
| 	u64 value = READ_ONCE(cpu->hwp_req_cached);
 | |
| 	int min_perf;
 | |
| 
 | |
| 	intel_pstate_disable_hwp_interrupt(cpu);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 | |
| 		/*
 | |
| 		 * In case the EPP has been set to "performance" by the
 | |
| 		 * active mode "performance" scaling algorithm, replace that
 | |
| 		 * temporary value with the cached EPP one.
 | |
| 		 */
 | |
| 		value &= ~GENMASK_ULL(31, 24);
 | |
| 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
 | |
| 		/*
 | |
| 		 * However, make sure that EPP will be set to "performance" when
 | |
| 		 * the CPU is brought back online again and the "performance"
 | |
| 		 * scaling algorithm is still in effect.
 | |
| 		 */
 | |
| 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the desired perf field in the cached HWP request value to
 | |
| 	 * prevent nonzero desired values from being leaked into the active
 | |
| 	 * mode.
 | |
| 	 */
 | |
| 	value &= ~HWP_DESIRED_PERF(~0L);
 | |
| 	WRITE_ONCE(cpu->hwp_req_cached, value);
 | |
| 
 | |
| 	value &= ~GENMASK_ULL(31, 0);
 | |
| 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
 | |
| 
 | |
| 	/* Set hwp_max = hwp_min */
 | |
| 	value |= HWP_MAX_PERF(min_perf);
 | |
| 	value |= HWP_MIN_PERF(min_perf);
 | |
| 
 | |
| 	/* Set EPP to min */
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 | |
| 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 | |
| 
 | |
| 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 | |
| }
 | |
| 
 | |
| #define POWER_CTL_EE_ENABLE	1
 | |
| #define POWER_CTL_EE_DISABLE	2
 | |
| 
 | |
| static int power_ctl_ee_state;
 | |
| 
 | |
| static void set_power_ctl_ee_state(bool input)
 | |
| {
 | |
| 	u64 power_ctl;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
 | |
| 	if (input) {
 | |
| 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
 | |
| 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
 | |
| 	} else {
 | |
| 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
 | |
| 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
 | |
| 	}
 | |
| 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 | |
| 
 | |
| static void intel_pstate_hwp_reenable(struct cpudata *cpu)
 | |
| {
 | |
| 	intel_pstate_hwp_enable(cpu);
 | |
| 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
 | |
| }
 | |
| 
 | |
| static int intel_pstate_suspend(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	pr_debug("CPU %d suspending\n", cpu->cpu);
 | |
| 
 | |
| 	cpu->suspended = true;
 | |
| 
 | |
| 	/* disable HWP interrupt and cancel any pending work */
 | |
| 	intel_pstate_disable_hwp_interrupt(cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_resume(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	pr_debug("CPU %d resuming\n", cpu->cpu);
 | |
| 
 | |
| 	/* Only restore if the system default is changed */
 | |
| 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
 | |
| 		set_power_ctl_ee_state(true);
 | |
| 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
 | |
| 		set_power_ctl_ee_state(false);
 | |
| 
 | |
| 	if (cpu->suspended && hwp_active) {
 | |
| 		mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 		/* Re-enable HWP, because "online" has not done that. */
 | |
| 		intel_pstate_hwp_reenable(cpu);
 | |
| 
 | |
| 		mutex_unlock(&intel_pstate_limits_lock);
 | |
| 	}
 | |
| 
 | |
| 	cpu->suspended = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_policies(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		cpufreq_update_policy(cpu);
 | |
| }
 | |
| 
 | |
| static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
 | |
| 					   struct cpufreq_policy *policy)
 | |
| {
 | |
| 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
 | |
| 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
 | |
| 	refresh_frequency_limits(policy);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_max_freq(unsigned int cpu)
 | |
| {
 | |
| 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 | |
| 
 | |
| 	if (!policy)
 | |
| 		return;
 | |
| 
 | |
| 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
 | |
| 
 | |
| 	cpufreq_cpu_release(policy);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_limits(unsigned int cpu)
 | |
| {
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	/*
 | |
| 	 * If turbo has been turned on or off globally, policy limits for
 | |
| 	 * all CPUs need to be updated to reflect that.
 | |
| 	 */
 | |
| 	if (global.turbo_disabled_mf != global.turbo_disabled) {
 | |
| 		global.turbo_disabled_mf = global.turbo_disabled;
 | |
| 		arch_set_max_freq_ratio(global.turbo_disabled);
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			intel_pstate_update_max_freq(cpu);
 | |
| 	} else {
 | |
| 		cpufreq_update_policy(cpu);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| }
 | |
| 
 | |
| /************************** sysfs begin ************************/
 | |
| #define show_one(file_name, object)					\
 | |
| 	static ssize_t show_##file_name					\
 | |
| 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
 | |
| 	{								\
 | |
| 		return sprintf(buf, "%u\n", global.object);		\
 | |
| 	}
 | |
| 
 | |
| static ssize_t intel_pstate_show_status(char *buf);
 | |
| static int intel_pstate_update_status(const char *buf, size_t size);
 | |
| 
 | |
| static ssize_t show_status(struct kobject *kobj,
 | |
| 			   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 	ret = intel_pstate_show_status(buf);
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	char *p = memchr(buf, '\n', count);
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return ret < 0 ? ret : count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_turbo_pct(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 	int total, no_turbo, turbo_pct;
 | |
| 	uint32_t turbo_fp;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	cpu = all_cpu_data[0];
 | |
| 
 | |
| 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 | |
| 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 | |
| 	turbo_fp = div_fp(no_turbo, total);
 | |
| 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return sprintf(buf, "%u\n", turbo_pct);
 | |
| }
 | |
| 
 | |
| static ssize_t show_num_pstates(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 	int total;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	cpu = all_cpu_data[0];
 | |
| 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return sprintf(buf, "%u\n", total);
 | |
| }
 | |
| 
 | |
| static ssize_t show_no_turbo(struct kobject *kobj,
 | |
| 			     struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	if (global.turbo_disabled)
 | |
| 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
 | |
| 	else
 | |
| 		ret = sprintf(buf, "%u\n", global.no_turbo);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
 | |
| 			      const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	if (global.turbo_disabled) {
 | |
| 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
 | |
| 		mutex_unlock(&intel_pstate_limits_lock);
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	global.no_turbo = clamp_t(int, input, 0, 1);
 | |
| 
 | |
| 	if (global.no_turbo) {
 | |
| 		struct cpudata *cpu = all_cpu_data[0];
 | |
| 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
 | |
| 
 | |
| 		/* Squash the global minimum into the permitted range. */
 | |
| 		if (global.min_perf_pct > pct)
 | |
| 			global.min_perf_pct = pct;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	intel_pstate_update_policies();
 | |
| 	arch_set_max_freq_ratio(global.no_turbo);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void update_qos_request(enum freq_qos_req_type type)
 | |
| {
 | |
| 	struct freq_qos_request *req;
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct cpudata *cpu = all_cpu_data[i];
 | |
| 		unsigned int freq, perf_pct;
 | |
| 
 | |
| 		policy = cpufreq_cpu_get(i);
 | |
| 		if (!policy)
 | |
| 			continue;
 | |
| 
 | |
| 		req = policy->driver_data;
 | |
| 		cpufreq_cpu_put(policy);
 | |
| 
 | |
| 		if (!req)
 | |
| 			continue;
 | |
| 
 | |
| 		if (hwp_active)
 | |
| 			intel_pstate_get_hwp_cap(cpu);
 | |
| 
 | |
| 		if (type == FREQ_QOS_MIN) {
 | |
| 			perf_pct = global.min_perf_pct;
 | |
| 		} else {
 | |
| 			req++;
 | |
| 			perf_pct = global.max_perf_pct;
 | |
| 		}
 | |
| 
 | |
| 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
 | |
| 
 | |
| 		if (freq_qos_update_request(req, freq) < 0)
 | |
| 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
 | |
| 				  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	if (intel_pstate_driver == &intel_pstate)
 | |
| 		intel_pstate_update_policies();
 | |
| 	else
 | |
| 		update_qos_request(FREQ_QOS_MAX);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
 | |
| 				  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sscanf(buf, "%u", &input);
 | |
| 	if (ret != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	if (!intel_pstate_driver) {
 | |
| 		mutex_unlock(&intel_pstate_driver_lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	global.min_perf_pct = clamp_t(int, input,
 | |
| 				      min_perf_pct_min(), global.max_perf_pct);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	if (intel_pstate_driver == &intel_pstate)
 | |
| 		intel_pstate_update_policies();
 | |
| 	else
 | |
| 		update_qos_request(FREQ_QOS_MIN);
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", hwp_boost);
 | |
| }
 | |
| 
 | |
| static ssize_t store_hwp_dynamic_boost(struct kobject *a,
 | |
| 				       struct kobj_attribute *b,
 | |
| 				       const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned int input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtouint(buf, 10, &input);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 	hwp_boost = !!input;
 | |
| 	intel_pstate_update_policies();
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
 | |
| 				      char *buf)
 | |
| {
 | |
| 	u64 power_ctl;
 | |
| 	int enable;
 | |
| 
 | |
| 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
 | |
| 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
 | |
| 	return sprintf(buf, "%d\n", !enable);
 | |
| }
 | |
| 
 | |
| static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
 | |
| 				       const char *buf, size_t count)
 | |
| {
 | |
| 	bool input;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtobool(buf, &input);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	set_power_ctl_ee_state(input);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| show_one(max_perf_pct, max_perf_pct);
 | |
| show_one(min_perf_pct, min_perf_pct);
 | |
| 
 | |
| define_one_global_rw(status);
 | |
| define_one_global_rw(no_turbo);
 | |
| define_one_global_rw(max_perf_pct);
 | |
| define_one_global_rw(min_perf_pct);
 | |
| define_one_global_ro(turbo_pct);
 | |
| define_one_global_ro(num_pstates);
 | |
| define_one_global_rw(hwp_dynamic_boost);
 | |
| define_one_global_rw(energy_efficiency);
 | |
| 
 | |
| static struct attribute *intel_pstate_attributes[] = {
 | |
| 	&status.attr,
 | |
| 	&no_turbo.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group intel_pstate_attr_group = {
 | |
| 	.attrs = intel_pstate_attributes,
 | |
| };
 | |
| 
 | |
| static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
 | |
| 
 | |
| static struct kobject *intel_pstate_kobject;
 | |
| 
 | |
| static void __init intel_pstate_sysfs_expose_params(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
 | |
| 						&cpu_subsys.dev_root->kobj);
 | |
| 	if (WARN_ON(!intel_pstate_kobject))
 | |
| 		return;
 | |
| 
 | |
| 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
 | |
| 	if (WARN_ON(rc))
 | |
| 		return;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
 | |
| 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
 | |
| 		WARN_ON(rc);
 | |
| 
 | |
| 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
 | |
| 		WARN_ON(rc);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If per cpu limits are enforced there are no global limits, so
 | |
| 	 * return without creating max/min_perf_pct attributes
 | |
| 	 */
 | |
| 	if (per_cpu_limits)
 | |
| 		return;
 | |
| 
 | |
| 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
 | |
| 	WARN_ON(rc);
 | |
| 
 | |
| 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
 | |
| 	WARN_ON(rc);
 | |
| 
 | |
| 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
 | |
| 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
 | |
| 		WARN_ON(rc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init intel_pstate_sysfs_remove(void)
 | |
| {
 | |
| 	if (!intel_pstate_kobject)
 | |
| 		return;
 | |
| 
 | |
| 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
 | |
| 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
 | |
| 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
 | |
| 	}
 | |
| 
 | |
| 	if (!per_cpu_limits) {
 | |
| 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
 | |
| 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
 | |
| 
 | |
| 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
 | |
| 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
 | |
| 	}
 | |
| 
 | |
| 	kobject_put(intel_pstate_kobject);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!hwp_active)
 | |
| 		return;
 | |
| 
 | |
| 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
 | |
| 	WARN_ON_ONCE(rc);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
 | |
| {
 | |
| 	if (!hwp_active)
 | |
| 		return;
 | |
| 
 | |
| 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
 | |
| }
 | |
| 
 | |
| /************************** sysfs end ************************/
 | |
| 
 | |
| static void intel_pstate_notify_work(struct work_struct *work)
 | |
| {
 | |
| 	struct cpudata *cpudata =
 | |
| 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
 | |
| 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
 | |
| 
 | |
| 	if (policy) {
 | |
| 		intel_pstate_get_hwp_cap(cpudata);
 | |
| 		__intel_pstate_update_max_freq(cpudata, policy);
 | |
| 
 | |
| 		cpufreq_cpu_release(policy);
 | |
| 	}
 | |
| 
 | |
| 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
 | |
| }
 | |
| 
 | |
| static DEFINE_SPINLOCK(hwp_notify_lock);
 | |
| static cpumask_t hwp_intr_enable_mask;
 | |
| 
 | |
| void notify_hwp_interrupt(void)
 | |
| {
 | |
| 	unsigned int this_cpu = smp_processor_id();
 | |
| 	struct cpudata *cpudata;
 | |
| 	unsigned long flags;
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
 | |
| 		return;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_HWP_STATUS, &value);
 | |
| 	if (!(value & 0x01))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&hwp_notify_lock, flags);
 | |
| 
 | |
| 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
 | |
| 		goto ack_intr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Currently we never free all_cpu_data. And we can't reach here
 | |
| 	 * without this allocated. But for safety for future changes, added
 | |
| 	 * check.
 | |
| 	 */
 | |
| 	if (unlikely(!READ_ONCE(all_cpu_data)))
 | |
| 		goto ack_intr;
 | |
| 
 | |
| 	/*
 | |
| 	 * The free is done during cleanup, when cpufreq registry is failed.
 | |
| 	 * We wouldn't be here if it fails on init or switch status. But for
 | |
| 	 * future changes, added check.
 | |
| 	 */
 | |
| 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
 | |
| 	if (unlikely(!cpudata))
 | |
| 		goto ack_intr;
 | |
| 
 | |
| 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
 | |
| 
 | |
| 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| ack_intr:
 | |
| 	wrmsrl_safe(MSR_HWP_STATUS, 0);
 | |
| 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
 | |
| 		return;
 | |
| 
 | |
| 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
 | |
| 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 | |
| 
 | |
| 	spin_lock_irqsave(&hwp_notify_lock, flags);
 | |
| 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
 | |
| 		cancel_delayed_work(&cpudata->hwp_notify_work);
 | |
| 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
 | |
| {
 | |
| 	/* Enable HWP notification interrupt for guaranteed performance change */
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&hwp_notify_lock, flags);
 | |
| 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
 | |
| 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
 | |
| 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
 | |
| 
 | |
| 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
 | |
| 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
 | |
| 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
 | |
| {
 | |
| 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this CPU gen doesn't call for change in balance_perf
 | |
| 	 * EPP return.
 | |
| 	 */
 | |
| 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the EPP is set by firmware, which means that firmware enabled HWP
 | |
| 	 * - Is equal or less than 0x80 (default balance_perf EPP)
 | |
| 	 * - But less performance oriented than performance EPP
 | |
| 	 *   then use this as new balance_perf EPP.
 | |
| 	 */
 | |
| 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
 | |
| 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
 | |
| 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use hard coded value per gen to update the balance_perf
 | |
| 	 * and default EPP.
 | |
| 	 */
 | |
| 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
 | |
| 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_hwp_enable(struct cpudata *cpudata)
 | |
| {
 | |
| 	/* First disable HWP notification interrupt till we activate again */
 | |
| 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
 | |
| 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 | |
| 
 | |
| 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
 | |
| 
 | |
| 	intel_pstate_enable_hwp_interrupt(cpudata);
 | |
| 
 | |
| 	if (cpudata->epp_default >= 0)
 | |
| 		return;
 | |
| 
 | |
| 	intel_pstate_update_epp_defaults(cpudata);
 | |
| }
 | |
| 
 | |
| static int atom_get_min_pstate(int not_used)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
 | |
| 	return (value >> 8) & 0x7F;
 | |
| }
 | |
| 
 | |
| static int atom_get_max_pstate(int not_used)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
 | |
| 	return (value >> 16) & 0x7F;
 | |
| }
 | |
| 
 | |
| static int atom_get_turbo_pstate(int not_used)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
 | |
| 	return value & 0x7F;
 | |
| }
 | |
| 
 | |
| static u64 atom_get_val(struct cpudata *cpudata, int pstate)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int32_t vid_fp;
 | |
| 	u32 vid;
 | |
| 
 | |
| 	val = (u64)pstate << 8;
 | |
| 	if (global.no_turbo && !global.turbo_disabled)
 | |
| 		val |= (u64)1 << 32;
 | |
| 
 | |
| 	vid_fp = cpudata->vid.min + mul_fp(
 | |
| 		int_tofp(pstate - cpudata->pstate.min_pstate),
 | |
| 		cpudata->vid.ratio);
 | |
| 
 | |
| 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
 | |
| 	vid = ceiling_fp(vid_fp);
 | |
| 
 | |
| 	if (pstate > cpudata->pstate.max_pstate)
 | |
| 		vid = cpudata->vid.turbo;
 | |
| 
 | |
| 	return val | vid;
 | |
| }
 | |
| 
 | |
| static int silvermont_get_scaling(void)
 | |
| {
 | |
| 	u64 value;
 | |
| 	int i;
 | |
| 	/* Defined in Table 35-6 from SDM (Sept 2015) */
 | |
| 	static int silvermont_freq_table[] = {
 | |
| 		83300, 100000, 133300, 116700, 80000};
 | |
| 
 | |
| 	rdmsrl(MSR_FSB_FREQ, value);
 | |
| 	i = value & 0x7;
 | |
| 	WARN_ON(i > 4);
 | |
| 
 | |
| 	return silvermont_freq_table[i];
 | |
| }
 | |
| 
 | |
| static int airmont_get_scaling(void)
 | |
| {
 | |
| 	u64 value;
 | |
| 	int i;
 | |
| 	/* Defined in Table 35-10 from SDM (Sept 2015) */
 | |
| 	static int airmont_freq_table[] = {
 | |
| 		83300, 100000, 133300, 116700, 80000,
 | |
| 		93300, 90000, 88900, 87500};
 | |
| 
 | |
| 	rdmsrl(MSR_FSB_FREQ, value);
 | |
| 	i = value & 0xF;
 | |
| 	WARN_ON(i > 8);
 | |
| 
 | |
| 	return airmont_freq_table[i];
 | |
| }
 | |
| 
 | |
| static void atom_get_vid(struct cpudata *cpudata)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
 | |
| 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
 | |
| 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
 | |
| 	cpudata->vid.ratio = div_fp(
 | |
| 		cpudata->vid.max - cpudata->vid.min,
 | |
| 		int_tofp(cpudata->pstate.max_pstate -
 | |
| 			cpudata->pstate.min_pstate));
 | |
| 
 | |
| 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
 | |
| 	cpudata->vid.turbo = value & 0x7f;
 | |
| }
 | |
| 
 | |
| static int core_get_min_pstate(int cpu)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
 | |
| 	return (value >> 40) & 0xFF;
 | |
| }
 | |
| 
 | |
| static int core_get_max_pstate_physical(int cpu)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
 | |
| 	return (value >> 8) & 0xFF;
 | |
| }
 | |
| 
 | |
| static int core_get_tdp_ratio(int cpu, u64 plat_info)
 | |
| {
 | |
| 	/* Check how many TDP levels present */
 | |
| 	if (plat_info & 0x600000000) {
 | |
| 		u64 tdp_ctrl;
 | |
| 		u64 tdp_ratio;
 | |
| 		int tdp_msr;
 | |
| 		int err;
 | |
| 
 | |
| 		/* Get the TDP level (0, 1, 2) to get ratios */
 | |
| 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		/* TDP MSR are continuous starting at 0x648 */
 | |
| 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
 | |
| 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		/* For level 1 and 2, bits[23:16] contain the ratio */
 | |
| 		if (tdp_ctrl & 0x03)
 | |
| 			tdp_ratio >>= 16;
 | |
| 
 | |
| 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
 | |
| 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
 | |
| 
 | |
| 		return (int)tdp_ratio;
 | |
| 	}
 | |
| 
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| static int core_get_max_pstate(int cpu)
 | |
| {
 | |
| 	u64 tar;
 | |
| 	u64 plat_info;
 | |
| 	int max_pstate;
 | |
| 	int tdp_ratio;
 | |
| 	int err;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
 | |
| 	max_pstate = (plat_info >> 8) & 0xFF;
 | |
| 
 | |
| 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
 | |
| 	if (tdp_ratio <= 0)
 | |
| 		return max_pstate;
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		/* Turbo activation ratio is not used on HWP platforms */
 | |
| 		return tdp_ratio;
 | |
| 	}
 | |
| 
 | |
| 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
 | |
| 	if (!err) {
 | |
| 		int tar_levels;
 | |
| 
 | |
| 		/* Do some sanity checking for safety */
 | |
| 		tar_levels = tar & 0xff;
 | |
| 		if (tdp_ratio - 1 == tar_levels) {
 | |
| 			max_pstate = tar_levels;
 | |
| 			pr_debug("max_pstate=TAC %x\n", max_pstate);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return max_pstate;
 | |
| }
 | |
| 
 | |
| static int core_get_turbo_pstate(int cpu)
 | |
| {
 | |
| 	u64 value;
 | |
| 	int nont, ret;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
 | |
| 	nont = core_get_max_pstate(cpu);
 | |
| 	ret = (value) & 255;
 | |
| 	if (ret <= nont)
 | |
| 		ret = nont;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int core_get_scaling(void)
 | |
| {
 | |
| 	return 100000;
 | |
| }
 | |
| 
 | |
| static u64 core_get_val(struct cpudata *cpudata, int pstate)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	val = (u64)pstate << 8;
 | |
| 	if (global.no_turbo && !global.turbo_disabled)
 | |
| 		val |= (u64)1 << 32;
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static int knl_get_aperf_mperf_shift(void)
 | |
| {
 | |
| 	return 10;
 | |
| }
 | |
| 
 | |
| static int knl_get_turbo_pstate(int cpu)
 | |
| {
 | |
| 	u64 value;
 | |
| 	int nont, ret;
 | |
| 
 | |
| 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
 | |
| 	nont = core_get_max_pstate(cpu);
 | |
| 	ret = (((value) >> 8) & 0xFF);
 | |
| 	if (ret <= nont)
 | |
| 		ret = nont;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void hybrid_get_type(void *data)
 | |
| {
 | |
| 	u8 *cpu_type = data;
 | |
| 
 | |
| 	*cpu_type = get_this_hybrid_cpu_type();
 | |
| }
 | |
| 
 | |
| static int hybrid_get_cpu_scaling(int cpu)
 | |
| {
 | |
| 	u8 cpu_type = 0;
 | |
| 
 | |
| 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
 | |
| 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
 | |
| 	if (cpu_type == 0x40)
 | |
| 		return 78741;
 | |
| 
 | |
| 	return core_get_scaling();
 | |
| }
 | |
| 
 | |
| static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
 | |
| {
 | |
| 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
 | |
| 	cpu->pstate.current_pstate = pstate;
 | |
| 	/*
 | |
| 	 * Generally, there is no guarantee that this code will always run on
 | |
| 	 * the CPU being updated, so force the register update to run on the
 | |
| 	 * right CPU.
 | |
| 	 */
 | |
| 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
 | |
| 		      pstate_funcs.get_val(cpu, pstate));
 | |
| }
 | |
| 
 | |
| static void intel_pstate_set_min_pstate(struct cpudata *cpu)
 | |
| {
 | |
| 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_max_within_limits(struct cpudata *cpu)
 | |
| {
 | |
| 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	intel_pstate_set_pstate(cpu, pstate);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
 | |
| {
 | |
| 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
 | |
| 	int perf_ctl_scaling = pstate_funcs.get_scaling();
 | |
| 
 | |
| 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
 | |
| 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
 | |
| 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
 | |
| 
 | |
| 	if (hwp_active && !hwp_mode_bdw) {
 | |
| 		__intel_pstate_get_hwp_cap(cpu);
 | |
| 
 | |
| 		if (pstate_funcs.get_cpu_scaling) {
 | |
| 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
 | |
| 			if (cpu->pstate.scaling != perf_ctl_scaling)
 | |
| 				intel_pstate_hybrid_hwp_adjust(cpu);
 | |
| 		} else {
 | |
| 			cpu->pstate.scaling = perf_ctl_scaling;
 | |
| 		}
 | |
| 	} else {
 | |
| 		cpu->pstate.scaling = perf_ctl_scaling;
 | |
| 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
 | |
| 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu->pstate.scaling == perf_ctl_scaling) {
 | |
| 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
 | |
| 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
 | |
| 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
 | |
| 	}
 | |
| 
 | |
| 	if (pstate_funcs.get_aperf_mperf_shift)
 | |
| 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
 | |
| 
 | |
| 	if (pstate_funcs.get_vid)
 | |
| 		pstate_funcs.get_vid(cpu);
 | |
| 
 | |
| 	intel_pstate_set_min_pstate(cpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Long hold time will keep high perf limits for long time,
 | |
|  * which negatively impacts perf/watt for some workloads,
 | |
|  * like specpower. 3ms is based on experiements on some
 | |
|  * workoads.
 | |
|  */
 | |
| static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
 | |
| 
 | |
| static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
 | |
| {
 | |
| 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
 | |
| 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
 | |
| 	u32 max_limit = (hwp_req & 0xff00) >> 8;
 | |
| 	u32 min_limit = (hwp_req & 0xff);
 | |
| 	u32 boost_level1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cases to consider (User changes via sysfs or boot time):
 | |
| 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
 | |
| 	 *	No boost, return.
 | |
| 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
 | |
| 	 *     Should result in one level boost only for P0.
 | |
| 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
 | |
| 	 *     Should result in two level boost:
 | |
| 	 *         (min + p1)/2 and P1.
 | |
| 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
 | |
| 	 *     Should result in three level boost:
 | |
| 	 *        (min + p1)/2, P1 and P0.
 | |
| 	 */
 | |
| 
 | |
| 	/* If max and min are equal or already at max, nothing to boost */
 | |
| 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
 | |
| 		return;
 | |
| 
 | |
| 	if (!cpu->hwp_boost_min)
 | |
| 		cpu->hwp_boost_min = min_limit;
 | |
| 
 | |
| 	/* level at half way mark between min and guranteed */
 | |
| 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
 | |
| 
 | |
| 	if (cpu->hwp_boost_min < boost_level1)
 | |
| 		cpu->hwp_boost_min = boost_level1;
 | |
| 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
 | |
| 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
 | |
| 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
 | |
| 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
 | |
| 		cpu->hwp_boost_min = max_limit;
 | |
| 	else
 | |
| 		return;
 | |
| 
 | |
| 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
 | |
| 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
 | |
| 	cpu->last_update = cpu->sample.time;
 | |
| }
 | |
| 
 | |
| static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
 | |
| {
 | |
| 	if (cpu->hwp_boost_min) {
 | |
| 		bool expired;
 | |
| 
 | |
| 		/* Check if we are idle for hold time to boost down */
 | |
| 		expired = time_after64(cpu->sample.time, cpu->last_update +
 | |
| 				       hwp_boost_hold_time_ns);
 | |
| 		if (expired) {
 | |
| 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
 | |
| 			cpu->hwp_boost_min = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	cpu->last_update = cpu->sample.time;
 | |
| }
 | |
| 
 | |
| static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
 | |
| 						      u64 time)
 | |
| {
 | |
| 	cpu->sample.time = time;
 | |
| 
 | |
| 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
 | |
| 		bool do_io = false;
 | |
| 
 | |
| 		cpu->sched_flags = 0;
 | |
| 		/*
 | |
| 		 * Set iowait_boost flag and update time. Since IO WAIT flag
 | |
| 		 * is set all the time, we can't just conclude that there is
 | |
| 		 * some IO bound activity is scheduled on this CPU with just
 | |
| 		 * one occurrence. If we receive at least two in two
 | |
| 		 * consecutive ticks, then we treat as boost candidate.
 | |
| 		 */
 | |
| 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
 | |
| 			do_io = true;
 | |
| 
 | |
| 		cpu->last_io_update = time;
 | |
| 
 | |
| 		if (do_io)
 | |
| 			intel_pstate_hwp_boost_up(cpu);
 | |
| 
 | |
| 	} else {
 | |
| 		intel_pstate_hwp_boost_down(cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
 | |
| 						u64 time, unsigned int flags)
 | |
| {
 | |
| 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
 | |
| 
 | |
| 	cpu->sched_flags |= flags;
 | |
| 
 | |
| 	if (smp_processor_id() == cpu->cpu)
 | |
| 		intel_pstate_update_util_hwp_local(cpu, time);
 | |
| }
 | |
| 
 | |
| static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
 | |
| {
 | |
| 	struct sample *sample = &cpu->sample;
 | |
| 
 | |
| 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
 | |
| }
 | |
| 
 | |
| static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
 | |
| {
 | |
| 	u64 aperf, mperf;
 | |
| 	unsigned long flags;
 | |
| 	u64 tsc;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	rdmsrl(MSR_IA32_APERF, aperf);
 | |
| 	rdmsrl(MSR_IA32_MPERF, mperf);
 | |
| 	tsc = rdtsc();
 | |
| 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
 | |
| 		local_irq_restore(flags);
 | |
| 		return false;
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	cpu->last_sample_time = cpu->sample.time;
 | |
| 	cpu->sample.time = time;
 | |
| 	cpu->sample.aperf = aperf;
 | |
| 	cpu->sample.mperf = mperf;
 | |
| 	cpu->sample.tsc =  tsc;
 | |
| 	cpu->sample.aperf -= cpu->prev_aperf;
 | |
| 	cpu->sample.mperf -= cpu->prev_mperf;
 | |
| 	cpu->sample.tsc -= cpu->prev_tsc;
 | |
| 
 | |
| 	cpu->prev_aperf = aperf;
 | |
| 	cpu->prev_mperf = mperf;
 | |
| 	cpu->prev_tsc = tsc;
 | |
| 	/*
 | |
| 	 * First time this function is invoked in a given cycle, all of the
 | |
| 	 * previous sample data fields are equal to zero or stale and they must
 | |
| 	 * be populated with meaningful numbers for things to work, so assume
 | |
| 	 * that sample.time will always be reset before setting the utilization
 | |
| 	 * update hook and make the caller skip the sample then.
 | |
| 	 */
 | |
| 	if (cpu->last_sample_time) {
 | |
| 		intel_pstate_calc_avg_perf(cpu);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline int32_t get_avg_frequency(struct cpudata *cpu)
 | |
| {
 | |
| 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
 | |
| }
 | |
| 
 | |
| static inline int32_t get_avg_pstate(struct cpudata *cpu)
 | |
| {
 | |
| 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
 | |
| 			  cpu->sample.core_avg_perf);
 | |
| }
 | |
| 
 | |
| static inline int32_t get_target_pstate(struct cpudata *cpu)
 | |
| {
 | |
| 	struct sample *sample = &cpu->sample;
 | |
| 	int32_t busy_frac;
 | |
| 	int target, avg_pstate;
 | |
| 
 | |
| 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
 | |
| 			   sample->tsc);
 | |
| 
 | |
| 	if (busy_frac < cpu->iowait_boost)
 | |
| 		busy_frac = cpu->iowait_boost;
 | |
| 
 | |
| 	sample->busy_scaled = busy_frac * 100;
 | |
| 
 | |
| 	target = global.no_turbo || global.turbo_disabled ?
 | |
| 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
 | |
| 	target += target >> 2;
 | |
| 	target = mul_fp(target, busy_frac);
 | |
| 	if (target < cpu->pstate.min_pstate)
 | |
| 		target = cpu->pstate.min_pstate;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the average P-state during the previous cycle was higher than the
 | |
| 	 * current target, add 50% of the difference to the target to reduce
 | |
| 	 * possible performance oscillations and offset possible performance
 | |
| 	 * loss related to moving the workload from one CPU to another within
 | |
| 	 * a package/module.
 | |
| 	 */
 | |
| 	avg_pstate = get_avg_pstate(cpu);
 | |
| 	if (avg_pstate > target)
 | |
| 		target += (avg_pstate - target) >> 1;
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
 | |
| {
 | |
| 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
 | |
| 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
 | |
| 
 | |
| 	return clamp_t(int, pstate, min_pstate, max_pstate);
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
 | |
| {
 | |
| 	if (pstate == cpu->pstate.current_pstate)
 | |
| 		return;
 | |
| 
 | |
| 	cpu->pstate.current_pstate = pstate;
 | |
| 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
 | |
| }
 | |
| 
 | |
| static void intel_pstate_adjust_pstate(struct cpudata *cpu)
 | |
| {
 | |
| 	int from = cpu->pstate.current_pstate;
 | |
| 	struct sample *sample;
 | |
| 	int target_pstate;
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 
 | |
| 	target_pstate = get_target_pstate(cpu);
 | |
| 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
 | |
| 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
 | |
| 	intel_pstate_update_pstate(cpu, target_pstate);
 | |
| 
 | |
| 	sample = &cpu->sample;
 | |
| 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
 | |
| 		fp_toint(sample->busy_scaled),
 | |
| 		from,
 | |
| 		cpu->pstate.current_pstate,
 | |
| 		sample->mperf,
 | |
| 		sample->aperf,
 | |
| 		sample->tsc,
 | |
| 		get_avg_frequency(cpu),
 | |
| 		fp_toint(cpu->iowait_boost * 100));
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_util(struct update_util_data *data, u64 time,
 | |
| 				     unsigned int flags)
 | |
| {
 | |
| 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
 | |
| 	u64 delta_ns;
 | |
| 
 | |
| 	/* Don't allow remote callbacks */
 | |
| 	if (smp_processor_id() != cpu->cpu)
 | |
| 		return;
 | |
| 
 | |
| 	delta_ns = time - cpu->last_update;
 | |
| 	if (flags & SCHED_CPUFREQ_IOWAIT) {
 | |
| 		/* Start over if the CPU may have been idle. */
 | |
| 		if (delta_ns > TICK_NSEC) {
 | |
| 			cpu->iowait_boost = ONE_EIGHTH_FP;
 | |
| 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
 | |
| 			cpu->iowait_boost <<= 1;
 | |
| 			if (cpu->iowait_boost > int_tofp(1))
 | |
| 				cpu->iowait_boost = int_tofp(1);
 | |
| 		} else {
 | |
| 			cpu->iowait_boost = ONE_EIGHTH_FP;
 | |
| 		}
 | |
| 	} else if (cpu->iowait_boost) {
 | |
| 		/* Clear iowait_boost if the CPU may have been idle. */
 | |
| 		if (delta_ns > TICK_NSEC)
 | |
| 			cpu->iowait_boost = 0;
 | |
| 		else
 | |
| 			cpu->iowait_boost >>= 1;
 | |
| 	}
 | |
| 	cpu->last_update = time;
 | |
| 	delta_ns = time - cpu->sample.time;
 | |
| 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
 | |
| 		return;
 | |
| 
 | |
| 	if (intel_pstate_sample(cpu, time))
 | |
| 		intel_pstate_adjust_pstate(cpu);
 | |
| }
 | |
| 
 | |
| static struct pstate_funcs core_funcs = {
 | |
| 	.get_max = core_get_max_pstate,
 | |
| 	.get_max_physical = core_get_max_pstate_physical,
 | |
| 	.get_min = core_get_min_pstate,
 | |
| 	.get_turbo = core_get_turbo_pstate,
 | |
| 	.get_scaling = core_get_scaling,
 | |
| 	.get_val = core_get_val,
 | |
| };
 | |
| 
 | |
| static const struct pstate_funcs silvermont_funcs = {
 | |
| 	.get_max = atom_get_max_pstate,
 | |
| 	.get_max_physical = atom_get_max_pstate,
 | |
| 	.get_min = atom_get_min_pstate,
 | |
| 	.get_turbo = atom_get_turbo_pstate,
 | |
| 	.get_val = atom_get_val,
 | |
| 	.get_scaling = silvermont_get_scaling,
 | |
| 	.get_vid = atom_get_vid,
 | |
| };
 | |
| 
 | |
| static const struct pstate_funcs airmont_funcs = {
 | |
| 	.get_max = atom_get_max_pstate,
 | |
| 	.get_max_physical = atom_get_max_pstate,
 | |
| 	.get_min = atom_get_min_pstate,
 | |
| 	.get_turbo = atom_get_turbo_pstate,
 | |
| 	.get_val = atom_get_val,
 | |
| 	.get_scaling = airmont_get_scaling,
 | |
| 	.get_vid = atom_get_vid,
 | |
| };
 | |
| 
 | |
| static const struct pstate_funcs knl_funcs = {
 | |
| 	.get_max = core_get_max_pstate,
 | |
| 	.get_max_physical = core_get_max_pstate_physical,
 | |
| 	.get_min = core_get_min_pstate,
 | |
| 	.get_turbo = knl_get_turbo_pstate,
 | |
| 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
 | |
| 	.get_scaling = core_get_scaling,
 | |
| 	.get_val = core_get_val,
 | |
| };
 | |
| 
 | |
| #define X86_MATCH(model, policy)					 \
 | |
| 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
 | |
| 					   X86_FEATURE_APERFMPERF, &policy)
 | |
| 
 | |
| static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
 | |
| 	X86_MATCH(SANDYBRIDGE,		core_funcs),
 | |
| 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
 | |
| 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
 | |
| 	X86_MATCH(IVYBRIDGE,		core_funcs),
 | |
| 	X86_MATCH(HASWELL,		core_funcs),
 | |
| 	X86_MATCH(BROADWELL,		core_funcs),
 | |
| 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
 | |
| 	X86_MATCH(HASWELL_X,		core_funcs),
 | |
| 	X86_MATCH(HASWELL_L,		core_funcs),
 | |
| 	X86_MATCH(HASWELL_G,		core_funcs),
 | |
| 	X86_MATCH(BROADWELL_G,		core_funcs),
 | |
| 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
 | |
| 	X86_MATCH(SKYLAKE_L,		core_funcs),
 | |
| 	X86_MATCH(BROADWELL_X,		core_funcs),
 | |
| 	X86_MATCH(SKYLAKE,		core_funcs),
 | |
| 	X86_MATCH(BROADWELL_D,		core_funcs),
 | |
| 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
 | |
| 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
 | |
| 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
 | |
| 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
 | |
| 	X86_MATCH(SKYLAKE_X,		core_funcs),
 | |
| 	X86_MATCH(COMETLAKE,		core_funcs),
 | |
| 	X86_MATCH(ICELAKE_X,		core_funcs),
 | |
| 	X86_MATCH(TIGERLAKE,		core_funcs),
 | |
| 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
 | |
| 
 | |
| static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
 | |
| 	X86_MATCH(BROADWELL_D,		core_funcs),
 | |
| 	X86_MATCH(BROADWELL_X,		core_funcs),
 | |
| 	X86_MATCH(SKYLAKE_X,		core_funcs),
 | |
| 	X86_MATCH(ICELAKE_X,		core_funcs),
 | |
| 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
 | |
| 	X86_MATCH(KABYLAKE,		core_funcs),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
 | |
| 	X86_MATCH(SKYLAKE_X,		core_funcs),
 | |
| 	X86_MATCH(SKYLAKE,		core_funcs),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int intel_pstate_init_cpu(unsigned int cpunum)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 
 | |
| 	cpu = all_cpu_data[cpunum];
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
 | |
| 		if (!cpu)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
 | |
| 
 | |
| 		cpu->cpu = cpunum;
 | |
| 
 | |
| 		cpu->epp_default = -EINVAL;
 | |
| 
 | |
| 		if (hwp_active) {
 | |
| 			const struct x86_cpu_id *id;
 | |
| 
 | |
| 			intel_pstate_hwp_enable(cpu);
 | |
| 
 | |
| 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
 | |
| 			if (id && intel_pstate_acpi_pm_profile_server())
 | |
| 				hwp_boost = true;
 | |
| 		}
 | |
| 	} else if (hwp_active) {
 | |
| 		/*
 | |
| 		 * Re-enable HWP in case this happens after a resume from ACPI
 | |
| 		 * S3 if the CPU was offline during the whole system/resume
 | |
| 		 * cycle.
 | |
| 		 */
 | |
| 		intel_pstate_hwp_reenable(cpu);
 | |
| 	}
 | |
| 
 | |
| 	cpu->epp_powersave = -EINVAL;
 | |
| 	cpu->epp_policy = 0;
 | |
| 
 | |
| 	intel_pstate_get_cpu_pstates(cpu);
 | |
| 
 | |
| 	pr_debug("controlling: cpu %d\n", cpunum);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[cpu_num];
 | |
| 
 | |
| 	if (hwp_active && !hwp_boost)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpu->update_util_set)
 | |
| 		return;
 | |
| 
 | |
| 	/* Prevent intel_pstate_update_util() from using stale data. */
 | |
| 	cpu->sample.time = 0;
 | |
| 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
 | |
| 				     (hwp_active ?
 | |
| 				      intel_pstate_update_util_hwp :
 | |
| 				      intel_pstate_update_util));
 | |
| 	cpu->update_util_set = true;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_clear_update_util_hook(unsigned int cpu)
 | |
| {
 | |
| 	struct cpudata *cpu_data = all_cpu_data[cpu];
 | |
| 
 | |
| 	if (!cpu_data->update_util_set)
 | |
| 		return;
 | |
| 
 | |
| 	cpufreq_remove_update_util_hook(cpu);
 | |
| 	cpu_data->update_util_set = false;
 | |
| 	synchronize_rcu();
 | |
| }
 | |
| 
 | |
| static int intel_pstate_get_max_freq(struct cpudata *cpu)
 | |
| {
 | |
| 	return global.turbo_disabled || global.no_turbo ?
 | |
| 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_update_perf_limits(struct cpudata *cpu,
 | |
| 					    unsigned int policy_min,
 | |
| 					    unsigned int policy_max)
 | |
| {
 | |
| 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
 | |
| 	int32_t max_policy_perf, min_policy_perf;
 | |
| 
 | |
| 	max_policy_perf = policy_max / perf_ctl_scaling;
 | |
| 	if (policy_max == policy_min) {
 | |
| 		min_policy_perf = max_policy_perf;
 | |
| 	} else {
 | |
| 		min_policy_perf = policy_min / perf_ctl_scaling;
 | |
| 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
 | |
| 					  0, max_policy_perf);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * HWP needs some special consideration, because HWP_REQUEST uses
 | |
| 	 * abstract values to represent performance rather than pure ratios.
 | |
| 	 */
 | |
| 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
 | |
| 		int scaling = cpu->pstate.scaling;
 | |
| 		int freq;
 | |
| 
 | |
| 		freq = max_policy_perf * perf_ctl_scaling;
 | |
| 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
 | |
| 		freq = min_policy_perf * perf_ctl_scaling;
 | |
| 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
 | |
| 		 cpu->cpu, min_policy_perf, max_policy_perf);
 | |
| 
 | |
| 	/* Normalize user input to [min_perf, max_perf] */
 | |
| 	if (per_cpu_limits) {
 | |
| 		cpu->min_perf_ratio = min_policy_perf;
 | |
| 		cpu->max_perf_ratio = max_policy_perf;
 | |
| 	} else {
 | |
| 		int turbo_max = cpu->pstate.turbo_pstate;
 | |
| 		int32_t global_min, global_max;
 | |
| 
 | |
| 		/* Global limits are in percent of the maximum turbo P-state. */
 | |
| 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
 | |
| 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
 | |
| 		global_min = clamp_t(int32_t, global_min, 0, global_max);
 | |
| 
 | |
| 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
 | |
| 			 global_min, global_max);
 | |
| 
 | |
| 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
 | |
| 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
 | |
| 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
 | |
| 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
 | |
| 
 | |
| 		/* Make sure min_perf <= max_perf */
 | |
| 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
 | |
| 					  cpu->max_perf_ratio);
 | |
| 
 | |
| 	}
 | |
| 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
 | |
| 		 cpu->max_perf_ratio,
 | |
| 		 cpu->min_perf_ratio);
 | |
| }
 | |
| 
 | |
| static int intel_pstate_set_policy(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 
 | |
| 	if (!policy->cpuinfo.max_freq)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
 | |
| 		 policy->cpuinfo.max_freq, policy->max);
 | |
| 
 | |
| 	cpu = all_cpu_data[policy->cpu];
 | |
| 	cpu->policy = policy->policy;
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
 | |
| 
 | |
| 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
 | |
| 		/*
 | |
| 		 * NOHZ_FULL CPUs need this as the governor callback may not
 | |
| 		 * be invoked on them.
 | |
| 		 */
 | |
| 		intel_pstate_clear_update_util_hook(policy->cpu);
 | |
| 		intel_pstate_max_within_limits(cpu);
 | |
| 	} else {
 | |
| 		intel_pstate_set_update_util_hook(policy->cpu);
 | |
| 	}
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		/*
 | |
| 		 * When hwp_boost was active before and dynamically it
 | |
| 		 * was turned off, in that case we need to clear the
 | |
| 		 * update util hook.
 | |
| 		 */
 | |
| 		if (!hwp_boost)
 | |
| 			intel_pstate_clear_update_util_hook(policy->cpu);
 | |
| 		intel_pstate_hwp_set(policy->cpu);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&intel_pstate_limits_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
 | |
| 					   struct cpufreq_policy_data *policy)
 | |
| {
 | |
| 	if (!hwp_active &&
 | |
| 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
 | |
| 	    policy->max < policy->cpuinfo.max_freq &&
 | |
| 	    policy->max > cpu->pstate.max_freq) {
 | |
| 		pr_debug("policy->max > max non turbo frequency\n");
 | |
| 		policy->max = policy->cpuinfo.max_freq;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
 | |
| 					   struct cpufreq_policy_data *policy)
 | |
| {
 | |
| 	int max_freq;
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	if (hwp_active) {
 | |
| 		intel_pstate_get_hwp_cap(cpu);
 | |
| 		max_freq = global.no_turbo || global.turbo_disabled ?
 | |
| 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
 | |
| 	} else {
 | |
| 		max_freq = intel_pstate_get_max_freq(cpu);
 | |
| 	}
 | |
| 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
 | |
| 
 | |
| 	intel_pstate_adjust_policy_max(cpu, policy);
 | |
| }
 | |
| 
 | |
| static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
 | |
| {
 | |
| 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	pr_debug("CPU %d going offline\n", cpu->cpu);
 | |
| 
 | |
| 	if (cpu->suspended)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the CPU is an SMT thread and it goes offline with the performance
 | |
| 	 * settings different from the minimum, it will prevent its sibling
 | |
| 	 * from getting to lower performance levels, so force the minimum
 | |
| 	 * performance on CPU offline to prevent that from happening.
 | |
| 	 */
 | |
| 	if (hwp_active)
 | |
| 		intel_pstate_hwp_offline(cpu);
 | |
| 	else
 | |
| 		intel_pstate_set_min_pstate(cpu);
 | |
| 
 | |
| 	intel_pstate_exit_perf_limits(policy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	pr_debug("CPU %d going online\n", cpu->cpu);
 | |
| 
 | |
| 	intel_pstate_init_acpi_perf_limits(policy);
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		/*
 | |
| 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
 | |
| 		 * know that it need not do that.
 | |
| 		 */
 | |
| 		intel_pstate_hwp_reenable(cpu);
 | |
| 		cpu->suspended = false;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	intel_pstate_clear_update_util_hook(policy->cpu);
 | |
| 
 | |
| 	return intel_cpufreq_cpu_offline(policy);
 | |
| }
 | |
| 
 | |
| static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	pr_debug("CPU %d exiting\n", policy->cpu);
 | |
| 
 | |
| 	policy->fast_switch_possible = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct cpudata *cpu;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = intel_pstate_init_cpu(policy->cpu);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	cpu->max_perf_ratio = 0xFF;
 | |
| 	cpu->min_perf_ratio = 0;
 | |
| 
 | |
| 	/* cpuinfo and default policy values */
 | |
| 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
 | |
| 	update_turbo_state();
 | |
| 	global.turbo_disabled_mf = global.turbo_disabled;
 | |
| 	policy->cpuinfo.max_freq = global.turbo_disabled ?
 | |
| 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
 | |
| 
 | |
| 	policy->min = policy->cpuinfo.min_freq;
 | |
| 	policy->max = policy->cpuinfo.max_freq;
 | |
| 
 | |
| 	intel_pstate_init_acpi_perf_limits(policy);
 | |
| 
 | |
| 	policy->fast_switch_possible = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	int ret = __intel_pstate_cpu_init(policy);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the policy to powersave to provide a valid fallback value in case
 | |
| 	 * the default cpufreq governor is neither powersave nor performance.
 | |
| 	 */
 | |
| 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cpufreq_driver intel_pstate = {
 | |
| 	.flags		= CPUFREQ_CONST_LOOPS,
 | |
| 	.verify		= intel_pstate_verify_policy,
 | |
| 	.setpolicy	= intel_pstate_set_policy,
 | |
| 	.suspend	= intel_pstate_suspend,
 | |
| 	.resume		= intel_pstate_resume,
 | |
| 	.init		= intel_pstate_cpu_init,
 | |
| 	.exit		= intel_pstate_cpu_exit,
 | |
| 	.offline	= intel_pstate_cpu_offline,
 | |
| 	.online		= intel_pstate_cpu_online,
 | |
| 	.update_limits	= intel_pstate_update_limits,
 | |
| 	.name		= "intel_pstate",
 | |
| };
 | |
| 
 | |
| static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	intel_pstate_verify_cpu_policy(cpu, policy);
 | |
| 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Use of trace in passive mode:
 | |
|  *
 | |
|  * In passive mode the trace core_busy field (also known as the
 | |
|  * performance field, and lablelled as such on the graphs; also known as
 | |
|  * core_avg_perf) is not needed and so is re-assigned to indicate if the
 | |
|  * driver call was via the normal or fast switch path. Various graphs
 | |
|  * output from the intel_pstate_tracer.py utility that include core_busy
 | |
|  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 | |
|  * so we use 10 to indicate the normal path through the driver, and
 | |
|  * 90 to indicate the fast switch path through the driver.
 | |
|  * The scaled_busy field is not used, and is set to 0.
 | |
|  */
 | |
| 
 | |
| #define	INTEL_PSTATE_TRACE_TARGET 10
 | |
| #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
 | |
| 
 | |
| static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
 | |
| {
 | |
| 	struct sample *sample;
 | |
| 
 | |
| 	if (!trace_pstate_sample_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	if (!intel_pstate_sample(cpu, ktime_get()))
 | |
| 		return;
 | |
| 
 | |
| 	sample = &cpu->sample;
 | |
| 	trace_pstate_sample(trace_type,
 | |
| 		0,
 | |
| 		old_pstate,
 | |
| 		cpu->pstate.current_pstate,
 | |
| 		sample->mperf,
 | |
| 		sample->aperf,
 | |
| 		sample->tsc,
 | |
| 		get_avg_frequency(cpu),
 | |
| 		fp_toint(cpu->iowait_boost * 100));
 | |
| }
 | |
| 
 | |
| static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
 | |
| 				     u32 desired, bool fast_switch)
 | |
| {
 | |
| 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
 | |
| 
 | |
| 	value &= ~HWP_MIN_PERF(~0L);
 | |
| 	value |= HWP_MIN_PERF(min);
 | |
| 
 | |
| 	value &= ~HWP_MAX_PERF(~0L);
 | |
| 	value |= HWP_MAX_PERF(max);
 | |
| 
 | |
| 	value &= ~HWP_DESIRED_PERF(~0L);
 | |
| 	value |= HWP_DESIRED_PERF(desired);
 | |
| 
 | |
| 	if (value == prev)
 | |
| 		return;
 | |
| 
 | |
| 	WRITE_ONCE(cpu->hwp_req_cached, value);
 | |
| 	if (fast_switch)
 | |
| 		wrmsrl(MSR_HWP_REQUEST, value);
 | |
| 	else
 | |
| 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 | |
| }
 | |
| 
 | |
| static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
 | |
| 					  u32 target_pstate, bool fast_switch)
 | |
| {
 | |
| 	if (fast_switch)
 | |
| 		wrmsrl(MSR_IA32_PERF_CTL,
 | |
| 		       pstate_funcs.get_val(cpu, target_pstate));
 | |
| 	else
 | |
| 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
 | |
| 			      pstate_funcs.get_val(cpu, target_pstate));
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
 | |
| 				       int target_pstate, bool fast_switch)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 	int old_pstate = cpu->pstate.current_pstate;
 | |
| 
 | |
| 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
 | |
| 	if (hwp_active) {
 | |
| 		int max_pstate = policy->strict_target ?
 | |
| 					target_pstate : cpu->max_perf_ratio;
 | |
| 
 | |
| 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
 | |
| 					 fast_switch);
 | |
| 	} else if (target_pstate != old_pstate) {
 | |
| 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
 | |
| 	}
 | |
| 
 | |
| 	cpu->pstate.current_pstate = target_pstate;
 | |
| 
 | |
| 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
 | |
| 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
 | |
| 
 | |
| 	return target_pstate;
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_target(struct cpufreq_policy *policy,
 | |
| 				unsigned int target_freq,
 | |
| 				unsigned int relation)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 	struct cpufreq_freqs freqs;
 | |
| 	int target_pstate;
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 
 | |
| 	freqs.old = policy->cur;
 | |
| 	freqs.new = target_freq;
 | |
| 
 | |
| 	cpufreq_freq_transition_begin(policy, &freqs);
 | |
| 
 | |
| 	switch (relation) {
 | |
| 	case CPUFREQ_RELATION_L:
 | |
| 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
 | |
| 		break;
 | |
| 	case CPUFREQ_RELATION_H:
 | |
| 		target_pstate = freqs.new / cpu->pstate.scaling;
 | |
| 		break;
 | |
| 	default:
 | |
| 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
 | |
| 
 | |
| 	freqs.new = target_pstate * cpu->pstate.scaling;
 | |
| 
 | |
| 	cpufreq_freq_transition_end(policy, &freqs, false);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
 | |
| 					      unsigned int target_freq)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 	int target_pstate;
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 
 | |
| 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
 | |
| 
 | |
| 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
 | |
| 
 | |
| 	return target_pstate * cpu->pstate.scaling;
 | |
| }
 | |
| 
 | |
| static void intel_cpufreq_adjust_perf(unsigned int cpunum,
 | |
| 				      unsigned long min_perf,
 | |
| 				      unsigned long target_perf,
 | |
| 				      unsigned long capacity)
 | |
| {
 | |
| 	struct cpudata *cpu = all_cpu_data[cpunum];
 | |
| 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
 | |
| 	int old_pstate = cpu->pstate.current_pstate;
 | |
| 	int cap_pstate, min_pstate, max_pstate, target_pstate;
 | |
| 
 | |
| 	update_turbo_state();
 | |
| 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
 | |
| 					     HWP_HIGHEST_PERF(hwp_cap);
 | |
| 
 | |
| 	/* Optimization: Avoid unnecessary divisions. */
 | |
| 
 | |
| 	target_pstate = cap_pstate;
 | |
| 	if (target_perf < capacity)
 | |
| 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
 | |
| 
 | |
| 	min_pstate = cap_pstate;
 | |
| 	if (min_perf < capacity)
 | |
| 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
 | |
| 
 | |
| 	if (min_pstate < cpu->pstate.min_pstate)
 | |
| 		min_pstate = cpu->pstate.min_pstate;
 | |
| 
 | |
| 	if (min_pstate < cpu->min_perf_ratio)
 | |
| 		min_pstate = cpu->min_perf_ratio;
 | |
| 
 | |
| 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
 | |
| 	if (max_pstate < min_pstate)
 | |
| 		max_pstate = min_pstate;
 | |
| 
 | |
| 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
 | |
| 
 | |
| 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
 | |
| 
 | |
| 	cpu->pstate.current_pstate = target_pstate;
 | |
| 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct freq_qos_request *req;
 | |
| 	struct cpudata *cpu;
 | |
| 	struct device *dev;
 | |
| 	int ret, freq;
 | |
| 
 | |
| 	dev = get_cpu_device(policy->cpu);
 | |
| 	if (!dev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = __intel_pstate_cpu_init(policy);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
 | |
| 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
 | |
| 	policy->cur = policy->cpuinfo.min_freq;
 | |
| 
 | |
| 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
 | |
| 	if (!req) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto pstate_exit;
 | |
| 	}
 | |
| 
 | |
| 	cpu = all_cpu_data[policy->cpu];
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		u64 value;
 | |
| 
 | |
| 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
 | |
| 
 | |
| 		intel_pstate_get_hwp_cap(cpu);
 | |
| 
 | |
| 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
 | |
| 		WRITE_ONCE(cpu->hwp_req_cached, value);
 | |
| 
 | |
| 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
 | |
| 	} else {
 | |
| 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
 | |
| 	}
 | |
| 
 | |
| 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
 | |
| 
 | |
| 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
 | |
| 				   freq);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
 | |
| 		goto free_req;
 | |
| 	}
 | |
| 
 | |
| 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
 | |
| 
 | |
| 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
 | |
| 				   freq);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
 | |
| 		goto remove_min_req;
 | |
| 	}
 | |
| 
 | |
| 	policy->driver_data = req;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| remove_min_req:
 | |
| 	freq_qos_remove_request(req);
 | |
| free_req:
 | |
| 	kfree(req);
 | |
| pstate_exit:
 | |
| 	intel_pstate_exit_perf_limits(policy);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct freq_qos_request *req;
 | |
| 
 | |
| 	req = policy->driver_data;
 | |
| 
 | |
| 	freq_qos_remove_request(req + 1);
 | |
| 	freq_qos_remove_request(req);
 | |
| 	kfree(req);
 | |
| 
 | |
| 	return intel_pstate_cpu_exit(policy);
 | |
| }
 | |
| 
 | |
| static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	intel_pstate_suspend(policy);
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		struct cpudata *cpu = all_cpu_data[policy->cpu];
 | |
| 		u64 value = READ_ONCE(cpu->hwp_req_cached);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
 | |
| 		 * intel_cpufreq_adjust_perf() is in use and the last value
 | |
| 		 * written by it may not be suitable.
 | |
| 		 */
 | |
| 		value &= ~HWP_DESIRED_PERF(~0L);
 | |
| 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 | |
| 		WRITE_ONCE(cpu->hwp_req_cached, value);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cpufreq_driver intel_cpufreq = {
 | |
| 	.flags		= CPUFREQ_CONST_LOOPS,
 | |
| 	.verify		= intel_cpufreq_verify_policy,
 | |
| 	.target		= intel_cpufreq_target,
 | |
| 	.fast_switch	= intel_cpufreq_fast_switch,
 | |
| 	.init		= intel_cpufreq_cpu_init,
 | |
| 	.exit		= intel_cpufreq_cpu_exit,
 | |
| 	.offline	= intel_cpufreq_cpu_offline,
 | |
| 	.online		= intel_pstate_cpu_online,
 | |
| 	.suspend	= intel_cpufreq_suspend,
 | |
| 	.resume		= intel_pstate_resume,
 | |
| 	.update_limits	= intel_pstate_update_limits,
 | |
| 	.name		= "intel_cpufreq",
 | |
| };
 | |
| 
 | |
| static struct cpufreq_driver *default_driver;
 | |
| 
 | |
| static void intel_pstate_driver_cleanup(void)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 
 | |
| 	cpus_read_lock();
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (all_cpu_data[cpu]) {
 | |
| 			if (intel_pstate_driver == &intel_pstate)
 | |
| 				intel_pstate_clear_update_util_hook(cpu);
 | |
| 
 | |
| 			spin_lock(&hwp_notify_lock);
 | |
| 			kfree(all_cpu_data[cpu]);
 | |
| 			WRITE_ONCE(all_cpu_data[cpu], NULL);
 | |
| 			spin_unlock(&hwp_notify_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	cpus_read_unlock();
 | |
| 
 | |
| 	intel_pstate_driver = NULL;
 | |
| }
 | |
| 
 | |
| static int intel_pstate_register_driver(struct cpufreq_driver *driver)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (driver == &intel_pstate)
 | |
| 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
 | |
| 
 | |
| 	memset(&global, 0, sizeof(global));
 | |
| 	global.max_perf_pct = 100;
 | |
| 
 | |
| 	intel_pstate_driver = driver;
 | |
| 	ret = cpufreq_register_driver(intel_pstate_driver);
 | |
| 	if (ret) {
 | |
| 		intel_pstate_driver_cleanup();
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	global.min_perf_pct = min_perf_pct_min();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t intel_pstate_show_status(char *buf)
 | |
| {
 | |
| 	if (!intel_pstate_driver)
 | |
| 		return sprintf(buf, "off\n");
 | |
| 
 | |
| 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
 | |
| 					"active" : "passive");
 | |
| }
 | |
| 
 | |
| static int intel_pstate_update_status(const char *buf, size_t size)
 | |
| {
 | |
| 	if (size == 3 && !strncmp(buf, "off", size)) {
 | |
| 		if (!intel_pstate_driver)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (hwp_active)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		cpufreq_unregister_driver(intel_pstate_driver);
 | |
| 		intel_pstate_driver_cleanup();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (size == 6 && !strncmp(buf, "active", size)) {
 | |
| 		if (intel_pstate_driver) {
 | |
| 			if (intel_pstate_driver == &intel_pstate)
 | |
| 				return 0;
 | |
| 
 | |
| 			cpufreq_unregister_driver(intel_pstate_driver);
 | |
| 		}
 | |
| 
 | |
| 		return intel_pstate_register_driver(&intel_pstate);
 | |
| 	}
 | |
| 
 | |
| 	if (size == 7 && !strncmp(buf, "passive", size)) {
 | |
| 		if (intel_pstate_driver) {
 | |
| 			if (intel_pstate_driver == &intel_cpufreq)
 | |
| 				return 0;
 | |
| 
 | |
| 			cpufreq_unregister_driver(intel_pstate_driver);
 | |
| 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
 | |
| 		}
 | |
| 
 | |
| 		return intel_pstate_register_driver(&intel_cpufreq);
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int no_load __initdata;
 | |
| static int no_hwp __initdata;
 | |
| static int hwp_only __initdata;
 | |
| static unsigned int force_load __initdata;
 | |
| 
 | |
| static int __init intel_pstate_msrs_not_valid(void)
 | |
| {
 | |
| 	if (!pstate_funcs.get_max(0) ||
 | |
| 	    !pstate_funcs.get_min(0) ||
 | |
| 	    !pstate_funcs.get_turbo(0))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
 | |
| {
 | |
| 	pstate_funcs.get_max   = funcs->get_max;
 | |
| 	pstate_funcs.get_max_physical = funcs->get_max_physical;
 | |
| 	pstate_funcs.get_min   = funcs->get_min;
 | |
| 	pstate_funcs.get_turbo = funcs->get_turbo;
 | |
| 	pstate_funcs.get_scaling = funcs->get_scaling;
 | |
| 	pstate_funcs.get_val   = funcs->get_val;
 | |
| 	pstate_funcs.get_vid   = funcs->get_vid;
 | |
| 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 
 | |
| static bool __init intel_pstate_no_acpi_pss(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		acpi_status status;
 | |
| 		union acpi_object *pss;
 | |
| 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 | |
| 		struct acpi_processor *pr = per_cpu(processors, i);
 | |
| 
 | |
| 		if (!pr)
 | |
| 			continue;
 | |
| 
 | |
| 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
 | |
| 		if (ACPI_FAILURE(status))
 | |
| 			continue;
 | |
| 
 | |
| 		pss = buffer.pointer;
 | |
| 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
 | |
| 			kfree(pss);
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		kfree(pss);
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("ACPI _PSS not found\n");
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool __init intel_pstate_no_acpi_pcch(void)
 | |
| {
 | |
| 	acpi_status status;
 | |
| 	acpi_handle handle;
 | |
| 
 | |
| 	status = acpi_get_handle(NULL, "\\_SB", &handle);
 | |
| 	if (ACPI_FAILURE(status))
 | |
| 		goto not_found;
 | |
| 
 | |
| 	if (acpi_has_method(handle, "PCCH"))
 | |
| 		return false;
 | |
| 
 | |
| not_found:
 | |
| 	pr_debug("ACPI PCCH not found\n");
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool __init intel_pstate_has_acpi_ppc(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct acpi_processor *pr = per_cpu(processors, i);
 | |
| 
 | |
| 		if (!pr)
 | |
| 			continue;
 | |
| 		if (acpi_has_method(pr->handle, "_PPC"))
 | |
| 			return true;
 | |
| 	}
 | |
| 	pr_debug("ACPI _PPC not found\n");
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	PSS,
 | |
| 	PPC,
 | |
| };
 | |
| 
 | |
| /* Hardware vendor-specific info that has its own power management modes */
 | |
| static struct acpi_platform_list plat_info[] __initdata = {
 | |
| 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
 | |
| 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
 | |
| 	{ } /* End */
 | |
| };
 | |
| 
 | |
| #define BITMASK_OOB	(BIT(8) | BIT(18))
 | |
| 
 | |
| static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
 | |
| {
 | |
| 	const struct x86_cpu_id *id;
 | |
| 	u64 misc_pwr;
 | |
| 	int idx;
 | |
| 
 | |
| 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
 | |
| 	if (id) {
 | |
| 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
 | |
| 		if (misc_pwr & BITMASK_OOB) {
 | |
| 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
 | |
| 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	idx = acpi_match_platform_list(plat_info);
 | |
| 	if (idx < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	switch (plat_info[idx].data) {
 | |
| 	case PSS:
 | |
| 		if (!intel_pstate_no_acpi_pss())
 | |
| 			return false;
 | |
| 
 | |
| 		return intel_pstate_no_acpi_pcch();
 | |
| 	case PPC:
 | |
| 		return intel_pstate_has_acpi_ppc() && !force_load;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void intel_pstate_request_control_from_smm(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * It may be unsafe to request P-states control from SMM if _PPC support
 | |
| 	 * has not been enabled.
 | |
| 	 */
 | |
| 	if (acpi_ppc)
 | |
| 		acpi_processor_pstate_control();
 | |
| }
 | |
| #else /* CONFIG_ACPI not enabled */
 | |
| static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
 | |
| static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
 | |
| static inline void intel_pstate_request_control_from_smm(void) {}
 | |
| #endif /* CONFIG_ACPI */
 | |
| 
 | |
| #define INTEL_PSTATE_HWP_BROADWELL	0x01
 | |
| 
 | |
| #define X86_MATCH_HWP(model, hwp_mode)					\
 | |
| 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
 | |
| 					   X86_FEATURE_HWP, hwp_mode)
 | |
| 
 | |
| static const struct x86_cpu_id hwp_support_ids[] __initconst = {
 | |
| 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
 | |
| 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
 | |
| 	X86_MATCH_HWP(ANY,		0),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static bool intel_pstate_hwp_is_enabled(void)
 | |
| {
 | |
| 	u64 value;
 | |
| 
 | |
| 	rdmsrl(MSR_PM_ENABLE, value);
 | |
| 	return !!(value & 0x1);
 | |
| }
 | |
| 
 | |
| static const struct x86_cpu_id intel_epp_balance_perf[] = {
 | |
| 	/*
 | |
| 	 * Set EPP value as 102, this is the max suggested EPP
 | |
| 	 * which can result in one core turbo frequency for
 | |
| 	 * AlderLake Mobile CPUs.
 | |
| 	 */
 | |
| 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int __init intel_pstate_init(void)
 | |
| {
 | |
| 	static struct cpudata **_all_cpu_data;
 | |
| 	const struct x86_cpu_id *id;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	id = x86_match_cpu(hwp_support_ids);
 | |
| 	if (id) {
 | |
| 		hwp_forced = intel_pstate_hwp_is_enabled();
 | |
| 
 | |
| 		if (hwp_forced)
 | |
| 			pr_info("HWP enabled by BIOS\n");
 | |
| 		else if (no_load)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		copy_cpu_funcs(&core_funcs);
 | |
| 		/*
 | |
| 		 * Avoid enabling HWP for processors without EPP support,
 | |
| 		 * because that means incomplete HWP implementation which is a
 | |
| 		 * corner case and supporting it is generally problematic.
 | |
| 		 *
 | |
| 		 * If HWP is enabled already, though, there is no choice but to
 | |
| 		 * deal with it.
 | |
| 		 */
 | |
| 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
 | |
| 			WRITE_ONCE(hwp_active, 1);
 | |
| 			hwp_mode_bdw = id->driver_data;
 | |
| 			intel_pstate.attr = hwp_cpufreq_attrs;
 | |
| 			intel_cpufreq.attr = hwp_cpufreq_attrs;
 | |
| 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
 | |
| 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
 | |
| 			if (!default_driver)
 | |
| 				default_driver = &intel_pstate;
 | |
| 
 | |
| 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
 | |
| 				pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
 | |
| 
 | |
| 			goto hwp_cpu_matched;
 | |
| 		}
 | |
| 		pr_info("HWP not enabled\n");
 | |
| 	} else {
 | |
| 		if (no_load)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		id = x86_match_cpu(intel_pstate_cpu_ids);
 | |
| 		if (!id) {
 | |
| 			pr_info("CPU model not supported\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
 | |
| 	}
 | |
| 
 | |
| 	if (intel_pstate_msrs_not_valid()) {
 | |
| 		pr_info("Invalid MSRs\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	/* Without HWP start in the passive mode. */
 | |
| 	if (!default_driver)
 | |
| 		default_driver = &intel_cpufreq;
 | |
| 
 | |
| hwp_cpu_matched:
 | |
| 	/*
 | |
| 	 * The Intel pstate driver will be ignored if the platform
 | |
| 	 * firmware has its own power management modes.
 | |
| 	 */
 | |
| 	if (intel_pstate_platform_pwr_mgmt_exists()) {
 | |
| 		pr_info("P-states controlled by the platform\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!hwp_active && hwp_only)
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	pr_info("Intel P-state driver initializing\n");
 | |
| 
 | |
| 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
 | |
| 	if (!_all_cpu_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
 | |
| 
 | |
| 	intel_pstate_request_control_from_smm();
 | |
| 
 | |
| 	intel_pstate_sysfs_expose_params();
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
 | |
| 
 | |
| 		if (id)
 | |
| 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&intel_pstate_driver_lock);
 | |
| 	rc = intel_pstate_register_driver(default_driver);
 | |
| 	mutex_unlock(&intel_pstate_driver_lock);
 | |
| 	if (rc) {
 | |
| 		intel_pstate_sysfs_remove();
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (hwp_active) {
 | |
| 		const struct x86_cpu_id *id;
 | |
| 
 | |
| 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
 | |
| 		if (id) {
 | |
| 			set_power_ctl_ee_state(false);
 | |
| 			pr_info("Disabling energy efficiency optimization\n");
 | |
| 		}
 | |
| 
 | |
| 		pr_info("HWP enabled\n");
 | |
| 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
 | |
| 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| device_initcall(intel_pstate_init);
 | |
| 
 | |
| static int __init intel_pstate_setup(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!strcmp(str, "disable"))
 | |
| 		no_load = 1;
 | |
| 	else if (!strcmp(str, "active"))
 | |
| 		default_driver = &intel_pstate;
 | |
| 	else if (!strcmp(str, "passive"))
 | |
| 		default_driver = &intel_cpufreq;
 | |
| 
 | |
| 	if (!strcmp(str, "no_hwp"))
 | |
| 		no_hwp = 1;
 | |
| 
 | |
| 	if (!strcmp(str, "force"))
 | |
| 		force_load = 1;
 | |
| 	if (!strcmp(str, "hwp_only"))
 | |
| 		hwp_only = 1;
 | |
| 	if (!strcmp(str, "per_cpu_perf_limits"))
 | |
| 		per_cpu_limits = true;
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 	if (!strcmp(str, "support_acpi_ppc"))
 | |
| 		acpi_ppc = true;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("intel_pstate", intel_pstate_setup);
 | |
| 
 | |
| MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
 | |
| MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
 | |
| MODULE_LICENSE("GPL");
 |