mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 df561f6688
			
		
	
	
		df561f6688
		
	
	
	
	
		
			
			Replace the existing /* fall through */ comments and its variants with the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary fall-through markings when it is the case. [1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
		
			
				
	
	
		
			1716 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1716 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * fs/dax.c - Direct Access filesystem code
 | |
|  * Copyright (c) 2013-2014 Intel Corporation
 | |
|  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 | |
|  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/genhd.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/vmstat.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/iomap.h>
 | |
| #include <asm/pgalloc.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/fs_dax.h>
 | |
| 
 | |
| static inline unsigned int pe_order(enum page_entry_size pe_size)
 | |
| {
 | |
| 	if (pe_size == PE_SIZE_PTE)
 | |
| 		return PAGE_SHIFT - PAGE_SHIFT;
 | |
| 	if (pe_size == PE_SIZE_PMD)
 | |
| 		return PMD_SHIFT - PAGE_SHIFT;
 | |
| 	if (pe_size == PE_SIZE_PUD)
 | |
| 		return PUD_SHIFT - PAGE_SHIFT;
 | |
| 	return ~0;
 | |
| }
 | |
| 
 | |
| /* We choose 4096 entries - same as per-zone page wait tables */
 | |
| #define DAX_WAIT_TABLE_BITS 12
 | |
| #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
 | |
| 
 | |
| /* The 'colour' (ie low bits) within a PMD of a page offset.  */
 | |
| #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
 | |
| #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
 | |
| 
 | |
| /* The order of a PMD entry */
 | |
| #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
 | |
| 
 | |
| static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
 | |
| 
 | |
| static int __init init_dax_wait_table(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
 | |
| 		init_waitqueue_head(wait_table + i);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(init_dax_wait_table);
 | |
| 
 | |
| /*
 | |
|  * DAX pagecache entries use XArray value entries so they can't be mistaken
 | |
|  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
 | |
|  * and two more to tell us if the entry is a zero page or an empty entry that
 | |
|  * is just used for locking.  In total four special bits.
 | |
|  *
 | |
|  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
 | |
|  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
 | |
|  * block allocation.
 | |
|  */
 | |
| #define DAX_SHIFT	(4)
 | |
| #define DAX_LOCKED	(1UL << 0)
 | |
| #define DAX_PMD		(1UL << 1)
 | |
| #define DAX_ZERO_PAGE	(1UL << 2)
 | |
| #define DAX_EMPTY	(1UL << 3)
 | |
| 
 | |
| static unsigned long dax_to_pfn(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) >> DAX_SHIFT;
 | |
| }
 | |
| 
 | |
| static void *dax_make_entry(pfn_t pfn, unsigned long flags)
 | |
| {
 | |
| 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
 | |
| }
 | |
| 
 | |
| static bool dax_is_locked(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_LOCKED;
 | |
| }
 | |
| 
 | |
| static unsigned int dax_entry_order(void *entry)
 | |
| {
 | |
| 	if (xa_to_value(entry) & DAX_PMD)
 | |
| 		return PMD_ORDER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long dax_is_pmd_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_PMD;
 | |
| }
 | |
| 
 | |
| static bool dax_is_pte_entry(void *entry)
 | |
| {
 | |
| 	return !(xa_to_value(entry) & DAX_PMD);
 | |
| }
 | |
| 
 | |
| static int dax_is_zero_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_ZERO_PAGE;
 | |
| }
 | |
| 
 | |
| static int dax_is_empty_entry(void *entry)
 | |
| {
 | |
| 	return xa_to_value(entry) & DAX_EMPTY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * true if the entry that was found is of a smaller order than the entry
 | |
|  * we were looking for
 | |
|  */
 | |
| static bool dax_is_conflict(void *entry)
 | |
| {
 | |
| 	return entry == XA_RETRY_ENTRY;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DAX page cache entry locking
 | |
|  */
 | |
| struct exceptional_entry_key {
 | |
| 	struct xarray *xa;
 | |
| 	pgoff_t entry_start;
 | |
| };
 | |
| 
 | |
| struct wait_exceptional_entry_queue {
 | |
| 	wait_queue_entry_t wait;
 | |
| 	struct exceptional_entry_key key;
 | |
| };
 | |
| 
 | |
| static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 | |
| 		void *entry, struct exceptional_entry_key *key)
 | |
| {
 | |
| 	unsigned long hash;
 | |
| 	unsigned long index = xas->xa_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
 | |
| 	 * queue to the start of that PMD.  This ensures that all offsets in
 | |
| 	 * the range covered by the PMD map to the same bit lock.
 | |
| 	 */
 | |
| 	if (dax_is_pmd_entry(entry))
 | |
| 		index &= ~PG_PMD_COLOUR;
 | |
| 	key->xa = xas->xa;
 | |
| 	key->entry_start = index;
 | |
| 
 | |
| 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 | |
| 	return wait_table + hash;
 | |
| }
 | |
| 
 | |
| static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 | |
| 		unsigned int mode, int sync, void *keyp)
 | |
| {
 | |
| 	struct exceptional_entry_key *key = keyp;
 | |
| 	struct wait_exceptional_entry_queue *ewait =
 | |
| 		container_of(wait, struct wait_exceptional_entry_queue, wait);
 | |
| 
 | |
| 	if (key->xa != ewait->key.xa ||
 | |
| 	    key->entry_start != ewait->key.entry_start)
 | |
| 		return 0;
 | |
| 	return autoremove_wake_function(wait, mode, sync, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @entry may no longer be the entry at the index in the mapping.
 | |
|  * The important information it's conveying is whether the entry at
 | |
|  * this index used to be a PMD entry.
 | |
|  */
 | |
| static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
 | |
| {
 | |
| 	struct exceptional_entry_key key;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	wq = dax_entry_waitqueue(xas, entry, &key);
 | |
| 
 | |
| 	/*
 | |
| 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
 | |
| 	 * under the i_pages lock, ditto for entry handling in our callers.
 | |
| 	 * So at this point all tasks that could have seen our entry locked
 | |
| 	 * must be in the waitqueue and the following check will see them.
 | |
| 	 */
 | |
| 	if (waitqueue_active(wq))
 | |
| 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up entry in page cache, wait for it to become unlocked if it
 | |
|  * is a DAX entry and return it.  The caller must subsequently call
 | |
|  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 | |
|  * if it did.  The entry returned may have a larger order than @order.
 | |
|  * If @order is larger than the order of the entry found in i_pages, this
 | |
|  * function returns a dax_is_conflict entry.
 | |
|  *
 | |
|  * Must be called with the i_pages lock held.
 | |
|  */
 | |
| static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 | |
| {
 | |
| 	void *entry;
 | |
| 	struct wait_exceptional_entry_queue ewait;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	init_wait(&ewait.wait);
 | |
| 	ewait.wait.func = wake_exceptional_entry_func;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		entry = xas_find_conflict(xas);
 | |
| 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			return entry;
 | |
| 		if (dax_entry_order(entry) < order)
 | |
| 			return XA_RETRY_ENTRY;
 | |
| 		if (!dax_is_locked(entry))
 | |
| 			return entry;
 | |
| 
 | |
| 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 | |
| 		prepare_to_wait_exclusive(wq, &ewait.wait,
 | |
| 					  TASK_UNINTERRUPTIBLE);
 | |
| 		xas_unlock_irq(xas);
 | |
| 		xas_reset(xas);
 | |
| 		schedule();
 | |
| 		finish_wait(wq, &ewait.wait);
 | |
| 		xas_lock_irq(xas);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The only thing keeping the address space around is the i_pages lock
 | |
|  * (it's cycled in clear_inode() after removing the entries from i_pages)
 | |
|  * After we call xas_unlock_irq(), we cannot touch xas->xa.
 | |
|  */
 | |
| static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	struct wait_exceptional_entry_queue ewait;
 | |
| 	wait_queue_head_t *wq;
 | |
| 
 | |
| 	init_wait(&ewait.wait);
 | |
| 	ewait.wait.func = wake_exceptional_entry_func;
 | |
| 
 | |
| 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 | |
| 	/*
 | |
| 	 * Unlike get_unlocked_entry() there is no guarantee that this
 | |
| 	 * path ever successfully retrieves an unlocked entry before an
 | |
| 	 * inode dies. Perform a non-exclusive wait in case this path
 | |
| 	 * never successfully performs its own wake up.
 | |
| 	 */
 | |
| 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 | |
| 	xas_unlock_irq(xas);
 | |
| 	schedule();
 | |
| 	finish_wait(wq, &ewait.wait);
 | |
| }
 | |
| 
 | |
| static void put_unlocked_entry(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	/* If we were the only waiter woken, wake the next one */
 | |
| 	if (entry && !dax_is_conflict(entry))
 | |
| 		dax_wake_entry(xas, entry, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We used the xa_state to get the entry, but then we locked the entry and
 | |
|  * dropped the xa_lock, so we know the xa_state is stale and must be reset
 | |
|  * before use.
 | |
|  */
 | |
| static void dax_unlock_entry(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	void *old;
 | |
| 
 | |
| 	BUG_ON(dax_is_locked(entry));
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	old = xas_store(xas, entry);
 | |
| 	xas_unlock_irq(xas);
 | |
| 	BUG_ON(!dax_is_locked(old));
 | |
| 	dax_wake_entry(xas, entry, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return: The entry stored at this location before it was locked.
 | |
|  */
 | |
| static void *dax_lock_entry(struct xa_state *xas, void *entry)
 | |
| {
 | |
| 	unsigned long v = xa_to_value(entry);
 | |
| 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 | |
| }
 | |
| 
 | |
| static unsigned long dax_entry_size(void *entry)
 | |
| {
 | |
| 	if (dax_is_zero_entry(entry))
 | |
| 		return 0;
 | |
| 	else if (dax_is_empty_entry(entry))
 | |
| 		return 0;
 | |
| 	else if (dax_is_pmd_entry(entry))
 | |
| 		return PMD_SIZE;
 | |
| 	else
 | |
| 		return PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static unsigned long dax_end_pfn(void *entry)
 | |
| {
 | |
| 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate through all mapped pfns represented by an entry, i.e. skip
 | |
|  * 'empty' and 'zero' entries.
 | |
|  */
 | |
| #define for_each_mapped_pfn(entry, pfn) \
 | |
| 	for (pfn = dax_to_pfn(entry); \
 | |
| 			pfn < dax_end_pfn(entry); pfn++)
 | |
| 
 | |
| /*
 | |
|  * TODO: for reflink+dax we need a way to associate a single page with
 | |
|  * multiple address_space instances at different linear_page_index()
 | |
|  * offsets.
 | |
|  */
 | |
| static void dax_associate_entry(void *entry, struct address_space *mapping,
 | |
| 		struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	unsigned long size = dax_entry_size(entry), pfn, index;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 | |
| 		return;
 | |
| 
 | |
| 	index = linear_page_index(vma, address & ~(size - 1));
 | |
| 	for_each_mapped_pfn(entry, pfn) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		WARN_ON_ONCE(page->mapping);
 | |
| 		page->mapping = mapping;
 | |
| 		page->index = index + i++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 | |
| 		bool trunc)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_mapped_pfn(entry, pfn) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 | |
| 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 | |
| 		page->mapping = NULL;
 | |
| 		page->index = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct page *dax_busy_page(void *entry)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for_each_mapped_pfn(entry, pfn) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 
 | |
| 		if (page_ref_count(page) > 1)
 | |
| 			return page;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 | |
|  * @page: The page whose entry we want to lock
 | |
|  *
 | |
|  * Context: Process context.
 | |
|  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 | |
|  * not be locked.
 | |
|  */
 | |
| dax_entry_t dax_lock_page(struct page *page)
 | |
| {
 | |
| 	XA_STATE(xas, NULL, 0);
 | |
| 	void *entry;
 | |
| 
 | |
| 	/* Ensure page->mapping isn't freed while we look at it */
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		struct address_space *mapping = READ_ONCE(page->mapping);
 | |
| 
 | |
| 		entry = NULL;
 | |
| 		if (!mapping || !dax_mapping(mapping))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In the device-dax case there's no need to lock, a
 | |
| 		 * struct dev_pagemap pin is sufficient to keep the
 | |
| 		 * inode alive, and we assume we have dev_pagemap pin
 | |
| 		 * otherwise we would not have a valid pfn_to_page()
 | |
| 		 * translation.
 | |
| 		 */
 | |
| 		entry = (void *)~0UL;
 | |
| 		if (S_ISCHR(mapping->host->i_mode))
 | |
| 			break;
 | |
| 
 | |
| 		xas.xa = &mapping->i_pages;
 | |
| 		xas_lock_irq(&xas);
 | |
| 		if (mapping != page->mapping) {
 | |
| 			xas_unlock_irq(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 		xas_set(&xas, page->index);
 | |
| 		entry = xas_load(&xas);
 | |
| 		if (dax_is_locked(entry)) {
 | |
| 			rcu_read_unlock();
 | |
| 			wait_entry_unlocked(&xas, entry);
 | |
| 			rcu_read_lock();
 | |
| 			continue;
 | |
| 		}
 | |
| 		dax_lock_entry(&xas, entry);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return (dax_entry_t)entry;
 | |
| }
 | |
| 
 | |
| void dax_unlock_page(struct page *page, dax_entry_t cookie)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 	XA_STATE(xas, &mapping->i_pages, page->index);
 | |
| 
 | |
| 	if (S_ISCHR(mapping->host->i_mode))
 | |
| 		return;
 | |
| 
 | |
| 	dax_unlock_entry(&xas, (void *)cookie);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find page cache entry at given index. If it is a DAX entry, return it
 | |
|  * with the entry locked. If the page cache doesn't contain an entry at
 | |
|  * that index, add a locked empty entry.
 | |
|  *
 | |
|  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 | |
|  * either return that locked entry or will return VM_FAULT_FALLBACK.
 | |
|  * This will happen if there are any PTE entries within the PMD range
 | |
|  * that we are requesting.
 | |
|  *
 | |
|  * We always favor PTE entries over PMD entries. There isn't a flow where we
 | |
|  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 | |
|  * insertion will fail if it finds any PTE entries already in the tree, and a
 | |
|  * PTE insertion will cause an existing PMD entry to be unmapped and
 | |
|  * downgraded to PTE entries.  This happens for both PMD zero pages as
 | |
|  * well as PMD empty entries.
 | |
|  *
 | |
|  * The exception to this downgrade path is for PMD entries that have
 | |
|  * real storage backing them.  We will leave these real PMD entries in
 | |
|  * the tree, and PTE writes will simply dirty the entire PMD entry.
 | |
|  *
 | |
|  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 | |
|  * persistent memory the benefit is doubtful. We can add that later if we can
 | |
|  * show it helps.
 | |
|  *
 | |
|  * On error, this function does not return an ERR_PTR.  Instead it returns
 | |
|  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 | |
|  * overlap with xarray value entries.
 | |
|  */
 | |
| static void *grab_mapping_entry(struct xa_state *xas,
 | |
| 		struct address_space *mapping, unsigned int order)
 | |
| {
 | |
| 	unsigned long index = xas->xa_index;
 | |
| 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
 | |
| 	void *entry;
 | |
| 
 | |
| retry:
 | |
| 	xas_lock_irq(xas);
 | |
| 	entry = get_unlocked_entry(xas, order);
 | |
| 
 | |
| 	if (entry) {
 | |
| 		if (dax_is_conflict(entry))
 | |
| 			goto fallback;
 | |
| 		if (!xa_is_value(entry)) {
 | |
| 			xas_set_err(xas, -EIO);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (order == 0) {
 | |
| 			if (dax_is_pmd_entry(entry) &&
 | |
| 			    (dax_is_zero_entry(entry) ||
 | |
| 			     dax_is_empty_entry(entry))) {
 | |
| 				pmd_downgrade = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_downgrade) {
 | |
| 		/*
 | |
| 		 * Make sure 'entry' remains valid while we drop
 | |
| 		 * the i_pages lock.
 | |
| 		 */
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 
 | |
| 		/*
 | |
| 		 * Besides huge zero pages the only other thing that gets
 | |
| 		 * downgraded are empty entries which don't need to be
 | |
| 		 * unmapped.
 | |
| 		 */
 | |
| 		if (dax_is_zero_entry(entry)) {
 | |
| 			xas_unlock_irq(xas);
 | |
| 			unmap_mapping_pages(mapping,
 | |
| 					xas->xa_index & ~PG_PMD_COLOUR,
 | |
| 					PG_PMD_NR, false);
 | |
| 			xas_reset(xas);
 | |
| 			xas_lock_irq(xas);
 | |
| 		}
 | |
| 
 | |
| 		dax_disassociate_entry(entry, mapping, false);
 | |
| 		xas_store(xas, NULL);	/* undo the PMD join */
 | |
| 		dax_wake_entry(xas, entry, true);
 | |
| 		mapping->nrexceptional--;
 | |
| 		entry = NULL;
 | |
| 		xas_set(xas, index);
 | |
| 	}
 | |
| 
 | |
| 	if (entry) {
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 	} else {
 | |
| 		unsigned long flags = DAX_EMPTY;
 | |
| 
 | |
| 		if (order > 0)
 | |
| 			flags |= DAX_PMD;
 | |
| 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 | |
| 		dax_lock_entry(xas, entry);
 | |
| 		if (xas_error(xas))
 | |
| 			goto out_unlock;
 | |
| 		mapping->nrexceptional++;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	xas_unlock_irq(xas);
 | |
| 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 | |
| 		goto retry;
 | |
| 	if (xas->xa_node == XA_ERROR(-ENOMEM))
 | |
| 		return xa_mk_internal(VM_FAULT_OOM);
 | |
| 	if (xas_error(xas))
 | |
| 		return xa_mk_internal(VM_FAULT_SIGBUS);
 | |
| 	return entry;
 | |
| fallback:
 | |
| 	xas_unlock_irq(xas);
 | |
| 	return xa_mk_internal(VM_FAULT_FALLBACK);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_layout_busy_page - find first pinned page in @mapping
 | |
|  * @mapping: address space to scan for a page with ref count > 1
 | |
|  *
 | |
|  * DAX requires ZONE_DEVICE mapped pages. These pages are never
 | |
|  * 'onlined' to the page allocator so they are considered idle when
 | |
|  * page->count == 1. A filesystem uses this interface to determine if
 | |
|  * any page in the mapping is busy, i.e. for DMA, or other
 | |
|  * get_user_pages() usages.
 | |
|  *
 | |
|  * It is expected that the filesystem is holding locks to block the
 | |
|  * establishment of new mappings in this address_space. I.e. it expects
 | |
|  * to be able to run unmap_mapping_range() and subsequently not race
 | |
|  * mapping_mapped() becoming true.
 | |
|  */
 | |
| struct page *dax_layout_busy_page(struct address_space *mapping)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, 0);
 | |
| 	void *entry;
 | |
| 	unsigned int scanned = 0;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the 'limited' case get_user_pages() for dax is disabled.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we race get_user_pages_fast() here either we'll see the
 | |
| 	 * elevated page count in the iteration and wait, or
 | |
| 	 * get_user_pages_fast() will see that the page it took a reference
 | |
| 	 * against is no longer mapped in the page tables and bail to the
 | |
| 	 * get_user_pages() slow path.  The slow path is protected by
 | |
| 	 * pte_lock() and pmd_lock(). New references are not taken without
 | |
| 	 * holding those locks, and unmap_mapping_range() will not zero the
 | |
| 	 * pte or pmd without holding the respective lock, so we are
 | |
| 	 * guaranteed to either see new references or prevent new
 | |
| 	 * references from being established.
 | |
| 	 */
 | |
| 	unmap_mapping_range(mapping, 0, 0, 0);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each(&xas, entry, ULONG_MAX) {
 | |
| 		if (WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			continue;
 | |
| 		if (unlikely(dax_is_locked(entry)))
 | |
| 			entry = get_unlocked_entry(&xas, 0);
 | |
| 		if (entry)
 | |
| 			page = dax_busy_page(entry);
 | |
| 		put_unlocked_entry(&xas, entry);
 | |
| 		if (page)
 | |
| 			break;
 | |
| 		if (++scanned % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 | |
| 
 | |
| static int __dax_invalidate_entry(struct address_space *mapping,
 | |
| 					  pgoff_t index, bool trunc)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	int ret = 0;
 | |
| 	void *entry;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	entry = get_unlocked_entry(&xas, 0);
 | |
| 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 		goto out;
 | |
| 	if (!trunc &&
 | |
| 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 | |
| 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 | |
| 		goto out;
 | |
| 	dax_disassociate_entry(entry, mapping, trunc);
 | |
| 	xas_store(&xas, NULL);
 | |
| 	mapping->nrexceptional--;
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	put_unlocked_entry(&xas, entry);
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete DAX entry at @index from @mapping.  Wait for it
 | |
|  * to be unlocked before deleting it.
 | |
|  */
 | |
| int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	int ret = __dax_invalidate_entry(mapping, index, true);
 | |
| 
 | |
| 	/*
 | |
| 	 * This gets called from truncate / punch_hole path. As such, the caller
 | |
| 	 * must hold locks protecting against concurrent modifications of the
 | |
| 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
 | |
| 	 * caller has seen a DAX entry for this index, we better find it
 | |
| 	 * at that index as well...
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate DAX entry if it is clean.
 | |
|  */
 | |
| int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 | |
| 				      pgoff_t index)
 | |
| {
 | |
| 	return __dax_invalidate_entry(mapping, index, false);
 | |
| }
 | |
| 
 | |
| static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
 | |
| 			     sector_t sector, struct page *to, unsigned long vaddr)
 | |
| {
 | |
| 	void *vto, *kaddr;
 | |
| 	pgoff_t pgoff;
 | |
| 	long rc;
 | |
| 	int id;
 | |
| 
 | |
| 	rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
 | |
| 	if (rc < 0) {
 | |
| 		dax_read_unlock(id);
 | |
| 		return rc;
 | |
| 	}
 | |
| 	vto = kmap_atomic(to);
 | |
| 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 | |
| 	kunmap_atomic(vto);
 | |
| 	dax_read_unlock(id);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By this point grab_mapping_entry() has ensured that we have a locked entry
 | |
|  * of the appropriate size so we don't have to worry about downgrading PMDs to
 | |
|  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 | |
|  * already in the tree, we will skip the insertion and just dirty the PMD as
 | |
|  * appropriate.
 | |
|  */
 | |
| static void *dax_insert_entry(struct xa_state *xas,
 | |
| 		struct address_space *mapping, struct vm_fault *vmf,
 | |
| 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 | |
| {
 | |
| 	void *new_entry = dax_make_entry(pfn, flags);
 | |
| 
 | |
| 	if (dirty)
 | |
| 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 | |
| 
 | |
| 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 | |
| 		unsigned long index = xas->xa_index;
 | |
| 		/* we are replacing a zero page with block mapping */
 | |
| 		if (dax_is_pmd_entry(entry))
 | |
| 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 | |
| 					PG_PMD_NR, false);
 | |
| 		else /* pte entry */
 | |
| 			unmap_mapping_pages(mapping, index, 1, false);
 | |
| 	}
 | |
| 
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 | |
| 		void *old;
 | |
| 
 | |
| 		dax_disassociate_entry(entry, mapping, false);
 | |
| 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 | |
| 		/*
 | |
| 		 * Only swap our new entry into the page cache if the current
 | |
| 		 * entry is a zero page or an empty entry.  If a normal PTE or
 | |
| 		 * PMD entry is already in the cache, we leave it alone.  This
 | |
| 		 * means that if we are trying to insert a PTE and the
 | |
| 		 * existing entry is a PMD, we will just leave the PMD in the
 | |
| 		 * tree and dirty it if necessary.
 | |
| 		 */
 | |
| 		old = dax_lock_entry(xas, new_entry);
 | |
| 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 | |
| 					DAX_LOCKED));
 | |
| 		entry = new_entry;
 | |
| 	} else {
 | |
| 		xas_load(xas);	/* Walk the xa_state */
 | |
| 	}
 | |
| 
 | |
| 	if (dirty)
 | |
| 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 | |
| 
 | |
| 	xas_unlock_irq(xas);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 | |
| 	return address;
 | |
| }
 | |
| 
 | |
| /* Walk all mappings of a given index of a file and writeprotect them */
 | |
| static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 | |
| 		unsigned long pfn)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	pte_t pte, *ptep = NULL;
 | |
| 	pmd_t *pmdp = NULL;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	i_mmap_lock_read(mapping);
 | |
| 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 | |
| 		struct mmu_notifier_range range;
 | |
| 		unsigned long address;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (!(vma->vm_flags & VM_SHARED))
 | |
| 			continue;
 | |
| 
 | |
| 		address = pgoff_address(index, vma);
 | |
| 
 | |
| 		/*
 | |
| 		 * Note because we provide range to follow_pte_pmd it will
 | |
| 		 * call mmu_notifier_invalidate_range_start() on our behalf
 | |
| 		 * before taking any lock.
 | |
| 		 */
 | |
| 		if (follow_pte_pmd(vma->vm_mm, address, &range,
 | |
| 				   &ptep, &pmdp, &ptl))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to call mmu_notifier_invalidate_range() as we are
 | |
| 		 * downgrading page table protection not changing it to point
 | |
| 		 * to a new page.
 | |
| 		 *
 | |
| 		 * See Documentation/vm/mmu_notifier.rst
 | |
| 		 */
 | |
| 		if (pmdp) {
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| 			pmd_t pmd;
 | |
| 
 | |
| 			if (pfn != pmd_pfn(*pmdp))
 | |
| 				goto unlock_pmd;
 | |
| 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 | |
| 				goto unlock_pmd;
 | |
| 
 | |
| 			flush_cache_page(vma, address, pfn);
 | |
| 			pmd = pmdp_invalidate(vma, address, pmdp);
 | |
| 			pmd = pmd_wrprotect(pmd);
 | |
| 			pmd = pmd_mkclean(pmd);
 | |
| 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 | |
| unlock_pmd:
 | |
| #endif
 | |
| 			spin_unlock(ptl);
 | |
| 		} else {
 | |
| 			if (pfn != pte_pfn(*ptep))
 | |
| 				goto unlock_pte;
 | |
| 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
 | |
| 				goto unlock_pte;
 | |
| 
 | |
| 			flush_cache_page(vma, address, pfn);
 | |
| 			pte = ptep_clear_flush(vma, address, ptep);
 | |
| 			pte = pte_wrprotect(pte);
 | |
| 			pte = pte_mkclean(pte);
 | |
| 			set_pte_at(vma->vm_mm, address, ptep, pte);
 | |
| unlock_pte:
 | |
| 			pte_unmap_unlock(ptep, ptl);
 | |
| 		}
 | |
| 
 | |
| 		mmu_notifier_invalidate_range_end(&range);
 | |
| 	}
 | |
| 	i_mmap_unlock_read(mapping);
 | |
| }
 | |
| 
 | |
| static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 | |
| 		struct address_space *mapping, void *entry)
 | |
| {
 | |
| 	unsigned long pfn, index, count;
 | |
| 	long ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * A page got tagged dirty in DAX mapping? Something is seriously
 | |
| 	 * wrong.
 | |
| 	 */
 | |
| 	if (WARN_ON(!xa_is_value(entry)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (unlikely(dax_is_locked(entry))) {
 | |
| 		void *old_entry = entry;
 | |
| 
 | |
| 		entry = get_unlocked_entry(xas, 0);
 | |
| 
 | |
| 		/* Entry got punched out / reallocated? */
 | |
| 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 | |
| 			goto put_unlocked;
 | |
| 		/*
 | |
| 		 * Entry got reallocated elsewhere? No need to writeback.
 | |
| 		 * We have to compare pfns as we must not bail out due to
 | |
| 		 * difference in lockbit or entry type.
 | |
| 		 */
 | |
| 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 | |
| 			goto put_unlocked;
 | |
| 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 | |
| 					dax_is_zero_entry(entry))) {
 | |
| 			ret = -EIO;
 | |
| 			goto put_unlocked;
 | |
| 		}
 | |
| 
 | |
| 		/* Another fsync thread may have already done this entry */
 | |
| 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 | |
| 			goto put_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	/* Lock the entry to serialize with page faults */
 | |
| 	dax_lock_entry(xas, entry);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can clear the tag now but we have to be careful so that concurrent
 | |
| 	 * dax_writeback_one() calls for the same index cannot finish before we
 | |
| 	 * actually flush the caches. This is achieved as the calls will look
 | |
| 	 * at the entry only under the i_pages lock and once they do that
 | |
| 	 * they will see the entry locked and wait for it to unlock.
 | |
| 	 */
 | |
| 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 | |
| 	xas_unlock_irq(xas);
 | |
| 
 | |
| 	/*
 | |
| 	 * If dax_writeback_mapping_range() was given a wbc->range_start
 | |
| 	 * in the middle of a PMD, the 'index' we use needs to be
 | |
| 	 * aligned to the start of the PMD.
 | |
| 	 * This allows us to flush for PMD_SIZE and not have to worry about
 | |
| 	 * partial PMD writebacks.
 | |
| 	 */
 | |
| 	pfn = dax_to_pfn(entry);
 | |
| 	count = 1UL << dax_entry_order(entry);
 | |
| 	index = xas->xa_index & ~(count - 1);
 | |
| 
 | |
| 	dax_entry_mkclean(mapping, index, pfn);
 | |
| 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 | |
| 	/*
 | |
| 	 * After we have flushed the cache, we can clear the dirty tag. There
 | |
| 	 * cannot be new dirty data in the pfn after the flush has completed as
 | |
| 	 * the pfn mappings are writeprotected and fault waits for mapping
 | |
| 	 * entry lock.
 | |
| 	 */
 | |
| 	xas_reset(xas);
 | |
| 	xas_lock_irq(xas);
 | |
| 	xas_store(xas, entry);
 | |
| 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 | |
| 	dax_wake_entry(xas, entry, false);
 | |
| 
 | |
| 	trace_dax_writeback_one(mapping->host, index, count);
 | |
| 	return ret;
 | |
| 
 | |
|  put_unlocked:
 | |
| 	put_unlocked_entry(xas, entry);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the mapping to the persistent domain within the byte range of [start,
 | |
|  * end]. This is required by data integrity operations to ensure file data is
 | |
|  * on persistent storage prior to completion of the operation.
 | |
|  */
 | |
| int dax_writeback_mapping_range(struct address_space *mapping,
 | |
| 		struct dax_device *dax_dev, struct writeback_control *wbc)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 | |
| 	void *entry;
 | |
| 	int ret = 0;
 | |
| 	unsigned int scanned = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
 | |
| 
 | |
| 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 | |
| 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 | |
| 		if (ret < 0) {
 | |
| 			mapping_set_error(mapping, ret);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (++scanned % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 | |
| 
 | |
| static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
 | |
| {
 | |
| 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
 | |
| }
 | |
| 
 | |
| static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
 | |
| 			 pfn_t *pfnp)
 | |
| {
 | |
| 	const sector_t sector = dax_iomap_sector(iomap, pos);
 | |
| 	pgoff_t pgoff;
 | |
| 	int id, rc;
 | |
| 	long length;
 | |
| 
 | |
| 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 	id = dax_read_lock();
 | |
| 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
 | |
| 				   NULL, pfnp);
 | |
| 	if (length < 0) {
 | |
| 		rc = length;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	rc = -EINVAL;
 | |
| 	if (PFN_PHYS(length) < size)
 | |
| 		goto out;
 | |
| 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
 | |
| 		goto out;
 | |
| 	/* For larger pages we need devmap */
 | |
| 	if (length > 1 && !pfn_t_devmap(*pfnp))
 | |
| 		goto out;
 | |
| 	rc = 0;
 | |
| out:
 | |
| 	dax_read_unlock(id);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The user has performed a load from a hole in the file.  Allocating a new
 | |
|  * page in the file would cause excessive storage usage for workloads with
 | |
|  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
 | |
|  * If this page is ever written to we will re-fault and change the mapping to
 | |
|  * point to real DAX storage instead.
 | |
|  */
 | |
| static vm_fault_t dax_load_hole(struct xa_state *xas,
 | |
| 		struct address_space *mapping, void **entry,
 | |
| 		struct vm_fault *vmf)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long vaddr = vmf->address;
 | |
| 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
 | |
| 			DAX_ZERO_PAGE, false);
 | |
| 
 | |
| 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
 | |
| 	trace_dax_load_hole(inode, vmf, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
 | |
| 		   struct iomap *iomap)
 | |
| {
 | |
| 	sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
 | |
| 	pgoff_t pgoff;
 | |
| 	long rc, id;
 | |
| 	void *kaddr;
 | |
| 	bool page_aligned = false;
 | |
| 
 | |
| 
 | |
| 	if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
 | |
| 	    IS_ALIGNED(size, PAGE_SIZE))
 | |
| 		page_aligned = true;
 | |
| 
 | |
| 	rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 
 | |
| 	if (page_aligned)
 | |
| 		rc = dax_zero_page_range(iomap->dax_dev, pgoff,
 | |
| 					 size >> PAGE_SHIFT);
 | |
| 	else
 | |
| 		rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
 | |
| 	if (rc < 0) {
 | |
| 		dax_read_unlock(id);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	if (!page_aligned) {
 | |
| 		memset(kaddr + offset, 0, size);
 | |
| 		dax_flush(iomap->dax_dev, kaddr + offset, size);
 | |
| 	}
 | |
| 	dax_read_unlock(id);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static loff_t
 | |
| dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
 | |
| 		struct iomap *iomap, struct iomap *srcmap)
 | |
| {
 | |
| 	struct block_device *bdev = iomap->bdev;
 | |
| 	struct dax_device *dax_dev = iomap->dax_dev;
 | |
| 	struct iov_iter *iter = data;
 | |
| 	loff_t end = pos + length, done = 0;
 | |
| 	ssize_t ret = 0;
 | |
| 	size_t xfer;
 | |
| 	int id;
 | |
| 
 | |
| 	if (iov_iter_rw(iter) == READ) {
 | |
| 		end = min(end, i_size_read(inode));
 | |
| 		if (pos >= end)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
 | |
| 			return iov_iter_zero(min(length, end - pos), iter);
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write can allocate block for an area which has a hole page mapped
 | |
| 	 * into page tables. We have to tear down these mappings so that data
 | |
| 	 * written by write(2) is visible in mmap.
 | |
| 	 */
 | |
| 	if (iomap->flags & IOMAP_F_NEW) {
 | |
| 		invalidate_inode_pages2_range(inode->i_mapping,
 | |
| 					      pos >> PAGE_SHIFT,
 | |
| 					      (end - 1) >> PAGE_SHIFT);
 | |
| 	}
 | |
| 
 | |
| 	id = dax_read_lock();
 | |
| 	while (pos < end) {
 | |
| 		unsigned offset = pos & (PAGE_SIZE - 1);
 | |
| 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
 | |
| 		const sector_t sector = dax_iomap_sector(iomap, pos);
 | |
| 		ssize_t map_len;
 | |
| 		pgoff_t pgoff;
 | |
| 		void *kaddr;
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			ret = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
 | |
| 				&kaddr, NULL);
 | |
| 		if (map_len < 0) {
 | |
| 			ret = map_len;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		map_len = PFN_PHYS(map_len);
 | |
| 		kaddr += offset;
 | |
| 		map_len -= offset;
 | |
| 		if (map_len > end - pos)
 | |
| 			map_len = end - pos;
 | |
| 
 | |
| 		/*
 | |
| 		 * The userspace address for the memory copy has already been
 | |
| 		 * validated via access_ok() in either vfs_read() or
 | |
| 		 * vfs_write(), depending on which operation we are doing.
 | |
| 		 */
 | |
| 		if (iov_iter_rw(iter) == WRITE)
 | |
| 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
 | |
| 					map_len, iter);
 | |
| 		else
 | |
| 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
 | |
| 					map_len, iter);
 | |
| 
 | |
| 		pos += xfer;
 | |
| 		length -= xfer;
 | |
| 		done += xfer;
 | |
| 
 | |
| 		if (xfer == 0)
 | |
| 			ret = -EFAULT;
 | |
| 		if (xfer < map_len)
 | |
| 			break;
 | |
| 	}
 | |
| 	dax_read_unlock(id);
 | |
| 
 | |
| 	return done ? done : ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_iomap_rw - Perform I/O to a DAX file
 | |
|  * @iocb:	The control block for this I/O
 | |
|  * @iter:	The addresses to do I/O from or to
 | |
|  * @ops:	iomap ops passed from the file system
 | |
|  *
 | |
|  * This function performs read and write operations to directly mapped
 | |
|  * persistent memory.  The callers needs to take care of read/write exclusion
 | |
|  * and evicting any page cache pages in the region under I/O.
 | |
|  */
 | |
| ssize_t
 | |
| dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
 | |
| 		const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct address_space *mapping = iocb->ki_filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
 | |
| 	unsigned flags = 0;
 | |
| 
 | |
| 	if (iov_iter_rw(iter) == WRITE) {
 | |
| 		lockdep_assert_held_write(&inode->i_rwsem);
 | |
| 		flags |= IOMAP_WRITE;
 | |
| 	} else {
 | |
| 		lockdep_assert_held(&inode->i_rwsem);
 | |
| 	}
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT)
 | |
| 		flags |= IOMAP_NOWAIT;
 | |
| 
 | |
| 	while (iov_iter_count(iter)) {
 | |
| 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
 | |
| 				iter, dax_iomap_actor);
 | |
| 		if (ret <= 0)
 | |
| 			break;
 | |
| 		pos += ret;
 | |
| 		done += ret;
 | |
| 	}
 | |
| 
 | |
| 	iocb->ki_pos += done;
 | |
| 	return done ? done : ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_iomap_rw);
 | |
| 
 | |
| static vm_fault_t dax_fault_return(int error)
 | |
| {
 | |
| 	if (error == 0)
 | |
| 		return VM_FAULT_NOPAGE;
 | |
| 	return vmf_error(error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * MAP_SYNC on a dax mapping guarantees dirty metadata is
 | |
|  * flushed on write-faults (non-cow), but not read-faults.
 | |
|  */
 | |
| static bool dax_fault_is_synchronous(unsigned long flags,
 | |
| 		struct vm_area_struct *vma, struct iomap *iomap)
 | |
| {
 | |
| 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
 | |
| 		&& (iomap->flags & IOMAP_F_DIRTY);
 | |
| }
 | |
| 
 | |
| static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
 | |
| 			       int *iomap_errp, const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct address_space *mapping = vma->vm_file->f_mapping;
 | |
| 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	unsigned long vaddr = vmf->address;
 | |
| 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
 | |
| 	struct iomap iomap = { .type = IOMAP_HOLE };
 | |
| 	struct iomap srcmap = { .type = IOMAP_HOLE };
 | |
| 	unsigned flags = IOMAP_FAULT;
 | |
| 	int error, major = 0;
 | |
| 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 | |
| 	bool sync;
 | |
| 	vm_fault_t ret = 0;
 | |
| 	void *entry;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	trace_dax_pte_fault(inode, vmf, ret);
 | |
| 	/*
 | |
| 	 * Check whether offset isn't beyond end of file now. Caller is supposed
 | |
| 	 * to hold locks serializing us with truncate / punch hole so this is
 | |
| 	 * a reliable test.
 | |
| 	 */
 | |
| 	if (pos >= i_size_read(inode)) {
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (write && !vmf->cow_page)
 | |
| 		flags |= IOMAP_WRITE;
 | |
| 
 | |
| 	entry = grab_mapping_entry(&xas, mapping, 0);
 | |
| 	if (xa_is_internal(entry)) {
 | |
| 		ret = xa_to_internal(entry);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible, particularly with mixed reads & writes to private
 | |
| 	 * mappings, that we have raced with a PMD fault that overlaps with
 | |
| 	 * the PTE we need to set up.  If so just return and the fault will be
 | |
| 	 * retried.
 | |
| 	 */
 | |
| 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto unlock_entry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that we don't bother to use iomap_apply here: DAX required
 | |
| 	 * the file system block size to be equal the page size, which means
 | |
| 	 * that we never have to deal with more than a single extent here.
 | |
| 	 */
 | |
| 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
 | |
| 	if (iomap_errp)
 | |
| 		*iomap_errp = error;
 | |
| 	if (error) {
 | |
| 		ret = dax_fault_return(error);
 | |
| 		goto unlock_entry;
 | |
| 	}
 | |
| 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
 | |
| 		error = -EIO;	/* fs corruption? */
 | |
| 		goto error_finish_iomap;
 | |
| 	}
 | |
| 
 | |
| 	if (vmf->cow_page) {
 | |
| 		sector_t sector = dax_iomap_sector(&iomap, pos);
 | |
| 
 | |
| 		switch (iomap.type) {
 | |
| 		case IOMAP_HOLE:
 | |
| 		case IOMAP_UNWRITTEN:
 | |
| 			clear_user_highpage(vmf->cow_page, vaddr);
 | |
| 			break;
 | |
| 		case IOMAP_MAPPED:
 | |
| 			error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
 | |
| 						  sector, vmf->cow_page, vaddr);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN_ON_ONCE(1);
 | |
| 			error = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (error)
 | |
| 			goto error_finish_iomap;
 | |
| 
 | |
| 		__SetPageUptodate(vmf->cow_page);
 | |
| 		ret = finish_fault(vmf);
 | |
| 		if (!ret)
 | |
| 			ret = VM_FAULT_DONE_COW;
 | |
| 		goto finish_iomap;
 | |
| 	}
 | |
| 
 | |
| 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
 | |
| 
 | |
| 	switch (iomap.type) {
 | |
| 	case IOMAP_MAPPED:
 | |
| 		if (iomap.flags & IOMAP_F_NEW) {
 | |
| 			count_vm_event(PGMAJFAULT);
 | |
| 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
 | |
| 			major = VM_FAULT_MAJOR;
 | |
| 		}
 | |
| 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
 | |
| 		if (error < 0)
 | |
| 			goto error_finish_iomap;
 | |
| 
 | |
| 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
 | |
| 						 0, write && !sync);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are doing synchronous page fault and inode needs fsync,
 | |
| 		 * we can insert PTE into page tables only after that happens.
 | |
| 		 * Skip insertion for now and return the pfn so that caller can
 | |
| 		 * insert it after fsync is done.
 | |
| 		 */
 | |
| 		if (sync) {
 | |
| 			if (WARN_ON_ONCE(!pfnp)) {
 | |
| 				error = -EIO;
 | |
| 				goto error_finish_iomap;
 | |
| 			}
 | |
| 			*pfnp = pfn;
 | |
| 			ret = VM_FAULT_NEEDDSYNC | major;
 | |
| 			goto finish_iomap;
 | |
| 		}
 | |
| 		trace_dax_insert_mapping(inode, vmf, entry);
 | |
| 		if (write)
 | |
| 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
 | |
| 		else
 | |
| 			ret = vmf_insert_mixed(vma, vaddr, pfn);
 | |
| 
 | |
| 		goto finish_iomap;
 | |
| 	case IOMAP_UNWRITTEN:
 | |
| 	case IOMAP_HOLE:
 | |
| 		if (!write) {
 | |
| 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
 | |
| 			goto finish_iomap;
 | |
| 		}
 | |
| 		fallthrough;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		error = -EIO;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
|  error_finish_iomap:
 | |
| 	ret = dax_fault_return(error);
 | |
|  finish_iomap:
 | |
| 	if (ops->iomap_end) {
 | |
| 		int copied = PAGE_SIZE;
 | |
| 
 | |
| 		if (ret & VM_FAULT_ERROR)
 | |
| 			copied = 0;
 | |
| 		/*
 | |
| 		 * The fault is done by now and there's no way back (other
 | |
| 		 * thread may be already happily using PTE we have installed).
 | |
| 		 * Just ignore error from ->iomap_end since we cannot do much
 | |
| 		 * with it.
 | |
| 		 */
 | |
| 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
 | |
| 	}
 | |
|  unlock_entry:
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
|  out:
 | |
| 	trace_dax_pte_fault_done(inode, vmf, ret);
 | |
| 	return ret | major;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
 | |
| 		struct iomap *iomap, void **entry)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	unsigned long pmd_addr = vmf->address & PMD_MASK;
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgtable_t pgtable = NULL;
 | |
| 	struct page *zero_page;
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t pmd_entry;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
 | |
| 
 | |
| 	if (unlikely(!zero_page))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	pfn = page_to_pfn_t(zero_page);
 | |
| 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
 | |
| 			DAX_PMD | DAX_ZERO_PAGE, false);
 | |
| 
 | |
| 	if (arch_needs_pgtable_deposit()) {
 | |
| 		pgtable = pte_alloc_one(vma->vm_mm);
 | |
| 		if (!pgtable)
 | |
| 			return VM_FAULT_OOM;
 | |
| 	}
 | |
| 
 | |
| 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
 | |
| 	if (!pmd_none(*(vmf->pmd))) {
 | |
| 		spin_unlock(ptl);
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 
 | |
| 	if (pgtable) {
 | |
| 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 | |
| 		mm_inc_nr_ptes(vma->vm_mm);
 | |
| 	}
 | |
| 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
 | |
| 	pmd_entry = pmd_mkhuge(pmd_entry);
 | |
| 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
 | |
| 	spin_unlock(ptl);
 | |
| 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| 
 | |
| fallback:
 | |
| 	if (pgtable)
 | |
| 		pte_free(vma->vm_mm, pgtable);
 | |
| 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
 | |
| 	return VM_FAULT_FALLBACK;
 | |
| }
 | |
| 
 | |
| static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
 | |
| 			       const struct iomap_ops *ops)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct address_space *mapping = vma->vm_file->f_mapping;
 | |
| 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
 | |
| 	unsigned long pmd_addr = vmf->address & PMD_MASK;
 | |
| 	bool write = vmf->flags & FAULT_FLAG_WRITE;
 | |
| 	bool sync;
 | |
| 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	vm_fault_t result = VM_FAULT_FALLBACK;
 | |
| 	struct iomap iomap = { .type = IOMAP_HOLE };
 | |
| 	struct iomap srcmap = { .type = IOMAP_HOLE };
 | |
| 	pgoff_t max_pgoff;
 | |
| 	void *entry;
 | |
| 	loff_t pos;
 | |
| 	int error;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether offset isn't beyond end of file now. Caller is
 | |
| 	 * supposed to hold locks serializing us with truncate / punch hole so
 | |
| 	 * this is a reliable test.
 | |
| 	 */
 | |
| 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 
 | |
| 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the faulting address's PMD offset (color) matches
 | |
| 	 * the PMD offset from the start of the file.  This is necessary so
 | |
| 	 * that a PMD range in the page table overlaps exactly with a PMD
 | |
| 	 * range in the page cache.
 | |
| 	 */
 | |
| 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
 | |
| 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/* Fall back to PTEs if we're going to COW */
 | |
| 	if (write && !(vma->vm_flags & VM_SHARED))
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/* If the PMD would extend outside the VMA */
 | |
| 	if (pmd_addr < vma->vm_start)
 | |
| 		goto fallback;
 | |
| 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
 | |
| 		goto fallback;
 | |
| 
 | |
| 	if (xas.xa_index >= max_pgoff) {
 | |
| 		result = VM_FAULT_SIGBUS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If the PMD would extend beyond the file size */
 | |
| 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
 | |
| 		goto fallback;
 | |
| 
 | |
| 	/*
 | |
| 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
 | |
| 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
 | |
| 	 * entry is already in the array, for instance), it will return
 | |
| 	 * VM_FAULT_FALLBACK.
 | |
| 	 */
 | |
| 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
 | |
| 	if (xa_is_internal(entry)) {
 | |
| 		result = xa_to_internal(entry);
 | |
| 		goto fallback;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible, particularly with mixed reads & writes to private
 | |
| 	 * mappings, that we have raced with a PTE fault that overlaps with
 | |
| 	 * the PMD we need to set up.  If so just return and the fault will be
 | |
| 	 * retried.
 | |
| 	 */
 | |
| 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
 | |
| 			!pmd_devmap(*vmf->pmd)) {
 | |
| 		result = 0;
 | |
| 		goto unlock_entry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
 | |
| 	 * setting up a mapping, so really we're using iomap_begin() as a way
 | |
| 	 * to look up our filesystem block.
 | |
| 	 */
 | |
| 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
 | |
| 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
 | |
| 			&srcmap);
 | |
| 	if (error)
 | |
| 		goto unlock_entry;
 | |
| 
 | |
| 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
 | |
| 		goto finish_iomap;
 | |
| 
 | |
| 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
 | |
| 
 | |
| 	switch (iomap.type) {
 | |
| 	case IOMAP_MAPPED:
 | |
| 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
 | |
| 		if (error < 0)
 | |
| 			goto finish_iomap;
 | |
| 
 | |
| 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
 | |
| 						DAX_PMD, write && !sync);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are doing synchronous page fault and inode needs fsync,
 | |
| 		 * we can insert PMD into page tables only after that happens.
 | |
| 		 * Skip insertion for now and return the pfn so that caller can
 | |
| 		 * insert it after fsync is done.
 | |
| 		 */
 | |
| 		if (sync) {
 | |
| 			if (WARN_ON_ONCE(!pfnp))
 | |
| 				goto finish_iomap;
 | |
| 			*pfnp = pfn;
 | |
| 			result = VM_FAULT_NEEDDSYNC;
 | |
| 			goto finish_iomap;
 | |
| 		}
 | |
| 
 | |
| 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
 | |
| 		result = vmf_insert_pfn_pmd(vmf, pfn, write);
 | |
| 		break;
 | |
| 	case IOMAP_UNWRITTEN:
 | |
| 	case IOMAP_HOLE:
 | |
| 		if (WARN_ON_ONCE(write))
 | |
| 			break;
 | |
| 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
|  finish_iomap:
 | |
| 	if (ops->iomap_end) {
 | |
| 		int copied = PMD_SIZE;
 | |
| 
 | |
| 		if (result == VM_FAULT_FALLBACK)
 | |
| 			copied = 0;
 | |
| 		/*
 | |
| 		 * The fault is done by now and there's no way back (other
 | |
| 		 * thread may be already happily using PMD we have installed).
 | |
| 		 * Just ignore error from ->iomap_end since we cannot do much
 | |
| 		 * with it.
 | |
| 		 */
 | |
| 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
 | |
| 				&iomap);
 | |
| 	}
 | |
|  unlock_entry:
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
|  fallback:
 | |
| 	if (result == VM_FAULT_FALLBACK) {
 | |
| 		split_huge_pmd(vma, vmf->pmd, vmf->address);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 	}
 | |
| out:
 | |
| 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
 | |
| 	return result;
 | |
| }
 | |
| #else
 | |
| static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
 | |
| 			       const struct iomap_ops *ops)
 | |
| {
 | |
| 	return VM_FAULT_FALLBACK;
 | |
| }
 | |
| #endif /* CONFIG_FS_DAX_PMD */
 | |
| 
 | |
| /**
 | |
|  * dax_iomap_fault - handle a page fault on a DAX file
 | |
|  * @vmf: The description of the fault
 | |
|  * @pe_size: Size of the page to fault in
 | |
|  * @pfnp: PFN to insert for synchronous faults if fsync is required
 | |
|  * @iomap_errp: Storage for detailed error code in case of error
 | |
|  * @ops: Iomap ops passed from the file system
 | |
|  *
 | |
|  * When a page fault occurs, filesystems may call this helper in
 | |
|  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
 | |
|  * has done all the necessary locking for page fault to proceed
 | |
|  * successfully.
 | |
|  */
 | |
| vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
 | |
| 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
 | |
| {
 | |
| 	switch (pe_size) {
 | |
| 	case PE_SIZE_PTE:
 | |
| 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
 | |
| 	case PE_SIZE_PMD:
 | |
| 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
 | |
| 	default:
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_iomap_fault);
 | |
| 
 | |
| /*
 | |
|  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
 | |
|  * @vmf: The description of the fault
 | |
|  * @pfn: PFN to insert
 | |
|  * @order: Order of entry to insert.
 | |
|  *
 | |
|  * This function inserts a writeable PTE or PMD entry into the page tables
 | |
|  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
 | |
|  */
 | |
| static vm_fault_t
 | |
| dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
 | |
| 	void *entry;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	entry = get_unlocked_entry(&xas, order);
 | |
| 	/* Did we race with someone splitting entry or so? */
 | |
| 	if (!entry || dax_is_conflict(entry) ||
 | |
| 	    (order == 0 && !dax_is_pte_entry(entry))) {
 | |
| 		put_unlocked_entry(&xas, entry);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
 | |
| 						      VM_FAULT_NOPAGE);
 | |
| 		return VM_FAULT_NOPAGE;
 | |
| 	}
 | |
| 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
 | |
| 	dax_lock_entry(&xas, entry);
 | |
| 	xas_unlock_irq(&xas);
 | |
| 	if (order == 0)
 | |
| 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
 | |
| #ifdef CONFIG_FS_DAX_PMD
 | |
| 	else if (order == PMD_ORDER)
 | |
| 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
 | |
| #endif
 | |
| 	else
 | |
| 		ret = VM_FAULT_FALLBACK;
 | |
| 	dax_unlock_entry(&xas, entry);
 | |
| 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dax_finish_sync_fault - finish synchronous page fault
 | |
|  * @vmf: The description of the fault
 | |
|  * @pe_size: Size of entry to be inserted
 | |
|  * @pfn: PFN to insert
 | |
|  *
 | |
|  * This function ensures that the file range touched by the page fault is
 | |
|  * stored persistently on the media and handles inserting of appropriate page
 | |
|  * table entry.
 | |
|  */
 | |
| vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
 | |
| 		enum page_entry_size pe_size, pfn_t pfn)
 | |
| {
 | |
| 	int err;
 | |
| 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
 | |
| 	unsigned int order = pe_order(pe_size);
 | |
| 	size_t len = PAGE_SIZE << order;
 | |
| 
 | |
| 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
 | |
| 	if (err)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
 |