mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 c835a67733
			
		
	
	
		c835a67733
		
	
	
	
	
		
			
			Extend alloc_netdev{,_mq{,s}}() to take name_assign_type as argument, and convert
all users to pass NET_NAME_UNKNOWN.
Coccinelle patch:
@@
expression sizeof_priv, name, setup, txqs, rxqs, count;
@@
(
-alloc_netdev_mqs(sizeof_priv, name, setup, txqs, rxqs)
+alloc_netdev_mqs(sizeof_priv, name, NET_NAME_UNKNOWN, setup, txqs, rxqs)
|
-alloc_netdev_mq(sizeof_priv, name, setup, count)
+alloc_netdev_mq(sizeof_priv, name, NET_NAME_UNKNOWN, setup, count)
|
-alloc_netdev(sizeof_priv, name, setup)
+alloc_netdev(sizeof_priv, name, NET_NAME_UNKNOWN, setup)
)
v9: move comments here from the wrong commit
Signed-off-by: Tom Gundersen <teg@jklm.no>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			939 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			939 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
 | |
|  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
 | |
|  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the version 2 of the GNU General Public License
 | |
|  * as published by the Free Software Foundation
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/can.h>
 | |
| #include <linux/can/dev.h>
 | |
| #include <linux/can/skb.h>
 | |
| #include <linux/can/netlink.h>
 | |
| #include <linux/can/led.h>
 | |
| #include <net/rtnetlink.h>
 | |
| 
 | |
| #define MOD_DESC "CAN device driver interface"
 | |
| 
 | |
| MODULE_DESCRIPTION(MOD_DESC);
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 | |
| 
 | |
| /* CAN DLC to real data length conversion helpers */
 | |
| 
 | |
| static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
 | |
| 			     8, 12, 16, 20, 24, 32, 48, 64};
 | |
| 
 | |
| /* get data length from can_dlc with sanitized can_dlc */
 | |
| u8 can_dlc2len(u8 can_dlc)
 | |
| {
 | |
| 	return dlc2len[can_dlc & 0x0F];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_dlc2len);
 | |
| 
 | |
| static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
 | |
| 			     9, 9, 9, 9,			/* 9 - 12 */
 | |
| 			     10, 10, 10, 10,			/* 13 - 16 */
 | |
| 			     11, 11, 11, 11,			/* 17 - 20 */
 | |
| 			     12, 12, 12, 12,			/* 21 - 24 */
 | |
| 			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
 | |
| 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
 | |
| 			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
 | |
| 			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
 | |
| 			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
 | |
| 
 | |
| /* map the sanitized data length to an appropriate data length code */
 | |
| u8 can_len2dlc(u8 len)
 | |
| {
 | |
| 	if (unlikely(len > 64))
 | |
| 		return 0xF;
 | |
| 
 | |
| 	return len2dlc[len];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_len2dlc);
 | |
| 
 | |
| #ifdef CONFIG_CAN_CALC_BITTIMING
 | |
| #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 | |
| 
 | |
| /*
 | |
|  * Bit-timing calculation derived from:
 | |
|  *
 | |
|  * Code based on LinCAN sources and H8S2638 project
 | |
|  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 | |
|  * Copyright 2005      Stanislav Marek
 | |
|  * email: pisa@cmp.felk.cvut.cz
 | |
|  *
 | |
|  * Calculates proper bit-timing parameters for a specified bit-rate
 | |
|  * and sample-point, which can then be used to set the bit-timing
 | |
|  * registers of the CAN controller. You can find more information
 | |
|  * in the header file linux/can/netlink.h.
 | |
|  */
 | |
| static int can_update_spt(const struct can_bittiming_const *btc,
 | |
| 			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 | |
| {
 | |
| 	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 | |
| 	if (*tseg2 < btc->tseg2_min)
 | |
| 		*tseg2 = btc->tseg2_min;
 | |
| 	if (*tseg2 > btc->tseg2_max)
 | |
| 		*tseg2 = btc->tseg2_max;
 | |
| 	*tseg1 = tseg - *tseg2;
 | |
| 	if (*tseg1 > btc->tseg1_max) {
 | |
| 		*tseg1 = btc->tseg1_max;
 | |
| 		*tseg2 = tseg - *tseg1;
 | |
| 	}
 | |
| 	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 | |
| }
 | |
| 
 | |
| static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 | |
| 			      const struct can_bittiming_const *btc)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	long rate, best_rate = 0;
 | |
| 	long best_error = 1000000000, error = 0;
 | |
| 	int best_tseg = 0, best_brp = 0, brp = 0;
 | |
| 	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 | |
| 	int spt_error = 1000, spt = 0, sampl_pt;
 | |
| 	u64 v64;
 | |
| 
 | |
| 	/* Use CIA recommended sample points */
 | |
| 	if (bt->sample_point) {
 | |
| 		sampl_pt = bt->sample_point;
 | |
| 	} else {
 | |
| 		if (bt->bitrate > 800000)
 | |
| 			sampl_pt = 750;
 | |
| 		else if (bt->bitrate > 500000)
 | |
| 			sampl_pt = 800;
 | |
| 		else
 | |
| 			sampl_pt = 875;
 | |
| 	}
 | |
| 
 | |
| 	/* tseg even = round down, odd = round up */
 | |
| 	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 | |
| 	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 | |
| 		tsegall = 1 + tseg / 2;
 | |
| 		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 | |
| 		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 | |
| 		/* chose brp step which is possible in system */
 | |
| 		brp = (brp / btc->brp_inc) * btc->brp_inc;
 | |
| 		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 | |
| 			continue;
 | |
| 		rate = priv->clock.freq / (brp * tsegall);
 | |
| 		error = bt->bitrate - rate;
 | |
| 		/* tseg brp biterror */
 | |
| 		if (error < 0)
 | |
| 			error = -error;
 | |
| 		if (error > best_error)
 | |
| 			continue;
 | |
| 		best_error = error;
 | |
| 		if (error == 0) {
 | |
| 			spt = can_update_spt(btc, sampl_pt, tseg / 2,
 | |
| 					     &tseg1, &tseg2);
 | |
| 			error = sampl_pt - spt;
 | |
| 			if (error < 0)
 | |
| 				error = -error;
 | |
| 			if (error > spt_error)
 | |
| 				continue;
 | |
| 			spt_error = error;
 | |
| 		}
 | |
| 		best_tseg = tseg / 2;
 | |
| 		best_brp = brp;
 | |
| 		best_rate = rate;
 | |
| 		if (error == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (best_error) {
 | |
| 		/* Error in one-tenth of a percent */
 | |
| 		error = (best_error * 1000) / bt->bitrate;
 | |
| 		if (error > CAN_CALC_MAX_ERROR) {
 | |
| 			netdev_err(dev,
 | |
| 				   "bitrate error %ld.%ld%% too high\n",
 | |
| 				   error / 10, error % 10);
 | |
| 			return -EDOM;
 | |
| 		} else {
 | |
| 			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
 | |
| 				    error / 10, error % 10);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* real sample point */
 | |
| 	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
 | |
| 					  &tseg1, &tseg2);
 | |
| 
 | |
| 	v64 = (u64)best_brp * 1000000000UL;
 | |
| 	do_div(v64, priv->clock.freq);
 | |
| 	bt->tq = (u32)v64;
 | |
| 	bt->prop_seg = tseg1 / 2;
 | |
| 	bt->phase_seg1 = tseg1 - bt->prop_seg;
 | |
| 	bt->phase_seg2 = tseg2;
 | |
| 
 | |
| 	/* check for sjw user settings */
 | |
| 	if (!bt->sjw || !btc->sjw_max)
 | |
| 		bt->sjw = 1;
 | |
| 	else {
 | |
| 		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 | |
| 		if (bt->sjw > btc->sjw_max)
 | |
| 			bt->sjw = btc->sjw_max;
 | |
| 		/* bt->sjw must not be higher than tseg2 */
 | |
| 		if (tseg2 < bt->sjw)
 | |
| 			bt->sjw = tseg2;
 | |
| 	}
 | |
| 
 | |
| 	bt->brp = best_brp;
 | |
| 	/* real bit-rate */
 | |
| 	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else /* !CONFIG_CAN_CALC_BITTIMING */
 | |
| static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 | |
| 			      const struct can_bittiming_const *btc)
 | |
| {
 | |
| 	netdev_err(dev, "bit-timing calculation not available\n");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif /* CONFIG_CAN_CALC_BITTIMING */
 | |
| 
 | |
| /*
 | |
|  * Checks the validity of the specified bit-timing parameters prop_seg,
 | |
|  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 | |
|  * prescaler value brp. You can find more information in the header
 | |
|  * file linux/can/netlink.h.
 | |
|  */
 | |
| static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 | |
| 			       const struct can_bittiming_const *btc)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	int tseg1, alltseg;
 | |
| 	u64 brp64;
 | |
| 
 | |
| 	tseg1 = bt->prop_seg + bt->phase_seg1;
 | |
| 	if (!bt->sjw)
 | |
| 		bt->sjw = 1;
 | |
| 	if (bt->sjw > btc->sjw_max ||
 | |
| 	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 | |
| 	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 | |
| 	if (btc->brp_inc > 1)
 | |
| 		do_div(brp64, btc->brp_inc);
 | |
| 	brp64 += 500000000UL - 1;
 | |
| 	do_div(brp64, 1000000000UL); /* the practicable BRP */
 | |
| 	if (btc->brp_inc > 1)
 | |
| 		brp64 *= btc->brp_inc;
 | |
| 	bt->brp = (u32)brp64;
 | |
| 
 | |
| 	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 | |
| 	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 | |
| 	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 | |
| 			     const struct can_bittiming_const *btc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* Check if the CAN device has bit-timing parameters */
 | |
| 	if (!btc)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Depending on the given can_bittiming parameter structure the CAN
 | |
| 	 * timing parameters are calculated based on the provided bitrate OR
 | |
| 	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 | |
| 	 * provided directly which are then checked and fixed up.
 | |
| 	 */
 | |
| 	if (!bt->tq && bt->bitrate)
 | |
| 		err = can_calc_bittiming(dev, bt, btc);
 | |
| 	else if (bt->tq && !bt->bitrate)
 | |
| 		err = can_fixup_bittiming(dev, bt, btc);
 | |
| 	else
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Local echo of CAN messages
 | |
|  *
 | |
|  * CAN network devices *should* support a local echo functionality
 | |
|  * (see Documentation/networking/can.txt). To test the handling of CAN
 | |
|  * interfaces that do not support the local echo both driver types are
 | |
|  * implemented. In the case that the driver does not support the echo
 | |
|  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 | |
|  * to perform the echo as a fallback solution.
 | |
|  */
 | |
| static void can_flush_echo_skb(struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	struct net_device_stats *stats = &dev->stats;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < priv->echo_skb_max; i++) {
 | |
| 		if (priv->echo_skb[i]) {
 | |
| 			kfree_skb(priv->echo_skb[i]);
 | |
| 			priv->echo_skb[i] = NULL;
 | |
| 			stats->tx_dropped++;
 | |
| 			stats->tx_aborted_errors++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put the skb on the stack to be looped backed locally lateron
 | |
|  *
 | |
|  * The function is typically called in the start_xmit function
 | |
|  * of the device driver. The driver must protect access to
 | |
|  * priv->echo_skb, if necessary.
 | |
|  */
 | |
| void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 | |
| 		      unsigned int idx)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	BUG_ON(idx >= priv->echo_skb_max);
 | |
| 
 | |
| 	/* check flag whether this packet has to be looped back */
 | |
| 	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 | |
| 	    (skb->protocol != htons(ETH_P_CAN) &&
 | |
| 	     skb->protocol != htons(ETH_P_CANFD))) {
 | |
| 		kfree_skb(skb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!priv->echo_skb[idx]) {
 | |
| 
 | |
| 		skb = can_create_echo_skb(skb);
 | |
| 		if (!skb)
 | |
| 			return;
 | |
| 
 | |
| 		/* make settings for echo to reduce code in irq context */
 | |
| 		skb->pkt_type = PACKET_BROADCAST;
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 		skb->dev = dev;
 | |
| 
 | |
| 		/* save this skb for tx interrupt echo handling */
 | |
| 		priv->echo_skb[idx] = skb;
 | |
| 	} else {
 | |
| 		/* locking problem with netif_stop_queue() ?? */
 | |
| 		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_put_echo_skb);
 | |
| 
 | |
| /*
 | |
|  * Get the skb from the stack and loop it back locally
 | |
|  *
 | |
|  * The function is typically called when the TX done interrupt
 | |
|  * is handled in the device driver. The driver must protect
 | |
|  * access to priv->echo_skb, if necessary.
 | |
|  */
 | |
| unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	BUG_ON(idx >= priv->echo_skb_max);
 | |
| 
 | |
| 	if (priv->echo_skb[idx]) {
 | |
| 		struct sk_buff *skb = priv->echo_skb[idx];
 | |
| 		struct can_frame *cf = (struct can_frame *)skb->data;
 | |
| 		u8 dlc = cf->can_dlc;
 | |
| 
 | |
| 		netif_rx(priv->echo_skb[idx]);
 | |
| 		priv->echo_skb[idx] = NULL;
 | |
| 
 | |
| 		return dlc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_get_echo_skb);
 | |
| 
 | |
| /*
 | |
|   * Remove the skb from the stack and free it.
 | |
|   *
 | |
|   * The function is typically called when TX failed.
 | |
|   */
 | |
| void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	BUG_ON(idx >= priv->echo_skb_max);
 | |
| 
 | |
| 	if (priv->echo_skb[idx]) {
 | |
| 		kfree_skb(priv->echo_skb[idx]);
 | |
| 		priv->echo_skb[idx] = NULL;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_free_echo_skb);
 | |
| 
 | |
| /*
 | |
|  * CAN device restart for bus-off recovery
 | |
|  */
 | |
| static void can_restart(unsigned long data)
 | |
| {
 | |
| 	struct net_device *dev = (struct net_device *)data;
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	struct net_device_stats *stats = &dev->stats;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct can_frame *cf;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(netif_carrier_ok(dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * No synchronization needed because the device is bus-off and
 | |
| 	 * no messages can come in or go out.
 | |
| 	 */
 | |
| 	can_flush_echo_skb(dev);
 | |
| 
 | |
| 	/* send restart message upstream */
 | |
| 	skb = alloc_can_err_skb(dev, &cf);
 | |
| 	if (skb == NULL) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto restart;
 | |
| 	}
 | |
| 	cf->can_id |= CAN_ERR_RESTARTED;
 | |
| 
 | |
| 	netif_rx(skb);
 | |
| 
 | |
| 	stats->rx_packets++;
 | |
| 	stats->rx_bytes += cf->can_dlc;
 | |
| 
 | |
| restart:
 | |
| 	netdev_dbg(dev, "restarted\n");
 | |
| 	priv->can_stats.restarts++;
 | |
| 
 | |
| 	/* Now restart the device */
 | |
| 	err = priv->do_set_mode(dev, CAN_MODE_START);
 | |
| 
 | |
| 	netif_carrier_on(dev);
 | |
| 	if (err)
 | |
| 		netdev_err(dev, "Error %d during restart", err);
 | |
| }
 | |
| 
 | |
| int can_restart_now(struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * A manual restart is only permitted if automatic restart is
 | |
| 	 * disabled and the device is in the bus-off state
 | |
| 	 */
 | |
| 	if (priv->restart_ms)
 | |
| 		return -EINVAL;
 | |
| 	if (priv->state != CAN_STATE_BUS_OFF)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Runs as soon as possible in the timer context */
 | |
| 	mod_timer(&priv->restart_timer, jiffies);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CAN bus-off
 | |
|  *
 | |
|  * This functions should be called when the device goes bus-off to
 | |
|  * tell the netif layer that no more packets can be sent or received.
 | |
|  * If enabled, a timer is started to trigger bus-off recovery.
 | |
|  */
 | |
| void can_bus_off(struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	netdev_dbg(dev, "bus-off\n");
 | |
| 
 | |
| 	netif_carrier_off(dev);
 | |
| 	priv->can_stats.bus_off++;
 | |
| 
 | |
| 	if (priv->restart_ms)
 | |
| 		mod_timer(&priv->restart_timer,
 | |
| 			  jiffies + (priv->restart_ms * HZ) / 1000);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_bus_off);
 | |
| 
 | |
| static void can_setup(struct net_device *dev)
 | |
| {
 | |
| 	dev->type = ARPHRD_CAN;
 | |
| 	dev->mtu = CAN_MTU;
 | |
| 	dev->hard_header_len = 0;
 | |
| 	dev->addr_len = 0;
 | |
| 	dev->tx_queue_len = 10;
 | |
| 
 | |
| 	/* New-style flags. */
 | |
| 	dev->flags = IFF_NOARP;
 | |
| 	dev->features = NETIF_F_HW_CSUM;
 | |
| }
 | |
| 
 | |
| struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 | |
| 			       sizeof(struct can_frame));
 | |
| 	if (unlikely(!skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb->protocol = htons(ETH_P_CAN);
 | |
| 	skb->pkt_type = PACKET_BROADCAST;
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	can_skb_reserve(skb);
 | |
| 	can_skb_prv(skb)->ifindex = dev->ifindex;
 | |
| 
 | |
| 	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 | |
| 	memset(*cf, 0, sizeof(struct can_frame));
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_can_skb);
 | |
| 
 | |
| struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 | |
| 				struct canfd_frame **cfd)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 | |
| 			       sizeof(struct canfd_frame));
 | |
| 	if (unlikely(!skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb->protocol = htons(ETH_P_CANFD);
 | |
| 	skb->pkt_type = PACKET_BROADCAST;
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	can_skb_reserve(skb);
 | |
| 	can_skb_prv(skb)->ifindex = dev->ifindex;
 | |
| 
 | |
| 	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 | |
| 	memset(*cfd, 0, sizeof(struct canfd_frame));
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 | |
| 
 | |
| struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = alloc_can_skb(dev, cf);
 | |
| 	if (unlikely(!skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	(*cf)->can_id = CAN_ERR_FLAG;
 | |
| 	(*cf)->can_dlc = CAN_ERR_DLC;
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 | |
| 
 | |
| /*
 | |
|  * Allocate and setup space for the CAN network device
 | |
|  */
 | |
| struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 | |
| {
 | |
| 	struct net_device *dev;
 | |
| 	struct can_priv *priv;
 | |
| 	int size;
 | |
| 
 | |
| 	if (echo_skb_max)
 | |
| 		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 | |
| 			echo_skb_max * sizeof(struct sk_buff *);
 | |
| 	else
 | |
| 		size = sizeof_priv;
 | |
| 
 | |
| 	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 | |
| 	if (!dev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	priv = netdev_priv(dev);
 | |
| 
 | |
| 	if (echo_skb_max) {
 | |
| 		priv->echo_skb_max = echo_skb_max;
 | |
| 		priv->echo_skb = (void *)priv +
 | |
| 			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 | |
| 	}
 | |
| 
 | |
| 	priv->state = CAN_STATE_STOPPED;
 | |
| 
 | |
| 	init_timer(&priv->restart_timer);
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(alloc_candev);
 | |
| 
 | |
| /*
 | |
|  * Free space of the CAN network device
 | |
|  */
 | |
| void free_candev(struct net_device *dev)
 | |
| {
 | |
| 	free_netdev(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_candev);
 | |
| 
 | |
| /*
 | |
|  * changing MTU and control mode for CAN/CANFD devices
 | |
|  */
 | |
| int can_change_mtu(struct net_device *dev, int new_mtu)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	/* Do not allow changing the MTU while running */
 | |
| 	if (dev->flags & IFF_UP)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* allow change of MTU according to the CANFD ability of the device */
 | |
| 	switch (new_mtu) {
 | |
| 	case CAN_MTU:
 | |
| 		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 | |
| 		break;
 | |
| 
 | |
| 	case CANFD_MTU:
 | |
| 		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		priv->ctrlmode |= CAN_CTRLMODE_FD;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev->mtu = new_mtu;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(can_change_mtu);
 | |
| 
 | |
| /*
 | |
|  * Common open function when the device gets opened.
 | |
|  *
 | |
|  * This function should be called in the open function of the device
 | |
|  * driver.
 | |
|  */
 | |
| int open_candev(struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	if (!priv->bittiming.bitrate) {
 | |
| 		netdev_err(dev, "bit-timing not yet defined\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 | |
| 	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 | |
| 	    (!priv->data_bittiming.bitrate ||
 | |
| 	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 | |
| 		netdev_err(dev, "incorrect/missing data bit-timing\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Switch carrier on if device was stopped while in bus-off state */
 | |
| 	if (!netif_carrier_ok(dev))
 | |
| 		netif_carrier_on(dev);
 | |
| 
 | |
| 	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(open_candev);
 | |
| 
 | |
| /*
 | |
|  * Common close function for cleanup before the device gets closed.
 | |
|  *
 | |
|  * This function should be called in the close function of the device
 | |
|  * driver.
 | |
|  */
 | |
| void close_candev(struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	del_timer_sync(&priv->restart_timer);
 | |
| 	can_flush_echo_skb(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(close_candev);
 | |
| 
 | |
| /*
 | |
|  * CAN netlink interface
 | |
|  */
 | |
| static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 | |
| 	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 | |
| 	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 | |
| 	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 | |
| 	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 | |
| 	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 | |
| 	[IFLA_CAN_BITTIMING_CONST]
 | |
| 				= { .len = sizeof(struct can_bittiming_const) },
 | |
| 	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 | |
| 	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 | |
| 	[IFLA_CAN_DATA_BITTIMING]
 | |
| 				= { .len = sizeof(struct can_bittiming) },
 | |
| 	[IFLA_CAN_DATA_BITTIMING_CONST]
 | |
| 				= { .len = sizeof(struct can_bittiming_const) },
 | |
| };
 | |
| 
 | |
| static int can_changelink(struct net_device *dev,
 | |
| 			  struct nlattr *tb[], struct nlattr *data[])
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	int err;
 | |
| 
 | |
| 	/* We need synchronization with dev->stop() */
 | |
| 	ASSERT_RTNL();
 | |
| 
 | |
| 	if (data[IFLA_CAN_BITTIMING]) {
 | |
| 		struct can_bittiming bt;
 | |
| 
 | |
| 		/* Do not allow changing bittiming while running */
 | |
| 		if (dev->flags & IFF_UP)
 | |
| 			return -EBUSY;
 | |
| 		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 | |
| 		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		memcpy(&priv->bittiming, &bt, sizeof(bt));
 | |
| 
 | |
| 		if (priv->do_set_bittiming) {
 | |
| 			/* Finally, set the bit-timing registers */
 | |
| 			err = priv->do_set_bittiming(dev);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (data[IFLA_CAN_CTRLMODE]) {
 | |
| 		struct can_ctrlmode *cm;
 | |
| 
 | |
| 		/* Do not allow changing controller mode while running */
 | |
| 		if (dev->flags & IFF_UP)
 | |
| 			return -EBUSY;
 | |
| 		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 | |
| 		if (cm->flags & ~priv->ctrlmode_supported)
 | |
| 			return -EOPNOTSUPP;
 | |
| 		priv->ctrlmode &= ~cm->mask;
 | |
| 		priv->ctrlmode |= cm->flags;
 | |
| 
 | |
| 		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 | |
| 		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 | |
| 			dev->mtu = CANFD_MTU;
 | |
| 		else
 | |
| 			dev->mtu = CAN_MTU;
 | |
| 	}
 | |
| 
 | |
| 	if (data[IFLA_CAN_RESTART_MS]) {
 | |
| 		/* Do not allow changing restart delay while running */
 | |
| 		if (dev->flags & IFF_UP)
 | |
| 			return -EBUSY;
 | |
| 		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 | |
| 	}
 | |
| 
 | |
| 	if (data[IFLA_CAN_RESTART]) {
 | |
| 		/* Do not allow a restart while not running */
 | |
| 		if (!(dev->flags & IFF_UP))
 | |
| 			return -EINVAL;
 | |
| 		err = can_restart_now(dev);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (data[IFLA_CAN_DATA_BITTIMING]) {
 | |
| 		struct can_bittiming dbt;
 | |
| 
 | |
| 		/* Do not allow changing bittiming while running */
 | |
| 		if (dev->flags & IFF_UP)
 | |
| 			return -EBUSY;
 | |
| 		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 | |
| 		       sizeof(dbt));
 | |
| 		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 | |
| 
 | |
| 		if (priv->do_set_data_bittiming) {
 | |
| 			/* Finally, set the bit-timing registers */
 | |
| 			err = priv->do_set_data_bittiming(dev);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t can_get_size(const struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	size_t size = 0;
 | |
| 
 | |
| 	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
 | |
| 		size += nla_total_size(sizeof(struct can_bittiming));
 | |
| 	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
 | |
| 		size += nla_total_size(sizeof(struct can_bittiming_const));
 | |
| 	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
 | |
| 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
 | |
| 	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
 | |
| 	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
 | |
| 	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
 | |
| 		size += nla_total_size(sizeof(struct can_berr_counter));
 | |
| 	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
 | |
| 		size += nla_total_size(sizeof(struct can_bittiming));
 | |
| 	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
 | |
| 		size += nla_total_size(sizeof(struct can_bittiming_const));
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 | |
| 	struct can_berr_counter bec;
 | |
| 	enum can_state state = priv->state;
 | |
| 
 | |
| 	if (priv->do_get_state)
 | |
| 		priv->do_get_state(dev, &state);
 | |
| 
 | |
| 	if ((priv->bittiming.bitrate &&
 | |
| 	     nla_put(skb, IFLA_CAN_BITTIMING,
 | |
| 		     sizeof(priv->bittiming), &priv->bittiming)) ||
 | |
| 
 | |
| 	    (priv->bittiming_const &&
 | |
| 	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
 | |
| 		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
 | |
| 
 | |
| 	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
 | |
| 	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 | |
| 	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
 | |
| 	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
 | |
| 
 | |
| 	    (priv->do_get_berr_counter &&
 | |
| 	     !priv->do_get_berr_counter(dev, &bec) &&
 | |
| 	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 | |
| 
 | |
| 	    (priv->data_bittiming.bitrate &&
 | |
| 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
 | |
| 		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
 | |
| 
 | |
| 	    (priv->data_bittiming_const &&
 | |
| 	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
 | |
| 		     sizeof(*priv->data_bittiming_const),
 | |
| 		     priv->data_bittiming_const)))
 | |
| 		return -EMSGSIZE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t can_get_xstats_size(const struct net_device *dev)
 | |
| {
 | |
| 	return sizeof(struct can_device_stats);
 | |
| }
 | |
| 
 | |
| static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
 | |
| {
 | |
| 	struct can_priv *priv = netdev_priv(dev);
 | |
| 
 | |
| 	if (nla_put(skb, IFLA_INFO_XSTATS,
 | |
| 		    sizeof(priv->can_stats), &priv->can_stats))
 | |
| 		goto nla_put_failure;
 | |
| 	return 0;
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -EMSGSIZE;
 | |
| }
 | |
| 
 | |
| static int can_newlink(struct net *src_net, struct net_device *dev,
 | |
| 		       struct nlattr *tb[], struct nlattr *data[])
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static struct rtnl_link_ops can_link_ops __read_mostly = {
 | |
| 	.kind		= "can",
 | |
| 	.maxtype	= IFLA_CAN_MAX,
 | |
| 	.policy		= can_policy,
 | |
| 	.setup		= can_setup,
 | |
| 	.newlink	= can_newlink,
 | |
| 	.changelink	= can_changelink,
 | |
| 	.get_size	= can_get_size,
 | |
| 	.fill_info	= can_fill_info,
 | |
| 	.get_xstats_size = can_get_xstats_size,
 | |
| 	.fill_xstats	= can_fill_xstats,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Register the CAN network device
 | |
|  */
 | |
| int register_candev(struct net_device *dev)
 | |
| {
 | |
| 	dev->rtnl_link_ops = &can_link_ops;
 | |
| 	return register_netdev(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_candev);
 | |
| 
 | |
| /*
 | |
|  * Unregister the CAN network device
 | |
|  */
 | |
| void unregister_candev(struct net_device *dev)
 | |
| {
 | |
| 	unregister_netdev(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_candev);
 | |
| 
 | |
| /*
 | |
|  * Test if a network device is a candev based device
 | |
|  * and return the can_priv* if so.
 | |
|  */
 | |
| struct can_priv *safe_candev_priv(struct net_device *dev)
 | |
| {
 | |
| 	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return netdev_priv(dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(safe_candev_priv);
 | |
| 
 | |
| static __init int can_dev_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	can_led_notifier_init();
 | |
| 
 | |
| 	err = rtnl_link_register(&can_link_ops);
 | |
| 	if (!err)
 | |
| 		printk(KERN_INFO MOD_DESC "\n");
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| module_init(can_dev_init);
 | |
| 
 | |
| static __exit void can_dev_exit(void)
 | |
| {
 | |
| 	rtnl_link_unregister(&can_link_ops);
 | |
| 
 | |
| 	can_led_notifier_exit();
 | |
| }
 | |
| module_exit(can_dev_exit);
 | |
| 
 | |
| MODULE_ALIAS_RTNL_LINK("can");
 |