mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 7ae457c1e5
			
		
	
	
		7ae457c1e5
		
	
	
	
	
		
			
			clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
	atomic_t        refcnt;
	struct rcu_head rcu;
	struct bpf_prog *prog;
};
and
struct bpf_prog {
        u32                     jited:1,
                                len:31;
        struct sock_fprog_kern  *orig_prog;
        unsigned int            (*bpf_func)(const struct sk_buff *skb,
                                            const struct bpf_insn *filter);
        union {
                struct sock_filter      insns[0];
                struct bpf_insn         insnsi[0];
                struct work_struct      work;
        };
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
    SK_RUN_FILTER to be used with 'struct sk_filter *' and
    BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
		
	
			
		
			
				
	
	
		
			701 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			701 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* bpf_jit_comp.c: BPF JIT compiler for PPC64
 | |
|  *
 | |
|  * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 | |
|  *
 | |
|  * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; version 2
 | |
|  * of the License.
 | |
|  */
 | |
| #include <linux/moduleloader.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/filter.h>
 | |
| #include <linux/if_vlan.h>
 | |
| 
 | |
| #include "bpf_jit.h"
 | |
| 
 | |
| int bpf_jit_enable __read_mostly;
 | |
| 
 | |
| static inline void bpf_flush_icache(void *start, void *end)
 | |
| {
 | |
| 	smp_wmb();
 | |
| 	flush_icache_range((unsigned long)start, (unsigned long)end);
 | |
| }
 | |
| 
 | |
| static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 | |
| 				   struct codegen_context *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 	const struct sock_filter *filter = fp->insns;
 | |
| 
 | |
| 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 | |
| 		/* Make stackframe */
 | |
| 		if (ctx->seen & SEEN_DATAREF) {
 | |
| 			/* If we call any helpers (for loads), save LR */
 | |
| 			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 | |
| 			PPC_STD(0, 1, 16);
 | |
| 
 | |
| 			/* Back up non-volatile regs. */
 | |
| 			PPC_STD(r_D, 1, -(8*(32-r_D)));
 | |
| 			PPC_STD(r_HL, 1, -(8*(32-r_HL)));
 | |
| 		}
 | |
| 		if (ctx->seen & SEEN_MEM) {
 | |
| 			/*
 | |
| 			 * Conditionally save regs r15-r31 as some will be used
 | |
| 			 * for M[] data.
 | |
| 			 */
 | |
| 			for (i = r_M; i < (r_M+16); i++) {
 | |
| 				if (ctx->seen & (1 << (i-r_M)))
 | |
| 					PPC_STD(i, 1, -(8*(32-i)));
 | |
| 			}
 | |
| 		}
 | |
| 		EMIT(PPC_INST_STDU | __PPC_RS(R1) | __PPC_RA(R1) |
 | |
| 		     (-BPF_PPC_STACKFRAME & 0xfffc));
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->seen & SEEN_DATAREF) {
 | |
| 		/*
 | |
| 		 * If this filter needs to access skb data,
 | |
| 		 * prepare r_D and r_HL:
 | |
| 		 *  r_HL = skb->len - skb->data_len
 | |
| 		 *  r_D	 = skb->data
 | |
| 		 */
 | |
| 		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 | |
| 							 data_len));
 | |
| 		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 | |
| 		PPC_SUB(r_HL, r_HL, r_scratch1);
 | |
| 		PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->seen & SEEN_XREG) {
 | |
| 		/*
 | |
| 		 * TODO: Could also detect whether first instr. sets X and
 | |
| 		 * avoid this (as below, with A).
 | |
| 		 */
 | |
| 		PPC_LI(r_X, 0);
 | |
| 	}
 | |
| 
 | |
| 	switch (filter[0].code) {
 | |
| 	case BPF_RET | BPF_K:
 | |
| 	case BPF_LD | BPF_W | BPF_LEN:
 | |
| 	case BPF_LD | BPF_W | BPF_ABS:
 | |
| 	case BPF_LD | BPF_H | BPF_ABS:
 | |
| 	case BPF_LD | BPF_B | BPF_ABS:
 | |
| 		/* first instruction sets A register (or is RET 'constant') */
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* make sure we dont leak kernel information to user */
 | |
| 		PPC_LI(r_A, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 | |
| 		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 | |
| 		if (ctx->seen & SEEN_DATAREF) {
 | |
| 			PPC_LD(0, 1, 16);
 | |
| 			PPC_MTLR(0);
 | |
| 			PPC_LD(r_D, 1, -(8*(32-r_D)));
 | |
| 			PPC_LD(r_HL, 1, -(8*(32-r_HL)));
 | |
| 		}
 | |
| 		if (ctx->seen & SEEN_MEM) {
 | |
| 			/* Restore any saved non-vol registers */
 | |
| 			for (i = r_M; i < (r_M+16); i++) {
 | |
| 				if (ctx->seen & (1 << (i-r_M)))
 | |
| 					PPC_LD(i, 1, -(8*(32-i)));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* The RETs have left a return value in R3. */
 | |
| 
 | |
| 	PPC_BLR();
 | |
| }
 | |
| 
 | |
| #define CHOOSE_LOAD_FUNC(K, func) \
 | |
| 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 | |
| 
 | |
| /* Assemble the body code between the prologue & epilogue. */
 | |
| static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
 | |
| 			      struct codegen_context *ctx,
 | |
| 			      unsigned int *addrs)
 | |
| {
 | |
| 	const struct sock_filter *filter = fp->insns;
 | |
| 	int flen = fp->len;
 | |
| 	u8 *func;
 | |
| 	unsigned int true_cond;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Start of epilogue code */
 | |
| 	unsigned int exit_addr = addrs[flen];
 | |
| 
 | |
| 	for (i = 0; i < flen; i++) {
 | |
| 		unsigned int K = filter[i].k;
 | |
| 		u16 code = bpf_anc_helper(&filter[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * addrs[] maps a BPF bytecode address into a real offset from
 | |
| 		 * the start of the body code.
 | |
| 		 */
 | |
| 		addrs[i] = ctx->idx * 4;
 | |
| 
 | |
| 		switch (code) {
 | |
| 			/*** ALU ops ***/
 | |
| 		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_ADD(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
 | |
| 			if (!K)
 | |
| 				break;
 | |
| 			PPC_ADDI(r_A, r_A, IMM_L(K));
 | |
| 			if (K >= 32768)
 | |
| 				PPC_ADDIS(r_A, r_A, IMM_HA(K));
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_SUB(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
 | |
| 			if (!K)
 | |
| 				break;
 | |
| 			PPC_ADDI(r_A, r_A, IMM_L(-K));
 | |
| 			if (K >= 32768)
 | |
| 				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_MUL(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
 | |
| 			if (K < 32768)
 | |
| 				PPC_MULI(r_A, r_A, K);
 | |
| 			else {
 | |
| 				PPC_LI32(r_scratch1, K);
 | |
| 				PPC_MUL(r_A, r_A, r_scratch1);
 | |
| 			}
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_CMPWI(r_X, 0);
 | |
| 			if (ctx->pc_ret0 != -1) {
 | |
| 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
 | |
| 			} else {
 | |
| 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
 | |
| 				PPC_LI(r_ret, 0);
 | |
| 				PPC_JMP(exit_addr);
 | |
| 			}
 | |
| 			PPC_DIVWU(r_scratch1, r_A, r_X);
 | |
| 			PPC_MUL(r_scratch1, r_X, r_scratch1);
 | |
| 			PPC_SUB(r_A, r_A, r_scratch1);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
 | |
| 			PPC_LI32(r_scratch2, K);
 | |
| 			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
 | |
| 			PPC_MUL(r_scratch1, r_scratch2, r_scratch1);
 | |
| 			PPC_SUB(r_A, r_A, r_scratch1);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_CMPWI(r_X, 0);
 | |
| 			if (ctx->pc_ret0 != -1) {
 | |
| 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Exit, returning 0; first pass hits here
 | |
| 				 * (longer worst-case code size).
 | |
| 				 */
 | |
| 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
 | |
| 				PPC_LI(r_ret, 0);
 | |
| 				PPC_JMP(exit_addr);
 | |
| 			}
 | |
| 			PPC_DIVWU(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
 | |
| 			if (K == 1)
 | |
| 				break;
 | |
| 			PPC_LI32(r_scratch1, K);
 | |
| 			PPC_DIVWU(r_A, r_A, r_scratch1);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_AND | BPF_X:
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_AND(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_AND | BPF_K:
 | |
| 			if (!IMM_H(K))
 | |
| 				PPC_ANDI(r_A, r_A, K);
 | |
| 			else {
 | |
| 				PPC_LI32(r_scratch1, K);
 | |
| 				PPC_AND(r_A, r_A, r_scratch1);
 | |
| 			}
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_OR | BPF_X:
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_OR(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_OR | BPF_K:
 | |
| 			if (IMM_L(K))
 | |
| 				PPC_ORI(r_A, r_A, IMM_L(K));
 | |
| 			if (K >= 65536)
 | |
| 				PPC_ORIS(r_A, r_A, IMM_H(K));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_ALU_XOR_X:
 | |
| 		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_XOR(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
 | |
| 			if (IMM_L(K))
 | |
| 				PPC_XORI(r_A, r_A, IMM_L(K));
 | |
| 			if (K >= 65536)
 | |
| 				PPC_XORIS(r_A, r_A, IMM_H(K));
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_SLW(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_LSH | BPF_K:
 | |
| 			if (K == 0)
 | |
| 				break;
 | |
| 			else
 | |
| 				PPC_SLWI(r_A, r_A, K);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_SRW(r_A, r_A, r_X);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
 | |
| 			if (K == 0)
 | |
| 				break;
 | |
| 			else
 | |
| 				PPC_SRWI(r_A, r_A, K);
 | |
| 			break;
 | |
| 		case BPF_ALU | BPF_NEG:
 | |
| 			PPC_NEG(r_A, r_A);
 | |
| 			break;
 | |
| 		case BPF_RET | BPF_K:
 | |
| 			PPC_LI32(r_ret, K);
 | |
| 			if (!K) {
 | |
| 				if (ctx->pc_ret0 == -1)
 | |
| 					ctx->pc_ret0 = i;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If this isn't the very last instruction, branch to
 | |
| 			 * the epilogue if we've stuff to clean up.  Otherwise,
 | |
| 			 * if there's nothing to tidy, just return.  If we /are/
 | |
| 			 * the last instruction, we're about to fall through to
 | |
| 			 * the epilogue to return.
 | |
| 			 */
 | |
| 			if (i != flen - 1) {
 | |
| 				/*
 | |
| 				 * Note: 'seen' is properly valid only on pass
 | |
| 				 * #2.	Both parts of this conditional are the
 | |
| 				 * same instruction size though, meaning the
 | |
| 				 * first pass will still correctly determine the
 | |
| 				 * code size/addresses.
 | |
| 				 */
 | |
| 				if (ctx->seen)
 | |
| 					PPC_JMP(exit_addr);
 | |
| 				else
 | |
| 					PPC_BLR();
 | |
| 			}
 | |
| 			break;
 | |
| 		case BPF_RET | BPF_A:
 | |
| 			PPC_MR(r_ret, r_A);
 | |
| 			if (i != flen - 1) {
 | |
| 				if (ctx->seen)
 | |
| 					PPC_JMP(exit_addr);
 | |
| 				else
 | |
| 					PPC_BLR();
 | |
| 			}
 | |
| 			break;
 | |
| 		case BPF_MISC | BPF_TAX: /* X = A */
 | |
| 			PPC_MR(r_X, r_A);
 | |
| 			break;
 | |
| 		case BPF_MISC | BPF_TXA: /* A = X */
 | |
| 			ctx->seen |= SEEN_XREG;
 | |
| 			PPC_MR(r_A, r_X);
 | |
| 			break;
 | |
| 
 | |
| 			/*** Constant loads/M[] access ***/
 | |
| 		case BPF_LD | BPF_IMM: /* A = K */
 | |
| 			PPC_LI32(r_A, K);
 | |
| 			break;
 | |
| 		case BPF_LDX | BPF_IMM: /* X = K */
 | |
| 			PPC_LI32(r_X, K);
 | |
| 			break;
 | |
| 		case BPF_LD | BPF_MEM: /* A = mem[K] */
 | |
| 			PPC_MR(r_A, r_M + (K & 0xf));
 | |
| 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
 | |
| 			break;
 | |
| 		case BPF_LDX | BPF_MEM: /* X = mem[K] */
 | |
| 			PPC_MR(r_X, r_M + (K & 0xf));
 | |
| 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
 | |
| 			break;
 | |
| 		case BPF_ST: /* mem[K] = A */
 | |
| 			PPC_MR(r_M + (K & 0xf), r_A);
 | |
| 			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
 | |
| 			break;
 | |
| 		case BPF_STX: /* mem[K] = X */
 | |
| 			PPC_MR(r_M + (K & 0xf), r_X);
 | |
| 			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
 | |
| 			break;
 | |
| 		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
 | |
| 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
 | |
| 			break;
 | |
| 		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
 | |
| 			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
 | |
| 			break;
 | |
| 
 | |
| 			/*** Ancillary info loads ***/
 | |
| 		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 | |
| 						  protocol) != 2);
 | |
| 			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
 | |
| 							    protocol));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_IFINDEX:
 | |
| 			PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 | |
| 								dev));
 | |
| 			PPC_CMPDI(r_scratch1, 0);
 | |
| 			if (ctx->pc_ret0 != -1) {
 | |
| 				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
 | |
| 			} else {
 | |
| 				/* Exit, returning 0; first pass hits here. */
 | |
| 				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
 | |
| 				PPC_LI(r_ret, 0);
 | |
| 				PPC_JMP(exit_addr);
 | |
| 			}
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 | |
| 						  ifindex) != 4);
 | |
| 			PPC_LWZ_OFFS(r_A, r_scratch1,
 | |
| 				     offsetof(struct net_device, ifindex));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_MARK:
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
 | |
| 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
 | |
| 							  mark));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_RXHASH:
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
 | |
| 			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
 | |
| 							  hash));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_VLAN_TAG:
 | |
| 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
 | |
| 			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
 | |
| 
 | |
| 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
 | |
| 							  vlan_tci));
 | |
| 			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
 | |
| 				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
 | |
| 			} else {
 | |
| 				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
 | |
| 				PPC_SRWI(r_A, r_A, 12);
 | |
| 			}
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_QUEUE:
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 | |
| 						  queue_mapping) != 2);
 | |
| 			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
 | |
| 							  queue_mapping));
 | |
| 			break;
 | |
| 		case BPF_ANC | SKF_AD_CPU:
 | |
| #ifdef CONFIG_SMP
 | |
| 			/*
 | |
| 			 * PACA ptr is r13:
 | |
| 			 * raw_smp_processor_id() = local_paca->paca_index
 | |
| 			 */
 | |
| 			BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
 | |
| 						  paca_index) != 2);
 | |
| 			PPC_LHZ_OFFS(r_A, 13,
 | |
| 				     offsetof(struct paca_struct, paca_index));
 | |
| #else
 | |
| 			PPC_LI(r_A, 0);
 | |
| #endif
 | |
| 			break;
 | |
| 
 | |
| 			/*** Absolute loads from packet header/data ***/
 | |
| 		case BPF_LD | BPF_W | BPF_ABS:
 | |
| 			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
 | |
| 			goto common_load;
 | |
| 		case BPF_LD | BPF_H | BPF_ABS:
 | |
| 			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
 | |
| 			goto common_load;
 | |
| 		case BPF_LD | BPF_B | BPF_ABS:
 | |
| 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
 | |
| 		common_load:
 | |
| 			/* Load from [K]. */
 | |
| 			ctx->seen |= SEEN_DATAREF;
 | |
| 			PPC_LI64(r_scratch1, func);
 | |
| 			PPC_MTLR(r_scratch1);
 | |
| 			PPC_LI32(r_addr, K);
 | |
| 			PPC_BLRL();
 | |
| 			/*
 | |
| 			 * Helper returns 'lt' condition on error, and an
 | |
| 			 * appropriate return value in r3
 | |
| 			 */
 | |
| 			PPC_BCC(COND_LT, exit_addr);
 | |
| 			break;
 | |
| 
 | |
| 			/*** Indirect loads from packet header/data ***/
 | |
| 		case BPF_LD | BPF_W | BPF_IND:
 | |
| 			func = sk_load_word;
 | |
| 			goto common_load_ind;
 | |
| 		case BPF_LD | BPF_H | BPF_IND:
 | |
| 			func = sk_load_half;
 | |
| 			goto common_load_ind;
 | |
| 		case BPF_LD | BPF_B | BPF_IND:
 | |
| 			func = sk_load_byte;
 | |
| 		common_load_ind:
 | |
| 			/*
 | |
| 			 * Load from [X + K].  Negative offsets are tested for
 | |
| 			 * in the helper functions.
 | |
| 			 */
 | |
| 			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
 | |
| 			PPC_LI64(r_scratch1, func);
 | |
| 			PPC_MTLR(r_scratch1);
 | |
| 			PPC_ADDI(r_addr, r_X, IMM_L(K));
 | |
| 			if (K >= 32768)
 | |
| 				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
 | |
| 			PPC_BLRL();
 | |
| 			/* If error, cr0.LT set */
 | |
| 			PPC_BCC(COND_LT, exit_addr);
 | |
| 			break;
 | |
| 
 | |
| 		case BPF_LDX | BPF_B | BPF_MSH:
 | |
| 			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
 | |
| 			goto common_load;
 | |
| 			break;
 | |
| 
 | |
| 			/*** Jump and branches ***/
 | |
| 		case BPF_JMP | BPF_JA:
 | |
| 			if (K != 0)
 | |
| 				PPC_JMP(addrs[i + 1 + K]);
 | |
| 			break;
 | |
| 
 | |
| 		case BPF_JMP | BPF_JGT | BPF_K:
 | |
| 		case BPF_JMP | BPF_JGT | BPF_X:
 | |
| 			true_cond = COND_GT;
 | |
| 			goto cond_branch;
 | |
| 		case BPF_JMP | BPF_JGE | BPF_K:
 | |
| 		case BPF_JMP | BPF_JGE | BPF_X:
 | |
| 			true_cond = COND_GE;
 | |
| 			goto cond_branch;
 | |
| 		case BPF_JMP | BPF_JEQ | BPF_K:
 | |
| 		case BPF_JMP | BPF_JEQ | BPF_X:
 | |
| 			true_cond = COND_EQ;
 | |
| 			goto cond_branch;
 | |
| 		case BPF_JMP | BPF_JSET | BPF_K:
 | |
| 		case BPF_JMP | BPF_JSET | BPF_X:
 | |
| 			true_cond = COND_NE;
 | |
| 			/* Fall through */
 | |
| 		cond_branch:
 | |
| 			/* same targets, can avoid doing the test :) */
 | |
| 			if (filter[i].jt == filter[i].jf) {
 | |
| 				if (filter[i].jt > 0)
 | |
| 					PPC_JMP(addrs[i + 1 + filter[i].jt]);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			switch (code) {
 | |
| 			case BPF_JMP | BPF_JGT | BPF_X:
 | |
| 			case BPF_JMP | BPF_JGE | BPF_X:
 | |
| 			case BPF_JMP | BPF_JEQ | BPF_X:
 | |
| 				ctx->seen |= SEEN_XREG;
 | |
| 				PPC_CMPLW(r_A, r_X);
 | |
| 				break;
 | |
| 			case BPF_JMP | BPF_JSET | BPF_X:
 | |
| 				ctx->seen |= SEEN_XREG;
 | |
| 				PPC_AND_DOT(r_scratch1, r_A, r_X);
 | |
| 				break;
 | |
| 			case BPF_JMP | BPF_JEQ | BPF_K:
 | |
| 			case BPF_JMP | BPF_JGT | BPF_K:
 | |
| 			case BPF_JMP | BPF_JGE | BPF_K:
 | |
| 				if (K < 32768)
 | |
| 					PPC_CMPLWI(r_A, K);
 | |
| 				else {
 | |
| 					PPC_LI32(r_scratch1, K);
 | |
| 					PPC_CMPLW(r_A, r_scratch1);
 | |
| 				}
 | |
| 				break;
 | |
| 			case BPF_JMP | BPF_JSET | BPF_K:
 | |
| 				if (K < 32768)
 | |
| 					/* PPC_ANDI is /only/ dot-form */
 | |
| 					PPC_ANDI(r_scratch1, r_A, K);
 | |
| 				else {
 | |
| 					PPC_LI32(r_scratch1, K);
 | |
| 					PPC_AND_DOT(r_scratch1, r_A,
 | |
| 						    r_scratch1);
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			/* Sometimes branches are constructed "backward", with
 | |
| 			 * the false path being the branch and true path being
 | |
| 			 * a fallthrough to the next instruction.
 | |
| 			 */
 | |
| 			if (filter[i].jt == 0)
 | |
| 				/* Swap the sense of the branch */
 | |
| 				PPC_BCC(true_cond ^ COND_CMP_TRUE,
 | |
| 					addrs[i + 1 + filter[i].jf]);
 | |
| 			else {
 | |
| 				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
 | |
| 				if (filter[i].jf != 0)
 | |
| 					PPC_JMP(addrs[i + 1 + filter[i].jf]);
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* The filter contains something cruel & unusual.
 | |
| 			 * We don't handle it, but also there shouldn't be
 | |
| 			 * anything missing from our list.
 | |
| 			 */
 | |
| 			if (printk_ratelimit())
 | |
| 				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
 | |
| 				       filter[i].code, i);
 | |
| 			return -ENOTSUPP;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	/* Set end-of-body-code address for exit. */
 | |
| 	addrs[i] = ctx->idx * 4;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bpf_jit_compile(struct bpf_prog *fp)
 | |
| {
 | |
| 	unsigned int proglen;
 | |
| 	unsigned int alloclen;
 | |
| 	u32 *image = NULL;
 | |
| 	u32 *code_base;
 | |
| 	unsigned int *addrs;
 | |
| 	struct codegen_context cgctx;
 | |
| 	int pass;
 | |
| 	int flen = fp->len;
 | |
| 
 | |
| 	if (!bpf_jit_enable)
 | |
| 		return;
 | |
| 
 | |
| 	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
 | |
| 	if (addrs == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * There are multiple assembly passes as the generated code will change
 | |
| 	 * size as it settles down, figuring out the max branch offsets/exit
 | |
| 	 * paths required.
 | |
| 	 *
 | |
| 	 * The range of standard conditional branches is +/- 32Kbytes.	Since
 | |
| 	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
 | |
| 	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
 | |
| 	 * used, distinct from short branches.
 | |
| 	 *
 | |
| 	 * Current:
 | |
| 	 *
 | |
| 	 * For now, both branch types assemble to 2 words (short branches padded
 | |
| 	 * with a NOP); this is less efficient, but assembly will always complete
 | |
| 	 * after exactly 3 passes:
 | |
| 	 *
 | |
| 	 * First pass: No code buffer; Program is "faux-generated" -- no code
 | |
| 	 * emitted but maximum size of output determined (and addrs[] filled
 | |
| 	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
 | |
| 	 * All generation choices assumed to be 'worst-case', e.g. branches all
 | |
| 	 * far (2 instructions), return path code reduction not available, etc.
 | |
| 	 *
 | |
| 	 * Second pass: Code buffer allocated with size determined previously.
 | |
| 	 * Prologue generated to support features we have seen used.  Exit paths
 | |
| 	 * determined and addrs[] is filled in again, as code may be slightly
 | |
| 	 * smaller as a result.
 | |
| 	 *
 | |
| 	 * Third pass: Code generated 'for real', and branch destinations
 | |
| 	 * determined from now-accurate addrs[] map.
 | |
| 	 *
 | |
| 	 * Ideal:
 | |
| 	 *
 | |
| 	 * If we optimise this, near branches will be shorter.	On the
 | |
| 	 * first assembly pass, we should err on the side of caution and
 | |
| 	 * generate the biggest code.  On subsequent passes, branches will be
 | |
| 	 * generated short or long and code size will reduce.  With smaller
 | |
| 	 * code, more branches may fall into the short category, and code will
 | |
| 	 * reduce more.
 | |
| 	 *
 | |
| 	 * Finally, if we see one pass generate code the same size as the
 | |
| 	 * previous pass we have converged and should now generate code for
 | |
| 	 * real.  Allocating at the end will also save the memory that would
 | |
| 	 * otherwise be wasted by the (small) current code shrinkage.
 | |
| 	 * Preferably, we should do a small number of passes (e.g. 5) and if we
 | |
| 	 * haven't converged by then, get impatient and force code to generate
 | |
| 	 * as-is, even if the odd branch would be left long.  The chances of a
 | |
| 	 * long jump are tiny with all but the most enormous of BPF filter
 | |
| 	 * inputs, so we should usually converge on the third pass.
 | |
| 	 */
 | |
| 
 | |
| 	cgctx.idx = 0;
 | |
| 	cgctx.seen = 0;
 | |
| 	cgctx.pc_ret0 = -1;
 | |
| 	/* Scouting faux-generate pass 0 */
 | |
| 	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
 | |
| 		/* We hit something illegal or unsupported. */
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pretend to build prologue, given the features we've seen.  This will
 | |
| 	 * update ctgtx.idx as it pretends to output instructions, then we can
 | |
| 	 * calculate total size from idx.
 | |
| 	 */
 | |
| 	bpf_jit_build_prologue(fp, 0, &cgctx);
 | |
| 	bpf_jit_build_epilogue(0, &cgctx);
 | |
| 
 | |
| 	proglen = cgctx.idx * 4;
 | |
| 	alloclen = proglen + FUNCTION_DESCR_SIZE;
 | |
| 	image = module_alloc(alloclen);
 | |
| 	if (!image)
 | |
| 		goto out;
 | |
| 
 | |
| 	code_base = image + (FUNCTION_DESCR_SIZE/4);
 | |
| 
 | |
| 	/* Code generation passes 1-2 */
 | |
| 	for (pass = 1; pass < 3; pass++) {
 | |
| 		/* Now build the prologue, body code & epilogue for real. */
 | |
| 		cgctx.idx = 0;
 | |
| 		bpf_jit_build_prologue(fp, code_base, &cgctx);
 | |
| 		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
 | |
| 		bpf_jit_build_epilogue(code_base, &cgctx);
 | |
| 
 | |
| 		if (bpf_jit_enable > 1)
 | |
| 			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
 | |
| 				proglen - (cgctx.idx * 4), cgctx.seen);
 | |
| 	}
 | |
| 
 | |
| 	if (bpf_jit_enable > 1)
 | |
| 		/* Note that we output the base address of the code_base
 | |
| 		 * rather than image, since opcodes are in code_base.
 | |
| 		 */
 | |
| 		bpf_jit_dump(flen, proglen, pass, code_base);
 | |
| 
 | |
| 	if (image) {
 | |
| 		bpf_flush_icache(code_base, code_base + (proglen/4));
 | |
| 		/* Function descriptor nastiness: Address + TOC */
 | |
| 		((u64 *)image)[0] = (u64)code_base;
 | |
| 		((u64 *)image)[1] = local_paca->kernel_toc;
 | |
| 		fp->bpf_func = (void *)image;
 | |
| 		fp->jited = 1;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(addrs);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| void bpf_jit_free(struct bpf_prog *fp)
 | |
| {
 | |
| 	if (fp->jited)
 | |
| 		module_free(NULL, fp->bpf_func);
 | |
| 	kfree(fp);
 | |
| }
 |