mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 51d3d5eb74
			
		
	
	
		51d3d5eb74
		
	
	
	
	
		
			
			Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb).  The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).
So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect).  For example, when enabling softdirty tracking, we enable
writenotify.  With uffd-wp on shared mappings, that changed.  More details
on vma->vm_page_prot semantics were summarized in [1].
This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone. 
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().
Instead, let's enable writenotify such that PTEs/PMDs/...  will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable.  In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.
This fixes two known cases:
(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
    in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
    writable, resulting in uffd-wp not triggering on write access.
Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA.  On
such a VMA, userfaultfd-wp is currently non-functional.
Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.
Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access.  This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.
[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com
Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes: b1f9e87686 ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Ives van Hoorne <ives@codesandbox.io>
Debugged-by: Peter Xu <peterx@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			2194 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2194 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  fs/userfaultfd.c
 | |
|  *
 | |
|  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc.
 | |
|  *  Copyright (C) 2015  Red Hat, Inc.
 | |
|  *
 | |
|  *  Some part derived from fs/eventfd.c (anon inode setup) and
 | |
|  *  mm/ksm.c (mm hashing).
 | |
|  */
 | |
| 
 | |
| #include <linux/list.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/mempolicy.h>
 | |
| #include <linux/ioctl.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/miscdevice.h>
 | |
| 
 | |
| int sysctl_unprivileged_userfaultfd __read_mostly;
 | |
| 
 | |
| static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * Start with fault_pending_wqh and fault_wqh so they're more likely
 | |
|  * to be in the same cacheline.
 | |
|  *
 | |
|  * Locking order:
 | |
|  *	fd_wqh.lock
 | |
|  *		fault_pending_wqh.lock
 | |
|  *			fault_wqh.lock
 | |
|  *		event_wqh.lock
 | |
|  *
 | |
|  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
 | |
|  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
 | |
|  * also taken in IRQ context.
 | |
|  */
 | |
| struct userfaultfd_ctx {
 | |
| 	/* waitqueue head for the pending (i.e. not read) userfaults */
 | |
| 	wait_queue_head_t fault_pending_wqh;
 | |
| 	/* waitqueue head for the userfaults */
 | |
| 	wait_queue_head_t fault_wqh;
 | |
| 	/* waitqueue head for the pseudo fd to wakeup poll/read */
 | |
| 	wait_queue_head_t fd_wqh;
 | |
| 	/* waitqueue head for events */
 | |
| 	wait_queue_head_t event_wqh;
 | |
| 	/* a refile sequence protected by fault_pending_wqh lock */
 | |
| 	seqcount_spinlock_t refile_seq;
 | |
| 	/* pseudo fd refcounting */
 | |
| 	refcount_t refcount;
 | |
| 	/* userfaultfd syscall flags */
 | |
| 	unsigned int flags;
 | |
| 	/* features requested from the userspace */
 | |
| 	unsigned int features;
 | |
| 	/* released */
 | |
| 	bool released;
 | |
| 	/* memory mappings are changing because of non-cooperative event */
 | |
| 	atomic_t mmap_changing;
 | |
| 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
 | |
| 	struct mm_struct *mm;
 | |
| };
 | |
| 
 | |
| struct userfaultfd_fork_ctx {
 | |
| 	struct userfaultfd_ctx *orig;
 | |
| 	struct userfaultfd_ctx *new;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| struct userfaultfd_unmap_ctx {
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| struct userfaultfd_wait_queue {
 | |
| 	struct uffd_msg msg;
 | |
| 	wait_queue_entry_t wq;
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 	bool waken;
 | |
| };
 | |
| 
 | |
| struct userfaultfd_wake_range {
 | |
| 	unsigned long start;
 | |
| 	unsigned long len;
 | |
| };
 | |
| 
 | |
| /* internal indication that UFFD_API ioctl was successfully executed */
 | |
| #define UFFD_FEATURE_INITIALIZED		(1u << 31)
 | |
| 
 | |
| static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
 | |
| {
 | |
| 	return ctx->features & UFFD_FEATURE_INITIALIZED;
 | |
| }
 | |
| 
 | |
| static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
 | |
| 				     vm_flags_t flags)
 | |
| {
 | |
| 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
 | |
| 
 | |
| 	vma->vm_flags = flags;
 | |
| 	/*
 | |
| 	 * For shared mappings, we want to enable writenotify while
 | |
| 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
 | |
| 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
 | |
| 	 */
 | |
| 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
 | |
| 		vma_set_page_prot(vma);
 | |
| }
 | |
| 
 | |
| static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 | |
| 				     int wake_flags, void *key)
 | |
| {
 | |
| 	struct userfaultfd_wake_range *range = key;
 | |
| 	int ret;
 | |
| 	struct userfaultfd_wait_queue *uwq;
 | |
| 	unsigned long start, len;
 | |
| 
 | |
| 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 | |
| 	ret = 0;
 | |
| 	/* len == 0 means wake all */
 | |
| 	start = range->start;
 | |
| 	len = range->len;
 | |
| 	if (len && (start > uwq->msg.arg.pagefault.address ||
 | |
| 		    start + len <= uwq->msg.arg.pagefault.address))
 | |
| 		goto out;
 | |
| 	WRITE_ONCE(uwq->waken, true);
 | |
| 	/*
 | |
| 	 * The Program-Order guarantees provided by the scheduler
 | |
| 	 * ensure uwq->waken is visible before the task is woken.
 | |
| 	 */
 | |
| 	ret = wake_up_state(wq->private, mode);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * Wake only once, autoremove behavior.
 | |
| 		 *
 | |
| 		 * After the effect of list_del_init is visible to the other
 | |
| 		 * CPUs, the waitqueue may disappear from under us, see the
 | |
| 		 * !list_empty_careful() in handle_userfault().
 | |
| 		 *
 | |
| 		 * try_to_wake_up() has an implicit smp_mb(), and the
 | |
| 		 * wq->private is read before calling the extern function
 | |
| 		 * "wake_up_state" (which in turns calls try_to_wake_up).
 | |
| 		 */
 | |
| 		list_del_init(&wq->entry);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 | |
|  * context.
 | |
|  * @ctx: [in] Pointer to the userfaultfd context.
 | |
|  */
 | |
| static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 | |
| {
 | |
| 	refcount_inc(&ctx->refcount);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 | |
|  * context.
 | |
|  * @ctx: [in] Pointer to userfaultfd context.
 | |
|  *
 | |
|  * The userfaultfd context reference must have been previously acquired either
 | |
|  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 | |
|  */
 | |
| static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&ctx->refcount)) {
 | |
| 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 | |
| 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 | |
| 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 | |
| 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 | |
| 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 | |
| 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 | |
| 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 | |
| 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 | |
| 		mmdrop(ctx->mm);
 | |
| 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void msg_init(struct uffd_msg *msg)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 | |
| 	/*
 | |
| 	 * Must use memset to zero out the paddings or kernel data is
 | |
| 	 * leaked to userland.
 | |
| 	 */
 | |
| 	memset(msg, 0, sizeof(struct uffd_msg));
 | |
| }
 | |
| 
 | |
| static inline struct uffd_msg userfault_msg(unsigned long address,
 | |
| 					    unsigned long real_address,
 | |
| 					    unsigned int flags,
 | |
| 					    unsigned long reason,
 | |
| 					    unsigned int features)
 | |
| {
 | |
| 	struct uffd_msg msg;
 | |
| 
 | |
| 	msg_init(&msg);
 | |
| 	msg.event = UFFD_EVENT_PAGEFAULT;
 | |
| 
 | |
| 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
 | |
| 				    real_address : address;
 | |
| 
 | |
| 	/*
 | |
| 	 * These flags indicate why the userfault occurred:
 | |
| 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 | |
| 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 | |
| 	 * - Neither of these flags being set indicates a MISSING fault.
 | |
| 	 *
 | |
| 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 | |
| 	 * fault. Otherwise, it was a read fault.
 | |
| 	 */
 | |
| 	if (flags & FAULT_FLAG_WRITE)
 | |
| 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 | |
| 	if (reason & VM_UFFD_WP)
 | |
| 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 | |
| 	if (reason & VM_UFFD_MINOR)
 | |
| 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 | |
| 	if (features & UFFD_FEATURE_THREAD_ID)
 | |
| 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 | |
| 	return msg;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /*
 | |
|  * Same functionality as userfaultfd_must_wait below with modifications for
 | |
|  * hugepmd ranges.
 | |
|  */
 | |
| static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 | |
| 					 struct vm_area_struct *vma,
 | |
| 					 unsigned long address,
 | |
| 					 unsigned long flags,
 | |
| 					 unsigned long reason)
 | |
| {
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	pte_t *ptep, pte;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 | |
| 
 | |
| 	if (!ptep)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = false;
 | |
| 	pte = huge_ptep_get(ptep);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lockless access: we're in a wait_event so it's ok if it
 | |
| 	 * changes under us.  PTE markers should be handled the same as none
 | |
| 	 * ptes here.
 | |
| 	 */
 | |
| 	if (huge_pte_none_mostly(pte))
 | |
| 		ret = true;
 | |
| 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 | |
| 		ret = true;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 | |
| 					 struct vm_area_struct *vma,
 | |
| 					 unsigned long address,
 | |
| 					 unsigned long flags,
 | |
| 					 unsigned long reason)
 | |
| {
 | |
| 	return false;	/* should never get here */
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| /*
 | |
|  * Verify the pagetables are still not ok after having reigstered into
 | |
|  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 | |
|  * userfault that has already been resolved, if userfaultfd_read and
 | |
|  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 | |
|  * threads.
 | |
|  */
 | |
| static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 | |
| 					 unsigned long address,
 | |
| 					 unsigned long flags,
 | |
| 					 unsigned long reason)
 | |
| {
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd, _pmd;
 | |
| 	pte_t *pte;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		goto out;
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		goto out;
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		goto out;
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	/*
 | |
| 	 * READ_ONCE must function as a barrier with narrower scope
 | |
| 	 * and it must be equivalent to:
 | |
| 	 *	_pmd = *pmd; barrier();
 | |
| 	 *
 | |
| 	 * This is to deal with the instability (as in
 | |
| 	 * pmd_trans_unstable) of the pmd.
 | |
| 	 */
 | |
| 	_pmd = READ_ONCE(*pmd);
 | |
| 	if (pmd_none(_pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = false;
 | |
| 	if (!pmd_present(_pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (pmd_trans_huge(_pmd)) {
 | |
| 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 | |
| 			ret = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 | |
| 	 * and use the standard pte_offset_map() instead of parsing _pmd.
 | |
| 	 */
 | |
| 	pte = pte_offset_map(pmd, address);
 | |
| 	/*
 | |
| 	 * Lockless access: we're in a wait_event so it's ok if it
 | |
| 	 * changes under us.  PTE markers should be handled the same as none
 | |
| 	 * ptes here.
 | |
| 	 */
 | |
| 	if (pte_none_mostly(*pte))
 | |
| 		ret = true;
 | |
| 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
 | |
| 		ret = true;
 | |
| 	pte_unmap(pte);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 | |
| {
 | |
| 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
 | |
| 		return TASK_INTERRUPTIBLE;
 | |
| 
 | |
| 	if (flags & FAULT_FLAG_KILLABLE)
 | |
| 		return TASK_KILLABLE;
 | |
| 
 | |
| 	return TASK_UNINTERRUPTIBLE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The locking rules involved in returning VM_FAULT_RETRY depending on
 | |
|  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 | |
|  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 | |
|  * recommendation in __lock_page_or_retry is not an understatement.
 | |
|  *
 | |
|  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 | |
|  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 | |
|  * not set.
 | |
|  *
 | |
|  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 | |
|  * set, VM_FAULT_RETRY can still be returned if and only if there are
 | |
|  * fatal_signal_pending()s, and the mmap_lock must be released before
 | |
|  * returning it.
 | |
|  */
 | |
| vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 | |
| {
 | |
| 	struct mm_struct *mm = vmf->vma->vm_mm;
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 	struct userfaultfd_wait_queue uwq;
 | |
| 	vm_fault_t ret = VM_FAULT_SIGBUS;
 | |
| 	bool must_wait;
 | |
| 	unsigned int blocking_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't do userfault handling for the final child pid update.
 | |
| 	 *
 | |
| 	 * We also don't do userfault handling during
 | |
| 	 * coredumping. hugetlbfs has the special
 | |
| 	 * follow_hugetlb_page() to skip missing pages in the
 | |
| 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 | |
| 	 * the no_page_table() helper in follow_page_mask(), but the
 | |
| 	 * shmem_vm_ops->fault method is invoked even during
 | |
| 	 * coredumping without mmap_lock and it ends up here.
 | |
| 	 */
 | |
| 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Coredumping runs without mmap_lock so we can only check that
 | |
| 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
 | |
| 	 */
 | |
| 	mmap_assert_locked(mm);
 | |
| 
 | |
| 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 | |
| 	if (!ctx)
 | |
| 		goto out;
 | |
| 
 | |
| 	BUG_ON(ctx->mm != mm);
 | |
| 
 | |
| 	/* Any unrecognized flag is a bug. */
 | |
| 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 | |
| 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
 | |
| 	VM_BUG_ON(!reason || (reason & (reason - 1)));
 | |
| 
 | |
| 	if (ctx->features & UFFD_FEATURE_SIGBUS)
 | |
| 		goto out;
 | |
| 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's already released don't get it. This avoids to loop
 | |
| 	 * in __get_user_pages if userfaultfd_release waits on the
 | |
| 	 * caller of handle_userfault to release the mmap_lock.
 | |
| 	 */
 | |
| 	if (unlikely(READ_ONCE(ctx->released))) {
 | |
| 		/*
 | |
| 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
 | |
| 		 * cooperative manager can close the uffd after the
 | |
| 		 * last UFFDIO_COPY, without risking to trigger an
 | |
| 		 * involuntary SIGBUS if the process was starting the
 | |
| 		 * userfaultfd while the userfaultfd was still armed
 | |
| 		 * (but after the last UFFDIO_COPY). If the uffd
 | |
| 		 * wasn't already closed when the userfault reached
 | |
| 		 * this point, that would normally be solved by
 | |
| 		 * userfaultfd_must_wait returning 'false'.
 | |
| 		 *
 | |
| 		 * If we were to return VM_FAULT_SIGBUS here, the non
 | |
| 		 * cooperative manager would be instead forced to
 | |
| 		 * always call UFFDIO_UNREGISTER before it can safely
 | |
| 		 * close the uffd.
 | |
| 		 */
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that we can return VM_FAULT_RETRY.
 | |
| 	 *
 | |
| 	 * NOTE: it should become possible to return VM_FAULT_RETRY
 | |
| 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 | |
| 	 * -EBUSY failures, if the userfaultfd is to be extended for
 | |
| 	 * VM_UFFD_WP tracking and we intend to arm the userfault
 | |
| 	 * without first stopping userland access to the memory. For
 | |
| 	 * VM_UFFD_MISSING userfaults this is enough for now.
 | |
| 	 */
 | |
| 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 | |
| 		/*
 | |
| 		 * Validate the invariant that nowait must allow retry
 | |
| 		 * to be sure not to return SIGBUS erroneously on
 | |
| 		 * nowait invocations.
 | |
| 		 */
 | |
| 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 		if (printk_ratelimit()) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 | |
| 			       vmf->flags);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| #endif
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle nowait, not much to do other than tell it to retry
 | |
| 	 * and wait.
 | |
| 	 */
 | |
| 	ret = VM_FAULT_RETRY;
 | |
| 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* take the reference before dropping the mmap_lock */
 | |
| 	userfaultfd_ctx_get(ctx);
 | |
| 
 | |
| 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 | |
| 	uwq.wq.private = current;
 | |
| 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
 | |
| 				reason, ctx->features);
 | |
| 	uwq.ctx = ctx;
 | |
| 	uwq.waken = false;
 | |
| 
 | |
| 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 | |
| 
 | |
| 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 	/*
 | |
| 	 * After the __add_wait_queue the uwq is visible to userland
 | |
| 	 * through poll/read().
 | |
| 	 */
 | |
| 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 | |
| 	/*
 | |
| 	 * The smp_mb() after __set_current_state prevents the reads
 | |
| 	 * following the spin_unlock to happen before the list_add in
 | |
| 	 * __add_wait_queue.
 | |
| 	 */
 | |
| 	set_current_state(blocking_state);
 | |
| 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 
 | |
| 	if (!is_vm_hugetlb_page(vmf->vma))
 | |
| 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 | |
| 						  reason);
 | |
| 	else
 | |
| 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 | |
| 						       vmf->address,
 | |
| 						       vmf->flags, reason);
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
 | |
| 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 | |
| 		schedule();
 | |
| 	}
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we race with the list_del; list_add in
 | |
| 	 * userfaultfd_ctx_read(), however because we don't ever run
 | |
| 	 * list_del_init() to refile across the two lists, the prev
 | |
| 	 * and next pointers will never point to self. list_add also
 | |
| 	 * would never let any of the two pointers to point to
 | |
| 	 * self. So list_empty_careful won't risk to see both pointers
 | |
| 	 * pointing to self at any time during the list refile. The
 | |
| 	 * only case where list_del_init() is called is the full
 | |
| 	 * removal in the wake function and there we don't re-list_add
 | |
| 	 * and it's fine not to block on the spinlock. The uwq on this
 | |
| 	 * kernel stack can be released after the list_del_init.
 | |
| 	 */
 | |
| 	if (!list_empty_careful(&uwq.wq.entry)) {
 | |
| 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 		/*
 | |
| 		 * No need of list_del_init(), the uwq on the stack
 | |
| 		 * will be freed shortly anyway.
 | |
| 		 */
 | |
| 		list_del(&uwq.wq.entry);
 | |
| 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ctx may go away after this if the userfault pseudo fd is
 | |
| 	 * already released.
 | |
| 	 */
 | |
| 	userfaultfd_ctx_put(ctx);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 | |
| 					      struct userfaultfd_wait_queue *ewq)
 | |
| {
 | |
| 	struct userfaultfd_ctx *release_new_ctx;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
 | |
| 		goto out;
 | |
| 
 | |
| 	ewq->ctx = ctx;
 | |
| 	init_waitqueue_entry(&ewq->wq, current);
 | |
| 	release_new_ctx = NULL;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->event_wqh.lock);
 | |
| 	/*
 | |
| 	 * After the __add_wait_queue the uwq is visible to userland
 | |
| 	 * through poll/read().
 | |
| 	 */
 | |
| 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_KILLABLE);
 | |
| 		if (ewq->msg.event == 0)
 | |
| 			break;
 | |
| 		if (READ_ONCE(ctx->released) ||
 | |
| 		    fatal_signal_pending(current)) {
 | |
| 			/*
 | |
| 			 * &ewq->wq may be queued in fork_event, but
 | |
| 			 * __remove_wait_queue ignores the head
 | |
| 			 * parameter. It would be a problem if it
 | |
| 			 * didn't.
 | |
| 			 */
 | |
| 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 | |
| 			if (ewq->msg.event == UFFD_EVENT_FORK) {
 | |
| 				struct userfaultfd_ctx *new;
 | |
| 
 | |
| 				new = (struct userfaultfd_ctx *)
 | |
| 					(unsigned long)
 | |
| 					ewq->msg.arg.reserved.reserved1;
 | |
| 				release_new_ctx = new;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock_irq(&ctx->event_wqh.lock);
 | |
| 
 | |
| 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 | |
| 		schedule();
 | |
| 
 | |
| 		spin_lock_irq(&ctx->event_wqh.lock);
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	spin_unlock_irq(&ctx->event_wqh.lock);
 | |
| 
 | |
| 	if (release_new_ctx) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		struct mm_struct *mm = release_new_ctx->mm;
 | |
| 		VMA_ITERATOR(vmi, mm, 0);
 | |
| 
 | |
| 		/* the various vma->vm_userfaultfd_ctx still points to it */
 | |
| 		mmap_write_lock(mm);
 | |
| 		for_each_vma(vmi, vma) {
 | |
| 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 | |
| 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 | |
| 				userfaultfd_set_vm_flags(vma,
 | |
| 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
 | |
| 			}
 | |
| 		}
 | |
| 		mmap_write_unlock(mm);
 | |
| 
 | |
| 		userfaultfd_ctx_put(release_new_ctx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ctx may go away after this if the userfault pseudo fd is
 | |
| 	 * already released.
 | |
| 	 */
 | |
| out:
 | |
| 	atomic_dec(&ctx->mmap_changing);
 | |
| 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
 | |
| 	userfaultfd_ctx_put(ctx);
 | |
| }
 | |
| 
 | |
| static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 | |
| 				       struct userfaultfd_wait_queue *ewq)
 | |
| {
 | |
| 	ewq->msg.event = 0;
 | |
| 	wake_up_locked(&ctx->event_wqh);
 | |
| 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 | |
| }
 | |
| 
 | |
| int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = NULL, *octx;
 | |
| 	struct userfaultfd_fork_ctx *fctx;
 | |
| 
 | |
| 	octx = vma->vm_userfaultfd_ctx.ctx;
 | |
| 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 | |
| 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 | |
| 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(fctx, fcs, list)
 | |
| 		if (fctx->orig == octx) {
 | |
| 			ctx = fctx->new;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (!ctx) {
 | |
| 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 | |
| 		if (!fctx)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 | |
| 		if (!ctx) {
 | |
| 			kfree(fctx);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		refcount_set(&ctx->refcount, 1);
 | |
| 		ctx->flags = octx->flags;
 | |
| 		ctx->features = octx->features;
 | |
| 		ctx->released = false;
 | |
| 		atomic_set(&ctx->mmap_changing, 0);
 | |
| 		ctx->mm = vma->vm_mm;
 | |
| 		mmgrab(ctx->mm);
 | |
| 
 | |
| 		userfaultfd_ctx_get(octx);
 | |
| 		atomic_inc(&octx->mmap_changing);
 | |
| 		fctx->orig = octx;
 | |
| 		fctx->new = ctx;
 | |
| 		list_add_tail(&fctx->list, fcs);
 | |
| 	}
 | |
| 
 | |
| 	vma->vm_userfaultfd_ctx.ctx = ctx;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = fctx->orig;
 | |
| 	struct userfaultfd_wait_queue ewq;
 | |
| 
 | |
| 	msg_init(&ewq.msg);
 | |
| 
 | |
| 	ewq.msg.event = UFFD_EVENT_FORK;
 | |
| 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 | |
| 
 | |
| 	userfaultfd_event_wait_completion(ctx, &ewq);
 | |
| }
 | |
| 
 | |
| void dup_userfaultfd_complete(struct list_head *fcs)
 | |
| {
 | |
| 	struct userfaultfd_fork_ctx *fctx, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(fctx, n, fcs, list) {
 | |
| 		dup_fctx(fctx);
 | |
| 		list_del(&fctx->list);
 | |
| 		kfree(fctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 | |
| 			     struct vm_userfaultfd_ctx *vm_ctx)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 
 | |
| 	ctx = vma->vm_userfaultfd_ctx.ctx;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 | |
| 		vm_ctx->ctx = ctx;
 | |
| 		userfaultfd_ctx_get(ctx);
 | |
| 		atomic_inc(&ctx->mmap_changing);
 | |
| 	} else {
 | |
| 		/* Drop uffd context if remap feature not enabled */
 | |
| 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 | |
| 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 | |
| 				 unsigned long from, unsigned long to,
 | |
| 				 unsigned long len)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 | |
| 	struct userfaultfd_wait_queue ewq;
 | |
| 
 | |
| 	if (!ctx)
 | |
| 		return;
 | |
| 
 | |
| 	if (to & ~PAGE_MASK) {
 | |
| 		userfaultfd_ctx_put(ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	msg_init(&ewq.msg);
 | |
| 
 | |
| 	ewq.msg.event = UFFD_EVENT_REMAP;
 | |
| 	ewq.msg.arg.remap.from = from;
 | |
| 	ewq.msg.arg.remap.to = to;
 | |
| 	ewq.msg.arg.remap.len = len;
 | |
| 
 | |
| 	userfaultfd_event_wait_completion(ctx, &ewq);
 | |
| }
 | |
| 
 | |
| bool userfaultfd_remove(struct vm_area_struct *vma,
 | |
| 			unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 	struct userfaultfd_wait_queue ewq;
 | |
| 
 | |
| 	ctx = vma->vm_userfaultfd_ctx.ctx;
 | |
| 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 | |
| 		return true;
 | |
| 
 | |
| 	userfaultfd_ctx_get(ctx);
 | |
| 	atomic_inc(&ctx->mmap_changing);
 | |
| 	mmap_read_unlock(mm);
 | |
| 
 | |
| 	msg_init(&ewq.msg);
 | |
| 
 | |
| 	ewq.msg.event = UFFD_EVENT_REMOVE;
 | |
| 	ewq.msg.arg.remove.start = start;
 | |
| 	ewq.msg.arg.remove.end = end;
 | |
| 
 | |
| 	userfaultfd_event_wait_completion(ctx, &ewq);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 | |
| 			  unsigned long start, unsigned long end)
 | |
| {
 | |
| 	struct userfaultfd_unmap_ctx *unmap_ctx;
 | |
| 
 | |
| 	list_for_each_entry(unmap_ctx, unmaps, list)
 | |
| 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 | |
| 		    unmap_ctx->end == end)
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
 | |
| 			   unsigned long end, struct list_head *unmaps)
 | |
| {
 | |
| 	VMA_ITERATOR(vmi, mm, start);
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	for_each_vma_range(vmi, vma, end) {
 | |
| 		struct userfaultfd_unmap_ctx *unmap_ctx;
 | |
| 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 | |
| 
 | |
| 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 | |
| 		    has_unmap_ctx(ctx, unmaps, start, end))
 | |
| 			continue;
 | |
| 
 | |
| 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 | |
| 		if (!unmap_ctx)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		userfaultfd_ctx_get(ctx);
 | |
| 		atomic_inc(&ctx->mmap_changing);
 | |
| 		unmap_ctx->ctx = ctx;
 | |
| 		unmap_ctx->start = start;
 | |
| 		unmap_ctx->end = end;
 | |
| 		list_add_tail(&unmap_ctx->list, unmaps);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 | |
| {
 | |
| 	struct userfaultfd_unmap_ctx *ctx, *n;
 | |
| 	struct userfaultfd_wait_queue ewq;
 | |
| 
 | |
| 	list_for_each_entry_safe(ctx, n, uf, list) {
 | |
| 		msg_init(&ewq.msg);
 | |
| 
 | |
| 		ewq.msg.event = UFFD_EVENT_UNMAP;
 | |
| 		ewq.msg.arg.remove.start = ctx->start;
 | |
| 		ewq.msg.arg.remove.end = ctx->end;
 | |
| 
 | |
| 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 | |
| 
 | |
| 		list_del(&ctx->list);
 | |
| 		kfree(ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int userfaultfd_release(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = file->private_data;
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	struct vm_area_struct *vma, *prev;
 | |
| 	/* len == 0 means wake all */
 | |
| 	struct userfaultfd_wake_range range = { .len = 0, };
 | |
| 	unsigned long new_flags;
 | |
| 	MA_STATE(mas, &mm->mm_mt, 0, 0);
 | |
| 
 | |
| 	WRITE_ONCE(ctx->released, true);
 | |
| 
 | |
| 	if (!mmget_not_zero(mm))
 | |
| 		goto wakeup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush page faults out of all CPUs. NOTE: all page faults
 | |
| 	 * must be retried without returning VM_FAULT_SIGBUS if
 | |
| 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 | |
| 	 * changes while handle_userfault released the mmap_lock. So
 | |
| 	 * it's critical that released is set to true (above), before
 | |
| 	 * taking the mmap_lock for writing.
 | |
| 	 */
 | |
| 	mmap_write_lock(mm);
 | |
| 	prev = NULL;
 | |
| 	mas_for_each(&mas, vma, ULONG_MAX) {
 | |
| 		cond_resched();
 | |
| 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 | |
| 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 | |
| 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 | |
| 			prev = vma;
 | |
| 			continue;
 | |
| 		}
 | |
| 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 | |
| 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 | |
| 				 new_flags, vma->anon_vma,
 | |
| 				 vma->vm_file, vma->vm_pgoff,
 | |
| 				 vma_policy(vma),
 | |
| 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
 | |
| 		if (prev) {
 | |
| 			mas_pause(&mas);
 | |
| 			vma = prev;
 | |
| 		} else {
 | |
| 			prev = vma;
 | |
| 		}
 | |
| 
 | |
| 		userfaultfd_set_vm_flags(vma, new_flags);
 | |
| 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 | |
| 	}
 | |
| 	mmap_write_unlock(mm);
 | |
| 	mmput(mm);
 | |
| wakeup:
 | |
| 	/*
 | |
| 	 * After no new page faults can wait on this fault_*wqh, flush
 | |
| 	 * the last page faults that may have been already waiting on
 | |
| 	 * the fault_*wqh.
 | |
| 	 */
 | |
| 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 | |
| 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 | |
| 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 
 | |
| 	/* Flush pending events that may still wait on event_wqh */
 | |
| 	wake_up_all(&ctx->event_wqh);
 | |
| 
 | |
| 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 | |
| 	userfaultfd_ctx_put(ctx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* fault_pending_wqh.lock must be hold by the caller */
 | |
| static inline struct userfaultfd_wait_queue *find_userfault_in(
 | |
| 		wait_queue_head_t *wqh)
 | |
| {
 | |
| 	wait_queue_entry_t *wq;
 | |
| 	struct userfaultfd_wait_queue *uwq;
 | |
| 
 | |
| 	lockdep_assert_held(&wqh->lock);
 | |
| 
 | |
| 	uwq = NULL;
 | |
| 	if (!waitqueue_active(wqh))
 | |
| 		goto out;
 | |
| 	/* walk in reverse to provide FIFO behavior to read userfaults */
 | |
| 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 | |
| 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 | |
| out:
 | |
| 	return uwq;
 | |
| }
 | |
| 
 | |
| static inline struct userfaultfd_wait_queue *find_userfault(
 | |
| 		struct userfaultfd_ctx *ctx)
 | |
| {
 | |
| 	return find_userfault_in(&ctx->fault_pending_wqh);
 | |
| }
 | |
| 
 | |
| static inline struct userfaultfd_wait_queue *find_userfault_evt(
 | |
| 		struct userfaultfd_ctx *ctx)
 | |
| {
 | |
| 	return find_userfault_in(&ctx->event_wqh);
 | |
| }
 | |
| 
 | |
| static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = file->private_data;
 | |
| 	__poll_t ret;
 | |
| 
 | |
| 	poll_wait(file, &ctx->fd_wqh, wait);
 | |
| 
 | |
| 	if (!userfaultfd_is_initialized(ctx))
 | |
| 		return EPOLLERR;
 | |
| 
 | |
| 	/*
 | |
| 	 * poll() never guarantees that read won't block.
 | |
| 	 * userfaults can be waken before they're read().
 | |
| 	 */
 | |
| 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
 | |
| 		return EPOLLERR;
 | |
| 	/*
 | |
| 	 * lockless access to see if there are pending faults
 | |
| 	 * __pollwait last action is the add_wait_queue but
 | |
| 	 * the spin_unlock would allow the waitqueue_active to
 | |
| 	 * pass above the actual list_add inside
 | |
| 	 * add_wait_queue critical section. So use a full
 | |
| 	 * memory barrier to serialize the list_add write of
 | |
| 	 * add_wait_queue() with the waitqueue_active read
 | |
| 	 * below.
 | |
| 	 */
 | |
| 	ret = 0;
 | |
| 	smp_mb();
 | |
| 	if (waitqueue_active(&ctx->fault_pending_wqh))
 | |
| 		ret = EPOLLIN;
 | |
| 	else if (waitqueue_active(&ctx->event_wqh))
 | |
| 		ret = EPOLLIN;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations userfaultfd_fops;
 | |
| 
 | |
| static int resolve_userfault_fork(struct userfaultfd_ctx *new,
 | |
| 				  struct inode *inode,
 | |
| 				  struct uffd_msg *msg)
 | |
| {
 | |
| 	int fd;
 | |
| 
 | |
| 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
 | |
| 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
 | |
| 	if (fd < 0)
 | |
| 		return fd;
 | |
| 
 | |
| 	msg->arg.reserved.reserved1 = 0;
 | |
| 	msg->arg.fork.ufd = fd;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 | |
| 				    struct uffd_msg *msg, struct inode *inode)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 	DECLARE_WAITQUEUE(wait, current);
 | |
| 	struct userfaultfd_wait_queue *uwq;
 | |
| 	/*
 | |
| 	 * Handling fork event requires sleeping operations, so
 | |
| 	 * we drop the event_wqh lock, then do these ops, then
 | |
| 	 * lock it back and wake up the waiter. While the lock is
 | |
| 	 * dropped the ewq may go away so we keep track of it
 | |
| 	 * carefully.
 | |
| 	 */
 | |
| 	LIST_HEAD(fork_event);
 | |
| 	struct userfaultfd_ctx *fork_nctx = NULL;
 | |
| 
 | |
| 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
 | |
| 	spin_lock_irq(&ctx->fd_wqh.lock);
 | |
| 	__add_wait_queue(&ctx->fd_wqh, &wait);
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		spin_lock(&ctx->fault_pending_wqh.lock);
 | |
| 		uwq = find_userfault(ctx);
 | |
| 		if (uwq) {
 | |
| 			/*
 | |
| 			 * Use a seqcount to repeat the lockless check
 | |
| 			 * in wake_userfault() to avoid missing
 | |
| 			 * wakeups because during the refile both
 | |
| 			 * waitqueue could become empty if this is the
 | |
| 			 * only userfault.
 | |
| 			 */
 | |
| 			write_seqcount_begin(&ctx->refile_seq);
 | |
| 
 | |
| 			/*
 | |
| 			 * The fault_pending_wqh.lock prevents the uwq
 | |
| 			 * to disappear from under us.
 | |
| 			 *
 | |
| 			 * Refile this userfault from
 | |
| 			 * fault_pending_wqh to fault_wqh, it's not
 | |
| 			 * pending anymore after we read it.
 | |
| 			 *
 | |
| 			 * Use list_del() by hand (as
 | |
| 			 * userfaultfd_wake_function also uses
 | |
| 			 * list_del_init() by hand) to be sure nobody
 | |
| 			 * changes __remove_wait_queue() to use
 | |
| 			 * list_del_init() in turn breaking the
 | |
| 			 * !list_empty_careful() check in
 | |
| 			 * handle_userfault(). The uwq->wq.head list
 | |
| 			 * must never be empty at any time during the
 | |
| 			 * refile, or the waitqueue could disappear
 | |
| 			 * from under us. The "wait_queue_head_t"
 | |
| 			 * parameter of __remove_wait_queue() is unused
 | |
| 			 * anyway.
 | |
| 			 */
 | |
| 			list_del(&uwq->wq.entry);
 | |
| 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 | |
| 
 | |
| 			write_seqcount_end(&ctx->refile_seq);
 | |
| 
 | |
| 			/* careful to always initialize msg if ret == 0 */
 | |
| 			*msg = uwq->msg;
 | |
| 			spin_unlock(&ctx->fault_pending_wqh.lock);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&ctx->fault_pending_wqh.lock);
 | |
| 
 | |
| 		spin_lock(&ctx->event_wqh.lock);
 | |
| 		uwq = find_userfault_evt(ctx);
 | |
| 		if (uwq) {
 | |
| 			*msg = uwq->msg;
 | |
| 
 | |
| 			if (uwq->msg.event == UFFD_EVENT_FORK) {
 | |
| 				fork_nctx = (struct userfaultfd_ctx *)
 | |
| 					(unsigned long)
 | |
| 					uwq->msg.arg.reserved.reserved1;
 | |
| 				list_move(&uwq->wq.entry, &fork_event);
 | |
| 				/*
 | |
| 				 * fork_nctx can be freed as soon as
 | |
| 				 * we drop the lock, unless we take a
 | |
| 				 * reference on it.
 | |
| 				 */
 | |
| 				userfaultfd_ctx_get(fork_nctx);
 | |
| 				spin_unlock(&ctx->event_wqh.lock);
 | |
| 				ret = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			userfaultfd_event_complete(ctx, uwq);
 | |
| 			spin_unlock(&ctx->event_wqh.lock);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock(&ctx->event_wqh.lock);
 | |
| 
 | |
| 		if (signal_pending(current)) {
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (no_wait) {
 | |
| 			ret = -EAGAIN;
 | |
| 			break;
 | |
| 		}
 | |
| 		spin_unlock_irq(&ctx->fd_wqh.lock);
 | |
| 		schedule();
 | |
| 		spin_lock_irq(&ctx->fd_wqh.lock);
 | |
| 	}
 | |
| 	__remove_wait_queue(&ctx->fd_wqh, &wait);
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	spin_unlock_irq(&ctx->fd_wqh.lock);
 | |
| 
 | |
| 	if (!ret && msg->event == UFFD_EVENT_FORK) {
 | |
| 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
 | |
| 		spin_lock_irq(&ctx->event_wqh.lock);
 | |
| 		if (!list_empty(&fork_event)) {
 | |
| 			/*
 | |
| 			 * The fork thread didn't abort, so we can
 | |
| 			 * drop the temporary refcount.
 | |
| 			 */
 | |
| 			userfaultfd_ctx_put(fork_nctx);
 | |
| 
 | |
| 			uwq = list_first_entry(&fork_event,
 | |
| 					       typeof(*uwq),
 | |
| 					       wq.entry);
 | |
| 			/*
 | |
| 			 * If fork_event list wasn't empty and in turn
 | |
| 			 * the event wasn't already released by fork
 | |
| 			 * (the event is allocated on fork kernel
 | |
| 			 * stack), put the event back to its place in
 | |
| 			 * the event_wq. fork_event head will be freed
 | |
| 			 * as soon as we return so the event cannot
 | |
| 			 * stay queued there no matter the current
 | |
| 			 * "ret" value.
 | |
| 			 */
 | |
| 			list_del(&uwq->wq.entry);
 | |
| 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
 | |
| 
 | |
| 			/*
 | |
| 			 * Leave the event in the waitqueue and report
 | |
| 			 * error to userland if we failed to resolve
 | |
| 			 * the userfault fork.
 | |
| 			 */
 | |
| 			if (likely(!ret))
 | |
| 				userfaultfd_event_complete(ctx, uwq);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Here the fork thread aborted and the
 | |
| 			 * refcount from the fork thread on fork_nctx
 | |
| 			 * has already been released. We still hold
 | |
| 			 * the reference we took before releasing the
 | |
| 			 * lock above. If resolve_userfault_fork
 | |
| 			 * failed we've to drop it because the
 | |
| 			 * fork_nctx has to be freed in such case. If
 | |
| 			 * it succeeded we'll hold it because the new
 | |
| 			 * uffd references it.
 | |
| 			 */
 | |
| 			if (ret)
 | |
| 				userfaultfd_ctx_put(fork_nctx);
 | |
| 		}
 | |
| 		spin_unlock_irq(&ctx->event_wqh.lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 | |
| 				size_t count, loff_t *ppos)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = file->private_data;
 | |
| 	ssize_t _ret, ret = 0;
 | |
| 	struct uffd_msg msg;
 | |
| 	int no_wait = file->f_flags & O_NONBLOCK;
 | |
| 	struct inode *inode = file_inode(file);
 | |
| 
 | |
| 	if (!userfaultfd_is_initialized(ctx))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (count < sizeof(msg))
 | |
| 			return ret ? ret : -EINVAL;
 | |
| 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
 | |
| 		if (_ret < 0)
 | |
| 			return ret ? ret : _ret;
 | |
| 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 | |
| 			return ret ? ret : -EFAULT;
 | |
| 		ret += sizeof(msg);
 | |
| 		buf += sizeof(msg);
 | |
| 		count -= sizeof(msg);
 | |
| 		/*
 | |
| 		 * Allow to read more than one fault at time but only
 | |
| 		 * block if waiting for the very first one.
 | |
| 		 */
 | |
| 		no_wait = O_NONBLOCK;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __wake_userfault(struct userfaultfd_ctx *ctx,
 | |
| 			     struct userfaultfd_wake_range *range)
 | |
| {
 | |
| 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 	/* wake all in the range and autoremove */
 | |
| 	if (waitqueue_active(&ctx->fault_pending_wqh))
 | |
| 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 | |
| 				     range);
 | |
| 	if (waitqueue_active(&ctx->fault_wqh))
 | |
| 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
 | |
| 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 | |
| }
 | |
| 
 | |
| static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 | |
| 					   struct userfaultfd_wake_range *range)
 | |
| {
 | |
| 	unsigned seq;
 | |
| 	bool need_wakeup;
 | |
| 
 | |
| 	/*
 | |
| 	 * To be sure waitqueue_active() is not reordered by the CPU
 | |
| 	 * before the pagetable update, use an explicit SMP memory
 | |
| 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
 | |
| 	 * have release semantics that can allow the
 | |
| 	 * waitqueue_active() to be reordered before the pte update.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Use waitqueue_active because it's very frequent to
 | |
| 	 * change the address space atomically even if there are no
 | |
| 	 * userfaults yet. So we take the spinlock only when we're
 | |
| 	 * sure we've userfaults to wake.
 | |
| 	 */
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&ctx->refile_seq);
 | |
| 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 | |
| 			waitqueue_active(&ctx->fault_wqh);
 | |
| 		cond_resched();
 | |
| 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
 | |
| 	if (need_wakeup)
 | |
| 		__wake_userfault(ctx, range);
 | |
| }
 | |
| 
 | |
| static __always_inline int validate_range(struct mm_struct *mm,
 | |
| 					  __u64 start, __u64 len)
 | |
| {
 | |
| 	__u64 task_size = mm->task_size;
 | |
| 
 | |
| 	if (start & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 	if (len & ~PAGE_MASK)
 | |
| 		return -EINVAL;
 | |
| 	if (!len)
 | |
| 		return -EINVAL;
 | |
| 	if (start < mmap_min_addr)
 | |
| 		return -EINVAL;
 | |
| 	if (start >= task_size)
 | |
| 		return -EINVAL;
 | |
| 	if (len > task_size - start)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 | |
| 				unsigned long arg)
 | |
| {
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	struct vm_area_struct *vma, *prev, *cur;
 | |
| 	int ret;
 | |
| 	struct uffdio_register uffdio_register;
 | |
| 	struct uffdio_register __user *user_uffdio_register;
 | |
| 	unsigned long vm_flags, new_flags;
 | |
| 	bool found;
 | |
| 	bool basic_ioctls;
 | |
| 	unsigned long start, end, vma_end;
 | |
| 	MA_STATE(mas, &mm->mm_mt, 0, 0);
 | |
| 
 | |
| 	user_uffdio_register = (struct uffdio_register __user *) arg;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_register, user_uffdio_register,
 | |
| 			   sizeof(uffdio_register)-sizeof(__u64)))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (!uffdio_register.mode)
 | |
| 		goto out;
 | |
| 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
 | |
| 		goto out;
 | |
| 	vm_flags = 0;
 | |
| 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 | |
| 		vm_flags |= VM_UFFD_MISSING;
 | |
| 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 | |
| #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
 | |
| 		goto out;
 | |
| #endif
 | |
| 		vm_flags |= VM_UFFD_WP;
 | |
| 	}
 | |
| 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
 | |
| #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 | |
| 		goto out;
 | |
| #endif
 | |
| 		vm_flags |= VM_UFFD_MINOR;
 | |
| 	}
 | |
| 
 | |
| 	ret = validate_range(mm, uffdio_register.range.start,
 | |
| 			     uffdio_register.range.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	start = uffdio_register.range.start;
 | |
| 	end = start + uffdio_register.range.len;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!mmget_not_zero(mm))
 | |
| 		goto out;
 | |
| 
 | |
| 	mmap_write_lock(mm);
 | |
| 	mas_set(&mas, start);
 | |
| 	vma = mas_find(&mas, ULONG_MAX);
 | |
| 	if (!vma)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* check that there's at least one vma in the range */
 | |
| 	ret = -EINVAL;
 | |
| 	if (vma->vm_start >= end)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the first vma contains huge pages, make sure start address
 | |
| 	 * is aligned to huge page size.
 | |
| 	 */
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
 | |
| 
 | |
| 		if (start & (vma_hpagesize - 1))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for not compatible vmas.
 | |
| 	 */
 | |
| 	found = false;
 | |
| 	basic_ioctls = false;
 | |
| 	for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 | |
| 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
 | |
| 
 | |
| 		/* check not compatible vmas */
 | |
| 		ret = -EINVAL;
 | |
| 		if (!vma_can_userfault(cur, vm_flags))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * UFFDIO_COPY will fill file holes even without
 | |
| 		 * PROT_WRITE. This check enforces that if this is a
 | |
| 		 * MAP_SHARED, the process has write permission to the backing
 | |
| 		 * file. If VM_MAYWRITE is set it also enforces that on a
 | |
| 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
 | |
| 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
 | |
| 		 */
 | |
| 		ret = -EPERM;
 | |
| 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this vma contains ending address, and huge pages
 | |
| 		 * check alignment.
 | |
| 		 */
 | |
| 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
 | |
| 		    end > cur->vm_start) {
 | |
| 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
 | |
| 
 | |
| 			ret = -EINVAL;
 | |
| 
 | |
| 			if (end & (vma_hpagesize - 1))
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check that this vma isn't already owned by a
 | |
| 		 * different userfaultfd. We can't allow more than one
 | |
| 		 * userfaultfd to own a single vma simultaneously or we
 | |
| 		 * wouldn't know which one to deliver the userfaults to.
 | |
| 		 */
 | |
| 		ret = -EBUSY;
 | |
| 		if (cur->vm_userfaultfd_ctx.ctx &&
 | |
| 		    cur->vm_userfaultfd_ctx.ctx != ctx)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/*
 | |
| 		 * Note vmas containing huge pages
 | |
| 		 */
 | |
| 		if (is_vm_hugetlb_page(cur))
 | |
| 			basic_ioctls = true;
 | |
| 
 | |
| 		found = true;
 | |
| 	}
 | |
| 	BUG_ON(!found);
 | |
| 
 | |
| 	mas_set(&mas, start);
 | |
| 	prev = mas_prev(&mas, 0);
 | |
| 	if (prev != vma)
 | |
| 		mas_next(&mas, ULONG_MAX);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		BUG_ON(!vma_can_userfault(vma, vm_flags));
 | |
| 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 | |
| 		       vma->vm_userfaultfd_ctx.ctx != ctx);
 | |
| 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
 | |
| 
 | |
| 		/*
 | |
| 		 * Nothing to do: this vma is already registered into this
 | |
| 		 * userfaultfd and with the right tracking mode too.
 | |
| 		 */
 | |
| 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 | |
| 		    (vma->vm_flags & vm_flags) == vm_flags)
 | |
| 			goto skip;
 | |
| 
 | |
| 		if (vma->vm_start > start)
 | |
| 			start = vma->vm_start;
 | |
| 		vma_end = min(end, vma->vm_end);
 | |
| 
 | |
| 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
 | |
| 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
 | |
| 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 | |
| 				 vma_policy(vma),
 | |
| 				 ((struct vm_userfaultfd_ctx){ ctx }),
 | |
| 				 anon_vma_name(vma));
 | |
| 		if (prev) {
 | |
| 			/* vma_merge() invalidated the mas */
 | |
| 			mas_pause(&mas);
 | |
| 			vma = prev;
 | |
| 			goto next;
 | |
| 		}
 | |
| 		if (vma->vm_start < start) {
 | |
| 			ret = split_vma(mm, vma, start, 1);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			/* split_vma() invalidated the mas */
 | |
| 			mas_pause(&mas);
 | |
| 		}
 | |
| 		if (vma->vm_end > end) {
 | |
| 			ret = split_vma(mm, vma, end, 0);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			/* split_vma() invalidated the mas */
 | |
| 			mas_pause(&mas);
 | |
| 		}
 | |
| 	next:
 | |
| 		/*
 | |
| 		 * In the vma_merge() successful mprotect-like case 8:
 | |
| 		 * the next vma was merged into the current one and
 | |
| 		 * the current one has not been updated yet.
 | |
| 		 */
 | |
| 		userfaultfd_set_vm_flags(vma, new_flags);
 | |
| 		vma->vm_userfaultfd_ctx.ctx = ctx;
 | |
| 
 | |
| 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
 | |
| 			hugetlb_unshare_all_pmds(vma);
 | |
| 
 | |
| 	skip:
 | |
| 		prev = vma;
 | |
| 		start = vma->vm_end;
 | |
| 		vma = mas_next(&mas, end - 1);
 | |
| 	} while (vma);
 | |
| out_unlock:
 | |
| 	mmap_write_unlock(mm);
 | |
| 	mmput(mm);
 | |
| 	if (!ret) {
 | |
| 		__u64 ioctls_out;
 | |
| 
 | |
| 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
 | |
| 		    UFFD_API_RANGE_IOCTLS;
 | |
| 
 | |
| 		/*
 | |
| 		 * Declare the WP ioctl only if the WP mode is
 | |
| 		 * specified and all checks passed with the range
 | |
| 		 */
 | |
| 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
 | |
| 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
 | |
| 
 | |
| 		/* CONTINUE ioctl is only supported for MINOR ranges. */
 | |
| 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
 | |
| 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
 | |
| 
 | |
| 		/*
 | |
| 		 * Now that we scanned all vmas we can already tell
 | |
| 		 * userland which ioctls methods are guaranteed to
 | |
| 		 * succeed on this range.
 | |
| 		 */
 | |
| 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 | |
| 				  unsigned long arg)
 | |
| {
 | |
| 	struct mm_struct *mm = ctx->mm;
 | |
| 	struct vm_area_struct *vma, *prev, *cur;
 | |
| 	int ret;
 | |
| 	struct uffdio_range uffdio_unregister;
 | |
| 	unsigned long new_flags;
 | |
| 	bool found;
 | |
| 	unsigned long start, end, vma_end;
 | |
| 	const void __user *buf = (void __user *)arg;
 | |
| 	MA_STATE(mas, &mm->mm_mt, 0, 0);
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = validate_range(mm, uffdio_unregister.start,
 | |
| 			     uffdio_unregister.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	start = uffdio_unregister.start;
 | |
| 	end = start + uffdio_unregister.len;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	if (!mmget_not_zero(mm))
 | |
| 		goto out;
 | |
| 
 | |
| 	mmap_write_lock(mm);
 | |
| 	mas_set(&mas, start);
 | |
| 	vma = mas_find(&mas, ULONG_MAX);
 | |
| 	if (!vma)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* check that there's at least one vma in the range */
 | |
| 	ret = -EINVAL;
 | |
| 	if (vma->vm_start >= end)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the first vma contains huge pages, make sure start address
 | |
| 	 * is aligned to huge page size.
 | |
| 	 */
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
 | |
| 
 | |
| 		if (start & (vma_hpagesize - 1))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search for not compatible vmas.
 | |
| 	 */
 | |
| 	found = false;
 | |
| 	ret = -EINVAL;
 | |
| 	for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 | |
| 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
 | |
| 
 | |
| 		/*
 | |
| 		 * Check not compatible vmas, not strictly required
 | |
| 		 * here as not compatible vmas cannot have an
 | |
| 		 * userfaultfd_ctx registered on them, but this
 | |
| 		 * provides for more strict behavior to notice
 | |
| 		 * unregistration errors.
 | |
| 		 */
 | |
| 		if (!vma_can_userfault(cur, cur->vm_flags))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		found = true;
 | |
| 	}
 | |
| 	BUG_ON(!found);
 | |
| 
 | |
| 	mas_set(&mas, start);
 | |
| 	prev = mas_prev(&mas, 0);
 | |
| 	if (prev != vma)
 | |
| 		mas_next(&mas, ULONG_MAX);
 | |
| 
 | |
| 	ret = 0;
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
 | |
| 
 | |
| 		/*
 | |
| 		 * Nothing to do: this vma is already registered into this
 | |
| 		 * userfaultfd and with the right tracking mode too.
 | |
| 		 */
 | |
| 		if (!vma->vm_userfaultfd_ctx.ctx)
 | |
| 			goto skip;
 | |
| 
 | |
| 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
 | |
| 
 | |
| 		if (vma->vm_start > start)
 | |
| 			start = vma->vm_start;
 | |
| 		vma_end = min(end, vma->vm_end);
 | |
| 
 | |
| 		if (userfaultfd_missing(vma)) {
 | |
| 			/*
 | |
| 			 * Wake any concurrent pending userfault while
 | |
| 			 * we unregister, so they will not hang
 | |
| 			 * permanently and it avoids userland to call
 | |
| 			 * UFFDIO_WAKE explicitly.
 | |
| 			 */
 | |
| 			struct userfaultfd_wake_range range;
 | |
| 			range.start = start;
 | |
| 			range.len = vma_end - start;
 | |
| 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
 | |
| 		}
 | |
| 
 | |
| 		/* Reset ptes for the whole vma range if wr-protected */
 | |
| 		if (userfaultfd_wp(vma))
 | |
| 			uffd_wp_range(mm, vma, start, vma_end - start, false);
 | |
| 
 | |
| 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 | |
| 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
 | |
| 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 | |
| 				 vma_policy(vma),
 | |
| 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
 | |
| 		if (prev) {
 | |
| 			vma = prev;
 | |
| 			mas_pause(&mas);
 | |
| 			goto next;
 | |
| 		}
 | |
| 		if (vma->vm_start < start) {
 | |
| 			ret = split_vma(mm, vma, start, 1);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			mas_pause(&mas);
 | |
| 		}
 | |
| 		if (vma->vm_end > end) {
 | |
| 			ret = split_vma(mm, vma, end, 0);
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 			mas_pause(&mas);
 | |
| 		}
 | |
| 	next:
 | |
| 		/*
 | |
| 		 * In the vma_merge() successful mprotect-like case 8:
 | |
| 		 * the next vma was merged into the current one and
 | |
| 		 * the current one has not been updated yet.
 | |
| 		 */
 | |
| 		userfaultfd_set_vm_flags(vma, new_flags);
 | |
| 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 | |
| 
 | |
| 	skip:
 | |
| 		prev = vma;
 | |
| 		start = vma->vm_end;
 | |
| 		vma = mas_next(&mas, end - 1);
 | |
| 	} while (vma);
 | |
| out_unlock:
 | |
| 	mmap_write_unlock(mm);
 | |
| 	mmput(mm);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * userfaultfd_wake may be used in combination with the
 | |
|  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
 | |
|  */
 | |
| static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
 | |
| 			    unsigned long arg)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct uffdio_range uffdio_wake;
 | |
| 	struct userfaultfd_wake_range range;
 | |
| 	const void __user *buf = (void __user *)arg;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	range.start = uffdio_wake.start;
 | |
| 	range.len = uffdio_wake.len;
 | |
| 
 | |
| 	/*
 | |
| 	 * len == 0 means wake all and we don't want to wake all here,
 | |
| 	 * so check it again to be sure.
 | |
| 	 */
 | |
| 	VM_BUG_ON(!range.len);
 | |
| 
 | |
| 	wake_userfault(ctx, &range);
 | |
| 	ret = 0;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
 | |
| 			    unsigned long arg)
 | |
| {
 | |
| 	__s64 ret;
 | |
| 	struct uffdio_copy uffdio_copy;
 | |
| 	struct uffdio_copy __user *user_uffdio_copy;
 | |
| 	struct userfaultfd_wake_range range;
 | |
| 
 | |
| 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
 | |
| 			   /* don't copy "copy" last field */
 | |
| 			   sizeof(uffdio_copy)-sizeof(__s64)))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * double check for wraparound just in case. copy_from_user()
 | |
| 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
 | |
| 	 * in the userland range.
 | |
| 	 */
 | |
| 	ret = -EINVAL;
 | |
| 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
 | |
| 		goto out;
 | |
| 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
 | |
| 		goto out;
 | |
| 	if (mmget_not_zero(ctx->mm)) {
 | |
| 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
 | |
| 				   uffdio_copy.len, &ctx->mmap_changing,
 | |
| 				   uffdio_copy.mode);
 | |
| 		mmput(ctx->mm);
 | |
| 	} else {
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
 | |
| 		return -EFAULT;
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	BUG_ON(!ret);
 | |
| 	/* len == 0 would wake all */
 | |
| 	range.len = ret;
 | |
| 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
 | |
| 		range.start = uffdio_copy.dst;
 | |
| 		wake_userfault(ctx, &range);
 | |
| 	}
 | |
| 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
 | |
| 				unsigned long arg)
 | |
| {
 | |
| 	__s64 ret;
 | |
| 	struct uffdio_zeropage uffdio_zeropage;
 | |
| 	struct uffdio_zeropage __user *user_uffdio_zeropage;
 | |
| 	struct userfaultfd_wake_range range;
 | |
| 
 | |
| 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
 | |
| 			   /* don't copy "zeropage" last field */
 | |
| 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
 | |
| 			     uffdio_zeropage.range.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = -EINVAL;
 | |
| 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mmget_not_zero(ctx->mm)) {
 | |
| 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
 | |
| 				     uffdio_zeropage.range.len,
 | |
| 				     &ctx->mmap_changing);
 | |
| 		mmput(ctx->mm);
 | |
| 	} else {
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
 | |
| 		return -EFAULT;
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	/* len == 0 would wake all */
 | |
| 	BUG_ON(!ret);
 | |
| 	range.len = ret;
 | |
| 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
 | |
| 		range.start = uffdio_zeropage.range.start;
 | |
| 		wake_userfault(ctx, &range);
 | |
| 	}
 | |
| 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
 | |
| 				    unsigned long arg)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct uffdio_writeprotect uffdio_wp;
 | |
| 	struct uffdio_writeprotect __user *user_uffdio_wp;
 | |
| 	struct userfaultfd_wake_range range;
 | |
| 	bool mode_wp, mode_dontwake;
 | |
| 
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
 | |
| 
 | |
| 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
 | |
| 			   sizeof(struct uffdio_writeprotect)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
 | |
| 			     uffdio_wp.range.len);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
 | |
| 			       UFFDIO_WRITEPROTECT_MODE_WP))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
 | |
| 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
 | |
| 
 | |
| 	if (mode_wp && mode_dontwake)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (mmget_not_zero(ctx->mm)) {
 | |
| 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
 | |
| 					  uffdio_wp.range.len, mode_wp,
 | |
| 					  &ctx->mmap_changing);
 | |
| 		mmput(ctx->mm);
 | |
| 	} else {
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!mode_wp && !mode_dontwake) {
 | |
| 		range.start = uffdio_wp.range.start;
 | |
| 		range.len = uffdio_wp.range.len;
 | |
| 		wake_userfault(ctx, &range);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
 | |
| {
 | |
| 	__s64 ret;
 | |
| 	struct uffdio_continue uffdio_continue;
 | |
| 	struct uffdio_continue __user *user_uffdio_continue;
 | |
| 	struct userfaultfd_wake_range range;
 | |
| 
 | |
| 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	if (atomic_read(&ctx->mmap_changing))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
 | |
| 			   /* don't copy the output fields */
 | |
| 			   sizeof(uffdio_continue) - (sizeof(__s64))))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
 | |
| 			     uffdio_continue.range.len);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	/* double check for wraparound just in case. */
 | |
| 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
 | |
| 	    uffdio_continue.range.start) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mmget_not_zero(ctx->mm)) {
 | |
| 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
 | |
| 				     uffdio_continue.range.len,
 | |
| 				     &ctx->mmap_changing);
 | |
| 		mmput(ctx->mm);
 | |
| 	} else {
 | |
| 		return -ESRCH;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
 | |
| 		return -EFAULT;
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* len == 0 would wake all */
 | |
| 	BUG_ON(!ret);
 | |
| 	range.len = ret;
 | |
| 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
 | |
| 		range.start = uffdio_continue.range.start;
 | |
| 		wake_userfault(ctx, &range);
 | |
| 	}
 | |
| 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline unsigned int uffd_ctx_features(__u64 user_features)
 | |
| {
 | |
| 	/*
 | |
| 	 * For the current set of features the bits just coincide. Set
 | |
| 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
 | |
| 	 */
 | |
| 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * userland asks for a certain API version and we return which bits
 | |
|  * and ioctl commands are implemented in this kernel for such API
 | |
|  * version or -EINVAL if unknown.
 | |
|  */
 | |
| static int userfaultfd_api(struct userfaultfd_ctx *ctx,
 | |
| 			   unsigned long arg)
 | |
| {
 | |
| 	struct uffdio_api uffdio_api;
 | |
| 	void __user *buf = (void __user *)arg;
 | |
| 	unsigned int ctx_features;
 | |
| 	int ret;
 | |
| 	__u64 features;
 | |
| 
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
 | |
| 		goto out;
 | |
| 	/* Ignore unsupported features (userspace built against newer kernel) */
 | |
| 	features = uffdio_api.features & UFFD_API_FEATURES;
 | |
| 	ret = -EPERM;
 | |
| 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
 | |
| 		goto err_out;
 | |
| 	/* report all available features and ioctls to userland */
 | |
| 	uffdio_api.features = UFFD_API_FEATURES;
 | |
| #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 | |
| 	uffdio_api.features &=
 | |
| 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
 | |
| #endif
 | |
| #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
 | |
| 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
 | |
| #endif
 | |
| #ifndef CONFIG_PTE_MARKER_UFFD_WP
 | |
| 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
 | |
| #endif
 | |
| 	uffdio_api.ioctls = UFFD_API_IOCTLS;
 | |
| 	ret = -EFAULT;
 | |
| 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* only enable the requested features for this uffd context */
 | |
| 	ctx_features = uffd_ctx_features(features);
 | |
| 	ret = -EINVAL;
 | |
| 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	return ret;
 | |
| err_out:
 | |
| 	memset(&uffdio_api, 0, sizeof(uffdio_api));
 | |
| 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
 | |
| 		ret = -EFAULT;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static long userfaultfd_ioctl(struct file *file, unsigned cmd,
 | |
| 			      unsigned long arg)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	struct userfaultfd_ctx *ctx = file->private_data;
 | |
| 
 | |
| 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch(cmd) {
 | |
| 	case UFFDIO_API:
 | |
| 		ret = userfaultfd_api(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_REGISTER:
 | |
| 		ret = userfaultfd_register(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_UNREGISTER:
 | |
| 		ret = userfaultfd_unregister(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_WAKE:
 | |
| 		ret = userfaultfd_wake(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_COPY:
 | |
| 		ret = userfaultfd_copy(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_ZEROPAGE:
 | |
| 		ret = userfaultfd_zeropage(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_WRITEPROTECT:
 | |
| 		ret = userfaultfd_writeprotect(ctx, arg);
 | |
| 		break;
 | |
| 	case UFFDIO_CONTINUE:
 | |
| 		ret = userfaultfd_continue(ctx, arg);
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = f->private_data;
 | |
| 	wait_queue_entry_t *wq;
 | |
| 	unsigned long pending = 0, total = 0;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
 | |
| 		pending++;
 | |
| 		total++;
 | |
| 	}
 | |
| 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
 | |
| 		total++;
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If more protocols will be added, there will be all shown
 | |
| 	 * separated by a space. Like this:
 | |
| 	 *	protocols: aa:... bb:...
 | |
| 	 */
 | |
| 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
 | |
| 		   pending, total, UFFD_API, ctx->features,
 | |
| 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct file_operations userfaultfd_fops = {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	.show_fdinfo	= userfaultfd_show_fdinfo,
 | |
| #endif
 | |
| 	.release	= userfaultfd_release,
 | |
| 	.poll		= userfaultfd_poll,
 | |
| 	.read		= userfaultfd_read,
 | |
| 	.unlocked_ioctl = userfaultfd_ioctl,
 | |
| 	.compat_ioctl	= compat_ptr_ioctl,
 | |
| 	.llseek		= noop_llseek,
 | |
| };
 | |
| 
 | |
| static void init_once_userfaultfd_ctx(void *mem)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
 | |
| 
 | |
| 	init_waitqueue_head(&ctx->fault_pending_wqh);
 | |
| 	init_waitqueue_head(&ctx->fault_wqh);
 | |
| 	init_waitqueue_head(&ctx->event_wqh);
 | |
| 	init_waitqueue_head(&ctx->fd_wqh);
 | |
| 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
 | |
| }
 | |
| 
 | |
| static int new_userfaultfd(int flags)
 | |
| {
 | |
| 	struct userfaultfd_ctx *ctx;
 | |
| 	int fd;
 | |
| 
 | |
| 	BUG_ON(!current->mm);
 | |
| 
 | |
| 	/* Check the UFFD_* constants for consistency.  */
 | |
| 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
 | |
| 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
 | |
| 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
 | |
| 
 | |
| 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	refcount_set(&ctx->refcount, 1);
 | |
| 	ctx->flags = flags;
 | |
| 	ctx->features = 0;
 | |
| 	ctx->released = false;
 | |
| 	atomic_set(&ctx->mmap_changing, 0);
 | |
| 	ctx->mm = current->mm;
 | |
| 	/* prevent the mm struct to be freed */
 | |
| 	mmgrab(ctx->mm);
 | |
| 
 | |
| 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
 | |
| 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
 | |
| 	if (fd < 0) {
 | |
| 		mmdrop(ctx->mm);
 | |
| 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 | |
| 	}
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| static inline bool userfaultfd_syscall_allowed(int flags)
 | |
| {
 | |
| 	/* Userspace-only page faults are always allowed */
 | |
| 	if (flags & UFFD_USER_MODE_ONLY)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * The user is requesting a userfaultfd which can handle kernel faults.
 | |
| 	 * Privileged users are always allowed to do this.
 | |
| 	 */
 | |
| 	if (capable(CAP_SYS_PTRACE))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
 | |
| 	return sysctl_unprivileged_userfaultfd;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(userfaultfd, int, flags)
 | |
| {
 | |
| 	if (!userfaultfd_syscall_allowed(flags))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	return new_userfaultfd(flags);
 | |
| }
 | |
| 
 | |
| static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
 | |
| {
 | |
| 	if (cmd != USERFAULTFD_IOC_NEW)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return new_userfaultfd(flags);
 | |
| }
 | |
| 
 | |
| static const struct file_operations userfaultfd_dev_fops = {
 | |
| 	.unlocked_ioctl = userfaultfd_dev_ioctl,
 | |
| 	.compat_ioctl = userfaultfd_dev_ioctl,
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.llseek = noop_llseek,
 | |
| };
 | |
| 
 | |
| static struct miscdevice userfaultfd_misc = {
 | |
| 	.minor = MISC_DYNAMIC_MINOR,
 | |
| 	.name = "userfaultfd",
 | |
| 	.fops = &userfaultfd_dev_fops
 | |
| };
 | |
| 
 | |
| static int __init userfaultfd_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = misc_register(&userfaultfd_misc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
 | |
| 						sizeof(struct userfaultfd_ctx),
 | |
| 						0,
 | |
| 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
 | |
| 						init_once_userfaultfd_ctx);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(userfaultfd_init);
 |