mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 858119e159
			
		
	
	
		858119e159
		
	
	
	
	
		
			
			Remove the "inline" keyword from a bunch of big functions in the kernel with the goal of shrinking it by 30kb to 40kb Signed-off-by: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Jeff Garzik <jgarzik@pobox.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2348 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2348 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * raid6main.c : Multiple Devices driver for Linux
 | |
|  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 | |
|  *	   Copyright (C) 1999, 2000 Ingo Molnar
 | |
|  *	   Copyright (C) 2002, 2003 H. Peter Anvin
 | |
|  *
 | |
|  * RAID-6 management functions.  This code is derived from raid5.c.
 | |
|  * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1).
 | |
|  *
 | |
|  * Thanks to Penguin Computing for making the RAID-6 development possible
 | |
|  * by donating a test server!
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * (for example /usr/src/linux/COPYING); if not, write to the Free
 | |
|  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <linux/config.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <asm/atomic.h>
 | |
| #include "raid6.h"
 | |
| 
 | |
| #include <linux/raid/bitmap.h>
 | |
| 
 | |
| /*
 | |
|  * Stripe cache
 | |
|  */
 | |
| 
 | |
| #define NR_STRIPES		256
 | |
| #define STRIPE_SIZE		PAGE_SIZE
 | |
| #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
 | |
| #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
 | |
| #define	IO_THRESHOLD		1
 | |
| #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
 | |
| #define HASH_MASK		(NR_HASH - 1)
 | |
| 
 | |
| #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
 | |
| 
 | |
| /* bio's attached to a stripe+device for I/O are linked together in bi_sector
 | |
|  * order without overlap.  There may be several bio's per stripe+device, and
 | |
|  * a bio could span several devices.
 | |
|  * When walking this list for a particular stripe+device, we must never proceed
 | |
|  * beyond a bio that extends past this device, as the next bio might no longer
 | |
|  * be valid.
 | |
|  * This macro is used to determine the 'next' bio in the list, given the sector
 | |
|  * of the current stripe+device
 | |
|  */
 | |
| #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
 | |
| /*
 | |
|  * The following can be used to debug the driver
 | |
|  */
 | |
| #define RAID6_DEBUG	0	/* Extremely verbose printk */
 | |
| #define RAID6_PARANOIA	1	/* Check spinlocks */
 | |
| #define RAID6_DUMPSTATE 0	/* Include stripe cache state in /proc/mdstat */
 | |
| #if RAID6_PARANOIA && defined(CONFIG_SMP)
 | |
| # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
 | |
| #else
 | |
| # define CHECK_DEVLOCK()
 | |
| #endif
 | |
| 
 | |
| #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x)))
 | |
| #if RAID6_DEBUG
 | |
| #undef inline
 | |
| #undef __inline__
 | |
| #define inline
 | |
| #define __inline__
 | |
| #endif
 | |
| 
 | |
| #if !RAID6_USE_EMPTY_ZERO_PAGE
 | |
| /* In .bss so it's zeroed */
 | |
| const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
 | |
| #endif
 | |
| 
 | |
| static inline int raid6_next_disk(int disk, int raid_disks)
 | |
| {
 | |
| 	disk++;
 | |
| 	return (disk < raid_disks) ? disk : 0;
 | |
| }
 | |
| 
 | |
| static void print_raid6_conf (raid6_conf_t *conf);
 | |
| 
 | |
| static void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&sh->count)) {
 | |
| 		if (!list_empty(&sh->lru))
 | |
| 			BUG();
 | |
| 		if (atomic_read(&conf->active_stripes)==0)
 | |
| 			BUG();
 | |
| 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
 | |
| 			if (test_bit(STRIPE_DELAYED, &sh->state))
 | |
| 				list_add_tail(&sh->lru, &conf->delayed_list);
 | |
| 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 | |
| 				 conf->seq_write == sh->bm_seq)
 | |
| 				list_add_tail(&sh->lru, &conf->bitmap_list);
 | |
| 			else {
 | |
| 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
 | |
| 				list_add_tail(&sh->lru, &conf->handle_list);
 | |
| 			}
 | |
| 			md_wakeup_thread(conf->mddev->thread);
 | |
| 		} else {
 | |
| 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 | |
| 				atomic_dec(&conf->preread_active_stripes);
 | |
| 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 | |
| 					md_wakeup_thread(conf->mddev->thread);
 | |
| 			}
 | |
| 			list_add_tail(&sh->lru, &conf->inactive_list);
 | |
| 			atomic_dec(&conf->active_stripes);
 | |
| 			if (!conf->inactive_blocked ||
 | |
| 			    atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4))
 | |
| 				wake_up(&conf->wait_for_stripe);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| static void release_stripe(struct stripe_head *sh)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	__release_stripe(conf, sh);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void remove_hash(struct stripe_head *sh)
 | |
| {
 | |
| 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
 | |
| 
 | |
| 	hlist_del_init(&sh->hash);
 | |
| }
 | |
| 
 | |
| static inline void insert_hash(raid6_conf_t *conf, struct stripe_head *sh)
 | |
| {
 | |
| 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
 | |
| 
 | |
| 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
 | |
| 
 | |
| 	CHECK_DEVLOCK();
 | |
| 	hlist_add_head(&sh->hash, hp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* find an idle stripe, make sure it is unhashed, and return it. */
 | |
| static struct stripe_head *get_free_stripe(raid6_conf_t *conf)
 | |
| {
 | |
| 	struct stripe_head *sh = NULL;
 | |
| 	struct list_head *first;
 | |
| 
 | |
| 	CHECK_DEVLOCK();
 | |
| 	if (list_empty(&conf->inactive_list))
 | |
| 		goto out;
 | |
| 	first = conf->inactive_list.next;
 | |
| 	sh = list_entry(first, struct stripe_head, lru);
 | |
| 	list_del_init(first);
 | |
| 	remove_hash(sh);
 | |
| 	atomic_inc(&conf->active_stripes);
 | |
| out:
 | |
| 	return sh;
 | |
| }
 | |
| 
 | |
| static void shrink_buffers(struct stripe_head *sh, int num)
 | |
| {
 | |
| 	struct page *p;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i=0; i<num ; i++) {
 | |
| 		p = sh->dev[i].page;
 | |
| 		if (!p)
 | |
| 			continue;
 | |
| 		sh->dev[i].page = NULL;
 | |
| 		put_page(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int grow_buffers(struct stripe_head *sh, int num)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i=0; i<num; i++) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (!(page = alloc_page(GFP_KERNEL))) {
 | |
| 			return 1;
 | |
| 		}
 | |
| 		sh->dev[i].page = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void raid6_build_block (struct stripe_head *sh, int i);
 | |
| 
 | |
| static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int disks = conf->raid_disks, i;
 | |
| 
 | |
| 	if (atomic_read(&sh->count) != 0)
 | |
| 		BUG();
 | |
| 	if (test_bit(STRIPE_HANDLE, &sh->state))
 | |
| 		BUG();
 | |
| 
 | |
| 	CHECK_DEVLOCK();
 | |
| 	PRINTK("init_stripe called, stripe %llu\n",
 | |
| 		(unsigned long long)sh->sector);
 | |
| 
 | |
| 	remove_hash(sh);
 | |
| 
 | |
| 	sh->sector = sector;
 | |
| 	sh->pd_idx = pd_idx;
 | |
| 	sh->state = 0;
 | |
| 
 | |
| 	for (i=disks; i--; ) {
 | |
| 		struct r5dev *dev = &sh->dev[i];
 | |
| 
 | |
| 		if (dev->toread || dev->towrite || dev->written ||
 | |
| 		    test_bit(R5_LOCKED, &dev->flags)) {
 | |
| 			PRINTK("sector=%llx i=%d %p %p %p %d\n",
 | |
| 			       (unsigned long long)sh->sector, i, dev->toread,
 | |
| 			       dev->towrite, dev->written,
 | |
| 			       test_bit(R5_LOCKED, &dev->flags));
 | |
| 			BUG();
 | |
| 		}
 | |
| 		dev->flags = 0;
 | |
| 		raid6_build_block(sh, i);
 | |
| 	}
 | |
| 	insert_hash(conf, sh);
 | |
| }
 | |
| 
 | |
| static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	struct hlist_node *hn;
 | |
| 
 | |
| 	CHECK_DEVLOCK();
 | |
| 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
 | |
| 	hlist_for_each_entry (sh, hn,  stripe_hash(conf, sector), hash)
 | |
| 		if (sh->sector == sector)
 | |
| 			return sh;
 | |
| 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void unplug_slaves(mddev_t *mddev);
 | |
| 
 | |
| static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector,
 | |
| 					     int pd_idx, int noblock)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
 | |
| 
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 
 | |
| 	do {
 | |
| 		wait_event_lock_irq(conf->wait_for_stripe,
 | |
| 				    conf->quiesce == 0,
 | |
| 				    conf->device_lock, /* nothing */);
 | |
| 		sh = __find_stripe(conf, sector);
 | |
| 		if (!sh) {
 | |
| 			if (!conf->inactive_blocked)
 | |
| 				sh = get_free_stripe(conf);
 | |
| 			if (noblock && sh == NULL)
 | |
| 				break;
 | |
| 			if (!sh) {
 | |
| 				conf->inactive_blocked = 1;
 | |
| 				wait_event_lock_irq(conf->wait_for_stripe,
 | |
| 						    !list_empty(&conf->inactive_list) &&
 | |
| 						    (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4)
 | |
| 						     || !conf->inactive_blocked),
 | |
| 						    conf->device_lock,
 | |
| 						    unplug_slaves(conf->mddev);
 | |
| 					);
 | |
| 				conf->inactive_blocked = 0;
 | |
| 			} else
 | |
| 				init_stripe(sh, sector, pd_idx);
 | |
| 		} else {
 | |
| 			if (atomic_read(&sh->count)) {
 | |
| 				if (!list_empty(&sh->lru))
 | |
| 					BUG();
 | |
| 			} else {
 | |
| 				if (!test_bit(STRIPE_HANDLE, &sh->state))
 | |
| 					atomic_inc(&conf->active_stripes);
 | |
| 				if (list_empty(&sh->lru))
 | |
| 					BUG();
 | |
| 				list_del_init(&sh->lru);
 | |
| 			}
 | |
| 		}
 | |
| 	} while (sh == NULL);
 | |
| 
 | |
| 	if (sh)
 | |
| 		atomic_inc(&sh->count);
 | |
| 
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	return sh;
 | |
| }
 | |
| 
 | |
| static int grow_stripes(raid6_conf_t *conf, int num)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	kmem_cache_t *sc;
 | |
| 	int devs = conf->raid_disks;
 | |
| 
 | |
| 	sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev));
 | |
| 
 | |
| 	sc = kmem_cache_create(conf->cache_name,
 | |
| 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
 | |
| 			       0, 0, NULL, NULL);
 | |
| 	if (!sc)
 | |
| 		return 1;
 | |
| 	conf->slab_cache = sc;
 | |
| 	while (num--) {
 | |
| 		sh = kmem_cache_alloc(sc, GFP_KERNEL);
 | |
| 		if (!sh)
 | |
| 			return 1;
 | |
| 		memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev));
 | |
| 		sh->raid_conf = conf;
 | |
| 		spin_lock_init(&sh->lock);
 | |
| 
 | |
| 		if (grow_buffers(sh, conf->raid_disks)) {
 | |
| 			shrink_buffers(sh, conf->raid_disks);
 | |
| 			kmem_cache_free(sc, sh);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* we just created an active stripe so... */
 | |
| 		atomic_set(&sh->count, 1);
 | |
| 		atomic_inc(&conf->active_stripes);
 | |
| 		INIT_LIST_HEAD(&sh->lru);
 | |
| 		release_stripe(sh);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void shrink_stripes(raid6_conf_t *conf)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	while (1) {
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		sh = get_free_stripe(conf);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		if (!sh)
 | |
| 			break;
 | |
| 		if (atomic_read(&sh->count))
 | |
| 			BUG();
 | |
| 		shrink_buffers(sh, conf->raid_disks);
 | |
| 		kmem_cache_free(conf->slab_cache, sh);
 | |
| 		atomic_dec(&conf->active_stripes);
 | |
| 	}
 | |
| 	kmem_cache_destroy(conf->slab_cache);
 | |
| 	conf->slab_cache = NULL;
 | |
| }
 | |
| 
 | |
| static int raid6_end_read_request(struct bio * bi, unsigned int bytes_done,
 | |
| 				  int error)
 | |
| {
 | |
|  	struct stripe_head *sh = bi->bi_private;
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int disks = conf->raid_disks, i;
 | |
| 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 
 | |
| 	if (bi->bi_size)
 | |
| 		return 1;
 | |
| 
 | |
| 	for (i=0 ; i<disks; i++)
 | |
| 		if (bi == &sh->dev[i].req)
 | |
| 			break;
 | |
| 
 | |
| 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
 | |
| 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
 | |
| 		uptodate);
 | |
| 	if (i == disks) {
 | |
| 		BUG();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (uptodate) {
 | |
| #if 0
 | |
| 		struct bio *bio;
 | |
| 		unsigned long flags;
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		/* we can return a buffer if we bypassed the cache or
 | |
| 		 * if the top buffer is not in highmem.  If there are
 | |
| 		 * multiple buffers, leave the extra work to
 | |
| 		 * handle_stripe
 | |
| 		 */
 | |
| 		buffer = sh->bh_read[i];
 | |
| 		if (buffer &&
 | |
| 		    (!PageHighMem(buffer->b_page)
 | |
| 		     || buffer->b_page == bh->b_page )
 | |
| 			) {
 | |
| 			sh->bh_read[i] = buffer->b_reqnext;
 | |
| 			buffer->b_reqnext = NULL;
 | |
| 		} else
 | |
| 			buffer = NULL;
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 		if (sh->bh_page[i]==bh->b_page)
 | |
| 			set_buffer_uptodate(bh);
 | |
| 		if (buffer) {
 | |
| 			if (buffer->b_page != bh->b_page)
 | |
| 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
 | |
| 			buffer->b_end_io(buffer, 1);
 | |
| 		}
 | |
| #else
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
 | |
| #endif
 | |
| 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
 | |
| 			printk(KERN_INFO "raid6: read error corrected!!\n");
 | |
| 			clear_bit(R5_ReadError, &sh->dev[i].flags);
 | |
| 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
 | |
| 		}
 | |
| 		if (atomic_read(&conf->disks[i].rdev->read_errors))
 | |
| 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
 | |
| 	} else {
 | |
| 		int retry = 0;
 | |
| 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
 | |
| 		atomic_inc(&conf->disks[i].rdev->read_errors);
 | |
| 		if (conf->mddev->degraded)
 | |
| 			printk(KERN_WARNING "raid6: read error not correctable.\n");
 | |
| 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
 | |
| 			/* Oh, no!!! */
 | |
| 			printk(KERN_WARNING "raid6: read error NOT corrected!!\n");
 | |
| 		else if (atomic_read(&conf->disks[i].rdev->read_errors)
 | |
| 			 > conf->max_nr_stripes)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "raid6: Too many read errors, failing device.\n");
 | |
| 		else
 | |
| 			retry = 1;
 | |
| 		if (retry)
 | |
| 			set_bit(R5_ReadError, &sh->dev[i].flags);
 | |
| 		else {
 | |
| 			clear_bit(R5_ReadError, &sh->dev[i].flags);
 | |
| 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
 | |
| 			md_error(conf->mddev, conf->disks[i].rdev);
 | |
| 		}
 | |
| 	}
 | |
| 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
 | |
| #if 0
 | |
| 	/* must restore b_page before unlocking buffer... */
 | |
| 	if (sh->bh_page[i] != bh->b_page) {
 | |
| 		bh->b_page = sh->bh_page[i];
 | |
| 		bh->b_data = page_address(bh->b_page);
 | |
| 		clear_buffer_uptodate(bh);
 | |
| 	}
 | |
| #endif
 | |
| 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
 | |
| 	set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 	release_stripe(sh);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done,
 | |
| 				    int error)
 | |
| {
 | |
|  	struct stripe_head *sh = bi->bi_private;
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int disks = conf->raid_disks, i;
 | |
| 	unsigned long flags;
 | |
| 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 
 | |
| 	if (bi->bi_size)
 | |
| 		return 1;
 | |
| 
 | |
| 	for (i=0 ; i<disks; i++)
 | |
| 		if (bi == &sh->dev[i].req)
 | |
| 			break;
 | |
| 
 | |
| 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
 | |
| 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
 | |
| 		uptodate);
 | |
| 	if (i == disks) {
 | |
| 		BUG();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 	if (!uptodate)
 | |
| 		md_error(conf->mddev, conf->disks[i].rdev);
 | |
| 
 | |
| 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
 | |
| 
 | |
| 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
 | |
| 	set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 	__release_stripe(conf, sh);
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static sector_t compute_blocknr(struct stripe_head *sh, int i);
 | |
| 
 | |
| static void raid6_build_block (struct stripe_head *sh, int i)
 | |
| {
 | |
| 	struct r5dev *dev = &sh->dev[i];
 | |
| 	int pd_idx = sh->pd_idx;
 | |
| 	int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks);
 | |
| 
 | |
| 	bio_init(&dev->req);
 | |
| 	dev->req.bi_io_vec = &dev->vec;
 | |
| 	dev->req.bi_vcnt++;
 | |
| 	dev->req.bi_max_vecs++;
 | |
| 	dev->vec.bv_page = dev->page;
 | |
| 	dev->vec.bv_len = STRIPE_SIZE;
 | |
| 	dev->vec.bv_offset = 0;
 | |
| 
 | |
| 	dev->req.bi_sector = sh->sector;
 | |
| 	dev->req.bi_private = sh;
 | |
| 
 | |
| 	dev->flags = 0;
 | |
| 	if (i != pd_idx && i != qd_idx)
 | |
| 		dev->sector = compute_blocknr(sh, i);
 | |
| }
 | |
| 
 | |
| static void error(mddev_t *mddev, mdk_rdev_t *rdev)
 | |
| {
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 	raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
 | |
| 	PRINTK("raid6: error called\n");
 | |
| 
 | |
| 	if (!test_bit(Faulty, &rdev->flags)) {
 | |
| 		mddev->sb_dirty = 1;
 | |
| 		if (test_bit(In_sync, &rdev->flags)) {
 | |
| 			conf->working_disks--;
 | |
| 			mddev->degraded++;
 | |
| 			conf->failed_disks++;
 | |
| 			clear_bit(In_sync, &rdev->flags);
 | |
| 			/*
 | |
| 			 * if recovery was running, make sure it aborts.
 | |
| 			 */
 | |
| 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
 | |
| 		}
 | |
| 		set_bit(Faulty, &rdev->flags);
 | |
| 		printk (KERN_ALERT
 | |
| 			"raid6: Disk failure on %s, disabling device."
 | |
| 			" Operation continuing on %d devices\n",
 | |
| 			bdevname(rdev->bdev,b), conf->working_disks);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Input: a 'big' sector number,
 | |
|  * Output: index of the data and parity disk, and the sector # in them.
 | |
|  */
 | |
| static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks,
 | |
| 			unsigned int data_disks, unsigned int * dd_idx,
 | |
| 			unsigned int * pd_idx, raid6_conf_t *conf)
 | |
| {
 | |
| 	long stripe;
 | |
| 	unsigned long chunk_number;
 | |
| 	unsigned int chunk_offset;
 | |
| 	sector_t new_sector;
 | |
| 	int sectors_per_chunk = conf->chunk_size >> 9;
 | |
| 
 | |
| 	/* First compute the information on this sector */
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the chunk number and the sector offset inside the chunk
 | |
| 	 */
 | |
| 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
 | |
| 	chunk_number = r_sector;
 | |
| 	if ( r_sector != chunk_number ) {
 | |
| 		printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n",
 | |
| 		       (unsigned long long)r_sector, (unsigned long)chunk_number);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the stripe number
 | |
| 	 */
 | |
| 	stripe = chunk_number / data_disks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the data disk and parity disk indexes inside the stripe
 | |
| 	 */
 | |
| 	*dd_idx = chunk_number % data_disks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Select the parity disk based on the user selected algorithm.
 | |
| 	 */
 | |
| 
 | |
| 	/**** FIX THIS ****/
 | |
| 	switch (conf->algorithm) {
 | |
| 	case ALGORITHM_LEFT_ASYMMETRIC:
 | |
| 		*pd_idx = raid_disks - 1 - (stripe % raid_disks);
 | |
| 		if (*pd_idx == raid_disks-1)
 | |
| 		  	(*dd_idx)++; 	/* Q D D D P */
 | |
| 		else if (*dd_idx >= *pd_idx)
 | |
| 		  	(*dd_idx) += 2; /* D D P Q D */
 | |
| 		break;
 | |
| 	case ALGORITHM_RIGHT_ASYMMETRIC:
 | |
| 		*pd_idx = stripe % raid_disks;
 | |
| 		if (*pd_idx == raid_disks-1)
 | |
| 		  	(*dd_idx)++; 	/* Q D D D P */
 | |
| 		else if (*dd_idx >= *pd_idx)
 | |
| 		  	(*dd_idx) += 2; /* D D P Q D */
 | |
| 		break;
 | |
| 	case ALGORITHM_LEFT_SYMMETRIC:
 | |
| 		*pd_idx = raid_disks - 1 - (stripe % raid_disks);
 | |
| 		*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
 | |
| 		break;
 | |
| 	case ALGORITHM_RIGHT_SYMMETRIC:
 | |
| 		*pd_idx = stripe % raid_disks;
 | |
| 		*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
 | |
| 			conf->algorithm);
 | |
| 	}
 | |
| 
 | |
| 	PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n",
 | |
| 	       chunk_number, *pd_idx, *dd_idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, compute the new sector number
 | |
| 	 */
 | |
| 	new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset;
 | |
| 	return new_sector;
 | |
| }
 | |
| 
 | |
| 
 | |
| static sector_t compute_blocknr(struct stripe_head *sh, int i)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int raid_disks = conf->raid_disks, data_disks = raid_disks - 2;
 | |
| 	sector_t new_sector = sh->sector, check;
 | |
| 	int sectors_per_chunk = conf->chunk_size >> 9;
 | |
| 	sector_t stripe;
 | |
| 	int chunk_offset;
 | |
| 	int chunk_number, dummy1, dummy2, dd_idx = i;
 | |
| 	sector_t r_sector;
 | |
| 	int i0 = i;
 | |
| 
 | |
| 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
 | |
| 	stripe = new_sector;
 | |
| 	if ( new_sector != stripe ) {
 | |
| 		printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n",
 | |
| 		       (unsigned long long)new_sector, (unsigned long)stripe);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	switch (conf->algorithm) {
 | |
| 		case ALGORITHM_LEFT_ASYMMETRIC:
 | |
| 		case ALGORITHM_RIGHT_ASYMMETRIC:
 | |
| 		  	if (sh->pd_idx == raid_disks-1)
 | |
| 				i--; 	/* Q D D D P */
 | |
| 			else if (i > sh->pd_idx)
 | |
| 				i -= 2; /* D D P Q D */
 | |
| 			break;
 | |
| 		case ALGORITHM_LEFT_SYMMETRIC:
 | |
| 		case ALGORITHM_RIGHT_SYMMETRIC:
 | |
| 			if (sh->pd_idx == raid_disks-1)
 | |
| 				i--; /* Q D D D P */
 | |
| 			else {
 | |
| 				/* D D P Q D */
 | |
| 				if (i < sh->pd_idx)
 | |
| 					i += raid_disks;
 | |
| 				i -= (sh->pd_idx + 2);
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
 | |
| 				conf->algorithm);
 | |
| 	}
 | |
| 
 | |
| 	PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i);
 | |
| 
 | |
| 	chunk_number = stripe * data_disks + i;
 | |
| 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
 | |
| 
 | |
| 	check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
 | |
| 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
 | |
| 		printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return r_sector;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Copy data between a page in the stripe cache, and one or more bion
 | |
|  * The page could align with the middle of the bio, or there could be
 | |
|  * several bion, each with several bio_vecs, which cover part of the page
 | |
|  * Multiple bion are linked together on bi_next.  There may be extras
 | |
|  * at the end of this list.  We ignore them.
 | |
|  */
 | |
| static void copy_data(int frombio, struct bio *bio,
 | |
| 		     struct page *page,
 | |
| 		     sector_t sector)
 | |
| {
 | |
| 	char *pa = page_address(page);
 | |
| 	struct bio_vec *bvl;
 | |
| 	int i;
 | |
| 	int page_offset;
 | |
| 
 | |
| 	if (bio->bi_sector >= sector)
 | |
| 		page_offset = (signed)(bio->bi_sector - sector) * 512;
 | |
| 	else
 | |
| 		page_offset = (signed)(sector - bio->bi_sector) * -512;
 | |
| 	bio_for_each_segment(bvl, bio, i) {
 | |
| 		int len = bio_iovec_idx(bio,i)->bv_len;
 | |
| 		int clen;
 | |
| 		int b_offset = 0;
 | |
| 
 | |
| 		if (page_offset < 0) {
 | |
| 			b_offset = -page_offset;
 | |
| 			page_offset += b_offset;
 | |
| 			len -= b_offset;
 | |
| 		}
 | |
| 
 | |
| 		if (len > 0 && page_offset + len > STRIPE_SIZE)
 | |
| 			clen = STRIPE_SIZE - page_offset;
 | |
| 		else clen = len;
 | |
| 
 | |
| 		if (clen > 0) {
 | |
| 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
 | |
| 			if (frombio)
 | |
| 				memcpy(pa+page_offset, ba+b_offset, clen);
 | |
| 			else
 | |
| 				memcpy(ba+b_offset, pa+page_offset, clen);
 | |
| 			__bio_kunmap_atomic(ba, KM_USER0);
 | |
| 		}
 | |
| 		if (clen < len) /* hit end of page */
 | |
| 			break;
 | |
| 		page_offset +=  len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define check_xor() 	do { 						\
 | |
| 			   if (count == MAX_XOR_BLOCKS) {		\
 | |
| 				xor_block(count, STRIPE_SIZE, ptr);	\
 | |
| 				count = 1;				\
 | |
| 			   }						\
 | |
| 			} while(0)
 | |
| 
 | |
| /* Compute P and Q syndromes */
 | |
| static void compute_parity(struct stripe_head *sh, int method)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
 | |
| 	struct bio *chosen;
 | |
| 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
 | |
| 	void *ptrs[disks];
 | |
| 
 | |
| 	qd_idx = raid6_next_disk(pd_idx, disks);
 | |
| 	d0_idx = raid6_next_disk(qd_idx, disks);
 | |
| 
 | |
| 	PRINTK("compute_parity, stripe %llu, method %d\n",
 | |
| 		(unsigned long long)sh->sector, method);
 | |
| 
 | |
| 	switch(method) {
 | |
| 	case READ_MODIFY_WRITE:
 | |
| 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
 | |
| 	case RECONSTRUCT_WRITE:
 | |
| 		for (i= disks; i-- ;)
 | |
| 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
 | |
| 				chosen = sh->dev[i].towrite;
 | |
| 				sh->dev[i].towrite = NULL;
 | |
| 
 | |
| 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
 | |
| 					wake_up(&conf->wait_for_overlap);
 | |
| 
 | |
| 				if (sh->dev[i].written) BUG();
 | |
| 				sh->dev[i].written = chosen;
 | |
| 			}
 | |
| 		break;
 | |
| 	case CHECK_PARITY:
 | |
| 		BUG();		/* Not implemented yet */
 | |
| 	}
 | |
| 
 | |
| 	for (i = disks; i--;)
 | |
| 		if (sh->dev[i].written) {
 | |
| 			sector_t sector = sh->dev[i].sector;
 | |
| 			struct bio *wbi = sh->dev[i].written;
 | |
| 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
 | |
| 				copy_data(1, wbi, sh->dev[i].page, sector);
 | |
| 				wbi = r5_next_bio(wbi, sector);
 | |
| 			}
 | |
| 
 | |
| 			set_bit(R5_LOCKED, &sh->dev[i].flags);
 | |
| 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
 | |
| 		}
 | |
| 
 | |
| //	switch(method) {
 | |
| //	case RECONSTRUCT_WRITE:
 | |
| //	case CHECK_PARITY:
 | |
| //	case UPDATE_PARITY:
 | |
| 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
 | |
| 		/* FIX: Is this ordering of drives even remotely optimal? */
 | |
| 		count = 0;
 | |
| 		i = d0_idx;
 | |
| 		do {
 | |
| 			ptrs[count++] = page_address(sh->dev[i].page);
 | |
| 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
 | |
| 				printk("block %d/%d not uptodate on parity calc\n", i,count);
 | |
| 			i = raid6_next_disk(i, disks);
 | |
| 		} while ( i != d0_idx );
 | |
| //		break;
 | |
| //	}
 | |
| 
 | |
| 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
 | |
| 
 | |
| 	switch(method) {
 | |
| 	case RECONSTRUCT_WRITE:
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
 | |
| 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
 | |
| 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
 | |
| 		break;
 | |
| 	case UPDATE_PARITY:
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Compute one missing block */
 | |
| static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int i, count, disks = conf->raid_disks;
 | |
| 	void *ptr[MAX_XOR_BLOCKS], *p;
 | |
| 	int pd_idx = sh->pd_idx;
 | |
| 	int qd_idx = raid6_next_disk(pd_idx, disks);
 | |
| 
 | |
| 	PRINTK("compute_block_1, stripe %llu, idx %d\n",
 | |
| 		(unsigned long long)sh->sector, dd_idx);
 | |
| 
 | |
| 	if ( dd_idx == qd_idx ) {
 | |
| 		/* We're actually computing the Q drive */
 | |
| 		compute_parity(sh, UPDATE_PARITY);
 | |
| 	} else {
 | |
| 		ptr[0] = page_address(sh->dev[dd_idx].page);
 | |
| 		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
 | |
| 		count = 1;
 | |
| 		for (i = disks ; i--; ) {
 | |
| 			if (i == dd_idx || i == qd_idx)
 | |
| 				continue;
 | |
| 			p = page_address(sh->dev[i].page);
 | |
| 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
 | |
| 				ptr[count++] = p;
 | |
| 			else
 | |
| 				printk("compute_block() %d, stripe %llu, %d"
 | |
| 				       " not present\n", dd_idx,
 | |
| 				       (unsigned long long)sh->sector, i);
 | |
| 
 | |
| 			check_xor();
 | |
| 		}
 | |
| 		if (count != 1)
 | |
| 			xor_block(count, STRIPE_SIZE, ptr);
 | |
| 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
 | |
| 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Compute two missing blocks */
 | |
| static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int i, count, disks = conf->raid_disks;
 | |
| 	int pd_idx = sh->pd_idx;
 | |
| 	int qd_idx = raid6_next_disk(pd_idx, disks);
 | |
| 	int d0_idx = raid6_next_disk(qd_idx, disks);
 | |
| 	int faila, failb;
 | |
| 
 | |
| 	/* faila and failb are disk numbers relative to d0_idx */
 | |
| 	/* pd_idx become disks-2 and qd_idx become disks-1 */
 | |
| 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
 | |
| 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
 | |
| 
 | |
| 	BUG_ON(faila == failb);
 | |
| 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
 | |
| 
 | |
| 	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
 | |
| 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
 | |
| 
 | |
| 	if ( failb == disks-1 ) {
 | |
| 		/* Q disk is one of the missing disks */
 | |
| 		if ( faila == disks-2 ) {
 | |
| 			/* Missing P+Q, just recompute */
 | |
| 			compute_parity(sh, UPDATE_PARITY);
 | |
| 			return;
 | |
| 		} else {
 | |
| 			/* We're missing D+Q; recompute D from P */
 | |
| 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
 | |
| 			compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We're missing D+P or D+D; build pointer table */
 | |
| 	{
 | |
| 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
 | |
| 		void *ptrs[disks];
 | |
| 
 | |
| 		count = 0;
 | |
| 		i = d0_idx;
 | |
| 		do {
 | |
| 			ptrs[count++] = page_address(sh->dev[i].page);
 | |
| 			i = raid6_next_disk(i, disks);
 | |
| 			if (i != dd_idx1 && i != dd_idx2 &&
 | |
| 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
 | |
| 				printk("compute_2 with missing block %d/%d\n", count, i);
 | |
| 		} while ( i != d0_idx );
 | |
| 
 | |
| 		if ( failb == disks-2 ) {
 | |
| 			/* We're missing D+P. */
 | |
| 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
 | |
| 		} else {
 | |
| 			/* We're missing D+D. */
 | |
| 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
 | |
| 		}
 | |
| 
 | |
| 		/* Both the above update both missing blocks */
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
 | |
| 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Each stripe/dev can have one or more bion attached.
 | |
|  * toread/towrite point to the first in a chain.
 | |
|  * The bi_next chain must be in order.
 | |
|  */
 | |
| static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
 | |
| {
 | |
| 	struct bio **bip;
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int firstwrite=0;
 | |
| 
 | |
| 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
 | |
| 		(unsigned long long)bi->bi_sector,
 | |
| 		(unsigned long long)sh->sector);
 | |
| 
 | |
| 
 | |
| 	spin_lock(&sh->lock);
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	if (forwrite) {
 | |
| 		bip = &sh->dev[dd_idx].towrite;
 | |
| 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
 | |
| 			firstwrite = 1;
 | |
| 	} else
 | |
| 		bip = &sh->dev[dd_idx].toread;
 | |
| 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
 | |
| 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
 | |
| 			goto overlap;
 | |
| 		bip = &(*bip)->bi_next;
 | |
| 	}
 | |
| 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
 | |
| 		goto overlap;
 | |
| 
 | |
| 	if (*bip && bi->bi_next && (*bip) != bi->bi_next)
 | |
| 		BUG();
 | |
| 	if (*bip)
 | |
| 		bi->bi_next = *bip;
 | |
| 	*bip = bi;
 | |
| 	bi->bi_phys_segments ++;
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	spin_unlock(&sh->lock);
 | |
| 
 | |
| 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
 | |
| 		(unsigned long long)bi->bi_sector,
 | |
| 		(unsigned long long)sh->sector, dd_idx);
 | |
| 
 | |
| 	if (conf->mddev->bitmap && firstwrite) {
 | |
| 		sh->bm_seq = conf->seq_write;
 | |
| 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
 | |
| 				  STRIPE_SECTORS, 0);
 | |
| 		set_bit(STRIPE_BIT_DELAY, &sh->state);
 | |
| 	}
 | |
| 
 | |
| 	if (forwrite) {
 | |
| 		/* check if page is covered */
 | |
| 		sector_t sector = sh->dev[dd_idx].sector;
 | |
| 		for (bi=sh->dev[dd_idx].towrite;
 | |
| 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
 | |
| 			     bi && bi->bi_sector <= sector;
 | |
| 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
 | |
| 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
 | |
| 				sector = bi->bi_sector + (bi->bi_size>>9);
 | |
| 		}
 | |
| 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
 | |
| 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
 | |
| 	}
 | |
| 	return 1;
 | |
| 
 | |
|  overlap:
 | |
| 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	spin_unlock(&sh->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int page_is_zero(struct page *p)
 | |
| {
 | |
| 	char *a = page_address(p);
 | |
| 	return ((*(u32*)a) == 0 &&
 | |
| 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
 | |
| }
 | |
| /*
 | |
|  * handle_stripe - do things to a stripe.
 | |
|  *
 | |
|  * We lock the stripe and then examine the state of various bits
 | |
|  * to see what needs to be done.
 | |
|  * Possible results:
 | |
|  *    return some read request which now have data
 | |
|  *    return some write requests which are safely on disc
 | |
|  *    schedule a read on some buffers
 | |
|  *    schedule a write of some buffers
 | |
|  *    return confirmation of parity correctness
 | |
|  *
 | |
|  * Parity calculations are done inside the stripe lock
 | |
|  * buffers are taken off read_list or write_list, and bh_cache buffers
 | |
|  * get BH_Lock set before the stripe lock is released.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
 | |
| {
 | |
| 	raid6_conf_t *conf = sh->raid_conf;
 | |
| 	int disks = conf->raid_disks;
 | |
| 	struct bio *return_bi= NULL;
 | |
| 	struct bio *bi;
 | |
| 	int i;
 | |
| 	int syncing;
 | |
| 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
 | |
| 	int non_overwrite = 0;
 | |
| 	int failed_num[2] = {0, 0};
 | |
| 	struct r5dev *dev, *pdev, *qdev;
 | |
| 	int pd_idx = sh->pd_idx;
 | |
| 	int qd_idx = raid6_next_disk(pd_idx, disks);
 | |
| 	int p_failed, q_failed;
 | |
| 
 | |
| 	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
 | |
| 	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
 | |
| 	       pd_idx, qd_idx);
 | |
| 
 | |
| 	spin_lock(&sh->lock);
 | |
| 	clear_bit(STRIPE_HANDLE, &sh->state);
 | |
| 	clear_bit(STRIPE_DELAYED, &sh->state);
 | |
| 
 | |
| 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
 | |
| 	/* Now to look around and see what can be done */
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i=disks; i--; ) {
 | |
| 		mdk_rdev_t *rdev;
 | |
| 		dev = &sh->dev[i];
 | |
| 		clear_bit(R5_Insync, &dev->flags);
 | |
| 
 | |
| 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
 | |
| 			i, dev->flags, dev->toread, dev->towrite, dev->written);
 | |
| 		/* maybe we can reply to a read */
 | |
| 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
 | |
| 			struct bio *rbi, *rbi2;
 | |
| 			PRINTK("Return read for disc %d\n", i);
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			rbi = dev->toread;
 | |
| 			dev->toread = NULL;
 | |
| 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
 | |
| 				wake_up(&conf->wait_for_overlap);
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
 | |
| 				copy_data(0, rbi, dev->page, dev->sector);
 | |
| 				rbi2 = r5_next_bio(rbi, dev->sector);
 | |
| 				spin_lock_irq(&conf->device_lock);
 | |
| 				if (--rbi->bi_phys_segments == 0) {
 | |
| 					rbi->bi_next = return_bi;
 | |
| 					return_bi = rbi;
 | |
| 				}
 | |
| 				spin_unlock_irq(&conf->device_lock);
 | |
| 				rbi = rbi2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* now count some things */
 | |
| 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
 | |
| 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
 | |
| 
 | |
| 
 | |
| 		if (dev->toread) to_read++;
 | |
| 		if (dev->towrite) {
 | |
| 			to_write++;
 | |
| 			if (!test_bit(R5_OVERWRITE, &dev->flags))
 | |
| 				non_overwrite++;
 | |
| 		}
 | |
| 		if (dev->written) written++;
 | |
| 		rdev = rcu_dereference(conf->disks[i].rdev);
 | |
| 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
 | |
| 			/* The ReadError flag will just be confusing now */
 | |
| 			clear_bit(R5_ReadError, &dev->flags);
 | |
| 			clear_bit(R5_ReWrite, &dev->flags);
 | |
| 		}
 | |
| 		if (!rdev || !test_bit(In_sync, &rdev->flags)
 | |
| 		    || test_bit(R5_ReadError, &dev->flags)) {
 | |
| 			if ( failed < 2 )
 | |
| 				failed_num[failed] = i;
 | |
| 			failed++;
 | |
| 		} else
 | |
| 			set_bit(R5_Insync, &dev->flags);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	PRINTK("locked=%d uptodate=%d to_read=%d"
 | |
| 	       " to_write=%d failed=%d failed_num=%d,%d\n",
 | |
| 	       locked, uptodate, to_read, to_write, failed,
 | |
| 	       failed_num[0], failed_num[1]);
 | |
| 	/* check if the array has lost >2 devices and, if so, some requests might
 | |
| 	 * need to be failed
 | |
| 	 */
 | |
| 	if (failed > 2 && to_read+to_write+written) {
 | |
| 		for (i=disks; i--; ) {
 | |
| 			int bitmap_end = 0;
 | |
| 
 | |
| 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
 | |
| 				mdk_rdev_t *rdev;
 | |
| 				rcu_read_lock();
 | |
| 				rdev = rcu_dereference(conf->disks[i].rdev);
 | |
| 				if (rdev && test_bit(In_sync, &rdev->flags))
 | |
| 					/* multiple read failures in one stripe */
 | |
| 					md_error(conf->mddev, rdev);
 | |
| 				rcu_read_unlock();
 | |
| 			}
 | |
| 
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			/* fail all writes first */
 | |
| 			bi = sh->dev[i].towrite;
 | |
| 			sh->dev[i].towrite = NULL;
 | |
| 			if (bi) { to_write--; bitmap_end = 1; }
 | |
| 
 | |
| 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
 | |
| 				wake_up(&conf->wait_for_overlap);
 | |
| 
 | |
| 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
 | |
| 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
 | |
| 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 				if (--bi->bi_phys_segments == 0) {
 | |
| 					md_write_end(conf->mddev);
 | |
| 					bi->bi_next = return_bi;
 | |
| 					return_bi = bi;
 | |
| 				}
 | |
| 				bi = nextbi;
 | |
| 			}
 | |
| 			/* and fail all 'written' */
 | |
| 			bi = sh->dev[i].written;
 | |
| 			sh->dev[i].written = NULL;
 | |
| 			if (bi) bitmap_end = 1;
 | |
| 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
 | |
| 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
 | |
| 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 				if (--bi->bi_phys_segments == 0) {
 | |
| 					md_write_end(conf->mddev);
 | |
| 					bi->bi_next = return_bi;
 | |
| 					return_bi = bi;
 | |
| 				}
 | |
| 				bi = bi2;
 | |
| 			}
 | |
| 
 | |
| 			/* fail any reads if this device is non-operational */
 | |
| 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
 | |
| 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
 | |
| 				bi = sh->dev[i].toread;
 | |
| 				sh->dev[i].toread = NULL;
 | |
| 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
 | |
| 					wake_up(&conf->wait_for_overlap);
 | |
| 				if (bi) to_read--;
 | |
| 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
 | |
| 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
 | |
| 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 					if (--bi->bi_phys_segments == 0) {
 | |
| 						bi->bi_next = return_bi;
 | |
| 						return_bi = bi;
 | |
| 					}
 | |
| 					bi = nextbi;
 | |
| 				}
 | |
| 			}
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			if (bitmap_end)
 | |
| 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 | |
| 						STRIPE_SECTORS, 0, 0);
 | |
| 		}
 | |
| 	}
 | |
| 	if (failed > 2 && syncing) {
 | |
| 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
 | |
| 		clear_bit(STRIPE_SYNCING, &sh->state);
 | |
| 		syncing = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * might be able to return some write requests if the parity blocks
 | |
| 	 * are safe, or on a failed drive
 | |
| 	 */
 | |
| 	pdev = &sh->dev[pd_idx];
 | |
| 	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
 | |
| 		|| (failed >= 2 && failed_num[1] == pd_idx);
 | |
| 	qdev = &sh->dev[qd_idx];
 | |
| 	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
 | |
| 		|| (failed >= 2 && failed_num[1] == qd_idx);
 | |
| 
 | |
| 	if ( written &&
 | |
| 	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
 | |
| 			     && !test_bit(R5_LOCKED, &pdev->flags)
 | |
| 			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
 | |
| 	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
 | |
| 			     && !test_bit(R5_LOCKED, &qdev->flags)
 | |
| 			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
 | |
| 		/* any written block on an uptodate or failed drive can be
 | |
| 		 * returned.  Note that if we 'wrote' to a failed drive,
 | |
| 		 * it will be UPTODATE, but never LOCKED, so we don't need
 | |
| 		 * to test 'failed' directly.
 | |
| 		 */
 | |
| 		for (i=disks; i--; )
 | |
| 			if (sh->dev[i].written) {
 | |
| 				dev = &sh->dev[i];
 | |
| 				if (!test_bit(R5_LOCKED, &dev->flags) &&
 | |
| 				    test_bit(R5_UPTODATE, &dev->flags) ) {
 | |
| 					/* We can return any write requests */
 | |
| 					int bitmap_end = 0;
 | |
| 					struct bio *wbi, *wbi2;
 | |
| 					PRINTK("Return write for stripe %llu disc %d\n",
 | |
| 					       (unsigned long long)sh->sector, i);
 | |
| 					spin_lock_irq(&conf->device_lock);
 | |
| 					wbi = dev->written;
 | |
| 					dev->written = NULL;
 | |
| 					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
 | |
| 						wbi2 = r5_next_bio(wbi, dev->sector);
 | |
| 						if (--wbi->bi_phys_segments == 0) {
 | |
| 							md_write_end(conf->mddev);
 | |
| 							wbi->bi_next = return_bi;
 | |
| 							return_bi = wbi;
 | |
| 						}
 | |
| 						wbi = wbi2;
 | |
| 					}
 | |
| 					if (dev->towrite == NULL)
 | |
| 						bitmap_end = 1;
 | |
| 					spin_unlock_irq(&conf->device_lock);
 | |
| 					if (bitmap_end)
 | |
| 						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
 | |
| 								STRIPE_SECTORS,
 | |
| 								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
 | |
| 				}
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| 	/* Now we might consider reading some blocks, either to check/generate
 | |
| 	 * parity, or to satisfy requests
 | |
| 	 * or to load a block that is being partially written.
 | |
| 	 */
 | |
| 	if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
 | |
| 		for (i=disks; i--;) {
 | |
| 			dev = &sh->dev[i];
 | |
| 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
 | |
| 			    (dev->toread ||
 | |
| 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
 | |
| 			     syncing ||
 | |
| 			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
 | |
| 			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
 | |
| 				    )
 | |
| 				) {
 | |
| 				/* we would like to get this block, possibly
 | |
| 				 * by computing it, but we might not be able to
 | |
| 				 */
 | |
| 				if (uptodate == disks-1) {
 | |
| 					PRINTK("Computing stripe %llu block %d\n",
 | |
| 					       (unsigned long long)sh->sector, i);
 | |
| 					compute_block_1(sh, i, 0);
 | |
| 					uptodate++;
 | |
| 				} else if ( uptodate == disks-2 && failed >= 2 ) {
 | |
| 					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
 | |
| 					int other;
 | |
| 					for (other=disks; other--;) {
 | |
| 						if ( other == i )
 | |
| 							continue;
 | |
| 						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
 | |
| 							break;
 | |
| 					}
 | |
| 					BUG_ON(other < 0);
 | |
| 					PRINTK("Computing stripe %llu blocks %d,%d\n",
 | |
| 					       (unsigned long long)sh->sector, i, other);
 | |
| 					compute_block_2(sh, i, other);
 | |
| 					uptodate += 2;
 | |
| 				} else if (test_bit(R5_Insync, &dev->flags)) {
 | |
| 					set_bit(R5_LOCKED, &dev->flags);
 | |
| 					set_bit(R5_Wantread, &dev->flags);
 | |
| #if 0
 | |
| 					/* if I am just reading this block and we don't have
 | |
| 					   a failed drive, or any pending writes then sidestep the cache */
 | |
| 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
 | |
| 					    ! syncing && !failed && !to_write) {
 | |
| 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
 | |
| 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
 | |
| 					}
 | |
| #endif
 | |
| 					locked++;
 | |
| 					PRINTK("Reading block %d (sync=%d)\n",
 | |
| 						i, syncing);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 	}
 | |
| 
 | |
| 	/* now to consider writing and what else, if anything should be read */
 | |
| 	if (to_write) {
 | |
| 		int rcw=0, must_compute=0;
 | |
| 		for (i=disks ; i--;) {
 | |
| 			dev = &sh->dev[i];
 | |
| 			/* Would I have to read this buffer for reconstruct_write */
 | |
| 			if (!test_bit(R5_OVERWRITE, &dev->flags)
 | |
| 			    && i != pd_idx && i != qd_idx
 | |
| 			    && (!test_bit(R5_LOCKED, &dev->flags)
 | |
| #if 0
 | |
| 				|| sh->bh_page[i] != bh->b_page
 | |
| #endif
 | |
| 				    ) &&
 | |
| 			    !test_bit(R5_UPTODATE, &dev->flags)) {
 | |
| 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
 | |
| 				else {
 | |
| 					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
 | |
| 					must_compute++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
 | |
| 		       (unsigned long long)sh->sector, rcw, must_compute);
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 
 | |
| 		if (rcw > 0)
 | |
| 			/* want reconstruct write, but need to get some data */
 | |
| 			for (i=disks; i--;) {
 | |
| 				dev = &sh->dev[i];
 | |
| 				if (!test_bit(R5_OVERWRITE, &dev->flags)
 | |
| 				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
 | |
| 				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
 | |
| 				    test_bit(R5_Insync, &dev->flags)) {
 | |
| 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 | |
| 					{
 | |
| 						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
 | |
| 						       (unsigned long long)sh->sector, i);
 | |
| 						set_bit(R5_LOCKED, &dev->flags);
 | |
| 						set_bit(R5_Wantread, &dev->flags);
 | |
| 						locked++;
 | |
| 					} else {
 | |
| 						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
 | |
| 						       (unsigned long long)sh->sector, i);
 | |
| 						set_bit(STRIPE_DELAYED, &sh->state);
 | |
| 						set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		/* now if nothing is locked, and if we have enough data, we can start a write request */
 | |
| 		if (locked == 0 && rcw == 0 &&
 | |
| 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
 | |
| 			if ( must_compute > 0 ) {
 | |
| 				/* We have failed blocks and need to compute them */
 | |
| 				switch ( failed ) {
 | |
| 				case 0:	BUG();
 | |
| 				case 1: compute_block_1(sh, failed_num[0], 0); break;
 | |
| 				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
 | |
| 				default: BUG();	/* This request should have been failed? */
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
 | |
| 			compute_parity(sh, RECONSTRUCT_WRITE);
 | |
| 			/* now every locked buffer is ready to be written */
 | |
| 			for (i=disks; i--;)
 | |
| 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
 | |
| 					PRINTK("Writing stripe %llu block %d\n",
 | |
| 					       (unsigned long long)sh->sector, i);
 | |
| 					locked++;
 | |
| 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
 | |
| 				}
 | |
| 			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
 | |
| 			set_bit(STRIPE_INSYNC, &sh->state);
 | |
| 
 | |
| 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 | |
| 				atomic_dec(&conf->preread_active_stripes);
 | |
| 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 | |
| 					md_wakeup_thread(conf->mddev->thread);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* maybe we need to check and possibly fix the parity for this stripe
 | |
| 	 * Any reads will already have been scheduled, so we just see if enough data
 | |
| 	 * is available
 | |
| 	 */
 | |
| 	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
 | |
| 		int update_p = 0, update_q = 0;
 | |
| 		struct r5dev *dev;
 | |
| 
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 
 | |
| 		BUG_ON(failed>2);
 | |
| 		BUG_ON(uptodate < disks);
 | |
| 		/* Want to check and possibly repair P and Q.
 | |
| 		 * However there could be one 'failed' device, in which
 | |
| 		 * case we can only check one of them, possibly using the
 | |
| 		 * other to generate missing data
 | |
| 		 */
 | |
| 
 | |
| 		/* If !tmp_page, we cannot do the calculations,
 | |
| 		 * but as we have set STRIPE_HANDLE, we will soon be called
 | |
| 		 * by stripe_handle with a tmp_page - just wait until then.
 | |
| 		 */
 | |
| 		if (tmp_page) {
 | |
| 			if (failed == q_failed) {
 | |
| 				/* The only possible failed device holds 'Q', so it makes
 | |
| 				 * sense to check P (If anything else were failed, we would
 | |
| 				 * have used P to recreate it).
 | |
| 				 */
 | |
| 				compute_block_1(sh, pd_idx, 1);
 | |
| 				if (!page_is_zero(sh->dev[pd_idx].page)) {
 | |
| 					compute_block_1(sh,pd_idx,0);
 | |
| 					update_p = 1;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!q_failed && failed < 2) {
 | |
| 				/* q is not failed, and we didn't use it to generate
 | |
| 				 * anything, so it makes sense to check it
 | |
| 				 */
 | |
| 				memcpy(page_address(tmp_page),
 | |
| 				       page_address(sh->dev[qd_idx].page),
 | |
| 				       STRIPE_SIZE);
 | |
| 				compute_parity(sh, UPDATE_PARITY);
 | |
| 				if (memcmp(page_address(tmp_page),
 | |
| 					   page_address(sh->dev[qd_idx].page),
 | |
| 					   STRIPE_SIZE)!= 0) {
 | |
| 					clear_bit(STRIPE_INSYNC, &sh->state);
 | |
| 					update_q = 1;
 | |
| 				}
 | |
| 			}
 | |
| 			if (update_p || update_q) {
 | |
| 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
 | |
| 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
 | |
| 					/* don't try to repair!! */
 | |
| 					update_p = update_q = 0;
 | |
| 			}
 | |
| 
 | |
| 			/* now write out any block on a failed drive,
 | |
| 			 * or P or Q if they need it
 | |
| 			 */
 | |
| 
 | |
| 			if (failed == 2) {
 | |
| 				dev = &sh->dev[failed_num[1]];
 | |
| 				locked++;
 | |
| 				set_bit(R5_LOCKED, &dev->flags);
 | |
| 				set_bit(R5_Wantwrite, &dev->flags);
 | |
| 			}
 | |
| 			if (failed >= 1) {
 | |
| 				dev = &sh->dev[failed_num[0]];
 | |
| 				locked++;
 | |
| 				set_bit(R5_LOCKED, &dev->flags);
 | |
| 				set_bit(R5_Wantwrite, &dev->flags);
 | |
| 			}
 | |
| 
 | |
| 			if (update_p) {
 | |
| 				dev = &sh->dev[pd_idx];
 | |
| 				locked ++;
 | |
| 				set_bit(R5_LOCKED, &dev->flags);
 | |
| 				set_bit(R5_Wantwrite, &dev->flags);
 | |
| 			}
 | |
| 			if (update_q) {
 | |
| 				dev = &sh->dev[qd_idx];
 | |
| 				locked++;
 | |
| 				set_bit(R5_LOCKED, &dev->flags);
 | |
| 				set_bit(R5_Wantwrite, &dev->flags);
 | |
| 			}
 | |
| 			clear_bit(STRIPE_DEGRADED, &sh->state);
 | |
| 
 | |
| 			set_bit(STRIPE_INSYNC, &sh->state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
 | |
| 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
 | |
| 		clear_bit(STRIPE_SYNCING, &sh->state);
 | |
| 	}
 | |
| 
 | |
| 	/* If the failed drives are just a ReadError, then we might need
 | |
| 	 * to progress the repair/check process
 | |
| 	 */
 | |
| 	if (failed <= 2 && ! conf->mddev->ro)
 | |
| 		for (i=0; i<failed;i++) {
 | |
| 			dev = &sh->dev[failed_num[i]];
 | |
| 			if (test_bit(R5_ReadError, &dev->flags)
 | |
| 			    && !test_bit(R5_LOCKED, &dev->flags)
 | |
| 			    && test_bit(R5_UPTODATE, &dev->flags)
 | |
| 				) {
 | |
| 				if (!test_bit(R5_ReWrite, &dev->flags)) {
 | |
| 					set_bit(R5_Wantwrite, &dev->flags);
 | |
| 					set_bit(R5_ReWrite, &dev->flags);
 | |
| 					set_bit(R5_LOCKED, &dev->flags);
 | |
| 				} else {
 | |
| 					/* let's read it back */
 | |
| 					set_bit(R5_Wantread, &dev->flags);
 | |
| 					set_bit(R5_LOCKED, &dev->flags);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	spin_unlock(&sh->lock);
 | |
| 
 | |
| 	while ((bi=return_bi)) {
 | |
| 		int bytes = bi->bi_size;
 | |
| 
 | |
| 		return_bi = bi->bi_next;
 | |
| 		bi->bi_next = NULL;
 | |
| 		bi->bi_size = 0;
 | |
| 		bi->bi_end_io(bi, bytes, 0);
 | |
| 	}
 | |
| 	for (i=disks; i-- ;) {
 | |
| 		int rw;
 | |
| 		struct bio *bi;
 | |
| 		mdk_rdev_t *rdev;
 | |
| 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
 | |
| 			rw = 1;
 | |
| 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 | |
| 			rw = 0;
 | |
| 		else
 | |
| 			continue;
 | |
| 
 | |
| 		bi = &sh->dev[i].req;
 | |
| 
 | |
| 		bi->bi_rw = rw;
 | |
| 		if (rw)
 | |
| 			bi->bi_end_io = raid6_end_write_request;
 | |
| 		else
 | |
| 			bi->bi_end_io = raid6_end_read_request;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		rdev = rcu_dereference(conf->disks[i].rdev);
 | |
| 		if (rdev && test_bit(Faulty, &rdev->flags))
 | |
| 			rdev = NULL;
 | |
| 		if (rdev)
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		if (rdev) {
 | |
| 			if (syncing)
 | |
| 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 | |
| 
 | |
| 			bi->bi_bdev = rdev->bdev;
 | |
| 			PRINTK("for %llu schedule op %ld on disc %d\n",
 | |
| 				(unsigned long long)sh->sector, bi->bi_rw, i);
 | |
| 			atomic_inc(&sh->count);
 | |
| 			bi->bi_sector = sh->sector + rdev->data_offset;
 | |
| 			bi->bi_flags = 1 << BIO_UPTODATE;
 | |
| 			bi->bi_vcnt = 1;
 | |
| 			bi->bi_max_vecs = 1;
 | |
| 			bi->bi_idx = 0;
 | |
| 			bi->bi_io_vec = &sh->dev[i].vec;
 | |
| 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 | |
| 			bi->bi_io_vec[0].bv_offset = 0;
 | |
| 			bi->bi_size = STRIPE_SIZE;
 | |
| 			bi->bi_next = NULL;
 | |
| 			if (rw == WRITE &&
 | |
| 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
 | |
| 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
 | |
| 			generic_make_request(bi);
 | |
| 		} else {
 | |
| 			if (rw == 1)
 | |
| 				set_bit(STRIPE_DEGRADED, &sh->state);
 | |
| 			PRINTK("skip op %ld on disc %d for sector %llu\n",
 | |
| 				bi->bi_rw, i, (unsigned long long)sh->sector);
 | |
| 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 | |
| 			set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void raid6_activate_delayed(raid6_conf_t *conf)
 | |
| {
 | |
| 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
 | |
| 		while (!list_empty(&conf->delayed_list)) {
 | |
| 			struct list_head *l = conf->delayed_list.next;
 | |
| 			struct stripe_head *sh;
 | |
| 			sh = list_entry(l, struct stripe_head, lru);
 | |
| 			list_del_init(l);
 | |
| 			clear_bit(STRIPE_DELAYED, &sh->state);
 | |
| 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 | |
| 				atomic_inc(&conf->preread_active_stripes);
 | |
| 			list_add_tail(&sh->lru, &conf->handle_list);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void activate_bit_delay(raid6_conf_t *conf)
 | |
| {
 | |
| 	/* device_lock is held */
 | |
| 	struct list_head head;
 | |
| 	list_add(&head, &conf->bitmap_list);
 | |
| 	list_del_init(&conf->bitmap_list);
 | |
| 	while (!list_empty(&head)) {
 | |
| 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
 | |
| 		list_del_init(&sh->lru);
 | |
| 		atomic_inc(&sh->count);
 | |
| 		__release_stripe(conf, sh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unplug_slaves(mddev_t *mddev)
 | |
| {
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 	int i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i=0; i<mddev->raid_disks; i++) {
 | |
| 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 | |
| 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
 | |
| 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
 | |
| 
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			if (r_queue->unplug_fn)
 | |
| 				r_queue->unplug_fn(r_queue);
 | |
| 
 | |
| 			rdev_dec_pending(rdev, mddev);
 | |
| 			rcu_read_lock();
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static void raid6_unplug_device(request_queue_t *q)
 | |
| {
 | |
| 	mddev_t *mddev = q->queuedata;
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 
 | |
| 	if (blk_remove_plug(q)) {
 | |
| 		conf->seq_flush++;
 | |
| 		raid6_activate_delayed(conf);
 | |
| 	}
 | |
| 	md_wakeup_thread(mddev->thread);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 
 | |
| 	unplug_slaves(mddev);
 | |
| }
 | |
| 
 | |
| static int raid6_issue_flush(request_queue_t *q, struct gendisk *disk,
 | |
| 			     sector_t *error_sector)
 | |
| {
 | |
| 	mddev_t *mddev = q->queuedata;
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
 | |
| 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 | |
| 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 | |
| 			struct block_device *bdev = rdev->bdev;
 | |
| 			request_queue_t *r_queue = bdev_get_queue(bdev);
 | |
| 
 | |
| 			if (!r_queue->issue_flush_fn)
 | |
| 				ret = -EOPNOTSUPP;
 | |
| 			else {
 | |
| 				atomic_inc(&rdev->nr_pending);
 | |
| 				rcu_read_unlock();
 | |
| 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
 | |
| 							      error_sector);
 | |
| 				rdev_dec_pending(rdev, mddev);
 | |
| 				rcu_read_lock();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void raid6_plug_device(raid6_conf_t *conf)
 | |
| {
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	blk_plug_device(conf->mddev->queue);
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| 
 | |
| static int make_request (request_queue_t *q, struct bio * bi)
 | |
| {
 | |
| 	mddev_t *mddev = q->queuedata;
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 	const unsigned int raid_disks = conf->raid_disks;
 | |
| 	const unsigned int data_disks = raid_disks - 2;
 | |
| 	unsigned int dd_idx, pd_idx;
 | |
| 	sector_t new_sector;
 | |
| 	sector_t logical_sector, last_sector;
 | |
| 	struct stripe_head *sh;
 | |
| 	const int rw = bio_data_dir(bi);
 | |
| 
 | |
| 	if (unlikely(bio_barrier(bi))) {
 | |
| 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	md_write_start(mddev, bi);
 | |
| 
 | |
| 	disk_stat_inc(mddev->gendisk, ios[rw]);
 | |
| 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
 | |
| 
 | |
| 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
 | |
| 	last_sector = bi->bi_sector + (bi->bi_size>>9);
 | |
| 
 | |
| 	bi->bi_next = NULL;
 | |
| 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
 | |
| 
 | |
| 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
 | |
| 		DEFINE_WAIT(w);
 | |
| 
 | |
| 		new_sector = raid6_compute_sector(logical_sector,
 | |
| 						  raid_disks, data_disks, &dd_idx, &pd_idx, conf);
 | |
| 
 | |
| 		PRINTK("raid6: make_request, sector %llu logical %llu\n",
 | |
| 		       (unsigned long long)new_sector,
 | |
| 		       (unsigned long long)logical_sector);
 | |
| 
 | |
| 	retry:
 | |
| 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
 | |
| 		sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK));
 | |
| 		if (sh) {
 | |
| 			if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
 | |
| 				/* Add failed due to overlap.  Flush everything
 | |
| 				 * and wait a while
 | |
| 				 */
 | |
| 				raid6_unplug_device(mddev->queue);
 | |
| 				release_stripe(sh);
 | |
| 				schedule();
 | |
| 				goto retry;
 | |
| 			}
 | |
| 			finish_wait(&conf->wait_for_overlap, &w);
 | |
| 			raid6_plug_device(conf);
 | |
| 			handle_stripe(sh, NULL);
 | |
| 			release_stripe(sh);
 | |
| 		} else {
 | |
| 			/* cannot get stripe for read-ahead, just give-up */
 | |
| 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
 | |
| 			finish_wait(&conf->wait_for_overlap, &w);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	if (--bi->bi_phys_segments == 0) {
 | |
| 		int bytes = bi->bi_size;
 | |
| 
 | |
| 		if (rw == WRITE )
 | |
| 			md_write_end(mddev);
 | |
| 		bi->bi_size = 0;
 | |
| 		bi->bi_end_io(bi, bytes, 0);
 | |
| 	}
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* FIXME go_faster isn't used */
 | |
| static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
 | |
| {
 | |
| 	raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
 | |
| 	struct stripe_head *sh;
 | |
| 	int sectors_per_chunk = conf->chunk_size >> 9;
 | |
| 	sector_t x;
 | |
| 	unsigned long stripe;
 | |
| 	int chunk_offset;
 | |
| 	int dd_idx, pd_idx;
 | |
| 	sector_t first_sector;
 | |
| 	int raid_disks = conf->raid_disks;
 | |
| 	int data_disks = raid_disks - 2;
 | |
| 	sector_t max_sector = mddev->size << 1;
 | |
| 	int sync_blocks;
 | |
| 	int still_degraded = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (sector_nr >= max_sector) {
 | |
| 		/* just being told to finish up .. nothing much to do */
 | |
| 		unplug_slaves(mddev);
 | |
| 
 | |
| 		if (mddev->curr_resync < max_sector) /* aborted */
 | |
| 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
 | |
| 					&sync_blocks, 1);
 | |
| 		else /* completed sync */
 | |
| 			conf->fullsync = 0;
 | |
| 		bitmap_close_sync(mddev->bitmap);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	/* if there are 2 or more failed drives and we are trying
 | |
| 	 * to resync, then assert that we are finished, because there is
 | |
| 	 * nothing we can do.
 | |
| 	 */
 | |
| 	if (mddev->degraded >= 2 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
 | |
| 		sector_t rv = (mddev->size << 1) - sector_nr;
 | |
| 		*skipped = 1;
 | |
| 		return rv;
 | |
| 	}
 | |
| 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
 | |
| 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | |
| 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
 | |
| 		/* we can skip this block, and probably more */
 | |
| 		sync_blocks /= STRIPE_SECTORS;
 | |
| 		*skipped = 1;
 | |
| 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
 | |
| 	}
 | |
| 
 | |
| 	x = sector_nr;
 | |
| 	chunk_offset = sector_div(x, sectors_per_chunk);
 | |
| 	stripe = x;
 | |
| 	BUG_ON(x != stripe);
 | |
| 
 | |
| 	first_sector = raid6_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk
 | |
| 		+ chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf);
 | |
| 	sh = get_active_stripe(conf, sector_nr, pd_idx, 1);
 | |
| 	if (sh == NULL) {
 | |
| 		sh = get_active_stripe(conf, sector_nr, pd_idx, 0);
 | |
| 		/* make sure we don't swamp the stripe cache if someone else
 | |
| 		 * is trying to get access
 | |
| 		 */
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| 	/* Need to check if array will still be degraded after recovery/resync
 | |
| 	 * We don't need to check the 'failed' flag as when that gets set,
 | |
| 	 * recovery aborts.
 | |
| 	 */
 | |
| 	for (i=0; i<mddev->raid_disks; i++)
 | |
| 		if (conf->disks[i].rdev == NULL)
 | |
| 			still_degraded = 1;
 | |
| 
 | |
| 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
 | |
| 
 | |
| 	spin_lock(&sh->lock);
 | |
| 	set_bit(STRIPE_SYNCING, &sh->state);
 | |
| 	clear_bit(STRIPE_INSYNC, &sh->state);
 | |
| 	spin_unlock(&sh->lock);
 | |
| 
 | |
| 	handle_stripe(sh, NULL);
 | |
| 	release_stripe(sh);
 | |
| 
 | |
| 	return STRIPE_SECTORS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is our raid6 kernel thread.
 | |
|  *
 | |
|  * We scan the hash table for stripes which can be handled now.
 | |
|  * During the scan, completed stripes are saved for us by the interrupt
 | |
|  * handler, so that they will not have to wait for our next wakeup.
 | |
|  */
 | |
| static void raid6d (mddev_t *mddev)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 	int handled;
 | |
| 
 | |
| 	PRINTK("+++ raid6d active\n");
 | |
| 
 | |
| 	md_check_recovery(mddev);
 | |
| 
 | |
| 	handled = 0;
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	while (1) {
 | |
| 		struct list_head *first;
 | |
| 
 | |
| 		if (conf->seq_flush - conf->seq_write > 0) {
 | |
| 			int seq = conf->seq_flush;
 | |
| 			spin_unlock_irq(&conf->device_lock);
 | |
| 			bitmap_unplug(mddev->bitmap);
 | |
| 			spin_lock_irq(&conf->device_lock);
 | |
| 			conf->seq_write = seq;
 | |
| 			activate_bit_delay(conf);
 | |
| 		}
 | |
| 
 | |
| 		if (list_empty(&conf->handle_list) &&
 | |
| 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
 | |
| 		    !blk_queue_plugged(mddev->queue) &&
 | |
| 		    !list_empty(&conf->delayed_list))
 | |
| 			raid6_activate_delayed(conf);
 | |
| 
 | |
| 		if (list_empty(&conf->handle_list))
 | |
| 			break;
 | |
| 
 | |
| 		first = conf->handle_list.next;
 | |
| 		sh = list_entry(first, struct stripe_head, lru);
 | |
| 
 | |
| 		list_del_init(first);
 | |
| 		atomic_inc(&sh->count);
 | |
| 		if (atomic_read(&sh->count)!= 1)
 | |
| 			BUG();
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 		handled++;
 | |
| 		handle_stripe(sh, conf->spare_page);
 | |
| 		release_stripe(sh);
 | |
| 
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 	}
 | |
| 	PRINTK("%d stripes handled\n", handled);
 | |
| 
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| 
 | |
| 	unplug_slaves(mddev);
 | |
| 
 | |
| 	PRINTK("--- raid6d inactive\n");
 | |
| }
 | |
| 
 | |
| static int run(mddev_t *mddev)
 | |
| {
 | |
| 	raid6_conf_t *conf;
 | |
| 	int raid_disk, memory;
 | |
| 	mdk_rdev_t *rdev;
 | |
| 	struct disk_info *disk;
 | |
| 	struct list_head *tmp;
 | |
| 
 | |
| 	if (mddev->level != 6) {
 | |
| 		PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev), mddev->level);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	mddev->private = kzalloc(sizeof (raid6_conf_t)
 | |
| 				 + mddev->raid_disks * sizeof(struct disk_info),
 | |
| 				 GFP_KERNEL);
 | |
| 	if ((conf = mddev->private) == NULL)
 | |
| 		goto abort;
 | |
| 	conf->mddev = mddev;
 | |
| 
 | |
| 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
 | |
| 		goto abort;
 | |
| 
 | |
| 	conf->spare_page = alloc_page(GFP_KERNEL);
 | |
| 	if (!conf->spare_page)
 | |
| 		goto abort;
 | |
| 
 | |
| 	spin_lock_init(&conf->device_lock);
 | |
| 	init_waitqueue_head(&conf->wait_for_stripe);
 | |
| 	init_waitqueue_head(&conf->wait_for_overlap);
 | |
| 	INIT_LIST_HEAD(&conf->handle_list);
 | |
| 	INIT_LIST_HEAD(&conf->delayed_list);
 | |
| 	INIT_LIST_HEAD(&conf->bitmap_list);
 | |
| 	INIT_LIST_HEAD(&conf->inactive_list);
 | |
| 	atomic_set(&conf->active_stripes, 0);
 | |
| 	atomic_set(&conf->preread_active_stripes, 0);
 | |
| 
 | |
| 	PRINTK("raid6: run(%s) called.\n", mdname(mddev));
 | |
| 
 | |
| 	ITERATE_RDEV(mddev,rdev,tmp) {
 | |
| 		raid_disk = rdev->raid_disk;
 | |
| 		if (raid_disk >= mddev->raid_disks
 | |
| 		    || raid_disk < 0)
 | |
| 			continue;
 | |
| 		disk = conf->disks + raid_disk;
 | |
| 
 | |
| 		disk->rdev = rdev;
 | |
| 
 | |
| 		if (test_bit(In_sync, &rdev->flags)) {
 | |
| 			char b[BDEVNAME_SIZE];
 | |
| 			printk(KERN_INFO "raid6: device %s operational as raid"
 | |
| 			       " disk %d\n", bdevname(rdev->bdev,b),
 | |
| 			       raid_disk);
 | |
| 			conf->working_disks++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	conf->raid_disks = mddev->raid_disks;
 | |
| 
 | |
| 	/*
 | |
| 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
 | |
| 	 */
 | |
| 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
 | |
| 	conf->mddev = mddev;
 | |
| 	conf->chunk_size = mddev->chunk_size;
 | |
| 	conf->level = mddev->level;
 | |
| 	conf->algorithm = mddev->layout;
 | |
| 	conf->max_nr_stripes = NR_STRIPES;
 | |
| 
 | |
| 	/* device size must be a multiple of chunk size */
 | |
| 	mddev->size &= ~(mddev->chunk_size/1024 -1);
 | |
| 	mddev->resync_max_sectors = mddev->size << 1;
 | |
| 
 | |
| 	if (conf->raid_disks < 4) {
 | |
| 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
 | |
| 		       mdname(mddev), conf->raid_disks);
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	if (!conf->chunk_size || conf->chunk_size % 4) {
 | |
| 		printk(KERN_ERR "raid6: invalid chunk size %d for %s\n",
 | |
| 		       conf->chunk_size, mdname(mddev));
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "raid6: unsupported parity algorithm %d for %s\n",
 | |
| 		       conf->algorithm, mdname(mddev));
 | |
| 		goto abort;
 | |
| 	}
 | |
| 	if (mddev->degraded > 2) {
 | |
| 		printk(KERN_ERR "raid6: not enough operational devices for %s"
 | |
| 		       " (%d/%d failed)\n",
 | |
| 		       mdname(mddev), conf->failed_disks, conf->raid_disks);
 | |
| 		goto abort;
 | |
| 	}
 | |
| 
 | |
| 	if (mddev->degraded > 0 &&
 | |
| 	    mddev->recovery_cp != MaxSector) {
 | |
| 		if (mddev->ok_start_degraded)
 | |
| 			printk(KERN_WARNING "raid6: starting dirty degraded array:%s"
 | |
| 			       "- data corruption possible.\n",
 | |
| 			       mdname(mddev));
 | |
| 		else {
 | |
| 			printk(KERN_ERR "raid6: cannot start dirty degraded array"
 | |
| 			       " for %s\n", mdname(mddev));
 | |
| 			goto abort;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6");
 | |
| 		if (!mddev->thread) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "raid6: couldn't allocate thread for %s\n",
 | |
| 			       mdname(mddev));
 | |
| 			goto abort;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
 | |
| 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
 | |
| 	if (grow_stripes(conf, conf->max_nr_stripes)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "raid6: couldn't allocate %dkB for buffers\n", memory);
 | |
| 		shrink_stripes(conf);
 | |
| 		md_unregister_thread(mddev->thread);
 | |
| 		goto abort;
 | |
| 	} else
 | |
| 		printk(KERN_INFO "raid6: allocated %dkB for %s\n",
 | |
| 		       memory, mdname(mddev));
 | |
| 
 | |
| 	if (mddev->degraded == 0)
 | |
| 		printk(KERN_INFO "raid6: raid level %d set %s active with %d out of %d"
 | |
| 		       " devices, algorithm %d\n", conf->level, mdname(mddev),
 | |
| 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
 | |
| 		       conf->algorithm);
 | |
| 	else
 | |
| 		printk(KERN_ALERT "raid6: raid level %d set %s active with %d"
 | |
| 		       " out of %d devices, algorithm %d\n", conf->level,
 | |
| 		       mdname(mddev), mddev->raid_disks - mddev->degraded,
 | |
| 		       mddev->raid_disks, conf->algorithm);
 | |
| 
 | |
| 	print_raid6_conf(conf);
 | |
| 
 | |
| 	/* read-ahead size must cover two whole stripes, which is
 | |
| 	 * 2 * (n-2) * chunksize where 'n' is the number of raid devices
 | |
| 	 */
 | |
| 	{
 | |
| 		int stripe = (mddev->raid_disks-2) * mddev->chunk_size
 | |
| 			/ PAGE_SIZE;
 | |
| 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
 | |
| 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
 | |
| 	}
 | |
| 
 | |
| 	/* Ok, everything is just fine now */
 | |
| 	mddev->array_size =  mddev->size * (mddev->raid_disks - 2);
 | |
| 
 | |
| 	mddev->queue->unplug_fn = raid6_unplug_device;
 | |
| 	mddev->queue->issue_flush_fn = raid6_issue_flush;
 | |
| 	return 0;
 | |
| abort:
 | |
| 	if (conf) {
 | |
| 		print_raid6_conf(conf);
 | |
| 		safe_put_page(conf->spare_page);
 | |
| 		kfree(conf->stripe_hashtbl);
 | |
| 		kfree(conf);
 | |
| 	}
 | |
| 	mddev->private = NULL;
 | |
| 	printk(KERN_ALERT "raid6: failed to run raid set %s\n", mdname(mddev));
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int stop (mddev_t *mddev)
 | |
| {
 | |
| 	raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
 | |
| 
 | |
| 	md_unregister_thread(mddev->thread);
 | |
| 	mddev->thread = NULL;
 | |
| 	shrink_stripes(conf);
 | |
| 	kfree(conf->stripe_hashtbl);
 | |
| 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
 | |
| 	kfree(conf);
 | |
| 	mddev->private = NULL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if RAID6_DUMPSTATE
 | |
| static void print_sh (struct seq_file *seq, struct stripe_head *sh)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
 | |
| 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
 | |
| 	seq_printf(seq, "sh %llu,  count %d.\n",
 | |
| 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
 | |
| 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
 | |
| 	for (i = 0; i < sh->raid_conf->raid_disks; i++) {
 | |
| 		seq_printf(seq, "(cache%d: %p %ld) ",
 | |
| 			   i, sh->dev[i].page, sh->dev[i].flags);
 | |
| 	}
 | |
| 	seq_printf(seq, "\n");
 | |
| }
 | |
| 
 | |
| static void printall (struct seq_file *seq, raid6_conf_t *conf)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	struct hlist_node *hn;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_irq(&conf->device_lock);
 | |
| 	for (i = 0; i < NR_HASH; i++) {
 | |
| 		sh = conf->stripe_hashtbl[i];
 | |
| 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
 | |
| 			if (sh->raid_conf != conf)
 | |
| 				continue;
 | |
| 			print_sh(seq, sh);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&conf->device_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void status (struct seq_file *seq, mddev_t *mddev)
 | |
| {
 | |
| 	raid6_conf_t *conf = (raid6_conf_t *) mddev->private;
 | |
| 	int i;
 | |
| 
 | |
| 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
 | |
| 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
 | |
| 	for (i = 0; i < conf->raid_disks; i++)
 | |
|  		seq_printf (seq, "%s",
 | |
| 			    conf->disks[i].rdev &&
 | |
| 			    test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
 | |
| 	seq_printf (seq, "]");
 | |
| #if RAID6_DUMPSTATE
 | |
| 	seq_printf (seq, "\n");
 | |
| 	printall(seq, conf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void print_raid6_conf (raid6_conf_t *conf)
 | |
| {
 | |
| 	int i;
 | |
| 	struct disk_info *tmp;
 | |
| 
 | |
| 	printk("RAID6 conf printout:\n");
 | |
| 	if (!conf) {
 | |
| 		printk("(conf==NULL)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
 | |
| 		 conf->working_disks, conf->failed_disks);
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 		tmp = conf->disks + i;
 | |
| 		if (tmp->rdev)
 | |
| 		printk(" disk %d, o:%d, dev:%s\n",
 | |
| 			i, !test_bit(Faulty, &tmp->rdev->flags),
 | |
| 			bdevname(tmp->rdev->bdev,b));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int raid6_spare_active(mddev_t *mddev)
 | |
| {
 | |
| 	int i;
 | |
| 	raid6_conf_t *conf = mddev->private;
 | |
| 	struct disk_info *tmp;
 | |
| 
 | |
| 	for (i = 0; i < conf->raid_disks; i++) {
 | |
| 		tmp = conf->disks + i;
 | |
| 		if (tmp->rdev
 | |
| 		    && !test_bit(Faulty, &tmp->rdev->flags)
 | |
| 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
 | |
| 			mddev->degraded--;
 | |
| 			conf->failed_disks--;
 | |
| 			conf->working_disks++;
 | |
| 			set_bit(In_sync, &tmp->rdev->flags);
 | |
| 		}
 | |
| 	}
 | |
| 	print_raid6_conf(conf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int raid6_remove_disk(mddev_t *mddev, int number)
 | |
| {
 | |
| 	raid6_conf_t *conf = mddev->private;
 | |
| 	int err = 0;
 | |
| 	mdk_rdev_t *rdev;
 | |
| 	struct disk_info *p = conf->disks + number;
 | |
| 
 | |
| 	print_raid6_conf(conf);
 | |
| 	rdev = p->rdev;
 | |
| 	if (rdev) {
 | |
| 		if (test_bit(In_sync, &rdev->flags) ||
 | |
| 		    atomic_read(&rdev->nr_pending)) {
 | |
| 			err = -EBUSY;
 | |
| 			goto abort;
 | |
| 		}
 | |
| 		p->rdev = NULL;
 | |
| 		synchronize_rcu();
 | |
| 		if (atomic_read(&rdev->nr_pending)) {
 | |
| 			/* lost the race, try later */
 | |
| 			err = -EBUSY;
 | |
| 			p->rdev = rdev;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| abort:
 | |
| 
 | |
| 	print_raid6_conf(conf);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int raid6_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
 | |
| {
 | |
| 	raid6_conf_t *conf = mddev->private;
 | |
| 	int found = 0;
 | |
| 	int disk;
 | |
| 	struct disk_info *p;
 | |
| 
 | |
| 	if (mddev->degraded > 2)
 | |
| 		/* no point adding a device */
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * find the disk ... but prefer rdev->saved_raid_disk
 | |
| 	 * if possible.
 | |
| 	 */
 | |
| 	if (rdev->saved_raid_disk >= 0 &&
 | |
| 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
 | |
| 		disk = rdev->saved_raid_disk;
 | |
| 	else
 | |
| 		disk = 0;
 | |
| 	for ( ; disk < mddev->raid_disks; disk++)
 | |
| 		if ((p=conf->disks + disk)->rdev == NULL) {
 | |
| 			clear_bit(In_sync, &rdev->flags);
 | |
| 			rdev->raid_disk = disk;
 | |
| 			found = 1;
 | |
| 			if (rdev->saved_raid_disk != disk)
 | |
| 				conf->fullsync = 1;
 | |
| 			rcu_assign_pointer(p->rdev, rdev);
 | |
| 			break;
 | |
| 		}
 | |
| 	print_raid6_conf(conf);
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static int raid6_resize(mddev_t *mddev, sector_t sectors)
 | |
| {
 | |
| 	/* no resync is happening, and there is enough space
 | |
| 	 * on all devices, so we can resize.
 | |
| 	 * We need to make sure resync covers any new space.
 | |
| 	 * If the array is shrinking we should possibly wait until
 | |
| 	 * any io in the removed space completes, but it hardly seems
 | |
| 	 * worth it.
 | |
| 	 */
 | |
| 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
 | |
| 	mddev->array_size = (sectors * (mddev->raid_disks-2))>>1;
 | |
| 	set_capacity(mddev->gendisk, mddev->array_size << 1);
 | |
| 	mddev->changed = 1;
 | |
| 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
 | |
| 		mddev->recovery_cp = mddev->size << 1;
 | |
| 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | |
| 	}
 | |
| 	mddev->size = sectors /2;
 | |
| 	mddev->resync_max_sectors = sectors;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void raid6_quiesce(mddev_t *mddev, int state)
 | |
| {
 | |
| 	raid6_conf_t *conf = mddev_to_conf(mddev);
 | |
| 
 | |
| 	switch(state) {
 | |
| 	case 1: /* stop all writes */
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		conf->quiesce = 1;
 | |
| 		wait_event_lock_irq(conf->wait_for_stripe,
 | |
| 				    atomic_read(&conf->active_stripes) == 0,
 | |
| 				    conf->device_lock, /* nothing */);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		break;
 | |
| 
 | |
| 	case 0: /* re-enable writes */
 | |
| 		spin_lock_irq(&conf->device_lock);
 | |
| 		conf->quiesce = 0;
 | |
| 		wake_up(&conf->wait_for_stripe);
 | |
| 		spin_unlock_irq(&conf->device_lock);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct mdk_personality raid6_personality =
 | |
| {
 | |
| 	.name		= "raid6",
 | |
| 	.level		= 6,
 | |
| 	.owner		= THIS_MODULE,
 | |
| 	.make_request	= make_request,
 | |
| 	.run		= run,
 | |
| 	.stop		= stop,
 | |
| 	.status		= status,
 | |
| 	.error_handler	= error,
 | |
| 	.hot_add_disk	= raid6_add_disk,
 | |
| 	.hot_remove_disk= raid6_remove_disk,
 | |
| 	.spare_active	= raid6_spare_active,
 | |
| 	.sync_request	= sync_request,
 | |
| 	.resize		= raid6_resize,
 | |
| 	.quiesce	= raid6_quiesce,
 | |
| };
 | |
| 
 | |
| static int __init raid6_init(void)
 | |
| {
 | |
| 	int e;
 | |
| 
 | |
| 	e = raid6_select_algo();
 | |
| 	if ( e )
 | |
| 		return e;
 | |
| 
 | |
| 	return register_md_personality(&raid6_personality);
 | |
| }
 | |
| 
 | |
| static void raid6_exit (void)
 | |
| {
 | |
| 	unregister_md_personality(&raid6_personality);
 | |
| }
 | |
| 
 | |
| module_init(raid6_init);
 | |
| module_exit(raid6_exit);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("md-personality-8"); /* RAID6 */
 | |
| MODULE_ALIAS("md-raid6");
 | |
| MODULE_ALIAS("md-level-6");
 |