mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00

The directed MSIs are delivered to CPUs whose address is
written to the MSI message address. The current code assumes
that a CPU logical number (as it is seen by the kernel)
is also the CPU address.
The above assumption is not correct, as the CPU address
is rather the value returned by STAP instruction. That
value does not necessarily match the kernel logical CPU
number.
Fixes: e979ce7bce
("s390/pci: provide support for CPU directed interrupts")
Cc: <stable@vger.kernel.org> # v5.2+
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
495 lines
12 KiB
C
495 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define KMSG_COMPONENT "zpci"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/isc.h>
|
|
#include <asm/airq.h>
|
|
|
|
static enum {FLOATING, DIRECTED} irq_delivery;
|
|
|
|
#define SIC_IRQ_MODE_ALL 0
|
|
#define SIC_IRQ_MODE_SINGLE 1
|
|
#define SIC_IRQ_MODE_DIRECT 4
|
|
#define SIC_IRQ_MODE_D_ALL 16
|
|
#define SIC_IRQ_MODE_D_SINGLE 17
|
|
#define SIC_IRQ_MODE_SET_CPU 18
|
|
|
|
/*
|
|
* summary bit vector
|
|
* FLOATING - summary bit per function
|
|
* DIRECTED - summary bit per cpu (only used in fallback path)
|
|
*/
|
|
static struct airq_iv *zpci_sbv;
|
|
|
|
/*
|
|
* interrupt bit vectors
|
|
* FLOATING - interrupt bit vector per function
|
|
* DIRECTED - interrupt bit vector per cpu
|
|
*/
|
|
static struct airq_iv **zpci_ibv;
|
|
|
|
/* Modify PCI: Register adapter interruptions */
|
|
static int zpci_set_airq(struct zpci_dev *zdev)
|
|
{
|
|
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT);
|
|
struct zpci_fib fib = {0};
|
|
u8 status;
|
|
|
|
fib.fmt0.isc = PCI_ISC;
|
|
fib.fmt0.sum = 1; /* enable summary notifications */
|
|
fib.fmt0.noi = airq_iv_end(zdev->aibv);
|
|
fib.fmt0.aibv = (unsigned long) zdev->aibv->vector;
|
|
fib.fmt0.aibvo = 0; /* each zdev has its own interrupt vector */
|
|
fib.fmt0.aisb = (unsigned long) zpci_sbv->vector + (zdev->aisb/64)*8;
|
|
fib.fmt0.aisbo = zdev->aisb & 63;
|
|
|
|
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
|
|
}
|
|
|
|
/* Modify PCI: Unregister adapter interruptions */
|
|
static int zpci_clear_airq(struct zpci_dev *zdev)
|
|
{
|
|
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT);
|
|
struct zpci_fib fib = {0};
|
|
u8 cc, status;
|
|
|
|
cc = zpci_mod_fc(req, &fib, &status);
|
|
if (cc == 3 || (cc == 1 && status == 24))
|
|
/* Function already gone or IRQs already deregistered. */
|
|
cc = 0;
|
|
|
|
return cc ? -EIO : 0;
|
|
}
|
|
|
|
/* Modify PCI: Register CPU directed interruptions */
|
|
static int zpci_set_directed_irq(struct zpci_dev *zdev)
|
|
{
|
|
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_REG_INT_D);
|
|
struct zpci_fib fib = {0};
|
|
u8 status;
|
|
|
|
fib.fmt = 1;
|
|
fib.fmt1.noi = zdev->msi_nr_irqs;
|
|
fib.fmt1.dibvo = zdev->msi_first_bit;
|
|
|
|
return zpci_mod_fc(req, &fib, &status) ? -EIO : 0;
|
|
}
|
|
|
|
/* Modify PCI: Unregister CPU directed interruptions */
|
|
static int zpci_clear_directed_irq(struct zpci_dev *zdev)
|
|
{
|
|
u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_DEREG_INT_D);
|
|
struct zpci_fib fib = {0};
|
|
u8 cc, status;
|
|
|
|
fib.fmt = 1;
|
|
cc = zpci_mod_fc(req, &fib, &status);
|
|
if (cc == 3 || (cc == 1 && status == 24))
|
|
/* Function already gone or IRQs already deregistered. */
|
|
cc = 0;
|
|
|
|
return cc ? -EIO : 0;
|
|
}
|
|
|
|
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
|
|
bool force)
|
|
{
|
|
struct msi_desc *entry = irq_get_msi_desc(data->irq);
|
|
struct msi_msg msg = entry->msg;
|
|
int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
|
|
|
|
msg.address_lo &= 0xff0000ff;
|
|
msg.address_lo |= (cpu_addr << 8);
|
|
pci_write_msi_msg(data->irq, &msg);
|
|
|
|
return IRQ_SET_MASK_OK;
|
|
}
|
|
|
|
static struct irq_chip zpci_irq_chip = {
|
|
.name = "PCI-MSI",
|
|
.irq_unmask = pci_msi_unmask_irq,
|
|
.irq_mask = pci_msi_mask_irq,
|
|
};
|
|
|
|
static void zpci_handle_cpu_local_irq(bool rescan)
|
|
{
|
|
struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
|
|
unsigned long bit;
|
|
int irqs_on = 0;
|
|
|
|
for (bit = 0;;) {
|
|
/* Scan the directed IRQ bit vector */
|
|
bit = airq_iv_scan(dibv, bit, airq_iv_end(dibv));
|
|
if (bit == -1UL) {
|
|
if (!rescan || irqs_on++)
|
|
/* End of second scan with interrupts on. */
|
|
break;
|
|
/* First scan complete, reenable interrupts. */
|
|
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC))
|
|
break;
|
|
bit = 0;
|
|
continue;
|
|
}
|
|
inc_irq_stat(IRQIO_MSI);
|
|
generic_handle_irq(airq_iv_get_data(dibv, bit));
|
|
}
|
|
}
|
|
|
|
struct cpu_irq_data {
|
|
call_single_data_t csd;
|
|
atomic_t scheduled;
|
|
};
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_irq_data, irq_data);
|
|
|
|
static void zpci_handle_remote_irq(void *data)
|
|
{
|
|
atomic_t *scheduled = data;
|
|
|
|
do {
|
|
zpci_handle_cpu_local_irq(false);
|
|
} while (atomic_dec_return(scheduled));
|
|
}
|
|
|
|
static void zpci_handle_fallback_irq(void)
|
|
{
|
|
struct cpu_irq_data *cpu_data;
|
|
unsigned long cpu;
|
|
int irqs_on = 0;
|
|
|
|
for (cpu = 0;;) {
|
|
cpu = airq_iv_scan(zpci_sbv, cpu, airq_iv_end(zpci_sbv));
|
|
if (cpu == -1UL) {
|
|
if (irqs_on++)
|
|
/* End of second scan with interrupts on. */
|
|
break;
|
|
/* First scan complete, reenable interrupts. */
|
|
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
|
|
break;
|
|
cpu = 0;
|
|
continue;
|
|
}
|
|
cpu_data = &per_cpu(irq_data, cpu);
|
|
if (atomic_inc_return(&cpu_data->scheduled) > 1)
|
|
continue;
|
|
|
|
cpu_data->csd.func = zpci_handle_remote_irq;
|
|
cpu_data->csd.info = &cpu_data->scheduled;
|
|
cpu_data->csd.flags = 0;
|
|
smp_call_function_single_async(cpu, &cpu_data->csd);
|
|
}
|
|
}
|
|
|
|
static void zpci_directed_irq_handler(struct airq_struct *airq, bool floating)
|
|
{
|
|
if (floating) {
|
|
inc_irq_stat(IRQIO_PCF);
|
|
zpci_handle_fallback_irq();
|
|
} else {
|
|
inc_irq_stat(IRQIO_PCD);
|
|
zpci_handle_cpu_local_irq(true);
|
|
}
|
|
}
|
|
|
|
static void zpci_floating_irq_handler(struct airq_struct *airq, bool floating)
|
|
{
|
|
unsigned long si, ai;
|
|
struct airq_iv *aibv;
|
|
int irqs_on = 0;
|
|
|
|
inc_irq_stat(IRQIO_PCF);
|
|
for (si = 0;;) {
|
|
/* Scan adapter summary indicator bit vector */
|
|
si = airq_iv_scan(zpci_sbv, si, airq_iv_end(zpci_sbv));
|
|
if (si == -1UL) {
|
|
if (irqs_on++)
|
|
/* End of second scan with interrupts on. */
|
|
break;
|
|
/* First scan complete, reenable interrupts. */
|
|
if (zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC))
|
|
break;
|
|
si = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Scan the adapter interrupt vector for this device. */
|
|
aibv = zpci_ibv[si];
|
|
for (ai = 0;;) {
|
|
ai = airq_iv_scan(aibv, ai, airq_iv_end(aibv));
|
|
if (ai == -1UL)
|
|
break;
|
|
inc_irq_stat(IRQIO_MSI);
|
|
airq_iv_lock(aibv, ai);
|
|
generic_handle_irq(airq_iv_get_data(aibv, ai));
|
|
airq_iv_unlock(aibv, ai);
|
|
}
|
|
}
|
|
}
|
|
|
|
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
|
|
{
|
|
struct zpci_dev *zdev = to_zpci(pdev);
|
|
unsigned int hwirq, msi_vecs, cpu;
|
|
unsigned long bit;
|
|
struct msi_desc *msi;
|
|
struct msi_msg msg;
|
|
int cpu_addr;
|
|
int rc, irq;
|
|
|
|
zdev->aisb = -1UL;
|
|
zdev->msi_first_bit = -1U;
|
|
if (type == PCI_CAP_ID_MSI && nvec > 1)
|
|
return 1;
|
|
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
|
|
|
|
if (irq_delivery == DIRECTED) {
|
|
/* Allocate cpu vector bits */
|
|
bit = airq_iv_alloc(zpci_ibv[0], msi_vecs);
|
|
if (bit == -1UL)
|
|
return -EIO;
|
|
} else {
|
|
/* Allocate adapter summary indicator bit */
|
|
bit = airq_iv_alloc_bit(zpci_sbv);
|
|
if (bit == -1UL)
|
|
return -EIO;
|
|
zdev->aisb = bit;
|
|
|
|
/* Create adapter interrupt vector */
|
|
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK);
|
|
if (!zdev->aibv)
|
|
return -ENOMEM;
|
|
|
|
/* Wire up shortcut pointer */
|
|
zpci_ibv[bit] = zdev->aibv;
|
|
/* Each function has its own interrupt vector */
|
|
bit = 0;
|
|
}
|
|
|
|
/* Request MSI interrupts */
|
|
hwirq = bit;
|
|
for_each_pci_msi_entry(msi, pdev) {
|
|
rc = -EIO;
|
|
if (hwirq - bit >= msi_vecs)
|
|
break;
|
|
irq = __irq_alloc_descs(-1, 0, 1, 0, THIS_MODULE,
|
|
(irq_delivery == DIRECTED) ?
|
|
msi->affinity : NULL);
|
|
if (irq < 0)
|
|
return -ENOMEM;
|
|
rc = irq_set_msi_desc(irq, msi);
|
|
if (rc)
|
|
return rc;
|
|
irq_set_chip_and_handler(irq, &zpci_irq_chip,
|
|
handle_percpu_irq);
|
|
msg.data = hwirq - bit;
|
|
if (irq_delivery == DIRECTED) {
|
|
if (msi->affinity)
|
|
cpu = cpumask_first(&msi->affinity->mask);
|
|
else
|
|
cpu = 0;
|
|
cpu_addr = smp_cpu_get_cpu_address(cpu);
|
|
|
|
msg.address_lo = zdev->msi_addr & 0xff0000ff;
|
|
msg.address_lo |= (cpu_addr << 8);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
airq_iv_set_data(zpci_ibv[cpu], hwirq, irq);
|
|
}
|
|
} else {
|
|
msg.address_lo = zdev->msi_addr & 0xffffffff;
|
|
airq_iv_set_data(zdev->aibv, hwirq, irq);
|
|
}
|
|
msg.address_hi = zdev->msi_addr >> 32;
|
|
pci_write_msi_msg(irq, &msg);
|
|
hwirq++;
|
|
}
|
|
|
|
zdev->msi_first_bit = bit;
|
|
zdev->msi_nr_irqs = msi_vecs;
|
|
|
|
if (irq_delivery == DIRECTED)
|
|
rc = zpci_set_directed_irq(zdev);
|
|
else
|
|
rc = zpci_set_airq(zdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return (msi_vecs == nvec) ? 0 : msi_vecs;
|
|
}
|
|
|
|
void arch_teardown_msi_irqs(struct pci_dev *pdev)
|
|
{
|
|
struct zpci_dev *zdev = to_zpci(pdev);
|
|
struct msi_desc *msi;
|
|
int rc;
|
|
|
|
/* Disable interrupts */
|
|
if (irq_delivery == DIRECTED)
|
|
rc = zpci_clear_directed_irq(zdev);
|
|
else
|
|
rc = zpci_clear_airq(zdev);
|
|
if (rc)
|
|
return;
|
|
|
|
/* Release MSI interrupts */
|
|
for_each_pci_msi_entry(msi, pdev) {
|
|
if (!msi->irq)
|
|
continue;
|
|
if (msi->msi_attrib.is_msix)
|
|
__pci_msix_desc_mask_irq(msi, 1);
|
|
else
|
|
__pci_msi_desc_mask_irq(msi, 1, 1);
|
|
irq_set_msi_desc(msi->irq, NULL);
|
|
irq_free_desc(msi->irq);
|
|
msi->msg.address_lo = 0;
|
|
msi->msg.address_hi = 0;
|
|
msi->msg.data = 0;
|
|
msi->irq = 0;
|
|
}
|
|
|
|
if (zdev->aisb != -1UL) {
|
|
zpci_ibv[zdev->aisb] = NULL;
|
|
airq_iv_free_bit(zpci_sbv, zdev->aisb);
|
|
zdev->aisb = -1UL;
|
|
}
|
|
if (zdev->aibv) {
|
|
airq_iv_release(zdev->aibv);
|
|
zdev->aibv = NULL;
|
|
}
|
|
|
|
if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
|
|
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
|
|
}
|
|
|
|
static struct airq_struct zpci_airq = {
|
|
.handler = zpci_floating_irq_handler,
|
|
.isc = PCI_ISC,
|
|
};
|
|
|
|
static void __init cpu_enable_directed_irq(void *unused)
|
|
{
|
|
union zpci_sic_iib iib = {{0}};
|
|
|
|
iib.cdiib.dibv_addr = (u64) zpci_ibv[smp_processor_id()]->vector;
|
|
|
|
__zpci_set_irq_ctrl(SIC_IRQ_MODE_SET_CPU, 0, &iib);
|
|
zpci_set_irq_ctrl(SIC_IRQ_MODE_D_SINGLE, PCI_ISC);
|
|
}
|
|
|
|
static int __init zpci_directed_irq_init(void)
|
|
{
|
|
union zpci_sic_iib iib = {{0}};
|
|
unsigned int cpu;
|
|
|
|
zpci_sbv = airq_iv_create(num_possible_cpus(), 0);
|
|
if (!zpci_sbv)
|
|
return -ENOMEM;
|
|
|
|
iib.diib.isc = PCI_ISC;
|
|
iib.diib.nr_cpus = num_possible_cpus();
|
|
iib.diib.disb_addr = (u64) zpci_sbv->vector;
|
|
__zpci_set_irq_ctrl(SIC_IRQ_MODE_DIRECT, 0, &iib);
|
|
|
|
zpci_ibv = kcalloc(num_possible_cpus(), sizeof(*zpci_ibv),
|
|
GFP_KERNEL);
|
|
if (!zpci_ibv)
|
|
return -ENOMEM;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
/*
|
|
* Per CPU IRQ vectors look the same but bit-allocation
|
|
* is only done on the first vector.
|
|
*/
|
|
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
|
|
AIRQ_IV_DATA |
|
|
AIRQ_IV_CACHELINE |
|
|
(!cpu ? AIRQ_IV_ALLOC : 0));
|
|
if (!zpci_ibv[cpu])
|
|
return -ENOMEM;
|
|
}
|
|
on_each_cpu(cpu_enable_directed_irq, NULL, 1);
|
|
|
|
zpci_irq_chip.irq_set_affinity = zpci_set_irq_affinity;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init zpci_floating_irq_init(void)
|
|
{
|
|
zpci_ibv = kcalloc(ZPCI_NR_DEVICES, sizeof(*zpci_ibv), GFP_KERNEL);
|
|
if (!zpci_ibv)
|
|
return -ENOMEM;
|
|
|
|
zpci_sbv = airq_iv_create(ZPCI_NR_DEVICES, AIRQ_IV_ALLOC);
|
|
if (!zpci_sbv)
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
kfree(zpci_ibv);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
int __init zpci_irq_init(void)
|
|
{
|
|
int rc;
|
|
|
|
irq_delivery = sclp.has_dirq ? DIRECTED : FLOATING;
|
|
if (s390_pci_force_floating)
|
|
irq_delivery = FLOATING;
|
|
|
|
if (irq_delivery == DIRECTED)
|
|
zpci_airq.handler = zpci_directed_irq_handler;
|
|
|
|
rc = register_adapter_interrupt(&zpci_airq);
|
|
if (rc)
|
|
goto out;
|
|
/* Set summary to 1 to be called every time for the ISC. */
|
|
*zpci_airq.lsi_ptr = 1;
|
|
|
|
switch (irq_delivery) {
|
|
case FLOATING:
|
|
rc = zpci_floating_irq_init();
|
|
break;
|
|
case DIRECTED:
|
|
rc = zpci_directed_irq_init();
|
|
break;
|
|
}
|
|
|
|
if (rc)
|
|
goto out_airq;
|
|
|
|
/*
|
|
* Enable floating IRQs (with suppression after one IRQ). When using
|
|
* directed IRQs this enables the fallback path.
|
|
*/
|
|
zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, PCI_ISC);
|
|
|
|
return 0;
|
|
out_airq:
|
|
unregister_adapter_interrupt(&zpci_airq);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
void __init zpci_irq_exit(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
if (irq_delivery == DIRECTED) {
|
|
for_each_possible_cpu(cpu) {
|
|
airq_iv_release(zpci_ibv[cpu]);
|
|
}
|
|
}
|
|
kfree(zpci_ibv);
|
|
if (zpci_sbv)
|
|
airq_iv_release(zpci_sbv);
|
|
unregister_adapter_interrupt(&zpci_airq);
|
|
}
|