mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 39163d5479
			
		
	
	
		39163d5479
		
	
	
	
	
		
			
			The vDSO getcpu() reads CPU ID from the GDT_ENTRY_CPUNODE entry when the RDPID
instruction is not available. And GDT_ENTRY_CPUNODE is defined as 28 on 32-bit
Linux kernel and 15 on 64-bit. But the 32-bit getcpu() on 64-bit Linux kernel
is compiled with 32-bit Linux kernel GDT_ENTRY_CPUNODE, i.e., 28, beyond the
64-bit Linux kernel GDT limit. Thus, it just fails _silently_.
When BUILD_VDSO32_64 is defined, choose the 64-bit Linux kernel GDT definitions
to compile the 32-bit getcpu().
Fixes: 877cff5296 ("x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu")
Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230322061758.10639-1-xin3.li@intel.com
Link: https://lore.kernel.org/oe-lkp/202303020903.b01fd1de-yujie.liu@intel.com
		
	
			
		
			
				
	
	
		
			356 lines
		
	
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _ASM_X86_SEGMENT_H
 | |
| #define _ASM_X86_SEGMENT_H
 | |
| 
 | |
| #include <linux/const.h>
 | |
| #include <asm/alternative.h>
 | |
| #include <asm/ibt.h>
 | |
| 
 | |
| /*
 | |
|  * Constructor for a conventional segment GDT (or LDT) entry.
 | |
|  * This is a macro so it can be used in initializers.
 | |
|  */
 | |
| #define GDT_ENTRY(flags, base, limit)			\
 | |
| 	((((base)  & _AC(0xff000000,ULL)) << (56-24)) |	\
 | |
| 	 (((flags) & _AC(0x0000f0ff,ULL)) << 40) |	\
 | |
| 	 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) |	\
 | |
| 	 (((base)  & _AC(0x00ffffff,ULL)) << 16) |	\
 | |
| 	 (((limit) & _AC(0x0000ffff,ULL))))
 | |
| 
 | |
| /* Simple and small GDT entries for booting only: */
 | |
| 
 | |
| #define GDT_ENTRY_BOOT_CS	2
 | |
| #define GDT_ENTRY_BOOT_DS	3
 | |
| #define GDT_ENTRY_BOOT_TSS	4
 | |
| #define __BOOT_CS		(GDT_ENTRY_BOOT_CS*8)
 | |
| #define __BOOT_DS		(GDT_ENTRY_BOOT_DS*8)
 | |
| #define __BOOT_TSS		(GDT_ENTRY_BOOT_TSS*8)
 | |
| 
 | |
| /*
 | |
|  * Bottom two bits of selector give the ring
 | |
|  * privilege level
 | |
|  */
 | |
| #define SEGMENT_RPL_MASK	0x3
 | |
| 
 | |
| /*
 | |
|  * When running on Xen PV, the actual privilege level of the kernel is 1,
 | |
|  * not 0. Testing the Requested Privilege Level in a segment selector to
 | |
|  * determine whether the context is user mode or kernel mode with
 | |
|  * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level
 | |
|  * matches the 0x3 mask.
 | |
|  *
 | |
|  * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV
 | |
|  * kernels because privilege level 2 is never used.
 | |
|  */
 | |
| #define USER_SEGMENT_RPL_MASK	0x2
 | |
| 
 | |
| /* User mode is privilege level 3: */
 | |
| #define USER_RPL		0x3
 | |
| 
 | |
| /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
 | |
| #define SEGMENT_TI_MASK		0x4
 | |
| /* LDT segment has TI set ... */
 | |
| #define SEGMENT_LDT		0x4
 | |
| /* ... GDT has it cleared */
 | |
| #define SEGMENT_GDT		0x0
 | |
| 
 | |
| #define GDT_ENTRY_INVALID_SEG	0
 | |
| 
 | |
| #if defined(CONFIG_X86_32) && !defined(BUILD_VDSO32_64)
 | |
| /*
 | |
|  * The layout of the per-CPU GDT under Linux:
 | |
|  *
 | |
|  *   0 - null								<=== cacheline #1
 | |
|  *   1 - reserved
 | |
|  *   2 - reserved
 | |
|  *   3 - reserved
 | |
|  *
 | |
|  *   4 - unused								<=== cacheline #2
 | |
|  *   5 - unused
 | |
|  *
 | |
|  *  ------- start of TLS (Thread-Local Storage) segments:
 | |
|  *
 | |
|  *   6 - TLS segment #1			[ glibc's TLS segment ]
 | |
|  *   7 - TLS segment #2			[ Wine's %fs Win32 segment ]
 | |
|  *   8 - TLS segment #3							<=== cacheline #3
 | |
|  *   9 - reserved
 | |
|  *  10 - reserved
 | |
|  *  11 - reserved
 | |
|  *
 | |
|  *  ------- start of kernel segments:
 | |
|  *
 | |
|  *  12 - kernel code segment						<=== cacheline #4
 | |
|  *  13 - kernel data segment
 | |
|  *  14 - default user CS
 | |
|  *  15 - default user DS
 | |
|  *  16 - TSS								<=== cacheline #5
 | |
|  *  17 - LDT
 | |
|  *  18 - PNPBIOS support (16->32 gate)
 | |
|  *  19 - PNPBIOS support
 | |
|  *  20 - PNPBIOS support						<=== cacheline #6
 | |
|  *  21 - PNPBIOS support
 | |
|  *  22 - PNPBIOS support
 | |
|  *  23 - APM BIOS support
 | |
|  *  24 - APM BIOS support						<=== cacheline #7
 | |
|  *  25 - APM BIOS support
 | |
|  *
 | |
|  *  26 - ESPFIX small SS
 | |
|  *  27 - per-cpu			[ offset to per-cpu data area ]
 | |
|  *  28 - VDSO getcpu
 | |
|  *  29 - unused
 | |
|  *  30 - unused
 | |
|  *  31 - TSS for double fault handler
 | |
|  */
 | |
| #define GDT_ENTRY_TLS_MIN		6
 | |
| #define GDT_ENTRY_TLS_MAX 		(GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
 | |
| 
 | |
| #define GDT_ENTRY_KERNEL_CS		12
 | |
| #define GDT_ENTRY_KERNEL_DS		13
 | |
| #define GDT_ENTRY_DEFAULT_USER_CS	14
 | |
| #define GDT_ENTRY_DEFAULT_USER_DS	15
 | |
| #define GDT_ENTRY_TSS			16
 | |
| #define GDT_ENTRY_LDT			17
 | |
| #define GDT_ENTRY_PNPBIOS_CS32		18
 | |
| #define GDT_ENTRY_PNPBIOS_CS16		19
 | |
| #define GDT_ENTRY_PNPBIOS_DS		20
 | |
| #define GDT_ENTRY_PNPBIOS_TS1		21
 | |
| #define GDT_ENTRY_PNPBIOS_TS2		22
 | |
| #define GDT_ENTRY_APMBIOS_BASE		23
 | |
| 
 | |
| #define GDT_ENTRY_ESPFIX_SS		26
 | |
| #define GDT_ENTRY_PERCPU		27
 | |
| #define GDT_ENTRY_CPUNODE		28
 | |
| 
 | |
| #define GDT_ENTRY_DOUBLEFAULT_TSS	31
 | |
| 
 | |
| /*
 | |
|  * Number of entries in the GDT table:
 | |
|  */
 | |
| #define GDT_ENTRIES			32
 | |
| 
 | |
| /*
 | |
|  * Segment selector values corresponding to the above entries:
 | |
|  */
 | |
| 
 | |
| #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
 | |
| #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
 | |
| #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 | |
| #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 | |
| #define __USER32_CS			__USER_CS
 | |
| #define __ESPFIX_SS			(GDT_ENTRY_ESPFIX_SS*8)
 | |
| 
 | |
| /* segment for calling fn: */
 | |
| #define PNP_CS32			(GDT_ENTRY_PNPBIOS_CS32*8)
 | |
| /* code segment for BIOS: */
 | |
| #define PNP_CS16			(GDT_ENTRY_PNPBIOS_CS16*8)
 | |
| 
 | |
| /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
 | |
| #define SEGMENT_IS_PNP_CODE(x)		(((x) & 0xf4) == PNP_CS32)
 | |
| 
 | |
| /* data segment for BIOS: */
 | |
| #define PNP_DS				(GDT_ENTRY_PNPBIOS_DS*8)
 | |
| /* transfer data segment: */
 | |
| #define PNP_TS1				(GDT_ENTRY_PNPBIOS_TS1*8)
 | |
| /* another data segment: */
 | |
| #define PNP_TS2				(GDT_ENTRY_PNPBIOS_TS2*8)
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| # define __KERNEL_PERCPU		(GDT_ENTRY_PERCPU*8)
 | |
| #else
 | |
| # define __KERNEL_PERCPU		0
 | |
| #endif
 | |
| 
 | |
| #define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
 | |
| 
 | |
| #else /* 64-bit: */
 | |
| 
 | |
| #include <asm/cache.h>
 | |
| 
 | |
| #define GDT_ENTRY_KERNEL32_CS		1
 | |
| #define GDT_ENTRY_KERNEL_CS		2
 | |
| #define GDT_ENTRY_KERNEL_DS		3
 | |
| 
 | |
| /*
 | |
|  * We cannot use the same code segment descriptor for user and kernel mode,
 | |
|  * not even in long flat mode, because of different DPL.
 | |
|  *
 | |
|  * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
 | |
|  * selectors:
 | |
|  *
 | |
|  *   if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
 | |
|  *   if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
 | |
|  *
 | |
|  * ss = STAR.SYSRET_CS+8 (in either case)
 | |
|  *
 | |
|  * thus USER_DS should be between 32-bit and 64-bit code selectors:
 | |
|  */
 | |
| #define GDT_ENTRY_DEFAULT_USER32_CS	4
 | |
| #define GDT_ENTRY_DEFAULT_USER_DS	5
 | |
| #define GDT_ENTRY_DEFAULT_USER_CS	6
 | |
| 
 | |
| /* Needs two entries */
 | |
| #define GDT_ENTRY_TSS			8
 | |
| /* Needs two entries */
 | |
| #define GDT_ENTRY_LDT			10
 | |
| 
 | |
| #define GDT_ENTRY_TLS_MIN		12
 | |
| #define GDT_ENTRY_TLS_MAX		14
 | |
| 
 | |
| #define GDT_ENTRY_CPUNODE		15
 | |
| 
 | |
| /*
 | |
|  * Number of entries in the GDT table:
 | |
|  */
 | |
| #define GDT_ENTRIES			16
 | |
| 
 | |
| /*
 | |
|  * Segment selector values corresponding to the above entries:
 | |
|  *
 | |
|  * Note, selectors also need to have a correct RPL,
 | |
|  * expressed with the +3 value for user-space selectors:
 | |
|  */
 | |
| #define __KERNEL32_CS			(GDT_ENTRY_KERNEL32_CS*8)
 | |
| #define __KERNEL_CS			(GDT_ENTRY_KERNEL_CS*8)
 | |
| #define __KERNEL_DS			(GDT_ENTRY_KERNEL_DS*8)
 | |
| #define __USER32_CS			(GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
 | |
| #define __USER_DS			(GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
 | |
| #define __USER_CS			(GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
 | |
| #define __CPUNODE_SEG			(GDT_ENTRY_CPUNODE*8 + 3)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define IDT_ENTRIES			256
 | |
| #define NUM_EXCEPTION_VECTORS		32
 | |
| 
 | |
| /* Bitmask of exception vectors which push an error code on the stack: */
 | |
| #define EXCEPTION_ERRCODE_MASK		0x20027d00
 | |
| 
 | |
| #define GDT_SIZE			(GDT_ENTRIES*8)
 | |
| #define GDT_ENTRY_TLS_ENTRIES		3
 | |
| #define TLS_SIZE			(GDT_ENTRY_TLS_ENTRIES* 8)
 | |
| 
 | |
| /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */
 | |
| #define VDSO_CPUNODE_BITS		12
 | |
| #define VDSO_CPUNODE_MASK		0xfff
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| /* Helper functions to store/load CPU and node numbers */
 | |
| 
 | |
| static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node)
 | |
| {
 | |
| 	return (node << VDSO_CPUNODE_BITS) | cpu;
 | |
| }
 | |
| 
 | |
| static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node)
 | |
| {
 | |
| 	unsigned int p;
 | |
| 
 | |
| 	/*
 | |
| 	 * Load CPU and node number from the GDT.  LSL is faster than RDTSCP
 | |
| 	 * and works on all CPUs.  This is volatile so that it orders
 | |
| 	 * correctly with respect to barrier() and to keep GCC from cleverly
 | |
| 	 * hoisting it out of the calling function.
 | |
| 	 *
 | |
| 	 * If RDPID is available, use it.
 | |
| 	 */
 | |
| 	alternative_io ("lsl %[seg],%[p]",
 | |
| 			".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */
 | |
| 			X86_FEATURE_RDPID,
 | |
| 			[p] "=a" (p), [seg] "r" (__CPUNODE_SEG));
 | |
| 
 | |
| 	if (cpu)
 | |
| 		*cpu = (p & VDSO_CPUNODE_MASK);
 | |
| 	if (node)
 | |
| 		*node = (p >> VDSO_CPUNODE_BITS);
 | |
| }
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| /*
 | |
|  * early_idt_handler_array is an array of entry points referenced in the
 | |
|  * early IDT.  For simplicity, it's a real array with one entry point
 | |
|  * every nine bytes.  That leaves room for an optional 'push $0' if the
 | |
|  * vector has no error code (two bytes), a 'push $vector_number' (two
 | |
|  * bytes), and a jump to the common entry code (up to five bytes).
 | |
|  */
 | |
| #define EARLY_IDT_HANDLER_SIZE (9 + ENDBR_INSN_SIZE)
 | |
| 
 | |
| /*
 | |
|  * xen_early_idt_handler_array is for Xen pv guests: for each entry in
 | |
|  * early_idt_handler_array it contains a prequel in the form of
 | |
|  * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
 | |
|  * max 8 bytes.
 | |
|  */
 | |
| #define XEN_EARLY_IDT_HANDLER_SIZE (8 + ENDBR_INSN_SIZE)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
 | |
| extern void early_ignore_irq(void);
 | |
| 
 | |
| #ifdef CONFIG_XEN_PV
 | |
| extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Load a segment. Fall back on loading the zero segment if something goes
 | |
|  * wrong.  This variant assumes that loading zero fully clears the segment.
 | |
|  * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
 | |
|  * failure to fully clear the cached descriptor is only observable for
 | |
|  * FS and GS.
 | |
|  */
 | |
| #define __loadsegment_simple(seg, value)				\
 | |
| do {									\
 | |
| 	unsigned short __val = (value);					\
 | |
| 									\
 | |
| 	asm volatile("						\n"	\
 | |
| 		     "1:	movl %k0,%%" #seg "		\n"	\
 | |
| 		     _ASM_EXTABLE_TYPE_REG(1b, 1b, EX_TYPE_ZERO_REG, %k0)\
 | |
| 		     : "+r" (__val) : : "memory");			\
 | |
| } while (0)
 | |
| 
 | |
| #define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
 | |
| #define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
 | |
| #define __loadsegment_es(value) __loadsegment_simple(es, (value))
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 
 | |
| /*
 | |
|  * On 32-bit systems, the hidden parts of FS and GS are unobservable if
 | |
|  * the selector is NULL, so there's no funny business here.
 | |
|  */
 | |
| #define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
 | |
| #define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void __loadsegment_fs(unsigned short value)
 | |
| {
 | |
| 	asm volatile("						\n"
 | |
| 		     "1:	movw %0, %%fs			\n"
 | |
| 		     "2:					\n"
 | |
| 
 | |
| 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_CLEAR_FS)
 | |
| 
 | |
| 		     : : "rm" (value) : "memory");
 | |
| }
 | |
| 
 | |
| /* __loadsegment_gs is intentionally undefined.  Use load_gs_index instead. */
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define loadsegment(seg, value) __loadsegment_ ## seg (value)
 | |
| 
 | |
| /*
 | |
|  * Save a segment register away:
 | |
|  */
 | |
| #define savesegment(seg, value)				\
 | |
| 	asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #endif /* _ASM_X86_SEGMENT_H */
 |