mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 d384dce281
			
		
	
	
		d384dce281
		
	
	
	
	
		
			
			KPROBE program's user-facing context type is defined as typedef
bpf_user_pt_regs_t. This leads to a problem when trying to passing
kprobe/uprobe/usdt context argument into global subprog, as kernel
always strip away mods and typedefs of user-supplied type, but takes
expected type from bpf_ctx_convert as is, which causes mismatch.
Current way to work around this is to define a fake struct with the same
name as expected typedef:
  struct bpf_user_pt_regs_t {};
  __noinline my_global_subprog(struct bpf_user_pt_regs_t *ctx) { ... }
This patch fixes the issue by resolving expected type, if it's not
a struct. It still leaves the above work-around working for backwards
compatibility.
Fixes: 91cc1a9974 ("bpf: Annotate context types")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230216045954.3002473-2-andrii@kernel.org
		
	
			
		
			
				
	
	
		
			8450 lines
		
	
	
	
		
			216 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8450 lines
		
	
	
	
		
			216 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c) 2018 Facebook */
 | |
| 
 | |
| #include <uapi/linux/btf.h>
 | |
| #include <uapi/linux/bpf.h>
 | |
| #include <uapi/linux/bpf_perf_event.h>
 | |
| #include <uapi/linux/types.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/bpf_verifier.h>
 | |
| #include <linux/btf.h>
 | |
| #include <linux/btf_ids.h>
 | |
| #include <linux/bpf_lsm.h>
 | |
| #include <linux/skmsg.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/kobject.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <net/sock.h>
 | |
| #include "../tools/lib/bpf/relo_core.h"
 | |
| 
 | |
| /* BTF (BPF Type Format) is the meta data format which describes
 | |
|  * the data types of BPF program/map.  Hence, it basically focus
 | |
|  * on the C programming language which the modern BPF is primary
 | |
|  * using.
 | |
|  *
 | |
|  * ELF Section:
 | |
|  * ~~~~~~~~~~~
 | |
|  * The BTF data is stored under the ".BTF" ELF section
 | |
|  *
 | |
|  * struct btf_type:
 | |
|  * ~~~~~~~~~~~~~~~
 | |
|  * Each 'struct btf_type' object describes a C data type.
 | |
|  * Depending on the type it is describing, a 'struct btf_type'
 | |
|  * object may be followed by more data.  F.e.
 | |
|  * To describe an array, 'struct btf_type' is followed by
 | |
|  * 'struct btf_array'.
 | |
|  *
 | |
|  * 'struct btf_type' and any extra data following it are
 | |
|  * 4 bytes aligned.
 | |
|  *
 | |
|  * Type section:
 | |
|  * ~~~~~~~~~~~~~
 | |
|  * The BTF type section contains a list of 'struct btf_type' objects.
 | |
|  * Each one describes a C type.  Recall from the above section
 | |
|  * that a 'struct btf_type' object could be immediately followed by extra
 | |
|  * data in order to describe some particular C types.
 | |
|  *
 | |
|  * type_id:
 | |
|  * ~~~~~~~
 | |
|  * Each btf_type object is identified by a type_id.  The type_id
 | |
|  * is implicitly implied by the location of the btf_type object in
 | |
|  * the BTF type section.  The first one has type_id 1.  The second
 | |
|  * one has type_id 2...etc.  Hence, an earlier btf_type has
 | |
|  * a smaller type_id.
 | |
|  *
 | |
|  * A btf_type object may refer to another btf_type object by using
 | |
|  * type_id (i.e. the "type" in the "struct btf_type").
 | |
|  *
 | |
|  * NOTE that we cannot assume any reference-order.
 | |
|  * A btf_type object can refer to an earlier btf_type object
 | |
|  * but it can also refer to a later btf_type object.
 | |
|  *
 | |
|  * For example, to describe "const void *".  A btf_type
 | |
|  * object describing "const" may refer to another btf_type
 | |
|  * object describing "void *".  This type-reference is done
 | |
|  * by specifying type_id:
 | |
|  *
 | |
|  * [1] CONST (anon) type_id=2
 | |
|  * [2] PTR (anon) type_id=0
 | |
|  *
 | |
|  * The above is the btf_verifier debug log:
 | |
|  *   - Each line started with "[?]" is a btf_type object
 | |
|  *   - [?] is the type_id of the btf_type object.
 | |
|  *   - CONST/PTR is the BTF_KIND_XXX
 | |
|  *   - "(anon)" is the name of the type.  It just
 | |
|  *     happens that CONST and PTR has no name.
 | |
|  *   - type_id=XXX is the 'u32 type' in btf_type
 | |
|  *
 | |
|  * NOTE: "void" has type_id 0
 | |
|  *
 | |
|  * String section:
 | |
|  * ~~~~~~~~~~~~~~
 | |
|  * The BTF string section contains the names used by the type section.
 | |
|  * Each string is referred by an "offset" from the beginning of the
 | |
|  * string section.
 | |
|  *
 | |
|  * Each string is '\0' terminated.
 | |
|  *
 | |
|  * The first character in the string section must be '\0'
 | |
|  * which is used to mean 'anonymous'. Some btf_type may not
 | |
|  * have a name.
 | |
|  */
 | |
| 
 | |
| /* BTF verification:
 | |
|  *
 | |
|  * To verify BTF data, two passes are needed.
 | |
|  *
 | |
|  * Pass #1
 | |
|  * ~~~~~~~
 | |
|  * The first pass is to collect all btf_type objects to
 | |
|  * an array: "btf->types".
 | |
|  *
 | |
|  * Depending on the C type that a btf_type is describing,
 | |
|  * a btf_type may be followed by extra data.  We don't know
 | |
|  * how many btf_type is there, and more importantly we don't
 | |
|  * know where each btf_type is located in the type section.
 | |
|  *
 | |
|  * Without knowing the location of each type_id, most verifications
 | |
|  * cannot be done.  e.g. an earlier btf_type may refer to a later
 | |
|  * btf_type (recall the "const void *" above), so we cannot
 | |
|  * check this type-reference in the first pass.
 | |
|  *
 | |
|  * In the first pass, it still does some verifications (e.g.
 | |
|  * checking the name is a valid offset to the string section).
 | |
|  *
 | |
|  * Pass #2
 | |
|  * ~~~~~~~
 | |
|  * The main focus is to resolve a btf_type that is referring
 | |
|  * to another type.
 | |
|  *
 | |
|  * We have to ensure the referring type:
 | |
|  * 1) does exist in the BTF (i.e. in btf->types[])
 | |
|  * 2) does not cause a loop:
 | |
|  *	struct A {
 | |
|  *		struct B b;
 | |
|  *	};
 | |
|  *
 | |
|  *	struct B {
 | |
|  *		struct A a;
 | |
|  *	};
 | |
|  *
 | |
|  * btf_type_needs_resolve() decides if a btf_type needs
 | |
|  * to be resolved.
 | |
|  *
 | |
|  * The needs_resolve type implements the "resolve()" ops which
 | |
|  * essentially does a DFS and detects backedge.
 | |
|  *
 | |
|  * During resolve (or DFS), different C types have different
 | |
|  * "RESOLVED" conditions.
 | |
|  *
 | |
|  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
 | |
|  * members because a member is always referring to another
 | |
|  * type.  A struct's member can be treated as "RESOLVED" if
 | |
|  * it is referring to a BTF_KIND_PTR.  Otherwise, the
 | |
|  * following valid C struct would be rejected:
 | |
|  *
 | |
|  *	struct A {
 | |
|  *		int m;
 | |
|  *		struct A *a;
 | |
|  *	};
 | |
|  *
 | |
|  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
 | |
|  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
 | |
|  * detect a pointer loop, e.g.:
 | |
|  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
 | |
|  *                        ^                                         |
 | |
|  *                        +-----------------------------------------+
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
 | |
| #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
 | |
| #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
 | |
| #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
 | |
| #define BITS_ROUNDUP_BYTES(bits) \
 | |
| 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
 | |
| 
 | |
| #define BTF_INFO_MASK 0x9f00ffff
 | |
| #define BTF_INT_MASK 0x0fffffff
 | |
| #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
 | |
| #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
 | |
| 
 | |
| /* 16MB for 64k structs and each has 16 members and
 | |
|  * a few MB spaces for the string section.
 | |
|  * The hard limit is S32_MAX.
 | |
|  */
 | |
| #define BTF_MAX_SIZE (16 * 1024 * 1024)
 | |
| 
 | |
| #define for_each_member_from(i, from, struct_type, member)		\
 | |
| 	for (i = from, member = btf_type_member(struct_type) + from;	\
 | |
| 	     i < btf_type_vlen(struct_type);				\
 | |
| 	     i++, member++)
 | |
| 
 | |
| #define for_each_vsi_from(i, from, struct_type, member)				\
 | |
| 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
 | |
| 	     i < btf_type_vlen(struct_type);					\
 | |
| 	     i++, member++)
 | |
| 
 | |
| DEFINE_IDR(btf_idr);
 | |
| DEFINE_SPINLOCK(btf_idr_lock);
 | |
| 
 | |
| enum btf_kfunc_hook {
 | |
| 	BTF_KFUNC_HOOK_COMMON,
 | |
| 	BTF_KFUNC_HOOK_XDP,
 | |
| 	BTF_KFUNC_HOOK_TC,
 | |
| 	BTF_KFUNC_HOOK_STRUCT_OPS,
 | |
| 	BTF_KFUNC_HOOK_TRACING,
 | |
| 	BTF_KFUNC_HOOK_SYSCALL,
 | |
| 	BTF_KFUNC_HOOK_FMODRET,
 | |
| 	BTF_KFUNC_HOOK_MAX,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	BTF_KFUNC_SET_MAX_CNT = 256,
 | |
| 	BTF_DTOR_KFUNC_MAX_CNT = 256,
 | |
| };
 | |
| 
 | |
| struct btf_kfunc_set_tab {
 | |
| 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
 | |
| };
 | |
| 
 | |
| struct btf_id_dtor_kfunc_tab {
 | |
| 	u32 cnt;
 | |
| 	struct btf_id_dtor_kfunc dtors[];
 | |
| };
 | |
| 
 | |
| struct btf {
 | |
| 	void *data;
 | |
| 	struct btf_type **types;
 | |
| 	u32 *resolved_ids;
 | |
| 	u32 *resolved_sizes;
 | |
| 	const char *strings;
 | |
| 	void *nohdr_data;
 | |
| 	struct btf_header hdr;
 | |
| 	u32 nr_types; /* includes VOID for base BTF */
 | |
| 	u32 types_size;
 | |
| 	u32 data_size;
 | |
| 	refcount_t refcnt;
 | |
| 	u32 id;
 | |
| 	struct rcu_head rcu;
 | |
| 	struct btf_kfunc_set_tab *kfunc_set_tab;
 | |
| 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
 | |
| 	struct btf_struct_metas *struct_meta_tab;
 | |
| 
 | |
| 	/* split BTF support */
 | |
| 	struct btf *base_btf;
 | |
| 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
 | |
| 	u32 start_str_off; /* first string offset (0 for base BTF) */
 | |
| 	char name[MODULE_NAME_LEN];
 | |
| 	bool kernel_btf;
 | |
| };
 | |
| 
 | |
| enum verifier_phase {
 | |
| 	CHECK_META,
 | |
| 	CHECK_TYPE,
 | |
| };
 | |
| 
 | |
| struct resolve_vertex {
 | |
| 	const struct btf_type *t;
 | |
| 	u32 type_id;
 | |
| 	u16 next_member;
 | |
| };
 | |
| 
 | |
| enum visit_state {
 | |
| 	NOT_VISITED,
 | |
| 	VISITED,
 | |
| 	RESOLVED,
 | |
| };
 | |
| 
 | |
| enum resolve_mode {
 | |
| 	RESOLVE_TBD,	/* To Be Determined */
 | |
| 	RESOLVE_PTR,	/* Resolving for Pointer */
 | |
| 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
 | |
| 					 * or array
 | |
| 					 */
 | |
| };
 | |
| 
 | |
| #define MAX_RESOLVE_DEPTH 32
 | |
| 
 | |
| struct btf_sec_info {
 | |
| 	u32 off;
 | |
| 	u32 len;
 | |
| };
 | |
| 
 | |
| struct btf_verifier_env {
 | |
| 	struct btf *btf;
 | |
| 	u8 *visit_states;
 | |
| 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
 | |
| 	struct bpf_verifier_log log;
 | |
| 	u32 log_type_id;
 | |
| 	u32 top_stack;
 | |
| 	enum verifier_phase phase;
 | |
| 	enum resolve_mode resolve_mode;
 | |
| };
 | |
| 
 | |
| static const char * const btf_kind_str[NR_BTF_KINDS] = {
 | |
| 	[BTF_KIND_UNKN]		= "UNKNOWN",
 | |
| 	[BTF_KIND_INT]		= "INT",
 | |
| 	[BTF_KIND_PTR]		= "PTR",
 | |
| 	[BTF_KIND_ARRAY]	= "ARRAY",
 | |
| 	[BTF_KIND_STRUCT]	= "STRUCT",
 | |
| 	[BTF_KIND_UNION]	= "UNION",
 | |
| 	[BTF_KIND_ENUM]		= "ENUM",
 | |
| 	[BTF_KIND_FWD]		= "FWD",
 | |
| 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
 | |
| 	[BTF_KIND_VOLATILE]	= "VOLATILE",
 | |
| 	[BTF_KIND_CONST]	= "CONST",
 | |
| 	[BTF_KIND_RESTRICT]	= "RESTRICT",
 | |
| 	[BTF_KIND_FUNC]		= "FUNC",
 | |
| 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
 | |
| 	[BTF_KIND_VAR]		= "VAR",
 | |
| 	[BTF_KIND_DATASEC]	= "DATASEC",
 | |
| 	[BTF_KIND_FLOAT]	= "FLOAT",
 | |
| 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
 | |
| 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
 | |
| 	[BTF_KIND_ENUM64]	= "ENUM64",
 | |
| };
 | |
| 
 | |
| const char *btf_type_str(const struct btf_type *t)
 | |
| {
 | |
| 	return btf_kind_str[BTF_INFO_KIND(t->info)];
 | |
| }
 | |
| 
 | |
| /* Chunk size we use in safe copy of data to be shown. */
 | |
| #define BTF_SHOW_OBJ_SAFE_SIZE		32
 | |
| 
 | |
| /*
 | |
|  * This is the maximum size of a base type value (equivalent to a
 | |
|  * 128-bit int); if we are at the end of our safe buffer and have
 | |
|  * less than 16 bytes space we can't be assured of being able
 | |
|  * to copy the next type safely, so in such cases we will initiate
 | |
|  * a new copy.
 | |
|  */
 | |
| #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
 | |
| 
 | |
| /* Type name size */
 | |
| #define BTF_SHOW_NAME_SIZE		80
 | |
| 
 | |
| /*
 | |
|  * The suffix of a type that indicates it cannot alias another type when
 | |
|  * comparing BTF IDs for kfunc invocations.
 | |
|  */
 | |
| #define NOCAST_ALIAS_SUFFIX		"___init"
 | |
| 
 | |
| /*
 | |
|  * Common data to all BTF show operations. Private show functions can add
 | |
|  * their own data to a structure containing a struct btf_show and consult it
 | |
|  * in the show callback.  See btf_type_show() below.
 | |
|  *
 | |
|  * One challenge with showing nested data is we want to skip 0-valued
 | |
|  * data, but in order to figure out whether a nested object is all zeros
 | |
|  * we need to walk through it.  As a result, we need to make two passes
 | |
|  * when handling structs, unions and arrays; the first path simply looks
 | |
|  * for nonzero data, while the second actually does the display.  The first
 | |
|  * pass is signalled by show->state.depth_check being set, and if we
 | |
|  * encounter a non-zero value we set show->state.depth_to_show to
 | |
|  * the depth at which we encountered it.  When we have completed the
 | |
|  * first pass, we will know if anything needs to be displayed if
 | |
|  * depth_to_show > depth.  See btf_[struct,array]_show() for the
 | |
|  * implementation of this.
 | |
|  *
 | |
|  * Another problem is we want to ensure the data for display is safe to
 | |
|  * access.  To support this, the anonymous "struct {} obj" tracks the data
 | |
|  * object and our safe copy of it.  We copy portions of the data needed
 | |
|  * to the object "copy" buffer, but because its size is limited to
 | |
|  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
 | |
|  * traverse larger objects for display.
 | |
|  *
 | |
|  * The various data type show functions all start with a call to
 | |
|  * btf_show_start_type() which returns a pointer to the safe copy
 | |
|  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
 | |
|  * raw data itself).  btf_show_obj_safe() is responsible for
 | |
|  * using copy_from_kernel_nofault() to update the safe data if necessary
 | |
|  * as we traverse the object's data.  skbuff-like semantics are
 | |
|  * used:
 | |
|  *
 | |
|  * - obj.head points to the start of the toplevel object for display
 | |
|  * - obj.size is the size of the toplevel object
 | |
|  * - obj.data points to the current point in the original data at
 | |
|  *   which our safe data starts.  obj.data will advance as we copy
 | |
|  *   portions of the data.
 | |
|  *
 | |
|  * In most cases a single copy will suffice, but larger data structures
 | |
|  * such as "struct task_struct" will require many copies.  The logic in
 | |
|  * btf_show_obj_safe() handles the logic that determines if a new
 | |
|  * copy_from_kernel_nofault() is needed.
 | |
|  */
 | |
| struct btf_show {
 | |
| 	u64 flags;
 | |
| 	void *target;	/* target of show operation (seq file, buffer) */
 | |
| 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
 | |
| 	const struct btf *btf;
 | |
| 	/* below are used during iteration */
 | |
| 	struct {
 | |
| 		u8 depth;
 | |
| 		u8 depth_to_show;
 | |
| 		u8 depth_check;
 | |
| 		u8 array_member:1,
 | |
| 		   array_terminated:1;
 | |
| 		u16 array_encoding;
 | |
| 		u32 type_id;
 | |
| 		int status;			/* non-zero for error */
 | |
| 		const struct btf_type *type;
 | |
| 		const struct btf_member *member;
 | |
| 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
 | |
| 	} state;
 | |
| 	struct {
 | |
| 		u32 size;
 | |
| 		void *head;
 | |
| 		void *data;
 | |
| 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
 | |
| 	} obj;
 | |
| };
 | |
| 
 | |
| struct btf_kind_operations {
 | |
| 	s32 (*check_meta)(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t,
 | |
| 			  u32 meta_left);
 | |
| 	int (*resolve)(struct btf_verifier_env *env,
 | |
| 		       const struct resolve_vertex *v);
 | |
| 	int (*check_member)(struct btf_verifier_env *env,
 | |
| 			    const struct btf_type *struct_type,
 | |
| 			    const struct btf_member *member,
 | |
| 			    const struct btf_type *member_type);
 | |
| 	int (*check_kflag_member)(struct btf_verifier_env *env,
 | |
| 				  const struct btf_type *struct_type,
 | |
| 				  const struct btf_member *member,
 | |
| 				  const struct btf_type *member_type);
 | |
| 	void (*log_details)(struct btf_verifier_env *env,
 | |
| 			    const struct btf_type *t);
 | |
| 	void (*show)(const struct btf *btf, const struct btf_type *t,
 | |
| 			 u32 type_id, void *data, u8 bits_offsets,
 | |
| 			 struct btf_show *show);
 | |
| };
 | |
| 
 | |
| static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
 | |
| static struct btf_type btf_void;
 | |
| 
 | |
| static int btf_resolve(struct btf_verifier_env *env,
 | |
| 		       const struct btf_type *t, u32 type_id);
 | |
| 
 | |
| static int btf_func_check(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t);
 | |
| 
 | |
| static bool btf_type_is_modifier(const struct btf_type *t)
 | |
| {
 | |
| 	/* Some of them is not strictly a C modifier
 | |
| 	 * but they are grouped into the same bucket
 | |
| 	 * for BTF concern:
 | |
| 	 *   A type (t) that refers to another
 | |
| 	 *   type through t->type AND its size cannot
 | |
| 	 *   be determined without following the t->type.
 | |
| 	 *
 | |
| 	 * ptr does not fall into this bucket
 | |
| 	 * because its size is always sizeof(void *).
 | |
| 	 */
 | |
| 	switch (BTF_INFO_KIND(t->info)) {
 | |
| 	case BTF_KIND_TYPEDEF:
 | |
| 	case BTF_KIND_VOLATILE:
 | |
| 	case BTF_KIND_CONST:
 | |
| 	case BTF_KIND_RESTRICT:
 | |
| 	case BTF_KIND_TYPE_TAG:
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool btf_type_is_void(const struct btf_type *t)
 | |
| {
 | |
| 	return t == &btf_void;
 | |
| }
 | |
| 
 | |
| static bool btf_type_is_fwd(const struct btf_type *t)
 | |
| {
 | |
| 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 | |
| }
 | |
| 
 | |
| static bool btf_type_nosize(const struct btf_type *t)
 | |
| {
 | |
| 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
 | |
| 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
 | |
| }
 | |
| 
 | |
| static bool btf_type_nosize_or_null(const struct btf_type *t)
 | |
| {
 | |
| 	return !t || btf_type_nosize(t);
 | |
| }
 | |
| 
 | |
| static bool btf_type_is_datasec(const struct btf_type *t)
 | |
| {
 | |
| 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
 | |
| }
 | |
| 
 | |
| static bool btf_type_is_decl_tag(const struct btf_type *t)
 | |
| {
 | |
| 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
 | |
| }
 | |
| 
 | |
| static bool btf_type_is_decl_tag_target(const struct btf_type *t)
 | |
| {
 | |
| 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
 | |
| 	       btf_type_is_var(t) || btf_type_is_typedef(t);
 | |
| }
 | |
| 
 | |
| u32 btf_nr_types(const struct btf *btf)
 | |
| {
 | |
| 	u32 total = 0;
 | |
| 
 | |
| 	while (btf) {
 | |
| 		total += btf->nr_types;
 | |
| 		btf = btf->base_btf;
 | |
| 	}
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 	const char *tname;
 | |
| 	u32 i, total;
 | |
| 
 | |
| 	total = btf_nr_types(btf);
 | |
| 	for (i = 1; i < total; i++) {
 | |
| 		t = btf_type_by_id(btf, i);
 | |
| 		if (BTF_INFO_KIND(t->info) != kind)
 | |
| 			continue;
 | |
| 
 | |
| 		tname = btf_name_by_offset(btf, t->name_off);
 | |
| 		if (!strcmp(tname, name))
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	s32 ret;
 | |
| 	int id;
 | |
| 
 | |
| 	btf = bpf_get_btf_vmlinux();
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 	if (!btf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = btf_find_by_name_kind(btf, name, kind);
 | |
| 	/* ret is never zero, since btf_find_by_name_kind returns
 | |
| 	 * positive btf_id or negative error.
 | |
| 	 */
 | |
| 	if (ret > 0) {
 | |
| 		btf_get(btf);
 | |
| 		*btf_p = btf;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
 | |
| 	spin_lock_bh(&btf_idr_lock);
 | |
| 	idr_for_each_entry(&btf_idr, btf, id) {
 | |
| 		if (!btf_is_module(btf))
 | |
| 			continue;
 | |
| 		/* linear search could be slow hence unlock/lock
 | |
| 		 * the IDR to avoiding holding it for too long
 | |
| 		 */
 | |
| 		btf_get(btf);
 | |
| 		spin_unlock_bh(&btf_idr_lock);
 | |
| 		ret = btf_find_by_name_kind(btf, name, kind);
 | |
| 		if (ret > 0) {
 | |
| 			*btf_p = btf;
 | |
| 			return ret;
 | |
| 		}
 | |
| 		spin_lock_bh(&btf_idr_lock);
 | |
| 		btf_put(btf);
 | |
| 	}
 | |
| 	spin_unlock_bh(&btf_idr_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
 | |
| 					       u32 id, u32 *res_id)
 | |
| {
 | |
| 	const struct btf_type *t = btf_type_by_id(btf, id);
 | |
| 
 | |
| 	while (btf_type_is_modifier(t)) {
 | |
| 		id = t->type;
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	}
 | |
| 
 | |
| 	if (res_id)
 | |
| 		*res_id = id;
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
 | |
| 					    u32 id, u32 *res_id)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 
 | |
| 	t = btf_type_skip_modifiers(btf, id, NULL);
 | |
| 	if (!btf_type_is_ptr(t))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return btf_type_skip_modifiers(btf, t->type, res_id);
 | |
| }
 | |
| 
 | |
| const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
 | |
| 						 u32 id, u32 *res_id)
 | |
| {
 | |
| 	const struct btf_type *ptype;
 | |
| 
 | |
| 	ptype = btf_type_resolve_ptr(btf, id, res_id);
 | |
| 	if (ptype && btf_type_is_func_proto(ptype))
 | |
| 		return ptype;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Types that act only as a source, not sink or intermediate
 | |
|  * type when resolving.
 | |
|  */
 | |
| static bool btf_type_is_resolve_source_only(const struct btf_type *t)
 | |
| {
 | |
| 	return btf_type_is_var(t) ||
 | |
| 	       btf_type_is_decl_tag(t) ||
 | |
| 	       btf_type_is_datasec(t);
 | |
| }
 | |
| 
 | |
| /* What types need to be resolved?
 | |
|  *
 | |
|  * btf_type_is_modifier() is an obvious one.
 | |
|  *
 | |
|  * btf_type_is_struct() because its member refers to
 | |
|  * another type (through member->type).
 | |
|  *
 | |
|  * btf_type_is_var() because the variable refers to
 | |
|  * another type. btf_type_is_datasec() holds multiple
 | |
|  * btf_type_is_var() types that need resolving.
 | |
|  *
 | |
|  * btf_type_is_array() because its element (array->type)
 | |
|  * refers to another type.  Array can be thought of a
 | |
|  * special case of struct while array just has the same
 | |
|  * member-type repeated by array->nelems of times.
 | |
|  */
 | |
| static bool btf_type_needs_resolve(const struct btf_type *t)
 | |
| {
 | |
| 	return btf_type_is_modifier(t) ||
 | |
| 	       btf_type_is_ptr(t) ||
 | |
| 	       btf_type_is_struct(t) ||
 | |
| 	       btf_type_is_array(t) ||
 | |
| 	       btf_type_is_var(t) ||
 | |
| 	       btf_type_is_func(t) ||
 | |
| 	       btf_type_is_decl_tag(t) ||
 | |
| 	       btf_type_is_datasec(t);
 | |
| }
 | |
| 
 | |
| /* t->size can be used */
 | |
| static bool btf_type_has_size(const struct btf_type *t)
 | |
| {
 | |
| 	switch (BTF_INFO_KIND(t->info)) {
 | |
| 	case BTF_KIND_INT:
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION:
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_DATASEC:
 | |
| 	case BTF_KIND_FLOAT:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static const char *btf_int_encoding_str(u8 encoding)
 | |
| {
 | |
| 	if (encoding == 0)
 | |
| 		return "(none)";
 | |
| 	else if (encoding == BTF_INT_SIGNED)
 | |
| 		return "SIGNED";
 | |
| 	else if (encoding == BTF_INT_CHAR)
 | |
| 		return "CHAR";
 | |
| 	else if (encoding == BTF_INT_BOOL)
 | |
| 		return "BOOL";
 | |
| 	else
 | |
| 		return "UNKN";
 | |
| }
 | |
| 
 | |
| static u32 btf_type_int(const struct btf_type *t)
 | |
| {
 | |
| 	return *(u32 *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_array *btf_type_array(const struct btf_type *t)
 | |
| {
 | |
| 	return (const struct btf_array *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_enum *btf_type_enum(const struct btf_type *t)
 | |
| {
 | |
| 	return (const struct btf_enum *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_var *btf_type_var(const struct btf_type *t)
 | |
| {
 | |
| 	return (const struct btf_var *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
 | |
| {
 | |
| 	return (const struct btf_decl_tag *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
 | |
| {
 | |
| 	return (const struct btf_enum64 *)(t + 1);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
 | |
| {
 | |
| 	return kind_ops[BTF_INFO_KIND(t->info)];
 | |
| }
 | |
| 
 | |
| static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	if (!BTF_STR_OFFSET_VALID(offset))
 | |
| 		return false;
 | |
| 
 | |
| 	while (offset < btf->start_str_off)
 | |
| 		btf = btf->base_btf;
 | |
| 
 | |
| 	offset -= btf->start_str_off;
 | |
| 	return offset < btf->hdr.str_len;
 | |
| }
 | |
| 
 | |
| static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
 | |
| {
 | |
| 	if ((first ? !isalpha(c) :
 | |
| 		     !isalnum(c)) &&
 | |
| 	    c != '_' &&
 | |
| 	    ((c == '.' && !dot_ok) ||
 | |
| 	      c != '.'))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	while (offset < btf->start_str_off)
 | |
| 		btf = btf->base_btf;
 | |
| 
 | |
| 	offset -= btf->start_str_off;
 | |
| 	if (offset < btf->hdr.str_len)
 | |
| 		return &btf->strings[offset];
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
 | |
| {
 | |
| 	/* offset must be valid */
 | |
| 	const char *src = btf_str_by_offset(btf, offset);
 | |
| 	const char *src_limit;
 | |
| 
 | |
| 	if (!__btf_name_char_ok(*src, true, dot_ok))
 | |
| 		return false;
 | |
| 
 | |
| 	/* set a limit on identifier length */
 | |
| 	src_limit = src + KSYM_NAME_LEN;
 | |
| 	src++;
 | |
| 	while (*src && src < src_limit) {
 | |
| 		if (!__btf_name_char_ok(*src, false, dot_ok))
 | |
| 			return false;
 | |
| 		src++;
 | |
| 	}
 | |
| 
 | |
| 	return !*src;
 | |
| }
 | |
| 
 | |
| /* Only C-style identifier is permitted. This can be relaxed if
 | |
|  * necessary.
 | |
|  */
 | |
| static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	return __btf_name_valid(btf, offset, false);
 | |
| }
 | |
| 
 | |
| static bool btf_name_valid_section(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	return __btf_name_valid(btf, offset, true);
 | |
| }
 | |
| 
 | |
| static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	const char *name;
 | |
| 
 | |
| 	if (!offset)
 | |
| 		return "(anon)";
 | |
| 
 | |
| 	name = btf_str_by_offset(btf, offset);
 | |
| 	return name ?: "(invalid-name-offset)";
 | |
| }
 | |
| 
 | |
| const char *btf_name_by_offset(const struct btf *btf, u32 offset)
 | |
| {
 | |
| 	return btf_str_by_offset(btf, offset);
 | |
| }
 | |
| 
 | |
| const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
 | |
| {
 | |
| 	while (type_id < btf->start_id)
 | |
| 		btf = btf->base_btf;
 | |
| 
 | |
| 	type_id -= btf->start_id;
 | |
| 	if (type_id >= btf->nr_types)
 | |
| 		return NULL;
 | |
| 	return btf->types[type_id];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btf_type_by_id);
 | |
| 
 | |
| /*
 | |
|  * Regular int is not a bit field and it must be either
 | |
|  * u8/u16/u32/u64 or __int128.
 | |
|  */
 | |
| static bool btf_type_int_is_regular(const struct btf_type *t)
 | |
| {
 | |
| 	u8 nr_bits, nr_bytes;
 | |
| 	u32 int_data;
 | |
| 
 | |
| 	int_data = btf_type_int(t);
 | |
| 	nr_bits = BTF_INT_BITS(int_data);
 | |
| 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
 | |
| 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
 | |
| 	    BTF_INT_OFFSET(int_data) ||
 | |
| 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
 | |
| 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
 | |
| 	     nr_bytes != (2 * sizeof(u64)))) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that given struct member is a regular int with expected
 | |
|  * offset and size.
 | |
|  */
 | |
| bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
 | |
| 			   const struct btf_member *m,
 | |
| 			   u32 expected_offset, u32 expected_size)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 	u32 id, int_data;
 | |
| 	u8 nr_bits;
 | |
| 
 | |
| 	id = m->type;
 | |
| 	t = btf_type_id_size(btf, &id, NULL);
 | |
| 	if (!t || !btf_type_is_int(t))
 | |
| 		return false;
 | |
| 
 | |
| 	int_data = btf_type_int(t);
 | |
| 	nr_bits = BTF_INT_BITS(int_data);
 | |
| 	if (btf_type_kflag(s)) {
 | |
| 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
 | |
| 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
 | |
| 
 | |
| 		/* if kflag set, int should be a regular int and
 | |
| 		 * bit offset should be at byte boundary.
 | |
| 		 */
 | |
| 		return !bitfield_size &&
 | |
| 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
 | |
| 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
 | |
| 	}
 | |
| 
 | |
| 	if (BTF_INT_OFFSET(int_data) ||
 | |
| 	    BITS_PER_BYTE_MASKED(m->offset) ||
 | |
| 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
 | |
| 	    BITS_PER_BYTE_MASKED(nr_bits) ||
 | |
| 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
 | |
| static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
 | |
| 						       u32 id)
 | |
| {
 | |
| 	const struct btf_type *t = btf_type_by_id(btf, id);
 | |
| 
 | |
| 	while (btf_type_is_modifier(t) &&
 | |
| 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	}
 | |
| 
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| #define BTF_SHOW_MAX_ITER	10
 | |
| 
 | |
| #define BTF_KIND_BIT(kind)	(1ULL << kind)
 | |
| 
 | |
| /*
 | |
|  * Populate show->state.name with type name information.
 | |
|  * Format of type name is
 | |
|  *
 | |
|  * [.member_name = ] (type_name)
 | |
|  */
 | |
| static const char *btf_show_name(struct btf_show *show)
 | |
| {
 | |
| 	/* BTF_MAX_ITER array suffixes "[]" */
 | |
| 	const char *array_suffixes = "[][][][][][][][][][]";
 | |
| 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
 | |
| 	/* BTF_MAX_ITER pointer suffixes "*" */
 | |
| 	const char *ptr_suffixes = "**********";
 | |
| 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
 | |
| 	const char *name = NULL, *prefix = "", *parens = "";
 | |
| 	const struct btf_member *m = show->state.member;
 | |
| 	const struct btf_type *t;
 | |
| 	const struct btf_array *array;
 | |
| 	u32 id = show->state.type_id;
 | |
| 	const char *member = NULL;
 | |
| 	bool show_member = false;
 | |
| 	u64 kinds = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	show->state.name[0] = '\0';
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't show type name if we're showing an array member;
 | |
| 	 * in that case we show the array type so don't need to repeat
 | |
| 	 * ourselves for each member.
 | |
| 	 */
 | |
| 	if (show->state.array_member)
 | |
| 		return "";
 | |
| 
 | |
| 	/* Retrieve member name, if any. */
 | |
| 	if (m) {
 | |
| 		member = btf_name_by_offset(show->btf, m->name_off);
 | |
| 		show_member = strlen(member) > 0;
 | |
| 		id = m->type;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Start with type_id, as we have resolved the struct btf_type *
 | |
| 	 * via btf_modifier_show() past the parent typedef to the child
 | |
| 	 * struct, int etc it is defined as.  In such cases, the type_id
 | |
| 	 * still represents the starting type while the struct btf_type *
 | |
| 	 * in our show->state points at the resolved type of the typedef.
 | |
| 	 */
 | |
| 	t = btf_type_by_id(show->btf, id);
 | |
| 	if (!t)
 | |
| 		return "";
 | |
| 
 | |
| 	/*
 | |
| 	 * The goal here is to build up the right number of pointer and
 | |
| 	 * array suffixes while ensuring the type name for a typedef
 | |
| 	 * is represented.  Along the way we accumulate a list of
 | |
| 	 * BTF kinds we have encountered, since these will inform later
 | |
| 	 * display; for example, pointer types will not require an
 | |
| 	 * opening "{" for struct, we will just display the pointer value.
 | |
| 	 *
 | |
| 	 * We also want to accumulate the right number of pointer or array
 | |
| 	 * indices in the format string while iterating until we get to
 | |
| 	 * the typedef/pointee/array member target type.
 | |
| 	 *
 | |
| 	 * We start by pointing at the end of pointer and array suffix
 | |
| 	 * strings; as we accumulate pointers and arrays we move the pointer
 | |
| 	 * or array string backwards so it will show the expected number of
 | |
| 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
 | |
| 	 * and/or arrays and typedefs are supported as a precaution.
 | |
| 	 *
 | |
| 	 * We also want to get typedef name while proceeding to resolve
 | |
| 	 * type it points to so that we can add parentheses if it is a
 | |
| 	 * "typedef struct" etc.
 | |
| 	 */
 | |
| 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
 | |
| 
 | |
| 		switch (BTF_INFO_KIND(t->info)) {
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 			if (!name)
 | |
| 				name = btf_name_by_offset(show->btf,
 | |
| 							       t->name_off);
 | |
| 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
 | |
| 			id = t->type;
 | |
| 			break;
 | |
| 		case BTF_KIND_ARRAY:
 | |
| 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
 | |
| 			parens = "[";
 | |
| 			if (!t)
 | |
| 				return "";
 | |
| 			array = btf_type_array(t);
 | |
| 			if (array_suffix > array_suffixes)
 | |
| 				array_suffix -= 2;
 | |
| 			id = array->type;
 | |
| 			break;
 | |
| 		case BTF_KIND_PTR:
 | |
| 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
 | |
| 			if (ptr_suffix > ptr_suffixes)
 | |
| 				ptr_suffix -= 1;
 | |
| 			id = t->type;
 | |
| 			break;
 | |
| 		default:
 | |
| 			id = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!id)
 | |
| 			break;
 | |
| 		t = btf_type_skip_qualifiers(show->btf, id);
 | |
| 	}
 | |
| 	/* We may not be able to represent this type; bail to be safe */
 | |
| 	if (i == BTF_SHOW_MAX_ITER)
 | |
| 		return "";
 | |
| 
 | |
| 	if (!name)
 | |
| 		name = btf_name_by_offset(show->btf, t->name_off);
 | |
| 
 | |
| 	switch (BTF_INFO_KIND(t->info)) {
 | |
| 	case BTF_KIND_STRUCT:
 | |
| 	case BTF_KIND_UNION:
 | |
| 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
 | |
| 			 "struct" : "union";
 | |
| 		/* if it's an array of struct/union, parens is already set */
 | |
| 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
 | |
| 			parens = "{";
 | |
| 		break;
 | |
| 	case BTF_KIND_ENUM:
 | |
| 	case BTF_KIND_ENUM64:
 | |
| 		prefix = "enum";
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* pointer does not require parens */
 | |
| 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
 | |
| 		parens = "";
 | |
| 	/* typedef does not require struct/union/enum prefix */
 | |
| 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
 | |
| 		prefix = "";
 | |
| 
 | |
| 	if (!name)
 | |
| 		name = "";
 | |
| 
 | |
| 	/* Even if we don't want type name info, we want parentheses etc */
 | |
| 	if (show->flags & BTF_SHOW_NONAME)
 | |
| 		snprintf(show->state.name, sizeof(show->state.name), "%s",
 | |
| 			 parens);
 | |
| 	else
 | |
| 		snprintf(show->state.name, sizeof(show->state.name),
 | |
| 			 "%s%s%s(%s%s%s%s%s%s)%s",
 | |
| 			 /* first 3 strings comprise ".member = " */
 | |
| 			 show_member ? "." : "",
 | |
| 			 show_member ? member : "",
 | |
| 			 show_member ? " = " : "",
 | |
| 			 /* ...next is our prefix (struct, enum, etc) */
 | |
| 			 prefix,
 | |
| 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
 | |
| 			 /* ...this is the type name itself */
 | |
| 			 name,
 | |
| 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
 | |
| 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
 | |
| 			 array_suffix, parens);
 | |
| 
 | |
| 	return show->state.name;
 | |
| }
 | |
| 
 | |
| static const char *__btf_show_indent(struct btf_show *show)
 | |
| {
 | |
| 	const char *indents = "                                ";
 | |
| 	const char *indent = &indents[strlen(indents)];
 | |
| 
 | |
| 	if ((indent - show->state.depth) >= indents)
 | |
| 		return indent - show->state.depth;
 | |
| 	return indents;
 | |
| }
 | |
| 
 | |
| static const char *btf_show_indent(struct btf_show *show)
 | |
| {
 | |
| 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
 | |
| }
 | |
| 
 | |
| static const char *btf_show_newline(struct btf_show *show)
 | |
| {
 | |
| 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
 | |
| }
 | |
| 
 | |
| static const char *btf_show_delim(struct btf_show *show)
 | |
| {
 | |
| 	if (show->state.depth == 0)
 | |
| 		return "";
 | |
| 
 | |
| 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
 | |
| 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
 | |
| 		return "|";
 | |
| 
 | |
| 	return ",";
 | |
| }
 | |
| 
 | |
| __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!show->state.depth_check) {
 | |
| 		va_start(args, fmt);
 | |
| 		show->showfn(show, fmt, args);
 | |
| 		va_end(args);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Macros are used here as btf_show_type_value[s]() prepends and appends
 | |
|  * format specifiers to the format specifier passed in; these do the work of
 | |
|  * adding indentation, delimiters etc while the caller simply has to specify
 | |
|  * the type value(s) in the format specifier + value(s).
 | |
|  */
 | |
| #define btf_show_type_value(show, fmt, value)				       \
 | |
| 	do {								       \
 | |
| 		if ((value) != (__typeof__(value))0 ||			       \
 | |
| 		    (show->flags & BTF_SHOW_ZERO) ||			       \
 | |
| 		    show->state.depth == 0) {				       \
 | |
| 			btf_show(show, "%s%s" fmt "%s%s",		       \
 | |
| 				 btf_show_indent(show),			       \
 | |
| 				 btf_show_name(show),			       \
 | |
| 				 value, btf_show_delim(show),		       \
 | |
| 				 btf_show_newline(show));		       \
 | |
| 			if (show->state.depth > show->state.depth_to_show)     \
 | |
| 				show->state.depth_to_show = show->state.depth; \
 | |
| 		}							       \
 | |
| 	} while (0)
 | |
| 
 | |
| #define btf_show_type_values(show, fmt, ...)				       \
 | |
| 	do {								       \
 | |
| 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
 | |
| 			 btf_show_name(show),				       \
 | |
| 			 __VA_ARGS__, btf_show_delim(show),		       \
 | |
| 			 btf_show_newline(show));			       \
 | |
| 		if (show->state.depth > show->state.depth_to_show)	       \
 | |
| 			show->state.depth_to_show = show->state.depth;	       \
 | |
| 	} while (0)
 | |
| 
 | |
| /* How much is left to copy to safe buffer after @data? */
 | |
| static int btf_show_obj_size_left(struct btf_show *show, void *data)
 | |
| {
 | |
| 	return show->obj.head + show->obj.size - data;
 | |
| }
 | |
| 
 | |
| /* Is object pointed to by @data of @size already copied to our safe buffer? */
 | |
| static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
 | |
| {
 | |
| 	return data >= show->obj.data &&
 | |
| 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If object pointed to by @data of @size falls within our safe buffer, return
 | |
|  * the equivalent pointer to the same safe data.  Assumes
 | |
|  * copy_from_kernel_nofault() has already happened and our safe buffer is
 | |
|  * populated.
 | |
|  */
 | |
| static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
 | |
| {
 | |
| 	if (btf_show_obj_is_safe(show, data, size))
 | |
| 		return show->obj.safe + (data - show->obj.data);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a safe-to-access version of data pointed to by @data.
 | |
|  * We do this by copying the relevant amount of information
 | |
|  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
 | |
|  *
 | |
|  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
 | |
|  * safe copy is needed.
 | |
|  *
 | |
|  * Otherwise we need to determine if we have the required amount
 | |
|  * of data (determined by the @data pointer and the size of the
 | |
|  * largest base type we can encounter (represented by
 | |
|  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
 | |
|  * that we will be able to print some of the current object,
 | |
|  * and if more is needed a copy will be triggered.
 | |
|  * Some objects such as structs will not fit into the buffer;
 | |
|  * in such cases additional copies when we iterate over their
 | |
|  * members may be needed.
 | |
|  *
 | |
|  * btf_show_obj_safe() is used to return a safe buffer for
 | |
|  * btf_show_start_type(); this ensures that as we recurse into
 | |
|  * nested types we always have safe data for the given type.
 | |
|  * This approach is somewhat wasteful; it's possible for example
 | |
|  * that when iterating over a large union we'll end up copying the
 | |
|  * same data repeatedly, but the goal is safety not performance.
 | |
|  * We use stack data as opposed to per-CPU buffers because the
 | |
|  * iteration over a type can take some time, and preemption handling
 | |
|  * would greatly complicate use of the safe buffer.
 | |
|  */
 | |
| static void *btf_show_obj_safe(struct btf_show *show,
 | |
| 			       const struct btf_type *t,
 | |
| 			       void *data)
 | |
| {
 | |
| 	const struct btf_type *rt;
 | |
| 	int size_left, size;
 | |
| 	void *safe = NULL;
 | |
| 
 | |
| 	if (show->flags & BTF_SHOW_UNSAFE)
 | |
| 		return data;
 | |
| 
 | |
| 	rt = btf_resolve_size(show->btf, t, &size);
 | |
| 	if (IS_ERR(rt)) {
 | |
| 		show->state.status = PTR_ERR(rt);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Is this toplevel object? If so, set total object size and
 | |
| 	 * initialize pointers.  Otherwise check if we still fall within
 | |
| 	 * our safe object data.
 | |
| 	 */
 | |
| 	if (show->state.depth == 0) {
 | |
| 		show->obj.size = size;
 | |
| 		show->obj.head = data;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If the size of the current object is > our remaining
 | |
| 		 * safe buffer we _may_ need to do a new copy.  However
 | |
| 		 * consider the case of a nested struct; it's size pushes
 | |
| 		 * us over the safe buffer limit, but showing any individual
 | |
| 		 * struct members does not.  In such cases, we don't need
 | |
| 		 * to initiate a fresh copy yet; however we definitely need
 | |
| 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
 | |
| 		 * in our buffer, regardless of the current object size.
 | |
| 		 * The logic here is that as we resolve types we will
 | |
| 		 * hit a base type at some point, and we need to be sure
 | |
| 		 * the next chunk of data is safely available to display
 | |
| 		 * that type info safely.  We cannot rely on the size of
 | |
| 		 * the current object here because it may be much larger
 | |
| 		 * than our current buffer (e.g. task_struct is 8k).
 | |
| 		 * All we want to do here is ensure that we can print the
 | |
| 		 * next basic type, which we can if either
 | |
| 		 * - the current type size is within the safe buffer; or
 | |
| 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
 | |
| 		 *   the safe buffer.
 | |
| 		 */
 | |
| 		safe = __btf_show_obj_safe(show, data,
 | |
| 					   min(size,
 | |
| 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a new copy to our safe object, either because we haven't
 | |
| 	 * yet copied and are initializing safe data, or because the data
 | |
| 	 * we want falls outside the boundaries of the safe object.
 | |
| 	 */
 | |
| 	if (!safe) {
 | |
| 		size_left = btf_show_obj_size_left(show, data);
 | |
| 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
 | |
| 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
 | |
| 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
 | |
| 							      data, size_left);
 | |
| 		if (!show->state.status) {
 | |
| 			show->obj.data = data;
 | |
| 			safe = show->obj.safe;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return safe;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the type we are starting to show and return a safe data pointer
 | |
|  * to be used for showing the associated data.
 | |
|  */
 | |
| static void *btf_show_start_type(struct btf_show *show,
 | |
| 				 const struct btf_type *t,
 | |
| 				 u32 type_id, void *data)
 | |
| {
 | |
| 	show->state.type = t;
 | |
| 	show->state.type_id = type_id;
 | |
| 	show->state.name[0] = '\0';
 | |
| 
 | |
| 	return btf_show_obj_safe(show, t, data);
 | |
| }
 | |
| 
 | |
| static void btf_show_end_type(struct btf_show *show)
 | |
| {
 | |
| 	show->state.type = NULL;
 | |
| 	show->state.type_id = 0;
 | |
| 	show->state.name[0] = '\0';
 | |
| }
 | |
| 
 | |
| static void *btf_show_start_aggr_type(struct btf_show *show,
 | |
| 				      const struct btf_type *t,
 | |
| 				      u32 type_id, void *data)
 | |
| {
 | |
| 	void *safe_data = btf_show_start_type(show, t, type_id, data);
 | |
| 
 | |
| 	if (!safe_data)
 | |
| 		return safe_data;
 | |
| 
 | |
| 	btf_show(show, "%s%s%s", btf_show_indent(show),
 | |
| 		 btf_show_name(show),
 | |
| 		 btf_show_newline(show));
 | |
| 	show->state.depth++;
 | |
| 	return safe_data;
 | |
| }
 | |
| 
 | |
| static void btf_show_end_aggr_type(struct btf_show *show,
 | |
| 				   const char *suffix)
 | |
| {
 | |
| 	show->state.depth--;
 | |
| 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
 | |
| 		 btf_show_delim(show), btf_show_newline(show));
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static void btf_show_start_member(struct btf_show *show,
 | |
| 				  const struct btf_member *m)
 | |
| {
 | |
| 	show->state.member = m;
 | |
| }
 | |
| 
 | |
| static void btf_show_start_array_member(struct btf_show *show)
 | |
| {
 | |
| 	show->state.array_member = 1;
 | |
| 	btf_show_start_member(show, NULL);
 | |
| }
 | |
| 
 | |
| static void btf_show_end_member(struct btf_show *show)
 | |
| {
 | |
| 	show->state.member = NULL;
 | |
| }
 | |
| 
 | |
| static void btf_show_end_array_member(struct btf_show *show)
 | |
| {
 | |
| 	show->state.array_member = 0;
 | |
| 	btf_show_end_member(show);
 | |
| }
 | |
| 
 | |
| static void *btf_show_start_array_type(struct btf_show *show,
 | |
| 				       const struct btf_type *t,
 | |
| 				       u32 type_id,
 | |
| 				       u16 array_encoding,
 | |
| 				       void *data)
 | |
| {
 | |
| 	show->state.array_encoding = array_encoding;
 | |
| 	show->state.array_terminated = 0;
 | |
| 	return btf_show_start_aggr_type(show, t, type_id, data);
 | |
| }
 | |
| 
 | |
| static void btf_show_end_array_type(struct btf_show *show)
 | |
| {
 | |
| 	show->state.array_encoding = 0;
 | |
| 	show->state.array_terminated = 0;
 | |
| 	btf_show_end_aggr_type(show, "]");
 | |
| }
 | |
| 
 | |
| static void *btf_show_start_struct_type(struct btf_show *show,
 | |
| 					const struct btf_type *t,
 | |
| 					u32 type_id,
 | |
| 					void *data)
 | |
| {
 | |
| 	return btf_show_start_aggr_type(show, t, type_id, data);
 | |
| }
 | |
| 
 | |
| static void btf_show_end_struct_type(struct btf_show *show)
 | |
| {
 | |
| 	btf_show_end_aggr_type(show, "}");
 | |
| }
 | |
| 
 | |
| __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
 | |
| 					      const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	bpf_verifier_vlog(log, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
 | |
| 					    const char *fmt, ...)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	bpf_verifier_vlog(log, fmt, args);
 | |
| 	va_end(args);
 | |
| }
 | |
| 
 | |
| __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
 | |
| 						   const struct btf_type *t,
 | |
| 						   bool log_details,
 | |
| 						   const char *fmt, ...)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	if (log->level == BPF_LOG_KERNEL) {
 | |
| 		/* btf verifier prints all types it is processing via
 | |
| 		 * btf_verifier_log_type(..., fmt = NULL).
 | |
| 		 * Skip those prints for in-kernel BTF verification.
 | |
| 		 */
 | |
| 		if (!fmt)
 | |
| 			return;
 | |
| 
 | |
| 		/* Skip logging when loading module BTF with mismatches permitted */
 | |
| 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	__btf_verifier_log(log, "[%u] %s %s%s",
 | |
| 			   env->log_type_id,
 | |
| 			   btf_type_str(t),
 | |
| 			   __btf_name_by_offset(btf, t->name_off),
 | |
| 			   log_details ? " " : "");
 | |
| 
 | |
| 	if (log_details)
 | |
| 		btf_type_ops(t)->log_details(env, t);
 | |
| 
 | |
| 	if (fmt && *fmt) {
 | |
| 		__btf_verifier_log(log, " ");
 | |
| 		va_start(args, fmt);
 | |
| 		bpf_verifier_vlog(log, fmt, args);
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	__btf_verifier_log(log, "\n");
 | |
| }
 | |
| 
 | |
| #define btf_verifier_log_type(env, t, ...) \
 | |
| 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
 | |
| #define btf_verifier_log_basic(env, t, ...) \
 | |
| 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
 | |
| 
 | |
| __printf(4, 5)
 | |
| static void btf_verifier_log_member(struct btf_verifier_env *env,
 | |
| 				    const struct btf_type *struct_type,
 | |
| 				    const struct btf_member *member,
 | |
| 				    const char *fmt, ...)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	if (log->level == BPF_LOG_KERNEL) {
 | |
| 		if (!fmt)
 | |
| 			return;
 | |
| 
 | |
| 		/* Skip logging when loading module BTF with mismatches permitted */
 | |
| 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* The CHECK_META phase already did a btf dump.
 | |
| 	 *
 | |
| 	 * If member is logged again, it must hit an error in
 | |
| 	 * parsing this member.  It is useful to print out which
 | |
| 	 * struct this member belongs to.
 | |
| 	 */
 | |
| 	if (env->phase != CHECK_META)
 | |
| 		btf_verifier_log_type(env, struct_type, NULL);
 | |
| 
 | |
| 	if (btf_type_kflag(struct_type))
 | |
| 		__btf_verifier_log(log,
 | |
| 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
 | |
| 				   __btf_name_by_offset(btf, member->name_off),
 | |
| 				   member->type,
 | |
| 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
 | |
| 				   BTF_MEMBER_BIT_OFFSET(member->offset));
 | |
| 	else
 | |
| 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
 | |
| 				   __btf_name_by_offset(btf, member->name_off),
 | |
| 				   member->type, member->offset);
 | |
| 
 | |
| 	if (fmt && *fmt) {
 | |
| 		__btf_verifier_log(log, " ");
 | |
| 		va_start(args, fmt);
 | |
| 		bpf_verifier_vlog(log, fmt, args);
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	__btf_verifier_log(log, "\n");
 | |
| }
 | |
| 
 | |
| __printf(4, 5)
 | |
| static void btf_verifier_log_vsi(struct btf_verifier_env *env,
 | |
| 				 const struct btf_type *datasec_type,
 | |
| 				 const struct btf_var_secinfo *vsi,
 | |
| 				 const char *fmt, ...)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	va_list args;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 	if (log->level == BPF_LOG_KERNEL && !fmt)
 | |
| 		return;
 | |
| 	if (env->phase != CHECK_META)
 | |
| 		btf_verifier_log_type(env, datasec_type, NULL);
 | |
| 
 | |
| 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
 | |
| 			   vsi->type, vsi->offset, vsi->size);
 | |
| 	if (fmt && *fmt) {
 | |
| 		__btf_verifier_log(log, " ");
 | |
| 		va_start(args, fmt);
 | |
| 		bpf_verifier_vlog(log, fmt, args);
 | |
| 		va_end(args);
 | |
| 	}
 | |
| 
 | |
| 	__btf_verifier_log(log, "\n");
 | |
| }
 | |
| 
 | |
| static void btf_verifier_log_hdr(struct btf_verifier_env *env,
 | |
| 				 u32 btf_data_size)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	const struct btf *btf = env->btf;
 | |
| 	const struct btf_header *hdr;
 | |
| 
 | |
| 	if (!bpf_verifier_log_needed(log))
 | |
| 		return;
 | |
| 
 | |
| 	if (log->level == BPF_LOG_KERNEL)
 | |
| 		return;
 | |
| 	hdr = &btf->hdr;
 | |
| 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
 | |
| 	__btf_verifier_log(log, "version: %u\n", hdr->version);
 | |
| 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
 | |
| 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
 | |
| 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
 | |
| 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
 | |
| 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
 | |
| 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
 | |
| 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
 | |
| }
 | |
| 
 | |
| static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
 | |
| {
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	if (btf->types_size == btf->nr_types) {
 | |
| 		/* Expand 'types' array */
 | |
| 
 | |
| 		struct btf_type **new_types;
 | |
| 		u32 expand_by, new_size;
 | |
| 
 | |
| 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
 | |
| 			btf_verifier_log(env, "Exceeded max num of types");
 | |
| 			return -E2BIG;
 | |
| 		}
 | |
| 
 | |
| 		expand_by = max_t(u32, btf->types_size >> 2, 16);
 | |
| 		new_size = min_t(u32, BTF_MAX_TYPE,
 | |
| 				 btf->types_size + expand_by);
 | |
| 
 | |
| 		new_types = kvcalloc(new_size, sizeof(*new_types),
 | |
| 				     GFP_KERNEL | __GFP_NOWARN);
 | |
| 		if (!new_types)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (btf->nr_types == 0) {
 | |
| 			if (!btf->base_btf) {
 | |
| 				/* lazily init VOID type */
 | |
| 				new_types[0] = &btf_void;
 | |
| 				btf->nr_types++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			memcpy(new_types, btf->types,
 | |
| 			       sizeof(*btf->types) * btf->nr_types);
 | |
| 		}
 | |
| 
 | |
| 		kvfree(btf->types);
 | |
| 		btf->types = new_types;
 | |
| 		btf->types_size = new_size;
 | |
| 	}
 | |
| 
 | |
| 	btf->types[btf->nr_types++] = t;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_alloc_id(struct btf *btf)
 | |
| {
 | |
| 	int id;
 | |
| 
 | |
| 	idr_preload(GFP_KERNEL);
 | |
| 	spin_lock_bh(&btf_idr_lock);
 | |
| 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
 | |
| 	if (id > 0)
 | |
| 		btf->id = id;
 | |
| 	spin_unlock_bh(&btf_idr_lock);
 | |
| 	idr_preload_end();
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!id))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return id > 0 ? 0 : id;
 | |
| }
 | |
| 
 | |
| static void btf_free_id(struct btf *btf)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * In map-in-map, calling map_delete_elem() on outer
 | |
| 	 * map will call bpf_map_put on the inner map.
 | |
| 	 * It will then eventually call btf_free_id()
 | |
| 	 * on the inner map.  Some of the map_delete_elem()
 | |
| 	 * implementation may have irq disabled, so
 | |
| 	 * we need to use the _irqsave() version instead
 | |
| 	 * of the _bh() version.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&btf_idr_lock, flags);
 | |
| 	idr_remove(&btf_idr, btf->id);
 | |
| 	spin_unlock_irqrestore(&btf_idr_lock, flags);
 | |
| }
 | |
| 
 | |
| static void btf_free_kfunc_set_tab(struct btf *btf)
 | |
| {
 | |
| 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
 | |
| 	int hook;
 | |
| 
 | |
| 	if (!tab)
 | |
| 		return;
 | |
| 	/* For module BTF, we directly assign the sets being registered, so
 | |
| 	 * there is nothing to free except kfunc_set_tab.
 | |
| 	 */
 | |
| 	if (btf_is_module(btf))
 | |
| 		goto free_tab;
 | |
| 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
 | |
| 		kfree(tab->sets[hook]);
 | |
| free_tab:
 | |
| 	kfree(tab);
 | |
| 	btf->kfunc_set_tab = NULL;
 | |
| }
 | |
| 
 | |
| static void btf_free_dtor_kfunc_tab(struct btf *btf)
 | |
| {
 | |
| 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
 | |
| 
 | |
| 	if (!tab)
 | |
| 		return;
 | |
| 	kfree(tab);
 | |
| 	btf->dtor_kfunc_tab = NULL;
 | |
| }
 | |
| 
 | |
| static void btf_struct_metas_free(struct btf_struct_metas *tab)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!tab)
 | |
| 		return;
 | |
| 	for (i = 0; i < tab->cnt; i++) {
 | |
| 		btf_record_free(tab->types[i].record);
 | |
| 		kfree(tab->types[i].field_offs);
 | |
| 	}
 | |
| 	kfree(tab);
 | |
| }
 | |
| 
 | |
| static void btf_free_struct_meta_tab(struct btf *btf)
 | |
| {
 | |
| 	struct btf_struct_metas *tab = btf->struct_meta_tab;
 | |
| 
 | |
| 	btf_struct_metas_free(tab);
 | |
| 	btf->struct_meta_tab = NULL;
 | |
| }
 | |
| 
 | |
| static void btf_free(struct btf *btf)
 | |
| {
 | |
| 	btf_free_struct_meta_tab(btf);
 | |
| 	btf_free_dtor_kfunc_tab(btf);
 | |
| 	btf_free_kfunc_set_tab(btf);
 | |
| 	kvfree(btf->types);
 | |
| 	kvfree(btf->resolved_sizes);
 | |
| 	kvfree(btf->resolved_ids);
 | |
| 	kvfree(btf->data);
 | |
| 	kfree(btf);
 | |
| }
 | |
| 
 | |
| static void btf_free_rcu(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct btf *btf = container_of(rcu, struct btf, rcu);
 | |
| 
 | |
| 	btf_free(btf);
 | |
| }
 | |
| 
 | |
| void btf_get(struct btf *btf)
 | |
| {
 | |
| 	refcount_inc(&btf->refcnt);
 | |
| }
 | |
| 
 | |
| void btf_put(struct btf *btf)
 | |
| {
 | |
| 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
 | |
| 		btf_free_id(btf);
 | |
| 		call_rcu(&btf->rcu, btf_free_rcu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int env_resolve_init(struct btf_verifier_env *env)
 | |
| {
 | |
| 	struct btf *btf = env->btf;
 | |
| 	u32 nr_types = btf->nr_types;
 | |
| 	u32 *resolved_sizes = NULL;
 | |
| 	u32 *resolved_ids = NULL;
 | |
| 	u8 *visit_states = NULL;
 | |
| 
 | |
| 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
 | |
| 				  GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!resolved_sizes)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
 | |
| 				GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!resolved_ids)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
 | |
| 				GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!visit_states)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	btf->resolved_sizes = resolved_sizes;
 | |
| 	btf->resolved_ids = resolved_ids;
 | |
| 	env->visit_states = visit_states;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	kvfree(resolved_sizes);
 | |
| 	kvfree(resolved_ids);
 | |
| 	kvfree(visit_states);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void btf_verifier_env_free(struct btf_verifier_env *env)
 | |
| {
 | |
| 	kvfree(env->visit_states);
 | |
| 	kfree(env);
 | |
| }
 | |
| 
 | |
| static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
 | |
| 				     const struct btf_type *next_type)
 | |
| {
 | |
| 	switch (env->resolve_mode) {
 | |
| 	case RESOLVE_TBD:
 | |
| 		/* int, enum or void is a sink */
 | |
| 		return !btf_type_needs_resolve(next_type);
 | |
| 	case RESOLVE_PTR:
 | |
| 		/* int, enum, void, struct, array, func or func_proto is a sink
 | |
| 		 * for ptr
 | |
| 		 */
 | |
| 		return !btf_type_is_modifier(next_type) &&
 | |
| 			!btf_type_is_ptr(next_type);
 | |
| 	case RESOLVE_STRUCT_OR_ARRAY:
 | |
| 		/* int, enum, void, ptr, func or func_proto is a sink
 | |
| 		 * for struct and array
 | |
| 		 */
 | |
| 		return !btf_type_is_modifier(next_type) &&
 | |
| 			!btf_type_is_array(next_type) &&
 | |
| 			!btf_type_is_struct(next_type);
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool env_type_is_resolved(const struct btf_verifier_env *env,
 | |
| 				 u32 type_id)
 | |
| {
 | |
| 	/* base BTF types should be resolved by now */
 | |
| 	if (type_id < env->btf->start_id)
 | |
| 		return true;
 | |
| 
 | |
| 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
 | |
| }
 | |
| 
 | |
| static int env_stack_push(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t, u32 type_id)
 | |
| {
 | |
| 	const struct btf *btf = env->btf;
 | |
| 	struct resolve_vertex *v;
 | |
| 
 | |
| 	if (env->top_stack == MAX_RESOLVE_DEPTH)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	if (type_id < btf->start_id
 | |
| 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	env->visit_states[type_id - btf->start_id] = VISITED;
 | |
| 
 | |
| 	v = &env->stack[env->top_stack++];
 | |
| 	v->t = t;
 | |
| 	v->type_id = type_id;
 | |
| 	v->next_member = 0;
 | |
| 
 | |
| 	if (env->resolve_mode == RESOLVE_TBD) {
 | |
| 		if (btf_type_is_ptr(t))
 | |
| 			env->resolve_mode = RESOLVE_PTR;
 | |
| 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
 | |
| 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void env_stack_set_next_member(struct btf_verifier_env *env,
 | |
| 				      u16 next_member)
 | |
| {
 | |
| 	env->stack[env->top_stack - 1].next_member = next_member;
 | |
| }
 | |
| 
 | |
| static void env_stack_pop_resolved(struct btf_verifier_env *env,
 | |
| 				   u32 resolved_type_id,
 | |
| 				   u32 resolved_size)
 | |
| {
 | |
| 	u32 type_id = env->stack[--(env->top_stack)].type_id;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	type_id -= btf->start_id; /* adjust to local type id */
 | |
| 	btf->resolved_sizes[type_id] = resolved_size;
 | |
| 	btf->resolved_ids[type_id] = resolved_type_id;
 | |
| 	env->visit_states[type_id] = RESOLVED;
 | |
| }
 | |
| 
 | |
| static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
 | |
| {
 | |
| 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
 | |
| }
 | |
| 
 | |
| /* Resolve the size of a passed-in "type"
 | |
|  *
 | |
|  * type: is an array (e.g. u32 array[x][y])
 | |
|  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
 | |
|  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
 | |
|  *             corresponds to the return type.
 | |
|  * *elem_type: u32
 | |
|  * *elem_id: id of u32
 | |
|  * *total_nelems: (x * y).  Hence, individual elem size is
 | |
|  *                (*type_size / *total_nelems)
 | |
|  * *type_id: id of type if it's changed within the function, 0 if not
 | |
|  *
 | |
|  * type: is not an array (e.g. const struct X)
 | |
|  * return type: type "struct X"
 | |
|  * *type_size: sizeof(struct X)
 | |
|  * *elem_type: same as return type ("struct X")
 | |
|  * *elem_id: 0
 | |
|  * *total_nelems: 1
 | |
|  * *type_id: id of type if it's changed within the function, 0 if not
 | |
|  */
 | |
| static const struct btf_type *
 | |
| __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
 | |
| 		   u32 *type_size, const struct btf_type **elem_type,
 | |
| 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
 | |
| {
 | |
| 	const struct btf_type *array_type = NULL;
 | |
| 	const struct btf_array *array = NULL;
 | |
| 	u32 i, size, nelems = 1, id = 0;
 | |
| 
 | |
| 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
 | |
| 		switch (BTF_INFO_KIND(type->info)) {
 | |
| 		/* type->size can be used */
 | |
| 		case BTF_KIND_INT:
 | |
| 		case BTF_KIND_STRUCT:
 | |
| 		case BTF_KIND_UNION:
 | |
| 		case BTF_KIND_ENUM:
 | |
| 		case BTF_KIND_FLOAT:
 | |
| 		case BTF_KIND_ENUM64:
 | |
| 			size = type->size;
 | |
| 			goto resolved;
 | |
| 
 | |
| 		case BTF_KIND_PTR:
 | |
| 			size = sizeof(void *);
 | |
| 			goto resolved;
 | |
| 
 | |
| 		/* Modifiers */
 | |
| 		case BTF_KIND_TYPEDEF:
 | |
| 		case BTF_KIND_VOLATILE:
 | |
| 		case BTF_KIND_CONST:
 | |
| 		case BTF_KIND_RESTRICT:
 | |
| 		case BTF_KIND_TYPE_TAG:
 | |
| 			id = type->type;
 | |
| 			type = btf_type_by_id(btf, type->type);
 | |
| 			break;
 | |
| 
 | |
| 		case BTF_KIND_ARRAY:
 | |
| 			if (!array_type)
 | |
| 				array_type = type;
 | |
| 			array = btf_type_array(type);
 | |
| 			if (nelems && array->nelems > U32_MAX / nelems)
 | |
| 				return ERR_PTR(-EINVAL);
 | |
| 			nelems *= array->nelems;
 | |
| 			type = btf_type_by_id(btf, array->type);
 | |
| 			break;
 | |
| 
 | |
| 		/* type without size */
 | |
| 		default:
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| 
 | |
| resolved:
 | |
| 	if (nelems && size > U32_MAX / nelems)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	*type_size = nelems * size;
 | |
| 	if (total_nelems)
 | |
| 		*total_nelems = nelems;
 | |
| 	if (elem_type)
 | |
| 		*elem_type = type;
 | |
| 	if (elem_id)
 | |
| 		*elem_id = array ? array->type : 0;
 | |
| 	if (type_id && id)
 | |
| 		*type_id = id;
 | |
| 
 | |
| 	return array_type ? : type;
 | |
| }
 | |
| 
 | |
| const struct btf_type *
 | |
| btf_resolve_size(const struct btf *btf, const struct btf_type *type,
 | |
| 		 u32 *type_size)
 | |
| {
 | |
| 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
 | |
| {
 | |
| 	while (type_id < btf->start_id)
 | |
| 		btf = btf->base_btf;
 | |
| 
 | |
| 	return btf->resolved_ids[type_id - btf->start_id];
 | |
| }
 | |
| 
 | |
| /* The input param "type_id" must point to a needs_resolve type */
 | |
| static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
 | |
| 						  u32 *type_id)
 | |
| {
 | |
| 	*type_id = btf_resolved_type_id(btf, *type_id);
 | |
| 	return btf_type_by_id(btf, *type_id);
 | |
| }
 | |
| 
 | |
| static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
 | |
| {
 | |
| 	while (type_id < btf->start_id)
 | |
| 		btf = btf->base_btf;
 | |
| 
 | |
| 	return btf->resolved_sizes[type_id - btf->start_id];
 | |
| }
 | |
| 
 | |
| const struct btf_type *btf_type_id_size(const struct btf *btf,
 | |
| 					u32 *type_id, u32 *ret_size)
 | |
| {
 | |
| 	const struct btf_type *size_type;
 | |
| 	u32 size_type_id = *type_id;
 | |
| 	u32 size = 0;
 | |
| 
 | |
| 	size_type = btf_type_by_id(btf, size_type_id);
 | |
| 	if (btf_type_nosize_or_null(size_type))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (btf_type_has_size(size_type)) {
 | |
| 		size = size_type->size;
 | |
| 	} else if (btf_type_is_array(size_type)) {
 | |
| 		size = btf_resolved_type_size(btf, size_type_id);
 | |
| 	} else if (btf_type_is_ptr(size_type)) {
 | |
| 		size = sizeof(void *);
 | |
| 	} else {
 | |
| 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
 | |
| 				 !btf_type_is_var(size_type)))
 | |
| 			return NULL;
 | |
| 
 | |
| 		size_type_id = btf_resolved_type_id(btf, size_type_id);
 | |
| 		size_type = btf_type_by_id(btf, size_type_id);
 | |
| 		if (btf_type_nosize_or_null(size_type))
 | |
| 			return NULL;
 | |
| 		else if (btf_type_has_size(size_type))
 | |
| 			size = size_type->size;
 | |
| 		else if (btf_type_is_array(size_type))
 | |
| 			size = btf_resolved_type_size(btf, size_type_id);
 | |
| 		else if (btf_type_is_ptr(size_type))
 | |
| 			size = sizeof(void *);
 | |
| 		else
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	*type_id = size_type_id;
 | |
| 	if (ret_size)
 | |
| 		*ret_size = size;
 | |
| 
 | |
| 	return size_type;
 | |
| }
 | |
| 
 | |
| static int btf_df_check_member(struct btf_verifier_env *env,
 | |
| 			       const struct btf_type *struct_type,
 | |
| 			       const struct btf_member *member,
 | |
| 			       const struct btf_type *member_type)
 | |
| {
 | |
| 	btf_verifier_log_basic(env, struct_type,
 | |
| 			       "Unsupported check_member");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int btf_df_check_kflag_member(struct btf_verifier_env *env,
 | |
| 				     const struct btf_type *struct_type,
 | |
| 				     const struct btf_member *member,
 | |
| 				     const struct btf_type *member_type)
 | |
| {
 | |
| 	btf_verifier_log_basic(env, struct_type,
 | |
| 			       "Unsupported check_kflag_member");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /* Used for ptr, array struct/union and float type members.
 | |
|  * int, enum and modifier types have their specific callback functions.
 | |
|  */
 | |
| static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
 | |
| 					  const struct btf_type *struct_type,
 | |
| 					  const struct btf_member *member,
 | |
| 					  const struct btf_type *member_type)
 | |
| {
 | |
| 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member bitfield_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* bitfield size is 0, so member->offset represents bit offset only.
 | |
| 	 * It is safe to call non kflag check_member variants.
 | |
| 	 */
 | |
| 	return btf_type_ops(member_type)->check_member(env, struct_type,
 | |
| 						       member,
 | |
| 						       member_type);
 | |
| }
 | |
| 
 | |
| static int btf_df_resolve(struct btf_verifier_env *env,
 | |
| 			  const struct resolve_vertex *v)
 | |
| {
 | |
| 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void btf_df_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			u32 type_id, void *data, u8 bits_offsets,
 | |
| 			struct btf_show *show)
 | |
| {
 | |
| 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
 | |
| }
 | |
| 
 | |
| static int btf_int_check_member(struct btf_verifier_env *env,
 | |
| 				const struct btf_type *struct_type,
 | |
| 				const struct btf_member *member,
 | |
| 				const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 int_data = btf_type_int(member_type);
 | |
| 	u32 struct_bits_off = member->offset;
 | |
| 	u32 struct_size = struct_type->size;
 | |
| 	u32 nr_copy_bits;
 | |
| 	u32 bytes_offset;
 | |
| 
 | |
| 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"bits_offset exceeds U32_MAX");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	struct_bits_off += BTF_INT_OFFSET(int_data);
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 	nr_copy_bits = BTF_INT_BITS(int_data) +
 | |
| 		BITS_PER_BYTE_MASKED(struct_bits_off);
 | |
| 
 | |
| 	if (nr_copy_bits > BITS_PER_U128) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"nr_copy_bits exceeds 128");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (struct_size < bytes_offset ||
 | |
| 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_int_check_kflag_member(struct btf_verifier_env *env,
 | |
| 				      const struct btf_type *struct_type,
 | |
| 				      const struct btf_member *member,
 | |
| 				      const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
 | |
| 	u32 int_data = btf_type_int(member_type);
 | |
| 	u32 struct_size = struct_type->size;
 | |
| 	u32 nr_copy_bits;
 | |
| 
 | |
| 	/* a regular int type is required for the kflag int member */
 | |
| 	if (!btf_type_int_is_regular(member_type)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member base type");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* check sanity of bitfield size */
 | |
| 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
 | |
| 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
 | |
| 	nr_int_data_bits = BTF_INT_BITS(int_data);
 | |
| 	if (!nr_bits) {
 | |
| 		/* Not a bitfield member, member offset must be at byte
 | |
| 		 * boundary.
 | |
| 		 */
 | |
| 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 			btf_verifier_log_member(env, struct_type, member,
 | |
| 						"Invalid member offset");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		nr_bits = nr_int_data_bits;
 | |
| 	} else if (nr_bits > nr_int_data_bits) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member bitfield_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
 | |
| 	if (nr_copy_bits > BITS_PER_U128) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"nr_copy_bits exceeds 128");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (struct_size < bytes_offset ||
 | |
| 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s32 btf_int_check_meta(struct btf_verifier_env *env,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 meta_left)
 | |
| {
 | |
| 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
 | |
| 	u16 encoding;
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	int_data = btf_type_int(t);
 | |
| 	if (int_data & ~BTF_INT_MASK) {
 | |
| 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
 | |
| 				       int_data);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
 | |
| 
 | |
| 	if (nr_bits > BITS_PER_U128) {
 | |
| 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
 | |
| 				      BITS_PER_U128);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
 | |
| 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only one of the encoding bits is allowed and it
 | |
| 	 * should be sufficient for the pretty print purpose (i.e. decoding).
 | |
| 	 * Multiple bits can be allowed later if it is found
 | |
| 	 * to be insufficient.
 | |
| 	 */
 | |
| 	encoding = BTF_INT_ENCODING(int_data);
 | |
| 	if (encoding &&
 | |
| 	    encoding != BTF_INT_SIGNED &&
 | |
| 	    encoding != BTF_INT_CHAR &&
 | |
| 	    encoding != BTF_INT_BOOL) {
 | |
| 		btf_verifier_log_type(env, t, "Unsupported encoding");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static void btf_int_log(struct btf_verifier_env *env,
 | |
| 			const struct btf_type *t)
 | |
| {
 | |
| 	int int_data = btf_type_int(t);
 | |
| 
 | |
| 	btf_verifier_log(env,
 | |
| 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
 | |
| 			 t->size, BTF_INT_OFFSET(int_data),
 | |
| 			 BTF_INT_BITS(int_data),
 | |
| 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
 | |
| }
 | |
| 
 | |
| static void btf_int128_print(struct btf_show *show, void *data)
 | |
| {
 | |
| 	/* data points to a __int128 number.
 | |
| 	 * Suppose
 | |
| 	 *     int128_num = *(__int128 *)data;
 | |
| 	 * The below formulas shows what upper_num and lower_num represents:
 | |
| 	 *     upper_num = int128_num >> 64;
 | |
| 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
 | |
| 	 */
 | |
| 	u64 upper_num, lower_num;
 | |
| 
 | |
| #ifdef __BIG_ENDIAN_BITFIELD
 | |
| 	upper_num = *(u64 *)data;
 | |
| 	lower_num = *(u64 *)(data + 8);
 | |
| #else
 | |
| 	upper_num = *(u64 *)(data + 8);
 | |
| 	lower_num = *(u64 *)data;
 | |
| #endif
 | |
| 	if (upper_num == 0)
 | |
| 		btf_show_type_value(show, "0x%llx", lower_num);
 | |
| 	else
 | |
| 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
 | |
| 				     lower_num);
 | |
| }
 | |
| 
 | |
| static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
 | |
| 			     u16 right_shift_bits)
 | |
| {
 | |
| 	u64 upper_num, lower_num;
 | |
| 
 | |
| #ifdef __BIG_ENDIAN_BITFIELD
 | |
| 	upper_num = print_num[0];
 | |
| 	lower_num = print_num[1];
 | |
| #else
 | |
| 	upper_num = print_num[1];
 | |
| 	lower_num = print_num[0];
 | |
| #endif
 | |
| 
 | |
| 	/* shake out un-needed bits by shift/or operations */
 | |
| 	if (left_shift_bits >= 64) {
 | |
| 		upper_num = lower_num << (left_shift_bits - 64);
 | |
| 		lower_num = 0;
 | |
| 	} else {
 | |
| 		upper_num = (upper_num << left_shift_bits) |
 | |
| 			    (lower_num >> (64 - left_shift_bits));
 | |
| 		lower_num = lower_num << left_shift_bits;
 | |
| 	}
 | |
| 
 | |
| 	if (right_shift_bits >= 64) {
 | |
| 		lower_num = upper_num >> (right_shift_bits - 64);
 | |
| 		upper_num = 0;
 | |
| 	} else {
 | |
| 		lower_num = (lower_num >> right_shift_bits) |
 | |
| 			    (upper_num << (64 - right_shift_bits));
 | |
| 		upper_num = upper_num >> right_shift_bits;
 | |
| 	}
 | |
| 
 | |
| #ifdef __BIG_ENDIAN_BITFIELD
 | |
| 	print_num[0] = upper_num;
 | |
| 	print_num[1] = lower_num;
 | |
| #else
 | |
| 	print_num[0] = lower_num;
 | |
| 	print_num[1] = upper_num;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void btf_bitfield_show(void *data, u8 bits_offset,
 | |
| 			      u8 nr_bits, struct btf_show *show)
 | |
| {
 | |
| 	u16 left_shift_bits, right_shift_bits;
 | |
| 	u8 nr_copy_bytes;
 | |
| 	u8 nr_copy_bits;
 | |
| 	u64 print_num[2] = {};
 | |
| 
 | |
| 	nr_copy_bits = nr_bits + bits_offset;
 | |
| 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
 | |
| 
 | |
| 	memcpy(print_num, data, nr_copy_bytes);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN_BITFIELD
 | |
| 	left_shift_bits = bits_offset;
 | |
| #else
 | |
| 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
 | |
| #endif
 | |
| 	right_shift_bits = BITS_PER_U128 - nr_bits;
 | |
| 
 | |
| 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
 | |
| 	btf_int128_print(show, print_num);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void btf_int_bits_show(const struct btf *btf,
 | |
| 			      const struct btf_type *t,
 | |
| 			      void *data, u8 bits_offset,
 | |
| 			      struct btf_show *show)
 | |
| {
 | |
| 	u32 int_data = btf_type_int(t);
 | |
| 	u8 nr_bits = BTF_INT_BITS(int_data);
 | |
| 	u8 total_bits_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * bits_offset is at most 7.
 | |
| 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
 | |
| 	 */
 | |
| 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
 | |
| 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
 | |
| 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
 | |
| 	btf_bitfield_show(data, bits_offset, nr_bits, show);
 | |
| }
 | |
| 
 | |
| static void btf_int_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			 u32 type_id, void *data, u8 bits_offset,
 | |
| 			 struct btf_show *show)
 | |
| {
 | |
| 	u32 int_data = btf_type_int(t);
 | |
| 	u8 encoding = BTF_INT_ENCODING(int_data);
 | |
| 	bool sign = encoding & BTF_INT_SIGNED;
 | |
| 	u8 nr_bits = BTF_INT_BITS(int_data);
 | |
| 	void *safe_data;
 | |
| 
 | |
| 	safe_data = btf_show_start_type(show, t, type_id, data);
 | |
| 	if (!safe_data)
 | |
| 		return;
 | |
| 
 | |
| 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
 | |
| 	    BITS_PER_BYTE_MASKED(nr_bits)) {
 | |
| 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (nr_bits) {
 | |
| 	case 128:
 | |
| 		btf_int128_print(show, safe_data);
 | |
| 		break;
 | |
| 	case 64:
 | |
| 		if (sign)
 | |
| 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
 | |
| 		else
 | |
| 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		if (sign)
 | |
| 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
 | |
| 		else
 | |
| 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		if (sign)
 | |
| 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
 | |
| 		else
 | |
| 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		if (show->state.array_encoding == BTF_INT_CHAR) {
 | |
| 			/* check for null terminator */
 | |
| 			if (show->state.array_terminated)
 | |
| 				break;
 | |
| 			if (*(char *)data == '\0') {
 | |
| 				show->state.array_terminated = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 			if (isprint(*(char *)data)) {
 | |
| 				btf_show_type_value(show, "'%c'",
 | |
| 						    *(char *)safe_data);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (sign)
 | |
| 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
 | |
| 		else
 | |
| 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations int_ops = {
 | |
| 	.check_meta = btf_int_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	.check_member = btf_int_check_member,
 | |
| 	.check_kflag_member = btf_int_check_kflag_member,
 | |
| 	.log_details = btf_int_log,
 | |
| 	.show = btf_int_show,
 | |
| };
 | |
| 
 | |
| static int btf_modifier_check_member(struct btf_verifier_env *env,
 | |
| 				     const struct btf_type *struct_type,
 | |
| 				     const struct btf_member *member,
 | |
| 				     const struct btf_type *member_type)
 | |
| {
 | |
| 	const struct btf_type *resolved_type;
 | |
| 	u32 resolved_type_id = member->type;
 | |
| 	struct btf_member resolved_member;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
 | |
| 	if (!resolved_type) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	resolved_member = *member;
 | |
| 	resolved_member.type = resolved_type_id;
 | |
| 
 | |
| 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
 | |
| 							 &resolved_member,
 | |
| 							 resolved_type);
 | |
| }
 | |
| 
 | |
| static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
 | |
| 					   const struct btf_type *struct_type,
 | |
| 					   const struct btf_member *member,
 | |
| 					   const struct btf_type *member_type)
 | |
| {
 | |
| 	const struct btf_type *resolved_type;
 | |
| 	u32 resolved_type_id = member->type;
 | |
| 	struct btf_member resolved_member;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
 | |
| 	if (!resolved_type) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	resolved_member = *member;
 | |
| 	resolved_member.type = resolved_type_id;
 | |
| 
 | |
| 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
 | |
| 							       &resolved_member,
 | |
| 							       resolved_type);
 | |
| }
 | |
| 
 | |
| static int btf_ptr_check_member(struct btf_verifier_env *env,
 | |
| 				const struct btf_type *struct_type,
 | |
| 				const struct btf_member *member,
 | |
| 				const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_size, struct_bits_off, bytes_offset;
 | |
| 
 | |
| 	struct_size = struct_type->size;
 | |
| 	struct_bits_off = member->offset;
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 
 | |
| 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member is not byte aligned");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (struct_size - bytes_offset < sizeof(void *)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_ref_type_check_meta(struct btf_verifier_env *env,
 | |
| 				   const struct btf_type *t,
 | |
| 				   u32 meta_left)
 | |
| {
 | |
| 	const char *value;
 | |
| 
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!BTF_TYPE_ID_VALID(t->type)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* typedef/type_tag type must have a valid name, and other ref types,
 | |
| 	 * volatile, const, restrict, should have a null name.
 | |
| 	 */
 | |
| 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
 | |
| 		if (!t->name_off ||
 | |
| 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
 | |
| 		value = btf_name_by_offset(env->btf, t->name_off);
 | |
| 		if (!value || !value[0]) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (t->name_off) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_modifier_resolve(struct btf_verifier_env *env,
 | |
| 				const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_type *t = v->t;
 | |
| 	const struct btf_type *next_type;
 | |
| 	u32 next_type_id = t->type;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	next_type = btf_type_by_id(btf, next_type_id);
 | |
| 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, next_type) &&
 | |
| 	    !env_type_is_resolved(env, next_type_id))
 | |
| 		return env_stack_push(env, next_type, next_type_id);
 | |
| 
 | |
| 	/* Figure out the resolved next_type_id with size.
 | |
| 	 * They will be stored in the current modifier's
 | |
| 	 * resolved_ids and resolved_sizes such that it can
 | |
| 	 * save us a few type-following when we use it later (e.g. in
 | |
| 	 * pretty print).
 | |
| 	 */
 | |
| 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
 | |
| 		if (env_type_is_resolved(env, next_type_id))
 | |
| 			next_type = btf_type_id_resolve(btf, &next_type_id);
 | |
| 
 | |
| 		/* "typedef void new_void", "const void"...etc */
 | |
| 		if (!btf_type_is_void(next_type) &&
 | |
| 		    !btf_type_is_fwd(next_type) &&
 | |
| 		    !btf_type_is_func_proto(next_type)) {
 | |
| 			btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, next_type_id, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_var_resolve(struct btf_verifier_env *env,
 | |
| 			   const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_type *next_type;
 | |
| 	const struct btf_type *t = v->t;
 | |
| 	u32 next_type_id = t->type;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	next_type = btf_type_by_id(btf, next_type_id);
 | |
| 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, next_type) &&
 | |
| 	    !env_type_is_resolved(env, next_type_id))
 | |
| 		return env_stack_push(env, next_type, next_type_id);
 | |
| 
 | |
| 	if (btf_type_is_modifier(next_type)) {
 | |
| 		const struct btf_type *resolved_type;
 | |
| 		u32 resolved_type_id;
 | |
| 
 | |
| 		resolved_type_id = next_type_id;
 | |
| 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
 | |
| 
 | |
| 		if (btf_type_is_ptr(resolved_type) &&
 | |
| 		    !env_type_is_resolve_sink(env, resolved_type) &&
 | |
| 		    !env_type_is_resolved(env, resolved_type_id))
 | |
| 			return env_stack_push(env, resolved_type,
 | |
| 					      resolved_type_id);
 | |
| 	}
 | |
| 
 | |
| 	/* We must resolve to something concrete at this point, no
 | |
| 	 * forward types or similar that would resolve to size of
 | |
| 	 * zero is allowed.
 | |
| 	 */
 | |
| 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, next_type_id, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_ptr_resolve(struct btf_verifier_env *env,
 | |
| 			   const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_type *next_type;
 | |
| 	const struct btf_type *t = v->t;
 | |
| 	u32 next_type_id = t->type;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	next_type = btf_type_by_id(btf, next_type_id);
 | |
| 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, next_type) &&
 | |
| 	    !env_type_is_resolved(env, next_type_id))
 | |
| 		return env_stack_push(env, next_type, next_type_id);
 | |
| 
 | |
| 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
 | |
| 	 * the modifier may have stopped resolving when it was resolved
 | |
| 	 * to a ptr (last-resolved-ptr).
 | |
| 	 *
 | |
| 	 * We now need to continue from the last-resolved-ptr to
 | |
| 	 * ensure the last-resolved-ptr will not referring back to
 | |
| 	 * the current ptr (t).
 | |
| 	 */
 | |
| 	if (btf_type_is_modifier(next_type)) {
 | |
| 		const struct btf_type *resolved_type;
 | |
| 		u32 resolved_type_id;
 | |
| 
 | |
| 		resolved_type_id = next_type_id;
 | |
| 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
 | |
| 
 | |
| 		if (btf_type_is_ptr(resolved_type) &&
 | |
| 		    !env_type_is_resolve_sink(env, resolved_type) &&
 | |
| 		    !env_type_is_resolved(env, resolved_type_id))
 | |
| 			return env_stack_push(env, resolved_type,
 | |
| 					      resolved_type_id);
 | |
| 	}
 | |
| 
 | |
| 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
 | |
| 		if (env_type_is_resolved(env, next_type_id))
 | |
| 			next_type = btf_type_id_resolve(btf, &next_type_id);
 | |
| 
 | |
| 		if (!btf_type_is_void(next_type) &&
 | |
| 		    !btf_type_is_fwd(next_type) &&
 | |
| 		    !btf_type_is_func_proto(next_type)) {
 | |
| 			btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, next_type_id, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_modifier_show(const struct btf *btf,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 type_id, void *data,
 | |
| 			      u8 bits_offset, struct btf_show *show)
 | |
| {
 | |
| 	if (btf->resolved_ids)
 | |
| 		t = btf_type_id_resolve(btf, &type_id);
 | |
| 	else
 | |
| 		t = btf_type_skip_modifiers(btf, type_id, NULL);
 | |
| 
 | |
| 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
 | |
| }
 | |
| 
 | |
| static void btf_var_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			 u32 type_id, void *data, u8 bits_offset,
 | |
| 			 struct btf_show *show)
 | |
| {
 | |
| 	t = btf_type_id_resolve(btf, &type_id);
 | |
| 
 | |
| 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
 | |
| }
 | |
| 
 | |
| static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			 u32 type_id, void *data, u8 bits_offset,
 | |
| 			 struct btf_show *show)
 | |
| {
 | |
| 	void *safe_data;
 | |
| 
 | |
| 	safe_data = btf_show_start_type(show, t, type_id, data);
 | |
| 	if (!safe_data)
 | |
| 		return;
 | |
| 
 | |
| 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
 | |
| 	if (show->flags & BTF_SHOW_PTR_RAW)
 | |
| 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
 | |
| 	else
 | |
| 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static void btf_ref_type_log(struct btf_verifier_env *env,
 | |
| 			     const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "type_id=%u", t->type);
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations modifier_ops = {
 | |
| 	.check_meta = btf_ref_type_check_meta,
 | |
| 	.resolve = btf_modifier_resolve,
 | |
| 	.check_member = btf_modifier_check_member,
 | |
| 	.check_kflag_member = btf_modifier_check_kflag_member,
 | |
| 	.log_details = btf_ref_type_log,
 | |
| 	.show = btf_modifier_show,
 | |
| };
 | |
| 
 | |
| static struct btf_kind_operations ptr_ops = {
 | |
| 	.check_meta = btf_ref_type_check_meta,
 | |
| 	.resolve = btf_ptr_resolve,
 | |
| 	.check_member = btf_ptr_check_member,
 | |
| 	.check_kflag_member = btf_generic_check_kflag_member,
 | |
| 	.log_details = btf_ref_type_log,
 | |
| 	.show = btf_ptr_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 meta_left)
 | |
| {
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->type) {
 | |
| 		btf_verifier_log_type(env, t, "type != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* fwd type must have a valid name */
 | |
| 	if (!t->name_off ||
 | |
| 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_fwd_type_log(struct btf_verifier_env *env,
 | |
| 			     const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations fwd_ops = {
 | |
| 	.check_meta = btf_fwd_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	.check_member = btf_df_check_member,
 | |
| 	.check_kflag_member = btf_df_check_kflag_member,
 | |
| 	.log_details = btf_fwd_type_log,
 | |
| 	.show = btf_df_show,
 | |
| };
 | |
| 
 | |
| static int btf_array_check_member(struct btf_verifier_env *env,
 | |
| 				  const struct btf_type *struct_type,
 | |
| 				  const struct btf_member *member,
 | |
| 				  const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_bits_off = member->offset;
 | |
| 	u32 struct_size, bytes_offset;
 | |
| 	u32 array_type_id, array_size;
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member is not byte aligned");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	array_type_id = member->type;
 | |
| 	btf_type_id_size(btf, &array_type_id, &array_size);
 | |
| 	struct_size = struct_type->size;
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 	if (struct_size - bytes_offset < array_size) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s32 btf_array_check_meta(struct btf_verifier_env *env,
 | |
| 				const struct btf_type *t,
 | |
| 				u32 meta_left)
 | |
| {
 | |
| 	const struct btf_array *array = btf_type_array(t);
 | |
| 	u32 meta_needed = sizeof(*array);
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* array type should not have a name */
 | |
| 	if (t->name_off) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->size) {
 | |
| 		btf_verifier_log_type(env, t, "size != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Array elem type and index type cannot be in type void,
 | |
| 	 * so !array->type and !array->index_type are not allowed.
 | |
| 	 */
 | |
| 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid elem");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid index");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static int btf_array_resolve(struct btf_verifier_env *env,
 | |
| 			     const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_array *array = btf_type_array(v->t);
 | |
| 	const struct btf_type *elem_type, *index_type;
 | |
| 	u32 elem_type_id, index_type_id;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	u32 elem_size;
 | |
| 
 | |
| 	/* Check array->index_type */
 | |
| 	index_type_id = array->index_type;
 | |
| 	index_type = btf_type_by_id(btf, index_type_id);
 | |
| 	if (btf_type_nosize_or_null(index_type) ||
 | |
| 	    btf_type_is_resolve_source_only(index_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid index");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, index_type) &&
 | |
| 	    !env_type_is_resolved(env, index_type_id))
 | |
| 		return env_stack_push(env, index_type, index_type_id);
 | |
| 
 | |
| 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
 | |
| 	if (!index_type || !btf_type_is_int(index_type) ||
 | |
| 	    !btf_type_int_is_regular(index_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid index");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check array->type */
 | |
| 	elem_type_id = array->type;
 | |
| 	elem_type = btf_type_by_id(btf, elem_type_id);
 | |
| 	if (btf_type_nosize_or_null(elem_type) ||
 | |
| 	    btf_type_is_resolve_source_only(elem_type)) {
 | |
| 		btf_verifier_log_type(env, v->t,
 | |
| 				      "Invalid elem");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, elem_type) &&
 | |
| 	    !env_type_is_resolved(env, elem_type_id))
 | |
| 		return env_stack_push(env, elem_type, elem_type_id);
 | |
| 
 | |
| 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
 | |
| 	if (!elem_type) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid elem");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid array of int");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
 | |
| 		btf_verifier_log_type(env, v->t,
 | |
| 				      "Array size overflows U32_MAX");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_array_log(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_array *array = btf_type_array(t);
 | |
| 
 | |
| 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
 | |
| 			 array->type, array->index_type, array->nelems);
 | |
| }
 | |
| 
 | |
| static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			     u32 type_id, void *data, u8 bits_offset,
 | |
| 			     struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_array *array = btf_type_array(t);
 | |
| 	const struct btf_kind_operations *elem_ops;
 | |
| 	const struct btf_type *elem_type;
 | |
| 	u32 i, elem_size = 0, elem_type_id;
 | |
| 	u16 encoding = 0;
 | |
| 
 | |
| 	elem_type_id = array->type;
 | |
| 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
 | |
| 	if (elem_type && btf_type_has_size(elem_type))
 | |
| 		elem_size = elem_type->size;
 | |
| 
 | |
| 	if (elem_type && btf_type_is_int(elem_type)) {
 | |
| 		u32 int_type = btf_type_int(elem_type);
 | |
| 
 | |
| 		encoding = BTF_INT_ENCODING(int_type);
 | |
| 
 | |
| 		/*
 | |
| 		 * BTF_INT_CHAR encoding never seems to be set for
 | |
| 		 * char arrays, so if size is 1 and element is
 | |
| 		 * printable as a char, we'll do that.
 | |
| 		 */
 | |
| 		if (elem_size == 1)
 | |
| 			encoding = BTF_INT_CHAR;
 | |
| 	}
 | |
| 
 | |
| 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
 | |
| 		return;
 | |
| 
 | |
| 	if (!elem_type)
 | |
| 		goto out;
 | |
| 	elem_ops = btf_type_ops(elem_type);
 | |
| 
 | |
| 	for (i = 0; i < array->nelems; i++) {
 | |
| 
 | |
| 		btf_show_start_array_member(show);
 | |
| 
 | |
| 		elem_ops->show(btf, elem_type, elem_type_id, data,
 | |
| 			       bits_offset, show);
 | |
| 		data += elem_size;
 | |
| 
 | |
| 		btf_show_end_array_member(show);
 | |
| 
 | |
| 		if (show->state.array_terminated)
 | |
| 			break;
 | |
| 	}
 | |
| out:
 | |
| 	btf_show_end_array_type(show);
 | |
| }
 | |
| 
 | |
| static void btf_array_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			   u32 type_id, void *data, u8 bits_offset,
 | |
| 			   struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_member *m = show->state.member;
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if any members would be shown (are non-zero).
 | |
| 	 * See comments above "struct btf_show" definition for more
 | |
| 	 * details on how this works at a high-level.
 | |
| 	 */
 | |
| 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
 | |
| 		if (!show->state.depth_check) {
 | |
| 			show->state.depth_check = show->state.depth + 1;
 | |
| 			show->state.depth_to_show = 0;
 | |
| 		}
 | |
| 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
 | |
| 		show->state.member = m;
 | |
| 
 | |
| 		if (show->state.depth_check != show->state.depth + 1)
 | |
| 			return;
 | |
| 		show->state.depth_check = 0;
 | |
| 
 | |
| 		if (show->state.depth_to_show <= show->state.depth)
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Reaching here indicates we have recursed and found
 | |
| 		 * non-zero array member(s).
 | |
| 		 */
 | |
| 	}
 | |
| 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations array_ops = {
 | |
| 	.check_meta = btf_array_check_meta,
 | |
| 	.resolve = btf_array_resolve,
 | |
| 	.check_member = btf_array_check_member,
 | |
| 	.check_kflag_member = btf_generic_check_kflag_member,
 | |
| 	.log_details = btf_array_log,
 | |
| 	.show = btf_array_show,
 | |
| };
 | |
| 
 | |
| static int btf_struct_check_member(struct btf_verifier_env *env,
 | |
| 				   const struct btf_type *struct_type,
 | |
| 				   const struct btf_member *member,
 | |
| 				   const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_bits_off = member->offset;
 | |
| 	u32 struct_size, bytes_offset;
 | |
| 
 | |
| 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member is not byte aligned");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	struct_size = struct_type->size;
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 	if (struct_size - bytes_offset < member_type->size) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s32 btf_struct_check_meta(struct btf_verifier_env *env,
 | |
| 				 const struct btf_type *t,
 | |
| 				 u32 meta_left)
 | |
| {
 | |
| 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
 | |
| 	const struct btf_member *member;
 | |
| 	u32 meta_needed, last_offset;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	u32 struct_size = t->size;
 | |
| 	u32 offset;
 | |
| 	u16 i;
 | |
| 
 | |
| 	meta_needed = btf_type_vlen(t) * sizeof(*member);
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* struct type either no name or a valid one */
 | |
| 	if (t->name_off &&
 | |
| 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	last_offset = 0;
 | |
| 	for_each_member(i, t, member) {
 | |
| 		if (!btf_name_offset_valid(btf, member->name_off)) {
 | |
| 			btf_verifier_log_member(env, t, member,
 | |
| 						"Invalid member name_offset:%u",
 | |
| 						member->name_off);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* struct member either no name or a valid one */
 | |
| 		if (member->name_off &&
 | |
| 		    !btf_name_valid_identifier(btf, member->name_off)) {
 | |
| 			btf_verifier_log_member(env, t, member, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* A member cannot be in type void */
 | |
| 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
 | |
| 			btf_verifier_log_member(env, t, member,
 | |
| 						"Invalid type_id");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		offset = __btf_member_bit_offset(t, member);
 | |
| 		if (is_union && offset) {
 | |
| 			btf_verifier_log_member(env, t, member,
 | |
| 						"Invalid member bits_offset");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * ">" instead of ">=" because the last member could be
 | |
| 		 * "char a[0];"
 | |
| 		 */
 | |
| 		if (last_offset > offset) {
 | |
| 			btf_verifier_log_member(env, t, member,
 | |
| 						"Invalid member bits_offset");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
 | |
| 			btf_verifier_log_member(env, t, member,
 | |
| 						"Member bits_offset exceeds its struct size");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		btf_verifier_log_member(env, t, member, NULL);
 | |
| 		last_offset = offset;
 | |
| 	}
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static int btf_struct_resolve(struct btf_verifier_env *env,
 | |
| 			      const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_member *member;
 | |
| 	int err;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* Before continue resolving the next_member,
 | |
| 	 * ensure the last member is indeed resolved to a
 | |
| 	 * type with size info.
 | |
| 	 */
 | |
| 	if (v->next_member) {
 | |
| 		const struct btf_type *last_member_type;
 | |
| 		const struct btf_member *last_member;
 | |
| 		u32 last_member_type_id;
 | |
| 
 | |
| 		last_member = btf_type_member(v->t) + v->next_member - 1;
 | |
| 		last_member_type_id = last_member->type;
 | |
| 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
 | |
| 						       last_member_type_id)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		last_member_type = btf_type_by_id(env->btf,
 | |
| 						  last_member_type_id);
 | |
| 		if (btf_type_kflag(v->t))
 | |
| 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
 | |
| 								last_member,
 | |
| 								last_member_type);
 | |
| 		else
 | |
| 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
 | |
| 								last_member,
 | |
| 								last_member_type);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	for_each_member_from(i, v->next_member, v->t, member) {
 | |
| 		u32 member_type_id = member->type;
 | |
| 		const struct btf_type *member_type = btf_type_by_id(env->btf,
 | |
| 								member_type_id);
 | |
| 
 | |
| 		if (btf_type_nosize_or_null(member_type) ||
 | |
| 		    btf_type_is_resolve_source_only(member_type)) {
 | |
| 			btf_verifier_log_member(env, v->t, member,
 | |
| 						"Invalid member");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!env_type_is_resolve_sink(env, member_type) &&
 | |
| 		    !env_type_is_resolved(env, member_type_id)) {
 | |
| 			env_stack_set_next_member(env, i + 1);
 | |
| 			return env_stack_push(env, member_type, member_type_id);
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_kflag(v->t))
 | |
| 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
 | |
| 									    member,
 | |
| 									    member_type);
 | |
| 		else
 | |
| 			err = btf_type_ops(member_type)->check_member(env, v->t,
 | |
| 								      member,
 | |
| 								      member_type);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, 0, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_struct_log(struct btf_verifier_env *env,
 | |
| 			   const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
 | |
| }
 | |
| 
 | |
| enum btf_field_info_type {
 | |
| 	BTF_FIELD_SPIN_LOCK,
 | |
| 	BTF_FIELD_TIMER,
 | |
| 	BTF_FIELD_KPTR,
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	BTF_FIELD_IGNORE = 0,
 | |
| 	BTF_FIELD_FOUND  = 1,
 | |
| };
 | |
| 
 | |
| struct btf_field_info {
 | |
| 	enum btf_field_type type;
 | |
| 	u32 off;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			u32 type_id;
 | |
| 		} kptr;
 | |
| 		struct {
 | |
| 			const char *node_name;
 | |
| 			u32 value_btf_id;
 | |
| 		} graph_root;
 | |
| 	};
 | |
| };
 | |
| 
 | |
| static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
 | |
| 			   u32 off, int sz, enum btf_field_type field_type,
 | |
| 			   struct btf_field_info *info)
 | |
| {
 | |
| 	if (!__btf_type_is_struct(t))
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	if (t->size != sz)
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	info->type = field_type;
 | |
| 	info->off = off;
 | |
| 	return BTF_FIELD_FOUND;
 | |
| }
 | |
| 
 | |
| static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
 | |
| 			 u32 off, int sz, struct btf_field_info *info)
 | |
| {
 | |
| 	enum btf_field_type type;
 | |
| 	u32 res_id;
 | |
| 
 | |
| 	/* Permit modifiers on the pointer itself */
 | |
| 	if (btf_type_is_volatile(t))
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	/* For PTR, sz is always == 8 */
 | |
| 	if (!btf_type_is_ptr(t))
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 
 | |
| 	if (!btf_type_is_type_tag(t))
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	/* Reject extra tags */
 | |
| 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
 | |
| 		return -EINVAL;
 | |
| 	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
 | |
| 		type = BPF_KPTR_UNREF;
 | |
| 	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
 | |
| 		type = BPF_KPTR_REF;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Get the base type */
 | |
| 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
 | |
| 	/* Only pointer to struct is allowed */
 | |
| 	if (!__btf_type_is_struct(t))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	info->type = type;
 | |
| 	info->off = off;
 | |
| 	info->kptr.type_id = res_id;
 | |
| 	return BTF_FIELD_FOUND;
 | |
| }
 | |
| 
 | |
| static const char *btf_find_decl_tag_value(const struct btf *btf,
 | |
| 					   const struct btf_type *pt,
 | |
| 					   int comp_idx, const char *tag_key)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i < btf_nr_types(btf); i++) {
 | |
| 		const struct btf_type *t = btf_type_by_id(btf, i);
 | |
| 		int len = strlen(tag_key);
 | |
| 
 | |
| 		if (!btf_type_is_decl_tag(t))
 | |
| 			continue;
 | |
| 		if (pt != btf_type_by_id(btf, t->type) ||
 | |
| 		    btf_type_decl_tag(t)->component_idx != comp_idx)
 | |
| 			continue;
 | |
| 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
 | |
| 			continue;
 | |
| 		return __btf_name_by_offset(btf, t->name_off) + len;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int
 | |
| btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
 | |
| 		    const struct btf_type *t, int comp_idx, u32 off,
 | |
| 		    int sz, struct btf_field_info *info,
 | |
| 		    enum btf_field_type head_type)
 | |
| {
 | |
| 	const char *node_field_name;
 | |
| 	const char *value_type;
 | |
| 	s32 id;
 | |
| 
 | |
| 	if (!__btf_type_is_struct(t))
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	if (t->size != sz)
 | |
| 		return BTF_FIELD_IGNORE;
 | |
| 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
 | |
| 	if (!value_type)
 | |
| 		return -EINVAL;
 | |
| 	node_field_name = strstr(value_type, ":");
 | |
| 	if (!node_field_name)
 | |
| 		return -EINVAL;
 | |
| 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!value_type)
 | |
| 		return -ENOMEM;
 | |
| 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
 | |
| 	kfree(value_type);
 | |
| 	if (id < 0)
 | |
| 		return id;
 | |
| 	node_field_name++;
 | |
| 	if (str_is_empty(node_field_name))
 | |
| 		return -EINVAL;
 | |
| 	info->type = head_type;
 | |
| 	info->off = off;
 | |
| 	info->graph_root.value_btf_id = id;
 | |
| 	info->graph_root.node_name = node_field_name;
 | |
| 	return BTF_FIELD_FOUND;
 | |
| }
 | |
| 
 | |
| #define field_mask_test_name(field_type, field_type_str) \
 | |
| 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
 | |
| 		type = field_type;					\
 | |
| 		goto end;						\
 | |
| 	}
 | |
| 
 | |
| static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
 | |
| 			      int *align, int *sz)
 | |
| {
 | |
| 	int type = 0;
 | |
| 
 | |
| 	if (field_mask & BPF_SPIN_LOCK) {
 | |
| 		if (!strcmp(name, "bpf_spin_lock")) {
 | |
| 			if (*seen_mask & BPF_SPIN_LOCK)
 | |
| 				return -E2BIG;
 | |
| 			*seen_mask |= BPF_SPIN_LOCK;
 | |
| 			type = BPF_SPIN_LOCK;
 | |
| 			goto end;
 | |
| 		}
 | |
| 	}
 | |
| 	if (field_mask & BPF_TIMER) {
 | |
| 		if (!strcmp(name, "bpf_timer")) {
 | |
| 			if (*seen_mask & BPF_TIMER)
 | |
| 				return -E2BIG;
 | |
| 			*seen_mask |= BPF_TIMER;
 | |
| 			type = BPF_TIMER;
 | |
| 			goto end;
 | |
| 		}
 | |
| 	}
 | |
| 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
 | |
| 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
 | |
| 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
 | |
| 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
 | |
| 
 | |
| 	/* Only return BPF_KPTR when all other types with matchable names fail */
 | |
| 	if (field_mask & BPF_KPTR) {
 | |
| 		type = BPF_KPTR_REF;
 | |
| 		goto end;
 | |
| 	}
 | |
| 	return 0;
 | |
| end:
 | |
| 	*sz = btf_field_type_size(type);
 | |
| 	*align = btf_field_type_align(type);
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| #undef field_mask_test_name
 | |
| 
 | |
| static int btf_find_struct_field(const struct btf *btf,
 | |
| 				 const struct btf_type *t, u32 field_mask,
 | |
| 				 struct btf_field_info *info, int info_cnt)
 | |
| {
 | |
| 	int ret, idx = 0, align, sz, field_type;
 | |
| 	const struct btf_member *member;
 | |
| 	struct btf_field_info tmp;
 | |
| 	u32 i, off, seen_mask = 0;
 | |
| 
 | |
| 	for_each_member(i, t, member) {
 | |
| 		const struct btf_type *member_type = btf_type_by_id(btf,
 | |
| 								    member->type);
 | |
| 
 | |
| 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
 | |
| 						field_mask, &seen_mask, &align, &sz);
 | |
| 		if (field_type == 0)
 | |
| 			continue;
 | |
| 		if (field_type < 0)
 | |
| 			return field_type;
 | |
| 
 | |
| 		off = __btf_member_bit_offset(t, member);
 | |
| 		if (off % 8)
 | |
| 			/* valid C code cannot generate such BTF */
 | |
| 			return -EINVAL;
 | |
| 		off /= 8;
 | |
| 		if (off % align)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (field_type) {
 | |
| 		case BPF_SPIN_LOCK:
 | |
| 		case BPF_TIMER:
 | |
| 		case BPF_LIST_NODE:
 | |
| 		case BPF_RB_NODE:
 | |
| 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
 | |
| 					      idx < info_cnt ? &info[idx] : &tmp);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		case BPF_KPTR_UNREF:
 | |
| 		case BPF_KPTR_REF:
 | |
| 			ret = btf_find_kptr(btf, member_type, off, sz,
 | |
| 					    idx < info_cnt ? &info[idx] : &tmp);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		case BPF_LIST_HEAD:
 | |
| 		case BPF_RB_ROOT:
 | |
| 			ret = btf_find_graph_root(btf, t, member_type,
 | |
| 						  i, off, sz,
 | |
| 						  idx < info_cnt ? &info[idx] : &tmp,
 | |
| 						  field_type);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == BTF_FIELD_IGNORE)
 | |
| 			continue;
 | |
| 		if (idx >= info_cnt)
 | |
| 			return -E2BIG;
 | |
| 		++idx;
 | |
| 	}
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
 | |
| 				u32 field_mask, struct btf_field_info *info,
 | |
| 				int info_cnt)
 | |
| {
 | |
| 	int ret, idx = 0, align, sz, field_type;
 | |
| 	const struct btf_var_secinfo *vsi;
 | |
| 	struct btf_field_info tmp;
 | |
| 	u32 i, off, seen_mask = 0;
 | |
| 
 | |
| 	for_each_vsi(i, t, vsi) {
 | |
| 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
 | |
| 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
 | |
| 
 | |
| 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
 | |
| 						field_mask, &seen_mask, &align, &sz);
 | |
| 		if (field_type == 0)
 | |
| 			continue;
 | |
| 		if (field_type < 0)
 | |
| 			return field_type;
 | |
| 
 | |
| 		off = vsi->offset;
 | |
| 		if (vsi->size != sz)
 | |
| 			continue;
 | |
| 		if (off % align)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (field_type) {
 | |
| 		case BPF_SPIN_LOCK:
 | |
| 		case BPF_TIMER:
 | |
| 		case BPF_LIST_NODE:
 | |
| 		case BPF_RB_NODE:
 | |
| 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
 | |
| 					      idx < info_cnt ? &info[idx] : &tmp);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		case BPF_KPTR_UNREF:
 | |
| 		case BPF_KPTR_REF:
 | |
| 			ret = btf_find_kptr(btf, var_type, off, sz,
 | |
| 					    idx < info_cnt ? &info[idx] : &tmp);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		case BPF_LIST_HEAD:
 | |
| 		case BPF_RB_ROOT:
 | |
| 			ret = btf_find_graph_root(btf, var, var_type,
 | |
| 						  -1, off, sz,
 | |
| 						  idx < info_cnt ? &info[idx] : &tmp,
 | |
| 						  field_type);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == BTF_FIELD_IGNORE)
 | |
| 			continue;
 | |
| 		if (idx >= info_cnt)
 | |
| 			return -E2BIG;
 | |
| 		++idx;
 | |
| 	}
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static int btf_find_field(const struct btf *btf, const struct btf_type *t,
 | |
| 			  u32 field_mask, struct btf_field_info *info,
 | |
| 			  int info_cnt)
 | |
| {
 | |
| 	if (__btf_type_is_struct(t))
 | |
| 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
 | |
| 	else if (btf_type_is_datasec(t))
 | |
| 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
 | |
| 			  struct btf_field_info *info)
 | |
| {
 | |
| 	struct module *mod = NULL;
 | |
| 	const struct btf_type *t;
 | |
| 	struct btf *kernel_btf;
 | |
| 	int ret;
 | |
| 	s32 id;
 | |
| 
 | |
| 	/* Find type in map BTF, and use it to look up the matching type
 | |
| 	 * in vmlinux or module BTFs, by name and kind.
 | |
| 	 */
 | |
| 	t = btf_type_by_id(btf, info->kptr.type_id);
 | |
| 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
 | |
| 			     &kernel_btf);
 | |
| 	if (id < 0)
 | |
| 		return id;
 | |
| 
 | |
| 	/* Find and stash the function pointer for the destruction function that
 | |
| 	 * needs to be eventually invoked from the map free path.
 | |
| 	 */
 | |
| 	if (info->type == BPF_KPTR_REF) {
 | |
| 		const struct btf_type *dtor_func;
 | |
| 		const char *dtor_func_name;
 | |
| 		unsigned long addr;
 | |
| 		s32 dtor_btf_id;
 | |
| 
 | |
| 		/* This call also serves as a whitelist of allowed objects that
 | |
| 		 * can be used as a referenced pointer and be stored in a map at
 | |
| 		 * the same time.
 | |
| 		 */
 | |
| 		dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
 | |
| 		if (dtor_btf_id < 0) {
 | |
| 			ret = dtor_btf_id;
 | |
| 			goto end_btf;
 | |
| 		}
 | |
| 
 | |
| 		dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
 | |
| 		if (!dtor_func) {
 | |
| 			ret = -ENOENT;
 | |
| 			goto end_btf;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_is_module(kernel_btf)) {
 | |
| 			mod = btf_try_get_module(kernel_btf);
 | |
| 			if (!mod) {
 | |
| 				ret = -ENXIO;
 | |
| 				goto end_btf;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* We already verified dtor_func to be btf_type_is_func
 | |
| 		 * in register_btf_id_dtor_kfuncs.
 | |
| 		 */
 | |
| 		dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
 | |
| 		addr = kallsyms_lookup_name(dtor_func_name);
 | |
| 		if (!addr) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto end_mod;
 | |
| 		}
 | |
| 		field->kptr.dtor = (void *)addr;
 | |
| 	}
 | |
| 
 | |
| 	field->kptr.btf_id = id;
 | |
| 	field->kptr.btf = kernel_btf;
 | |
| 	field->kptr.module = mod;
 | |
| 	return 0;
 | |
| end_mod:
 | |
| 	module_put(mod);
 | |
| end_btf:
 | |
| 	btf_put(kernel_btf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btf_parse_graph_root(const struct btf *btf,
 | |
| 				struct btf_field *field,
 | |
| 				struct btf_field_info *info,
 | |
| 				const char *node_type_name,
 | |
| 				size_t node_type_align)
 | |
| {
 | |
| 	const struct btf_type *t, *n = NULL;
 | |
| 	const struct btf_member *member;
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
 | |
| 	/* We've already checked that value_btf_id is a struct type. We
 | |
| 	 * just need to figure out the offset of the list_node, and
 | |
| 	 * verify its type.
 | |
| 	 */
 | |
| 	for_each_member(i, t, member) {
 | |
| 		if (strcmp(info->graph_root.node_name,
 | |
| 			   __btf_name_by_offset(btf, member->name_off)))
 | |
| 			continue;
 | |
| 		/* Invalid BTF, two members with same name */
 | |
| 		if (n)
 | |
| 			return -EINVAL;
 | |
| 		n = btf_type_by_id(btf, member->type);
 | |
| 		if (!__btf_type_is_struct(n))
 | |
| 			return -EINVAL;
 | |
| 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
 | |
| 			return -EINVAL;
 | |
| 		offset = __btf_member_bit_offset(n, member);
 | |
| 		if (offset % 8)
 | |
| 			return -EINVAL;
 | |
| 		offset /= 8;
 | |
| 		if (offset % node_type_align)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		field->graph_root.btf = (struct btf *)btf;
 | |
| 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
 | |
| 		field->graph_root.node_offset = offset;
 | |
| 	}
 | |
| 	if (!n)
 | |
| 		return -ENOENT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
 | |
| 			       struct btf_field_info *info)
 | |
| {
 | |
| 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
 | |
| 					    __alignof__(struct bpf_list_node));
 | |
| }
 | |
| 
 | |
| static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
 | |
| 			     struct btf_field_info *info)
 | |
| {
 | |
| 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
 | |
| 					    __alignof__(struct bpf_rb_node));
 | |
| }
 | |
| 
 | |
| struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
 | |
| 				    u32 field_mask, u32 value_size)
 | |
| {
 | |
| 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
 | |
| 	struct btf_record *rec;
 | |
| 	u32 next_off = 0;
 | |
| 	int ret, i, cnt;
 | |
| 
 | |
| 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 	if (!ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	cnt = ret;
 | |
| 	/* This needs to be kzalloc to zero out padding and unused fields, see
 | |
| 	 * comment in btf_record_equal.
 | |
| 	 */
 | |
| 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!rec)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	rec->spin_lock_off = -EINVAL;
 | |
| 	rec->timer_off = -EINVAL;
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
 | |
| 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
 | |
| 			ret = -EFAULT;
 | |
| 			goto end;
 | |
| 		}
 | |
| 		if (info_arr[i].off < next_off) {
 | |
| 			ret = -EEXIST;
 | |
| 			goto end;
 | |
| 		}
 | |
| 		next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
 | |
| 
 | |
| 		rec->field_mask |= info_arr[i].type;
 | |
| 		rec->fields[i].offset = info_arr[i].off;
 | |
| 		rec->fields[i].type = info_arr[i].type;
 | |
| 
 | |
| 		switch (info_arr[i].type) {
 | |
| 		case BPF_SPIN_LOCK:
 | |
| 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
 | |
| 			/* Cache offset for faster lookup at runtime */
 | |
| 			rec->spin_lock_off = rec->fields[i].offset;
 | |
| 			break;
 | |
| 		case BPF_TIMER:
 | |
| 			WARN_ON_ONCE(rec->timer_off >= 0);
 | |
| 			/* Cache offset for faster lookup at runtime */
 | |
| 			rec->timer_off = rec->fields[i].offset;
 | |
| 			break;
 | |
| 		case BPF_KPTR_UNREF:
 | |
| 		case BPF_KPTR_REF:
 | |
| 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
 | |
| 			if (ret < 0)
 | |
| 				goto end;
 | |
| 			break;
 | |
| 		case BPF_LIST_HEAD:
 | |
| 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
 | |
| 			if (ret < 0)
 | |
| 				goto end;
 | |
| 			break;
 | |
| 		case BPF_RB_ROOT:
 | |
| 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
 | |
| 			if (ret < 0)
 | |
| 				goto end;
 | |
| 			break;
 | |
| 		case BPF_LIST_NODE:
 | |
| 		case BPF_RB_NODE:
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = -EFAULT;
 | |
| 			goto end;
 | |
| 		}
 | |
| 		rec->cnt++;
 | |
| 	}
 | |
| 
 | |
| 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
 | |
| 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
 | |
| 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* need collection identity for non-owning refs before allowing this
 | |
| 	 *
 | |
| 	 * Consider a node type w/ both list and rb_node fields:
 | |
| 	 *   struct node {
 | |
| 	 *     struct bpf_list_node l;
 | |
| 	 *     struct bpf_rb_node r;
 | |
| 	 *   }
 | |
| 	 *
 | |
| 	 * Used like so:
 | |
| 	 *   struct node *n = bpf_obj_new(....);
 | |
| 	 *   bpf_list_push_front(&list_head, &n->l);
 | |
| 	 *   bpf_rbtree_remove(&rb_root, &n->r);
 | |
| 	 *
 | |
| 	 * It should not be possible to rbtree_remove the node since it hasn't
 | |
| 	 * been added to a tree. But push_front converts n to a non-owning
 | |
| 	 * reference, and rbtree_remove accepts the non-owning reference to
 | |
| 	 * a type w/ bpf_rb_node field.
 | |
| 	 */
 | |
| 	if (btf_record_has_field(rec, BPF_LIST_NODE) &&
 | |
| 	    btf_record_has_field(rec, BPF_RB_NODE)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	return rec;
 | |
| end:
 | |
| 	btf_record_free(rec);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
 | |
| #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
 | |
| 
 | |
| int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* There are three types that signify ownership of some other type:
 | |
| 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
 | |
| 	 * kptr_ref only supports storing kernel types, which can't store
 | |
| 	 * references to program allocated local types.
 | |
| 	 *
 | |
| 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
 | |
| 	 * does not form cycles.
 | |
| 	 */
 | |
| 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
 | |
| 		return 0;
 | |
| 	for (i = 0; i < rec->cnt; i++) {
 | |
| 		struct btf_struct_meta *meta;
 | |
| 		u32 btf_id;
 | |
| 
 | |
| 		if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
 | |
| 			continue;
 | |
| 		btf_id = rec->fields[i].graph_root.value_btf_id;
 | |
| 		meta = btf_find_struct_meta(btf, btf_id);
 | |
| 		if (!meta)
 | |
| 			return -EFAULT;
 | |
| 		rec->fields[i].graph_root.value_rec = meta->record;
 | |
| 
 | |
| 		/* We need to set value_rec for all root types, but no need
 | |
| 		 * to check ownership cycle for a type unless it's also a
 | |
| 		 * node type.
 | |
| 		 */
 | |
| 		if (!(rec->field_mask & GRAPH_NODE_MASK))
 | |
| 			continue;
 | |
| 
 | |
| 		/* We need to ensure ownership acyclicity among all types. The
 | |
| 		 * proper way to do it would be to topologically sort all BTF
 | |
| 		 * IDs based on the ownership edges, since there can be multiple
 | |
| 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
 | |
| 		 * following resaoning:
 | |
| 		 *
 | |
| 		 * - A type can only be owned by another type in user BTF if it
 | |
| 		 *   has a bpf_{list,rb}_node. Let's call these node types.
 | |
| 		 * - A type can only _own_ another type in user BTF if it has a
 | |
| 		 *   bpf_{list_head,rb_root}. Let's call these root types.
 | |
| 		 *
 | |
| 		 * We ensure that if a type is both a root and node, its
 | |
| 		 * element types cannot be root types.
 | |
| 		 *
 | |
| 		 * To ensure acyclicity:
 | |
| 		 *
 | |
| 		 * When A is an root type but not a node, its ownership
 | |
| 		 * chain can be:
 | |
| 		 *	A -> B -> C
 | |
| 		 * Where:
 | |
| 		 * - A is an root, e.g. has bpf_rb_root.
 | |
| 		 * - B is both a root and node, e.g. has bpf_rb_node and
 | |
| 		 *   bpf_list_head.
 | |
| 		 * - C is only an root, e.g. has bpf_list_node
 | |
| 		 *
 | |
| 		 * When A is both a root and node, some other type already
 | |
| 		 * owns it in the BTF domain, hence it can not own
 | |
| 		 * another root type through any of the ownership edges.
 | |
| 		 *	A -> B
 | |
| 		 * Where:
 | |
| 		 * - A is both an root and node.
 | |
| 		 * - B is only an node.
 | |
| 		 */
 | |
| 		if (meta->record->field_mask & GRAPH_ROOT_MASK)
 | |
| 			return -ELOOP;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
 | |
| {
 | |
| 	const u32 a = *(const u32 *)_a;
 | |
| 	const u32 b = *(const u32 *)_b;
 | |
| 
 | |
| 	if (a < b)
 | |
| 		return -1;
 | |
| 	else if (a > b)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
 | |
| {
 | |
| 	struct btf_field_offs *foffs = (void *)priv;
 | |
| 	u32 *off_base = foffs->field_off;
 | |
| 	u32 *a = _a, *b = _b;
 | |
| 	u8 *sz_a, *sz_b;
 | |
| 
 | |
| 	sz_a = foffs->field_sz + (a - off_base);
 | |
| 	sz_b = foffs->field_sz + (b - off_base);
 | |
| 
 | |
| 	swap(*a, *b);
 | |
| 	swap(*sz_a, *sz_b);
 | |
| }
 | |
| 
 | |
| struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
 | |
| {
 | |
| 	struct btf_field_offs *foffs;
 | |
| 	u32 i, *off;
 | |
| 	u8 *sz;
 | |
| 
 | |
| 	BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
 | |
| 	if (IS_ERR_OR_NULL(rec))
 | |
| 		return NULL;
 | |
| 
 | |
| 	foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!foffs)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	off = foffs->field_off;
 | |
| 	sz = foffs->field_sz;
 | |
| 	for (i = 0; i < rec->cnt; i++) {
 | |
| 		off[i] = rec->fields[i].offset;
 | |
| 		sz[i] = btf_field_type_size(rec->fields[i].type);
 | |
| 	}
 | |
| 	foffs->cnt = rec->cnt;
 | |
| 
 | |
| 	if (foffs->cnt == 1)
 | |
| 		return foffs;
 | |
| 	sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
 | |
| 	       btf_field_offs_cmp, btf_field_offs_swap, foffs);
 | |
| 	return foffs;
 | |
| }
 | |
| 
 | |
| static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			      u32 type_id, void *data, u8 bits_offset,
 | |
| 			      struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_member *member;
 | |
| 	void *safe_data;
 | |
| 	u32 i;
 | |
| 
 | |
| 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
 | |
| 	if (!safe_data)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_member(i, t, member) {
 | |
| 		const struct btf_type *member_type = btf_type_by_id(btf,
 | |
| 								member->type);
 | |
| 		const struct btf_kind_operations *ops;
 | |
| 		u32 member_offset, bitfield_size;
 | |
| 		u32 bytes_offset;
 | |
| 		u8 bits8_offset;
 | |
| 
 | |
| 		btf_show_start_member(show, member);
 | |
| 
 | |
| 		member_offset = __btf_member_bit_offset(t, member);
 | |
| 		bitfield_size = __btf_member_bitfield_size(t, member);
 | |
| 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
 | |
| 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
 | |
| 		if (bitfield_size) {
 | |
| 			safe_data = btf_show_start_type(show, member_type,
 | |
| 							member->type,
 | |
| 							data + bytes_offset);
 | |
| 			if (safe_data)
 | |
| 				btf_bitfield_show(safe_data,
 | |
| 						  bits8_offset,
 | |
| 						  bitfield_size, show);
 | |
| 			btf_show_end_type(show);
 | |
| 		} else {
 | |
| 			ops = btf_type_ops(member_type);
 | |
| 			ops->show(btf, member_type, member->type,
 | |
| 				  data + bytes_offset, bits8_offset, show);
 | |
| 		}
 | |
| 
 | |
| 		btf_show_end_member(show);
 | |
| 	}
 | |
| 
 | |
| 	btf_show_end_struct_type(show);
 | |
| }
 | |
| 
 | |
| static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			    u32 type_id, void *data, u8 bits_offset,
 | |
| 			    struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_member *m = show->state.member;
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if any members would be shown (are non-zero).
 | |
| 	 * See comments above "struct btf_show" definition for more
 | |
| 	 * details on how this works at a high-level.
 | |
| 	 */
 | |
| 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
 | |
| 		if (!show->state.depth_check) {
 | |
| 			show->state.depth_check = show->state.depth + 1;
 | |
| 			show->state.depth_to_show = 0;
 | |
| 		}
 | |
| 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
 | |
| 		/* Restore saved member data here */
 | |
| 		show->state.member = m;
 | |
| 		if (show->state.depth_check != show->state.depth + 1)
 | |
| 			return;
 | |
| 		show->state.depth_check = 0;
 | |
| 
 | |
| 		if (show->state.depth_to_show <= show->state.depth)
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Reaching here indicates we have recursed and found
 | |
| 		 * non-zero child values.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations struct_ops = {
 | |
| 	.check_meta = btf_struct_check_meta,
 | |
| 	.resolve = btf_struct_resolve,
 | |
| 	.check_member = btf_struct_check_member,
 | |
| 	.check_kflag_member = btf_generic_check_kflag_member,
 | |
| 	.log_details = btf_struct_log,
 | |
| 	.show = btf_struct_show,
 | |
| };
 | |
| 
 | |
| static int btf_enum_check_member(struct btf_verifier_env *env,
 | |
| 				 const struct btf_type *struct_type,
 | |
| 				 const struct btf_member *member,
 | |
| 				 const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_bits_off = member->offset;
 | |
| 	u32 struct_size, bytes_offset;
 | |
| 
 | |
| 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member is not byte aligned");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	struct_size = struct_type->size;
 | |
| 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
 | |
| 	if (struct_size - bytes_offset < member_type->size) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
 | |
| 				       const struct btf_type *struct_type,
 | |
| 				       const struct btf_member *member,
 | |
| 				       const struct btf_type *member_type)
 | |
| {
 | |
| 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
 | |
| 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
 | |
| 
 | |
| 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
 | |
| 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
 | |
| 	if (!nr_bits) {
 | |
| 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
 | |
| 			btf_verifier_log_member(env, struct_type, member,
 | |
| 						"Member is not byte aligned");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		nr_bits = int_bitsize;
 | |
| 	} else if (nr_bits > int_bitsize) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Invalid member bitfield_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	struct_size = struct_type->size;
 | |
| 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
 | |
| 	if (struct_size < bytes_end) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static s32 btf_enum_check_meta(struct btf_verifier_env *env,
 | |
| 			       const struct btf_type *t,
 | |
| 			       u32 meta_left)
 | |
| {
 | |
| 	const struct btf_enum *enums = btf_type_enum(t);
 | |
| 	struct btf *btf = env->btf;
 | |
| 	const char *fmt_str;
 | |
| 	u16 i, nr_enums;
 | |
| 	u32 meta_needed;
 | |
| 
 | |
| 	nr_enums = btf_type_vlen(t);
 | |
| 	meta_needed = nr_enums * sizeof(*enums);
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->size > 8 || !is_power_of_2(t->size)) {
 | |
| 		btf_verifier_log_type(env, t, "Unexpected size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* enum type either no name or a valid one */
 | |
| 	if (t->name_off &&
 | |
| 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	for (i = 0; i < nr_enums; i++) {
 | |
| 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
 | |
| 			btf_verifier_log(env, "\tInvalid name_offset:%u",
 | |
| 					 enums[i].name_off);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* enum member must have a valid name */
 | |
| 		if (!enums[i].name_off ||
 | |
| 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (env->log.level == BPF_LOG_KERNEL)
 | |
| 			continue;
 | |
| 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
 | |
| 		btf_verifier_log(env, fmt_str,
 | |
| 				 __btf_name_by_offset(btf, enums[i].name_off),
 | |
| 				 enums[i].val);
 | |
| 	}
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static void btf_enum_log(struct btf_verifier_env *env,
 | |
| 			 const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
 | |
| }
 | |
| 
 | |
| static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			  u32 type_id, void *data, u8 bits_offset,
 | |
| 			  struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_enum *enums = btf_type_enum(t);
 | |
| 	u32 i, nr_enums = btf_type_vlen(t);
 | |
| 	void *safe_data;
 | |
| 	int v;
 | |
| 
 | |
| 	safe_data = btf_show_start_type(show, t, type_id, data);
 | |
| 	if (!safe_data)
 | |
| 		return;
 | |
| 
 | |
| 	v = *(int *)safe_data;
 | |
| 
 | |
| 	for (i = 0; i < nr_enums; i++) {
 | |
| 		if (v != enums[i].val)
 | |
| 			continue;
 | |
| 
 | |
| 		btf_show_type_value(show, "%s",
 | |
| 				    __btf_name_by_offset(btf,
 | |
| 							 enums[i].name_off));
 | |
| 
 | |
| 		btf_show_end_type(show);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t))
 | |
| 		btf_show_type_value(show, "%d", v);
 | |
| 	else
 | |
| 		btf_show_type_value(show, "%u", v);
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations enum_ops = {
 | |
| 	.check_meta = btf_enum_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	.check_member = btf_enum_check_member,
 | |
| 	.check_kflag_member = btf_enum_check_kflag_member,
 | |
| 	.log_details = btf_enum_log,
 | |
| 	.show = btf_enum_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
 | |
| 				 const struct btf_type *t,
 | |
| 				 u32 meta_left)
 | |
| {
 | |
| 	const struct btf_enum64 *enums = btf_type_enum64(t);
 | |
| 	struct btf *btf = env->btf;
 | |
| 	const char *fmt_str;
 | |
| 	u16 i, nr_enums;
 | |
| 	u32 meta_needed;
 | |
| 
 | |
| 	nr_enums = btf_type_vlen(t);
 | |
| 	meta_needed = nr_enums * sizeof(*enums);
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->size > 8 || !is_power_of_2(t->size)) {
 | |
| 		btf_verifier_log_type(env, t, "Unexpected size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* enum type either no name or a valid one */
 | |
| 	if (t->name_off &&
 | |
| 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	for (i = 0; i < nr_enums; i++) {
 | |
| 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
 | |
| 			btf_verifier_log(env, "\tInvalid name_offset:%u",
 | |
| 					 enums[i].name_off);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* enum member must have a valid name */
 | |
| 		if (!enums[i].name_off ||
 | |
| 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid name");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (env->log.level == BPF_LOG_KERNEL)
 | |
| 			continue;
 | |
| 
 | |
| 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
 | |
| 		btf_verifier_log(env, fmt_str,
 | |
| 				 __btf_name_by_offset(btf, enums[i].name_off),
 | |
| 				 btf_enum64_value(enums + i));
 | |
| 	}
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
 | |
| 			    u32 type_id, void *data, u8 bits_offset,
 | |
| 			    struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_enum64 *enums = btf_type_enum64(t);
 | |
| 	u32 i, nr_enums = btf_type_vlen(t);
 | |
| 	void *safe_data;
 | |
| 	s64 v;
 | |
| 
 | |
| 	safe_data = btf_show_start_type(show, t, type_id, data);
 | |
| 	if (!safe_data)
 | |
| 		return;
 | |
| 
 | |
| 	v = *(u64 *)safe_data;
 | |
| 
 | |
| 	for (i = 0; i < nr_enums; i++) {
 | |
| 		if (v != btf_enum64_value(enums + i))
 | |
| 			continue;
 | |
| 
 | |
| 		btf_show_type_value(show, "%s",
 | |
| 				    __btf_name_by_offset(btf,
 | |
| 							 enums[i].name_off));
 | |
| 
 | |
| 		btf_show_end_type(show);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t))
 | |
| 		btf_show_type_value(show, "%lld", v);
 | |
| 	else
 | |
| 		btf_show_type_value(show, "%llu", v);
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations enum64_ops = {
 | |
| 	.check_meta = btf_enum64_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	.check_member = btf_enum_check_member,
 | |
| 	.check_kflag_member = btf_enum_check_kflag_member,
 | |
| 	.log_details = btf_enum_log,
 | |
| 	.show = btf_enum64_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
 | |
| 				     const struct btf_type *t,
 | |
| 				     u32 meta_left)
 | |
| {
 | |
| 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->name_off) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static void btf_func_proto_log(struct btf_verifier_env *env,
 | |
| 			       const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_param *args = (const struct btf_param *)(t + 1);
 | |
| 	u16 nr_args = btf_type_vlen(t), i;
 | |
| 
 | |
| 	btf_verifier_log(env, "return=%u args=(", t->type);
 | |
| 	if (!nr_args) {
 | |
| 		btf_verifier_log(env, "void");
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (nr_args == 1 && !args[0].type) {
 | |
| 		/* Only one vararg */
 | |
| 		btf_verifier_log(env, "vararg");
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log(env, "%u %s", args[0].type,
 | |
| 			 __btf_name_by_offset(env->btf,
 | |
| 					      args[0].name_off));
 | |
| 	for (i = 1; i < nr_args - 1; i++)
 | |
| 		btf_verifier_log(env, ", %u %s", args[i].type,
 | |
| 				 __btf_name_by_offset(env->btf,
 | |
| 						      args[i].name_off));
 | |
| 
 | |
| 	if (nr_args > 1) {
 | |
| 		const struct btf_param *last_arg = &args[nr_args - 1];
 | |
| 
 | |
| 		if (last_arg->type)
 | |
| 			btf_verifier_log(env, ", %u %s", last_arg->type,
 | |
| 					 __btf_name_by_offset(env->btf,
 | |
| 							      last_arg->name_off));
 | |
| 		else
 | |
| 			btf_verifier_log(env, ", vararg");
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	btf_verifier_log(env, ")");
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations func_proto_ops = {
 | |
| 	.check_meta = btf_func_proto_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	/*
 | |
| 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
 | |
| 	 * a struct's member.
 | |
| 	 *
 | |
| 	 * It should be a function pointer instead.
 | |
| 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
 | |
| 	 *
 | |
| 	 * Hence, there is no btf_func_check_member().
 | |
| 	 */
 | |
| 	.check_member = btf_df_check_member,
 | |
| 	.check_kflag_member = btf_df_check_kflag_member,
 | |
| 	.log_details = btf_func_proto_log,
 | |
| 	.show = btf_df_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_func_check_meta(struct btf_verifier_env *env,
 | |
| 			       const struct btf_type *t,
 | |
| 			       u32 meta_left)
 | |
| {
 | |
| 	if (!t->name_off ||
 | |
| 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid func linkage");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_func_resolve(struct btf_verifier_env *env,
 | |
| 			    const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_type *t = v->t;
 | |
| 	u32 next_type_id = t->type;
 | |
| 	int err;
 | |
| 
 | |
| 	err = btf_func_check(env, t);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	env_stack_pop_resolved(env, next_type_id, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btf_kind_operations func_ops = {
 | |
| 	.check_meta = btf_func_check_meta,
 | |
| 	.resolve = btf_func_resolve,
 | |
| 	.check_member = btf_df_check_member,
 | |
| 	.check_kflag_member = btf_df_check_kflag_member,
 | |
| 	.log_details = btf_ref_type_log,
 | |
| 	.show = btf_df_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_var_check_meta(struct btf_verifier_env *env,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 meta_left)
 | |
| {
 | |
| 	const struct btf_var *var;
 | |
| 	u32 meta_needed = sizeof(*var);
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!t->name_off ||
 | |
| 	    !__btf_name_valid(env->btf, t->name_off, true)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* A var cannot be in type void */
 | |
| 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	var = btf_type_var(t);
 | |
| 	if (var->linkage != BTF_VAR_STATIC &&
 | |
| 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
 | |
| 		btf_verifier_log_type(env, t, "Linkage not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_var *var = btf_type_var(t);
 | |
| 
 | |
| 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations var_ops = {
 | |
| 	.check_meta		= btf_var_check_meta,
 | |
| 	.resolve		= btf_var_resolve,
 | |
| 	.check_member		= btf_df_check_member,
 | |
| 	.check_kflag_member	= btf_df_check_kflag_member,
 | |
| 	.log_details		= btf_var_log,
 | |
| 	.show			= btf_var_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
 | |
| 				  const struct btf_type *t,
 | |
| 				  u32 meta_left)
 | |
| {
 | |
| 	const struct btf_var_secinfo *vsi;
 | |
| 	u64 last_vsi_end_off = 0, sum = 0;
 | |
| 	u32 i, meta_needed;
 | |
| 
 | |
| 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!t->size) {
 | |
| 		btf_verifier_log_type(env, t, "size == 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!t->name_off ||
 | |
| 	    !btf_name_valid_section(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid name");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	for_each_vsi(i, t, vsi) {
 | |
| 		/* A var cannot be in type void */
 | |
| 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
 | |
| 			btf_verifier_log_vsi(env, t, vsi,
 | |
| 					     "Invalid type_id");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
 | |
| 			btf_verifier_log_vsi(env, t, vsi,
 | |
| 					     "Invalid offset");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!vsi->size || vsi->size > t->size) {
 | |
| 			btf_verifier_log_vsi(env, t, vsi,
 | |
| 					     "Invalid size");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		last_vsi_end_off = vsi->offset + vsi->size;
 | |
| 		if (last_vsi_end_off > t->size) {
 | |
| 			btf_verifier_log_vsi(env, t, vsi,
 | |
| 					     "Invalid offset+size");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		btf_verifier_log_vsi(env, t, vsi, NULL);
 | |
| 		sum += vsi->size;
 | |
| 	}
 | |
| 
 | |
| 	if (t->size < sum) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static int btf_datasec_resolve(struct btf_verifier_env *env,
 | |
| 			       const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_var_secinfo *vsi;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	u16 i;
 | |
| 
 | |
| 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
 | |
| 		u32 var_type_id = vsi->type, type_id, type_size = 0;
 | |
| 		const struct btf_type *var_type = btf_type_by_id(env->btf,
 | |
| 								 var_type_id);
 | |
| 		if (!var_type || !btf_type_is_var(var_type)) {
 | |
| 			btf_verifier_log_vsi(env, v->t, vsi,
 | |
| 					     "Not a VAR kind member");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!env_type_is_resolve_sink(env, var_type) &&
 | |
| 		    !env_type_is_resolved(env, var_type_id)) {
 | |
| 			env_stack_set_next_member(env, i + 1);
 | |
| 			return env_stack_push(env, var_type, var_type_id);
 | |
| 		}
 | |
| 
 | |
| 		type_id = var_type->type;
 | |
| 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
 | |
| 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (vsi->size < type_size) {
 | |
| 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, 0, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_datasec_log(struct btf_verifier_env *env,
 | |
| 			    const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
 | |
| }
 | |
| 
 | |
| static void btf_datasec_show(const struct btf *btf,
 | |
| 			     const struct btf_type *t, u32 type_id,
 | |
| 			     void *data, u8 bits_offset,
 | |
| 			     struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_var_secinfo *vsi;
 | |
| 	const struct btf_type *var;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (!btf_show_start_type(show, t, type_id, data))
 | |
| 		return;
 | |
| 
 | |
| 	btf_show_type_value(show, "section (\"%s\") = {",
 | |
| 			    __btf_name_by_offset(btf, t->name_off));
 | |
| 	for_each_vsi(i, t, vsi) {
 | |
| 		var = btf_type_by_id(btf, vsi->type);
 | |
| 		if (i)
 | |
| 			btf_show(show, ",");
 | |
| 		btf_type_ops(var)->show(btf, var, vsi->type,
 | |
| 					data + vsi->offset, bits_offset, show);
 | |
| 	}
 | |
| 	btf_show_end_type(show);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations datasec_ops = {
 | |
| 	.check_meta		= btf_datasec_check_meta,
 | |
| 	.resolve		= btf_datasec_resolve,
 | |
| 	.check_member		= btf_df_check_member,
 | |
| 	.check_kflag_member	= btf_df_check_kflag_member,
 | |
| 	.log_details		= btf_datasec_log,
 | |
| 	.show			= btf_datasec_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_float_check_meta(struct btf_verifier_env *env,
 | |
| 				const struct btf_type *t,
 | |
| 				u32 meta_left)
 | |
| {
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
 | |
| 	    t->size != 16) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid type_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_float_check_member(struct btf_verifier_env *env,
 | |
| 				  const struct btf_type *struct_type,
 | |
| 				  const struct btf_member *member,
 | |
| 				  const struct btf_type *member_type)
 | |
| {
 | |
| 	u64 start_offset_bytes;
 | |
| 	u64 end_offset_bytes;
 | |
| 	u64 misalign_bits;
 | |
| 	u64 align_bytes;
 | |
| 	u64 align_bits;
 | |
| 
 | |
| 	/* Different architectures have different alignment requirements, so
 | |
| 	 * here we check only for the reasonable minimum. This way we ensure
 | |
| 	 * that types after CO-RE can pass the kernel BTF verifier.
 | |
| 	 */
 | |
| 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
 | |
| 	align_bits = align_bytes * BITS_PER_BYTE;
 | |
| 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
 | |
| 	if (misalign_bits) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member is not properly aligned");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	start_offset_bytes = member->offset / BITS_PER_BYTE;
 | |
| 	end_offset_bytes = start_offset_bytes + member_type->size;
 | |
| 	if (end_offset_bytes > struct_type->size) {
 | |
| 		btf_verifier_log_member(env, struct_type, member,
 | |
| 					"Member exceeds struct_size");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_float_log(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "size=%u", t->size);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations float_ops = {
 | |
| 	.check_meta = btf_float_check_meta,
 | |
| 	.resolve = btf_df_resolve,
 | |
| 	.check_member = btf_float_check_member,
 | |
| 	.check_kflag_member = btf_generic_check_kflag_member,
 | |
| 	.log_details = btf_float_log,
 | |
| 	.show = btf_df_show,
 | |
| };
 | |
| 
 | |
| static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 meta_left)
 | |
| {
 | |
| 	const struct btf_decl_tag *tag;
 | |
| 	u32 meta_needed = sizeof(*tag);
 | |
| 	s32 component_idx;
 | |
| 	const char *value;
 | |
| 
 | |
| 	if (meta_left < meta_needed) {
 | |
| 		btf_verifier_log_basic(env, t,
 | |
| 				       "meta_left:%u meta_needed:%u",
 | |
| 				       meta_left, meta_needed);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	value = btf_name_by_offset(env->btf, t->name_off);
 | |
| 	if (!value || !value[0]) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid value");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_vlen(t)) {
 | |
| 		btf_verifier_log_type(env, t, "vlen != 0");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_kflag(t)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	component_idx = btf_type_decl_tag(t)->component_idx;
 | |
| 	if (component_idx < -1) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid component_idx");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_log_type(env, t, NULL);
 | |
| 
 | |
| 	return meta_needed;
 | |
| }
 | |
| 
 | |
| static int btf_decl_tag_resolve(struct btf_verifier_env *env,
 | |
| 			   const struct resolve_vertex *v)
 | |
| {
 | |
| 	const struct btf_type *next_type;
 | |
| 	const struct btf_type *t = v->t;
 | |
| 	u32 next_type_id = t->type;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	s32 component_idx;
 | |
| 	u32 vlen;
 | |
| 
 | |
| 	next_type = btf_type_by_id(btf, next_type_id);
 | |
| 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
 | |
| 		btf_verifier_log_type(env, v->t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env_type_is_resolve_sink(env, next_type) &&
 | |
| 	    !env_type_is_resolved(env, next_type_id))
 | |
| 		return env_stack_push(env, next_type, next_type_id);
 | |
| 
 | |
| 	component_idx = btf_type_decl_tag(t)->component_idx;
 | |
| 	if (component_idx != -1) {
 | |
| 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
 | |
| 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_is_struct(next_type)) {
 | |
| 			vlen = btf_type_vlen(next_type);
 | |
| 		} else {
 | |
| 			/* next_type should be a function */
 | |
| 			next_type = btf_type_by_id(btf, next_type->type);
 | |
| 			vlen = btf_type_vlen(next_type);
 | |
| 		}
 | |
| 
 | |
| 		if ((u32)component_idx >= vlen) {
 | |
| 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	env_stack_pop_resolved(env, next_type_id, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
 | |
| {
 | |
| 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
 | |
| 			 btf_type_decl_tag(t)->component_idx);
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations decl_tag_ops = {
 | |
| 	.check_meta = btf_decl_tag_check_meta,
 | |
| 	.resolve = btf_decl_tag_resolve,
 | |
| 	.check_member = btf_df_check_member,
 | |
| 	.check_kflag_member = btf_df_check_kflag_member,
 | |
| 	.log_details = btf_decl_tag_log,
 | |
| 	.show = btf_df_show,
 | |
| };
 | |
| 
 | |
| static int btf_func_proto_check(struct btf_verifier_env *env,
 | |
| 				const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_type *ret_type;
 | |
| 	const struct btf_param *args;
 | |
| 	const struct btf *btf;
 | |
| 	u16 nr_args, i;
 | |
| 	int err;
 | |
| 
 | |
| 	btf = env->btf;
 | |
| 	args = (const struct btf_param *)(t + 1);
 | |
| 	nr_args = btf_type_vlen(t);
 | |
| 
 | |
| 	/* Check func return type which could be "void" (t->type == 0) */
 | |
| 	if (t->type) {
 | |
| 		u32 ret_type_id = t->type;
 | |
| 
 | |
| 		ret_type = btf_type_by_id(btf, ret_type_id);
 | |
| 		if (!ret_type) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid return type");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_is_resolve_source_only(ret_type)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid return type");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_needs_resolve(ret_type) &&
 | |
| 		    !env_type_is_resolved(env, ret_type_id)) {
 | |
| 			err = btf_resolve(env, ret_type, ret_type_id);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		/* Ensure the return type is a type that has a size */
 | |
| 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid return type");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_args)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Last func arg type_id could be 0 if it is a vararg */
 | |
| 	if (!args[nr_args - 1].type) {
 | |
| 		if (args[nr_args - 1].name_off) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid arg#%u",
 | |
| 					      nr_args);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		nr_args--;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_args; i++) {
 | |
| 		const struct btf_type *arg_type;
 | |
| 		u32 arg_type_id;
 | |
| 
 | |
| 		arg_type_id = args[i].type;
 | |
| 		arg_type = btf_type_by_id(btf, arg_type_id);
 | |
| 		if (!arg_type) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_is_resolve_source_only(arg_type)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (args[i].name_off &&
 | |
| 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
 | |
| 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
 | |
| 			btf_verifier_log_type(env, t,
 | |
| 					      "Invalid arg#%u", i + 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_needs_resolve(arg_type) &&
 | |
| 		    !env_type_is_resolved(env, arg_type_id)) {
 | |
| 			err = btf_resolve(env, arg_type, arg_type_id);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_func_check(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t)
 | |
| {
 | |
| 	const struct btf_type *proto_type;
 | |
| 	const struct btf_param *args;
 | |
| 	const struct btf *btf;
 | |
| 	u16 nr_args, i;
 | |
| 
 | |
| 	btf = env->btf;
 | |
| 	proto_type = btf_type_by_id(btf, t->type);
 | |
| 
 | |
| 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid type_id");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	args = (const struct btf_param *)(proto_type + 1);
 | |
| 	nr_args = btf_type_vlen(proto_type);
 | |
| 	for (i = 0; i < nr_args; i++) {
 | |
| 		if (!args[i].name_off && args[i].type) {
 | |
| 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
 | |
| 	[BTF_KIND_INT] = &int_ops,
 | |
| 	[BTF_KIND_PTR] = &ptr_ops,
 | |
| 	[BTF_KIND_ARRAY] = &array_ops,
 | |
| 	[BTF_KIND_STRUCT] = &struct_ops,
 | |
| 	[BTF_KIND_UNION] = &struct_ops,
 | |
| 	[BTF_KIND_ENUM] = &enum_ops,
 | |
| 	[BTF_KIND_FWD] = &fwd_ops,
 | |
| 	[BTF_KIND_TYPEDEF] = &modifier_ops,
 | |
| 	[BTF_KIND_VOLATILE] = &modifier_ops,
 | |
| 	[BTF_KIND_CONST] = &modifier_ops,
 | |
| 	[BTF_KIND_RESTRICT] = &modifier_ops,
 | |
| 	[BTF_KIND_FUNC] = &func_ops,
 | |
| 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
 | |
| 	[BTF_KIND_VAR] = &var_ops,
 | |
| 	[BTF_KIND_DATASEC] = &datasec_ops,
 | |
| 	[BTF_KIND_FLOAT] = &float_ops,
 | |
| 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
 | |
| 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
 | |
| 	[BTF_KIND_ENUM64] = &enum64_ops,
 | |
| };
 | |
| 
 | |
| static s32 btf_check_meta(struct btf_verifier_env *env,
 | |
| 			  const struct btf_type *t,
 | |
| 			  u32 meta_left)
 | |
| {
 | |
| 	u32 saved_meta_left = meta_left;
 | |
| 	s32 var_meta_size;
 | |
| 
 | |
| 	if (meta_left < sizeof(*t)) {
 | |
| 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
 | |
| 				 env->log_type_id, meta_left, sizeof(*t));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	meta_left -= sizeof(*t);
 | |
| 
 | |
| 	if (t->info & ~BTF_INFO_MASK) {
 | |
| 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
 | |
| 				 env->log_type_id, t->info);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
 | |
| 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
 | |
| 		btf_verifier_log(env, "[%u] Invalid kind:%u",
 | |
| 				 env->log_type_id, BTF_INFO_KIND(t->info));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
 | |
| 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
 | |
| 				 env->log_type_id, t->name_off);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
 | |
| 	if (var_meta_size < 0)
 | |
| 		return var_meta_size;
 | |
| 
 | |
| 	meta_left -= var_meta_size;
 | |
| 
 | |
| 	return saved_meta_left - meta_left;
 | |
| }
 | |
| 
 | |
| static int btf_check_all_metas(struct btf_verifier_env *env)
 | |
| {
 | |
| 	struct btf *btf = env->btf;
 | |
| 	struct btf_header *hdr;
 | |
| 	void *cur, *end;
 | |
| 
 | |
| 	hdr = &btf->hdr;
 | |
| 	cur = btf->nohdr_data + hdr->type_off;
 | |
| 	end = cur + hdr->type_len;
 | |
| 
 | |
| 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
 | |
| 	while (cur < end) {
 | |
| 		struct btf_type *t = cur;
 | |
| 		s32 meta_size;
 | |
| 
 | |
| 		meta_size = btf_check_meta(env, t, end - cur);
 | |
| 		if (meta_size < 0)
 | |
| 			return meta_size;
 | |
| 
 | |
| 		btf_add_type(env, t);
 | |
| 		cur += meta_size;
 | |
| 		env->log_type_id++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool btf_resolve_valid(struct btf_verifier_env *env,
 | |
| 			      const struct btf_type *t,
 | |
| 			      u32 type_id)
 | |
| {
 | |
| 	struct btf *btf = env->btf;
 | |
| 
 | |
| 	if (!env_type_is_resolved(env, type_id))
 | |
| 		return false;
 | |
| 
 | |
| 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
 | |
| 		return !btf_resolved_type_id(btf, type_id) &&
 | |
| 		       !btf_resolved_type_size(btf, type_id);
 | |
| 
 | |
| 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
 | |
| 		return btf_resolved_type_id(btf, type_id) &&
 | |
| 		       !btf_resolved_type_size(btf, type_id);
 | |
| 
 | |
| 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
 | |
| 	    btf_type_is_var(t)) {
 | |
| 		t = btf_type_id_resolve(btf, &type_id);
 | |
| 		return t &&
 | |
| 		       !btf_type_is_modifier(t) &&
 | |
| 		       !btf_type_is_var(t) &&
 | |
| 		       !btf_type_is_datasec(t);
 | |
| 	}
 | |
| 
 | |
| 	if (btf_type_is_array(t)) {
 | |
| 		const struct btf_array *array = btf_type_array(t);
 | |
| 		const struct btf_type *elem_type;
 | |
| 		u32 elem_type_id = array->type;
 | |
| 		u32 elem_size;
 | |
| 
 | |
| 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
 | |
| 		return elem_type && !btf_type_is_modifier(elem_type) &&
 | |
| 			(array->nelems * elem_size ==
 | |
| 			 btf_resolved_type_size(btf, type_id));
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int btf_resolve(struct btf_verifier_env *env,
 | |
| 		       const struct btf_type *t, u32 type_id)
 | |
| {
 | |
| 	u32 save_log_type_id = env->log_type_id;
 | |
| 	const struct resolve_vertex *v;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	env->resolve_mode = RESOLVE_TBD;
 | |
| 	env_stack_push(env, t, type_id);
 | |
| 	while (!err && (v = env_stack_peak(env))) {
 | |
| 		env->log_type_id = v->type_id;
 | |
| 		err = btf_type_ops(v->t)->resolve(env, v);
 | |
| 	}
 | |
| 
 | |
| 	env->log_type_id = type_id;
 | |
| 	if (err == -E2BIG) {
 | |
| 		btf_verifier_log_type(env, t,
 | |
| 				      "Exceeded max resolving depth:%u",
 | |
| 				      MAX_RESOLVE_DEPTH);
 | |
| 	} else if (err == -EEXIST) {
 | |
| 		btf_verifier_log_type(env, t, "Loop detected");
 | |
| 	}
 | |
| 
 | |
| 	/* Final sanity check */
 | |
| 	if (!err && !btf_resolve_valid(env, t, type_id)) {
 | |
| 		btf_verifier_log_type(env, t, "Invalid resolve state");
 | |
| 		err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	env->log_type_id = save_log_type_id;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int btf_check_all_types(struct btf_verifier_env *env)
 | |
| {
 | |
| 	struct btf *btf = env->btf;
 | |
| 	const struct btf_type *t;
 | |
| 	u32 type_id, i;
 | |
| 	int err;
 | |
| 
 | |
| 	err = env_resolve_init(env);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	env->phase++;
 | |
| 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
 | |
| 		type_id = btf->start_id + i;
 | |
| 		t = btf_type_by_id(btf, type_id);
 | |
| 
 | |
| 		env->log_type_id = type_id;
 | |
| 		if (btf_type_needs_resolve(t) &&
 | |
| 		    !env_type_is_resolved(env, type_id)) {
 | |
| 			err = btf_resolve(env, t, type_id);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_is_func_proto(t)) {
 | |
| 			err = btf_func_proto_check(env, t);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_parse_type_sec(struct btf_verifier_env *env)
 | |
| {
 | |
| 	const struct btf_header *hdr = &env->btf->hdr;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Type section must align to 4 bytes */
 | |
| 	if (hdr->type_off & (sizeof(u32) - 1)) {
 | |
| 		btf_verifier_log(env, "Unaligned type_off");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!env->btf->base_btf && !hdr->type_len) {
 | |
| 		btf_verifier_log(env, "No type found");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = btf_check_all_metas(env);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return btf_check_all_types(env);
 | |
| }
 | |
| 
 | |
| static int btf_parse_str_sec(struct btf_verifier_env *env)
 | |
| {
 | |
| 	const struct btf_header *hdr;
 | |
| 	struct btf *btf = env->btf;
 | |
| 	const char *start, *end;
 | |
| 
 | |
| 	hdr = &btf->hdr;
 | |
| 	start = btf->nohdr_data + hdr->str_off;
 | |
| 	end = start + hdr->str_len;
 | |
| 
 | |
| 	if (end != btf->data + btf->data_size) {
 | |
| 		btf_verifier_log(env, "String section is not at the end");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf->strings = start;
 | |
| 
 | |
| 	if (btf->base_btf && !hdr->str_len)
 | |
| 		return 0;
 | |
| 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
 | |
| 		btf_verifier_log(env, "Invalid string section");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (!btf->base_btf && start[0]) {
 | |
| 		btf_verifier_log(env, "Invalid string section");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const size_t btf_sec_info_offset[] = {
 | |
| 	offsetof(struct btf_header, type_off),
 | |
| 	offsetof(struct btf_header, str_off),
 | |
| };
 | |
| 
 | |
| static int btf_sec_info_cmp(const void *a, const void *b)
 | |
| {
 | |
| 	const struct btf_sec_info *x = a;
 | |
| 	const struct btf_sec_info *y = b;
 | |
| 
 | |
| 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
 | |
| }
 | |
| 
 | |
| static int btf_check_sec_info(struct btf_verifier_env *env,
 | |
| 			      u32 btf_data_size)
 | |
| {
 | |
| 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
 | |
| 	u32 total, expected_total, i;
 | |
| 	const struct btf_header *hdr;
 | |
| 	const struct btf *btf;
 | |
| 
 | |
| 	btf = env->btf;
 | |
| 	hdr = &btf->hdr;
 | |
| 
 | |
| 	/* Populate the secs from hdr */
 | |
| 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
 | |
| 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
 | |
| 						   btf_sec_info_offset[i]);
 | |
| 
 | |
| 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
 | |
| 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
 | |
| 
 | |
| 	/* Check for gaps and overlap among sections */
 | |
| 	total = 0;
 | |
| 	expected_total = btf_data_size - hdr->hdr_len;
 | |
| 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
 | |
| 		if (expected_total < secs[i].off) {
 | |
| 			btf_verifier_log(env, "Invalid section offset");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (total < secs[i].off) {
 | |
| 			/* gap */
 | |
| 			btf_verifier_log(env, "Unsupported section found");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (total > secs[i].off) {
 | |
| 			btf_verifier_log(env, "Section overlap found");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (expected_total - total < secs[i].len) {
 | |
| 			btf_verifier_log(env,
 | |
| 					 "Total section length too long");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		total += secs[i].len;
 | |
| 	}
 | |
| 
 | |
| 	/* There is data other than hdr and known sections */
 | |
| 	if (expected_total != total) {
 | |
| 		btf_verifier_log(env, "Unsupported section found");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btf_parse_hdr(struct btf_verifier_env *env)
 | |
| {
 | |
| 	u32 hdr_len, hdr_copy, btf_data_size;
 | |
| 	const struct btf_header *hdr;
 | |
| 	struct btf *btf;
 | |
| 
 | |
| 	btf = env->btf;
 | |
| 	btf_data_size = btf->data_size;
 | |
| 
 | |
| 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
 | |
| 		btf_verifier_log(env, "hdr_len not found");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	hdr = btf->data;
 | |
| 	hdr_len = hdr->hdr_len;
 | |
| 	if (btf_data_size < hdr_len) {
 | |
| 		btf_verifier_log(env, "btf_header not found");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure the unsupported header fields are zero */
 | |
| 	if (hdr_len > sizeof(btf->hdr)) {
 | |
| 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
 | |
| 		u8 *end = btf->data + hdr_len;
 | |
| 
 | |
| 		for (; expected_zero < end; expected_zero++) {
 | |
| 			if (*expected_zero) {
 | |
| 				btf_verifier_log(env, "Unsupported btf_header");
 | |
| 				return -E2BIG;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
 | |
| 	memcpy(&btf->hdr, btf->data, hdr_copy);
 | |
| 
 | |
| 	hdr = &btf->hdr;
 | |
| 
 | |
| 	btf_verifier_log_hdr(env, btf_data_size);
 | |
| 
 | |
| 	if (hdr->magic != BTF_MAGIC) {
 | |
| 		btf_verifier_log(env, "Invalid magic");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (hdr->version != BTF_VERSION) {
 | |
| 		btf_verifier_log(env, "Unsupported version");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (hdr->flags) {
 | |
| 		btf_verifier_log(env, "Unsupported flags");
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
 | |
| 		btf_verifier_log(env, "No data");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return btf_check_sec_info(env, btf_data_size);
 | |
| }
 | |
| 
 | |
| static const char *alloc_obj_fields[] = {
 | |
| 	"bpf_spin_lock",
 | |
| 	"bpf_list_head",
 | |
| 	"bpf_list_node",
 | |
| 	"bpf_rb_root",
 | |
| 	"bpf_rb_node",
 | |
| };
 | |
| 
 | |
| static struct btf_struct_metas *
 | |
| btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
 | |
| {
 | |
| 	union {
 | |
| 		struct btf_id_set set;
 | |
| 		struct {
 | |
| 			u32 _cnt;
 | |
| 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
 | |
| 		} _arr;
 | |
| 	} aof;
 | |
| 	struct btf_struct_metas *tab = NULL;
 | |
| 	int i, n, id, ret;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
 | |
| 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
 | |
| 
 | |
| 	memset(&aof, 0, sizeof(aof));
 | |
| 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
 | |
| 		/* Try to find whether this special type exists in user BTF, and
 | |
| 		 * if so remember its ID so we can easily find it among members
 | |
| 		 * of structs that we iterate in the next loop.
 | |
| 		 */
 | |
| 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
 | |
| 		if (id < 0)
 | |
| 			continue;
 | |
| 		aof.set.ids[aof.set.cnt++] = id;
 | |
| 	}
 | |
| 
 | |
| 	if (!aof.set.cnt)
 | |
| 		return NULL;
 | |
| 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
 | |
| 
 | |
| 	n = btf_nr_types(btf);
 | |
| 	for (i = 1; i < n; i++) {
 | |
| 		struct btf_struct_metas *new_tab;
 | |
| 		const struct btf_member *member;
 | |
| 		struct btf_field_offs *foffs;
 | |
| 		struct btf_struct_meta *type;
 | |
| 		struct btf_record *record;
 | |
| 		const struct btf_type *t;
 | |
| 		int j, tab_cnt;
 | |
| 
 | |
| 		t = btf_type_by_id(btf, i);
 | |
| 		if (!t) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto free;
 | |
| 		}
 | |
| 		if (!__btf_type_is_struct(t))
 | |
| 			continue;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		for_each_member(j, t, member) {
 | |
| 			if (btf_id_set_contains(&aof.set, member->type))
 | |
| 				goto parse;
 | |
| 		}
 | |
| 		continue;
 | |
| 	parse:
 | |
| 		tab_cnt = tab ? tab->cnt : 0;
 | |
| 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
 | |
| 				   GFP_KERNEL | __GFP_NOWARN);
 | |
| 		if (!new_tab) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free;
 | |
| 		}
 | |
| 		if (!tab)
 | |
| 			new_tab->cnt = 0;
 | |
| 		tab = new_tab;
 | |
| 
 | |
| 		type = &tab->types[tab->cnt];
 | |
| 		type->btf_id = i;
 | |
| 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
 | |
| 						  BPF_RB_ROOT | BPF_RB_NODE, t->size);
 | |
| 		/* The record cannot be unset, treat it as an error if so */
 | |
| 		if (IS_ERR_OR_NULL(record)) {
 | |
| 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
 | |
| 			goto free;
 | |
| 		}
 | |
| 		foffs = btf_parse_field_offs(record);
 | |
| 		/* We need the field_offs to be valid for a valid record,
 | |
| 		 * either both should be set or both should be unset.
 | |
| 		 */
 | |
| 		if (IS_ERR_OR_NULL(foffs)) {
 | |
| 			btf_record_free(record);
 | |
| 			ret = -EFAULT;
 | |
| 			goto free;
 | |
| 		}
 | |
| 		type->record = record;
 | |
| 		type->field_offs = foffs;
 | |
| 		tab->cnt++;
 | |
| 	}
 | |
| 	return tab;
 | |
| free:
 | |
| 	btf_struct_metas_free(tab);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
 | |
| {
 | |
| 	struct btf_struct_metas *tab;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
 | |
| 	tab = btf->struct_meta_tab;
 | |
| 	if (!tab)
 | |
| 		return NULL;
 | |
| 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
 | |
| }
 | |
| 
 | |
| static int btf_check_type_tags(struct btf_verifier_env *env,
 | |
| 			       struct btf *btf, int start_id)
 | |
| {
 | |
| 	int i, n, good_id = start_id - 1;
 | |
| 	bool in_tags;
 | |
| 
 | |
| 	n = btf_nr_types(btf);
 | |
| 	for (i = start_id; i < n; i++) {
 | |
| 		const struct btf_type *t;
 | |
| 		int chain_limit = 32;
 | |
| 		u32 cur_id = i;
 | |
| 
 | |
| 		t = btf_type_by_id(btf, i);
 | |
| 		if (!t)
 | |
| 			return -EINVAL;
 | |
| 		if (!btf_type_is_modifier(t))
 | |
| 			continue;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		in_tags = btf_type_is_type_tag(t);
 | |
| 		while (btf_type_is_modifier(t)) {
 | |
| 			if (!chain_limit--) {
 | |
| 				btf_verifier_log(env, "Max chain length or cycle detected");
 | |
| 				return -ELOOP;
 | |
| 			}
 | |
| 			if (btf_type_is_type_tag(t)) {
 | |
| 				if (!in_tags) {
 | |
| 					btf_verifier_log(env, "Type tags don't precede modifiers");
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 			} else if (in_tags) {
 | |
| 				in_tags = false;
 | |
| 			}
 | |
| 			if (cur_id <= good_id)
 | |
| 				break;
 | |
| 			/* Move to next type */
 | |
| 			cur_id = t->type;
 | |
| 			t = btf_type_by_id(btf, cur_id);
 | |
| 			if (!t)
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 		good_id = i;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
 | |
| 			     u32 log_level, char __user *log_ubuf, u32 log_size)
 | |
| {
 | |
| 	struct btf_struct_metas *struct_meta_tab;
 | |
| 	struct btf_verifier_env *env = NULL;
 | |
| 	struct bpf_verifier_log *log;
 | |
| 	struct btf *btf = NULL;
 | |
| 	u8 *data;
 | |
| 	int err;
 | |
| 
 | |
| 	if (btf_data_size > BTF_MAX_SIZE)
 | |
| 		return ERR_PTR(-E2BIG);
 | |
| 
 | |
| 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!env)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	log = &env->log;
 | |
| 	if (log_level || log_ubuf || log_size) {
 | |
| 		/* user requested verbose verifier output
 | |
| 		 * and supplied buffer to store the verification trace
 | |
| 		 */
 | |
| 		log->level = log_level;
 | |
| 		log->ubuf = log_ubuf;
 | |
| 		log->len_total = log_size;
 | |
| 
 | |
| 		/* log attributes have to be sane */
 | |
| 		if (!bpf_verifier_log_attr_valid(log)) {
 | |
| 			err = -EINVAL;
 | |
| 			goto errout;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!btf) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	env->btf = btf;
 | |
| 
 | |
| 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!data) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 
 | |
| 	btf->data = data;
 | |
| 	btf->data_size = btf_data_size;
 | |
| 
 | |
| 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
 | |
| 		err = -EFAULT;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 
 | |
| 	err = btf_parse_hdr(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
 | |
| 
 | |
| 	err = btf_parse_str_sec(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_parse_type_sec(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_check_type_tags(env, btf, 1);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	struct_meta_tab = btf_parse_struct_metas(log, btf);
 | |
| 	if (IS_ERR(struct_meta_tab)) {
 | |
| 		err = PTR_ERR(struct_meta_tab);
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	btf->struct_meta_tab = struct_meta_tab;
 | |
| 
 | |
| 	if (struct_meta_tab) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < struct_meta_tab->cnt; i++) {
 | |
| 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
 | |
| 			if (err < 0)
 | |
| 				goto errout_meta;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (log->level && bpf_verifier_log_full(log)) {
 | |
| 		err = -ENOSPC;
 | |
| 		goto errout_meta;
 | |
| 	}
 | |
| 
 | |
| 	btf_verifier_env_free(env);
 | |
| 	refcount_set(&btf->refcnt, 1);
 | |
| 	return btf;
 | |
| 
 | |
| errout_meta:
 | |
| 	btf_free_struct_meta_tab(btf);
 | |
| errout:
 | |
| 	btf_verifier_env_free(env);
 | |
| 	if (btf)
 | |
| 		btf_free(btf);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| extern char __weak __start_BTF[];
 | |
| extern char __weak __stop_BTF[];
 | |
| extern struct btf *btf_vmlinux;
 | |
| 
 | |
| #define BPF_MAP_TYPE(_id, _ops)
 | |
| #define BPF_LINK_TYPE(_id, _name)
 | |
| static union {
 | |
| 	struct bpf_ctx_convert {
 | |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
 | |
| 	prog_ctx_type _id##_prog; \
 | |
| 	kern_ctx_type _id##_kern;
 | |
| #include <linux/bpf_types.h>
 | |
| #undef BPF_PROG_TYPE
 | |
| 	} *__t;
 | |
| 	/* 't' is written once under lock. Read many times. */
 | |
| 	const struct btf_type *t;
 | |
| } bpf_ctx_convert;
 | |
| enum {
 | |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
 | |
| 	__ctx_convert##_id,
 | |
| #include <linux/bpf_types.h>
 | |
| #undef BPF_PROG_TYPE
 | |
| 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
 | |
| };
 | |
| static u8 bpf_ctx_convert_map[] = {
 | |
| #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
 | |
| 	[_id] = __ctx_convert##_id,
 | |
| #include <linux/bpf_types.h>
 | |
| #undef BPF_PROG_TYPE
 | |
| 	0, /* avoid empty array */
 | |
| };
 | |
| #undef BPF_MAP_TYPE
 | |
| #undef BPF_LINK_TYPE
 | |
| 
 | |
| const struct btf_member *
 | |
| btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
 | |
| 		      const struct btf_type *t, enum bpf_prog_type prog_type,
 | |
| 		      int arg)
 | |
| {
 | |
| 	const struct btf_type *conv_struct;
 | |
| 	const struct btf_type *ctx_struct;
 | |
| 	const struct btf_member *ctx_type;
 | |
| 	const char *tname, *ctx_tname;
 | |
| 
 | |
| 	conv_struct = bpf_ctx_convert.t;
 | |
| 	if (!conv_struct) {
 | |
| 		bpf_log(log, "btf_vmlinux is malformed\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 	while (btf_type_is_modifier(t))
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	if (!btf_type_is_struct(t)) {
 | |
| 		/* Only pointer to struct is supported for now.
 | |
| 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
 | |
| 		 * is not supported yet.
 | |
| 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	tname = btf_name_by_offset(btf, t->name_off);
 | |
| 	if (!tname) {
 | |
| 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* prog_type is valid bpf program type. No need for bounds check. */
 | |
| 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
 | |
| 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
 | |
| 	 * Like 'struct __sk_buff'
 | |
| 	 */
 | |
| 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
 | |
| 	if (!ctx_struct)
 | |
| 		/* should not happen */
 | |
| 		return NULL;
 | |
| again:
 | |
| 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
 | |
| 	if (!ctx_tname) {
 | |
| 		/* should not happen */
 | |
| 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* only compare that prog's ctx type name is the same as
 | |
| 	 * kernel expects. No need to compare field by field.
 | |
| 	 * It's ok for bpf prog to do:
 | |
| 	 * struct __sk_buff {};
 | |
| 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
 | |
| 	 * { // no fields of skb are ever used }
 | |
| 	 */
 | |
| 	if (strcmp(ctx_tname, tname)) {
 | |
| 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
 | |
| 		 * underlying struct and check name again
 | |
| 		 */
 | |
| 		if (!btf_type_is_modifier(ctx_struct))
 | |
| 			return NULL;
 | |
| 		while (btf_type_is_modifier(ctx_struct))
 | |
| 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return ctx_type;
 | |
| }
 | |
| 
 | |
| static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
 | |
| 				     struct btf *btf,
 | |
| 				     const struct btf_type *t,
 | |
| 				     enum bpf_prog_type prog_type,
 | |
| 				     int arg)
 | |
| {
 | |
| 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
 | |
| 
 | |
| 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
 | |
| 	if (!prog_ctx_type)
 | |
| 		return -ENOENT;
 | |
| 	kern_ctx_type = prog_ctx_type + 1;
 | |
| 	return kern_ctx_type->type;
 | |
| }
 | |
| 
 | |
| int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
 | |
| {
 | |
| 	const struct btf_member *kctx_member;
 | |
| 	const struct btf_type *conv_struct;
 | |
| 	const struct btf_type *kctx_type;
 | |
| 	u32 kctx_type_id;
 | |
| 
 | |
| 	conv_struct = bpf_ctx_convert.t;
 | |
| 	/* get member for kernel ctx type */
 | |
| 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
 | |
| 	kctx_type_id = kctx_member->type;
 | |
| 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
 | |
| 	if (!btf_type_is_struct(kctx_type)) {
 | |
| 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return kctx_type_id;
 | |
| }
 | |
| 
 | |
| BTF_ID_LIST(bpf_ctx_convert_btf_id)
 | |
| BTF_ID(struct, bpf_ctx_convert)
 | |
| 
 | |
| struct btf *btf_parse_vmlinux(void)
 | |
| {
 | |
| 	struct btf_verifier_env *env = NULL;
 | |
| 	struct bpf_verifier_log *log;
 | |
| 	struct btf *btf = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!env)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	log = &env->log;
 | |
| 	log->level = BPF_LOG_KERNEL;
 | |
| 
 | |
| 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!btf) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	env->btf = btf;
 | |
| 
 | |
| 	btf->data = __start_BTF;
 | |
| 	btf->data_size = __stop_BTF - __start_BTF;
 | |
| 	btf->kernel_btf = true;
 | |
| 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
 | |
| 
 | |
| 	err = btf_parse_hdr(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
 | |
| 
 | |
| 	err = btf_parse_str_sec(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_check_all_metas(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_check_type_tags(env, btf, 1);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
 | |
| 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
 | |
| 
 | |
| 	bpf_struct_ops_init(btf, log);
 | |
| 
 | |
| 	refcount_set(&btf->refcnt, 1);
 | |
| 
 | |
| 	err = btf_alloc_id(btf);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	btf_verifier_env_free(env);
 | |
| 	return btf;
 | |
| 
 | |
| errout:
 | |
| 	btf_verifier_env_free(env);
 | |
| 	if (btf) {
 | |
| 		kvfree(btf->types);
 | |
| 		kfree(btf);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| 
 | |
| static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
 | |
| {
 | |
| 	struct btf_verifier_env *env = NULL;
 | |
| 	struct bpf_verifier_log *log;
 | |
| 	struct btf *btf = NULL, *base_btf;
 | |
| 	int err;
 | |
| 
 | |
| 	base_btf = bpf_get_btf_vmlinux();
 | |
| 	if (IS_ERR(base_btf))
 | |
| 		return base_btf;
 | |
| 	if (!base_btf)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!env)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	log = &env->log;
 | |
| 	log->level = BPF_LOG_KERNEL;
 | |
| 
 | |
| 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!btf) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	env->btf = btf;
 | |
| 
 | |
| 	btf->base_btf = base_btf;
 | |
| 	btf->start_id = base_btf->nr_types;
 | |
| 	btf->start_str_off = base_btf->hdr.str_len;
 | |
| 	btf->kernel_btf = true;
 | |
| 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
 | |
| 
 | |
| 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!btf->data) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto errout;
 | |
| 	}
 | |
| 	memcpy(btf->data, data, data_size);
 | |
| 	btf->data_size = data_size;
 | |
| 
 | |
| 	err = btf_parse_hdr(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
 | |
| 
 | |
| 	err = btf_parse_str_sec(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_check_all_metas(env);
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
 | |
| 	if (err)
 | |
| 		goto errout;
 | |
| 
 | |
| 	btf_verifier_env_free(env);
 | |
| 	refcount_set(&btf->refcnt, 1);
 | |
| 	return btf;
 | |
| 
 | |
| errout:
 | |
| 	btf_verifier_env_free(env);
 | |
| 	if (btf) {
 | |
| 		kvfree(btf->data);
 | |
| 		kvfree(btf->types);
 | |
| 		kfree(btf);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
 | |
| 
 | |
| struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
 | |
| {
 | |
| 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
 | |
| 
 | |
| 	if (tgt_prog)
 | |
| 		return tgt_prog->aux->btf;
 | |
| 	else
 | |
| 		return prog->aux->attach_btf;
 | |
| }
 | |
| 
 | |
| static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
 | |
| {
 | |
| 	/* t comes in already as a pointer */
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 
 | |
| 	/* allow const */
 | |
| 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 
 | |
| 	return btf_type_is_int(t);
 | |
| }
 | |
| 
 | |
| static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
 | |
| 			   int off)
 | |
| {
 | |
| 	const struct btf_param *args;
 | |
| 	const struct btf_type *t;
 | |
| 	u32 offset = 0, nr_args;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!func_proto)
 | |
| 		return off / 8;
 | |
| 
 | |
| 	nr_args = btf_type_vlen(func_proto);
 | |
| 	args = (const struct btf_param *)(func_proto + 1);
 | |
| 	for (i = 0; i < nr_args; i++) {
 | |
| 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
 | |
| 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
 | |
| 		if (off < offset)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
 | |
| 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
 | |
| 	if (off < offset)
 | |
| 		return nr_args;
 | |
| 
 | |
| 	return nr_args + 1;
 | |
| }
 | |
| 
 | |
| static bool prog_args_trusted(const struct bpf_prog *prog)
 | |
| {
 | |
| 	enum bpf_attach_type atype = prog->expected_attach_type;
 | |
| 
 | |
| 	switch (prog->type) {
 | |
| 	case BPF_PROG_TYPE_TRACING:
 | |
| 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
 | |
| 	case BPF_PROG_TYPE_LSM:
 | |
| 		return bpf_lsm_is_trusted(prog);
 | |
| 	case BPF_PROG_TYPE_STRUCT_OPS:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool btf_ctx_access(int off, int size, enum bpf_access_type type,
 | |
| 		    const struct bpf_prog *prog,
 | |
| 		    struct bpf_insn_access_aux *info)
 | |
| {
 | |
| 	const struct btf_type *t = prog->aux->attach_func_proto;
 | |
| 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
 | |
| 	struct btf *btf = bpf_prog_get_target_btf(prog);
 | |
| 	const char *tname = prog->aux->attach_func_name;
 | |
| 	struct bpf_verifier_log *log = info->log;
 | |
| 	const struct btf_param *args;
 | |
| 	const char *tag_value;
 | |
| 	u32 nr_args, arg;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (off % 8) {
 | |
| 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
 | |
| 			tname, off);
 | |
| 		return false;
 | |
| 	}
 | |
| 	arg = get_ctx_arg_idx(btf, t, off);
 | |
| 	args = (const struct btf_param *)(t + 1);
 | |
| 	/* if (t == NULL) Fall back to default BPF prog with
 | |
| 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
 | |
| 	 */
 | |
| 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
 | |
| 	if (prog->aux->attach_btf_trace) {
 | |
| 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
 | |
| 		args++;
 | |
| 		nr_args--;
 | |
| 	}
 | |
| 
 | |
| 	if (arg > nr_args) {
 | |
| 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
 | |
| 			tname, arg + 1);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (arg == nr_args) {
 | |
| 		switch (prog->expected_attach_type) {
 | |
| 		case BPF_LSM_CGROUP:
 | |
| 		case BPF_LSM_MAC:
 | |
| 		case BPF_TRACE_FEXIT:
 | |
| 			/* When LSM programs are attached to void LSM hooks
 | |
| 			 * they use FEXIT trampolines and when attached to
 | |
| 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
 | |
| 			 *
 | |
| 			 * While the LSM programs are BPF_MODIFY_RETURN-like
 | |
| 			 * the check:
 | |
| 			 *
 | |
| 			 *	if (ret_type != 'int')
 | |
| 			 *		return -EINVAL;
 | |
| 			 *
 | |
| 			 * is _not_ done here. This is still safe as LSM hooks
 | |
| 			 * have only void and int return types.
 | |
| 			 */
 | |
| 			if (!t)
 | |
| 				return true;
 | |
| 			t = btf_type_by_id(btf, t->type);
 | |
| 			break;
 | |
| 		case BPF_MODIFY_RETURN:
 | |
| 			/* For now the BPF_MODIFY_RETURN can only be attached to
 | |
| 			 * functions that return an int.
 | |
| 			 */
 | |
| 			if (!t)
 | |
| 				return false;
 | |
| 
 | |
| 			t = btf_type_skip_modifiers(btf, t->type, NULL);
 | |
| 			if (!btf_type_is_small_int(t)) {
 | |
| 				bpf_log(log,
 | |
| 					"ret type %s not allowed for fmod_ret\n",
 | |
| 					btf_type_str(t));
 | |
| 				return false;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
 | |
| 				tname, arg + 1);
 | |
| 			return false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!t)
 | |
| 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
 | |
| 			return true;
 | |
| 		t = btf_type_by_id(btf, args[arg].type);
 | |
| 	}
 | |
| 
 | |
| 	/* skip modifiers */
 | |
| 	while (btf_type_is_modifier(t))
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
 | |
| 		/* accessing a scalar */
 | |
| 		return true;
 | |
| 	if (!btf_type_is_ptr(t)) {
 | |
| 		bpf_log(log,
 | |
| 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
 | |
| 			tname, arg,
 | |
| 			__btf_name_by_offset(btf, t->name_off),
 | |
| 			btf_type_str(t));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
 | |
| 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
 | |
| 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
 | |
| 		u32 type, flag;
 | |
| 
 | |
| 		type = base_type(ctx_arg_info->reg_type);
 | |
| 		flag = type_flag(ctx_arg_info->reg_type);
 | |
| 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
 | |
| 		    (flag & PTR_MAYBE_NULL)) {
 | |
| 			info->reg_type = ctx_arg_info->reg_type;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (t->type == 0)
 | |
| 		/* This is a pointer to void.
 | |
| 		 * It is the same as scalar from the verifier safety pov.
 | |
| 		 * No further pointer walking is allowed.
 | |
| 		 */
 | |
| 		return true;
 | |
| 
 | |
| 	if (is_int_ptr(btf, t))
 | |
| 		return true;
 | |
| 
 | |
| 	/* this is a pointer to another type */
 | |
| 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
 | |
| 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
 | |
| 
 | |
| 		if (ctx_arg_info->offset == off) {
 | |
| 			if (!ctx_arg_info->btf_id) {
 | |
| 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
| 			info->reg_type = ctx_arg_info->reg_type;
 | |
| 			info->btf = btf_vmlinux;
 | |
| 			info->btf_id = ctx_arg_info->btf_id;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	info->reg_type = PTR_TO_BTF_ID;
 | |
| 	if (prog_args_trusted(prog))
 | |
| 		info->reg_type |= PTR_TRUSTED;
 | |
| 
 | |
| 	if (tgt_prog) {
 | |
| 		enum bpf_prog_type tgt_type;
 | |
| 
 | |
| 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
 | |
| 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
 | |
| 		else
 | |
| 			tgt_type = tgt_prog->type;
 | |
| 
 | |
| 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
 | |
| 		if (ret > 0) {
 | |
| 			info->btf = btf_vmlinux;
 | |
| 			info->btf_id = ret;
 | |
| 			return true;
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	info->btf = btf;
 | |
| 	info->btf_id = t->type;
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 
 | |
| 	if (btf_type_is_type_tag(t)) {
 | |
| 		tag_value = __btf_name_by_offset(btf, t->name_off);
 | |
| 		if (strcmp(tag_value, "user") == 0)
 | |
| 			info->reg_type |= MEM_USER;
 | |
| 		if (strcmp(tag_value, "percpu") == 0)
 | |
| 			info->reg_type |= MEM_PERCPU;
 | |
| 	}
 | |
| 
 | |
| 	/* skip modifiers */
 | |
| 	while (btf_type_is_modifier(t)) {
 | |
| 		info->btf_id = t->type;
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	}
 | |
| 	if (!btf_type_is_struct(t)) {
 | |
| 		bpf_log(log,
 | |
| 			"func '%s' arg%d type %s is not a struct\n",
 | |
| 			tname, arg, btf_type_str(t));
 | |
| 		return false;
 | |
| 	}
 | |
| 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
 | |
| 		tname, arg, info->btf_id, btf_type_str(t),
 | |
| 		__btf_name_by_offset(btf, t->name_off));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| enum bpf_struct_walk_result {
 | |
| 	/* < 0 error */
 | |
| 	WALK_SCALAR = 0,
 | |
| 	WALK_PTR,
 | |
| 	WALK_STRUCT,
 | |
| };
 | |
| 
 | |
| static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
 | |
| 			   const struct btf_type *t, int off, int size,
 | |
| 			   u32 *next_btf_id, enum bpf_type_flag *flag)
 | |
| {
 | |
| 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
 | |
| 	const struct btf_type *mtype, *elem_type = NULL;
 | |
| 	const struct btf_member *member;
 | |
| 	const char *tname, *mname, *tag_value;
 | |
| 	u32 vlen, elem_id, mid;
 | |
| 
 | |
| again:
 | |
| 	tname = __btf_name_by_offset(btf, t->name_off);
 | |
| 	if (!btf_type_is_struct(t)) {
 | |
| 		bpf_log(log, "Type '%s' is not a struct\n", tname);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	vlen = btf_type_vlen(t);
 | |
| 	if (off + size > t->size) {
 | |
| 		/* If the last element is a variable size array, we may
 | |
| 		 * need to relax the rule.
 | |
| 		 */
 | |
| 		struct btf_array *array_elem;
 | |
| 
 | |
| 		if (vlen == 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		member = btf_type_member(t) + vlen - 1;
 | |
| 		mtype = btf_type_skip_modifiers(btf, member->type,
 | |
| 						NULL);
 | |
| 		if (!btf_type_is_array(mtype))
 | |
| 			goto error;
 | |
| 
 | |
| 		array_elem = (struct btf_array *)(mtype + 1);
 | |
| 		if (array_elem->nelems != 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		moff = __btf_member_bit_offset(t, member) / 8;
 | |
| 		if (off < moff)
 | |
| 			goto error;
 | |
| 
 | |
| 		/* Only allow structure for now, can be relaxed for
 | |
| 		 * other types later.
 | |
| 		 */
 | |
| 		t = btf_type_skip_modifiers(btf, array_elem->type,
 | |
| 					    NULL);
 | |
| 		if (!btf_type_is_struct(t))
 | |
| 			goto error;
 | |
| 
 | |
| 		off = (off - moff) % t->size;
 | |
| 		goto again;
 | |
| 
 | |
| error:
 | |
| 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
 | |
| 			tname, off, size);
 | |
| 		return -EACCES;
 | |
| 	}
 | |
| 
 | |
| 	for_each_member(i, t, member) {
 | |
| 		/* offset of the field in bytes */
 | |
| 		moff = __btf_member_bit_offset(t, member) / 8;
 | |
| 		if (off + size <= moff)
 | |
| 			/* won't find anything, field is already too far */
 | |
| 			break;
 | |
| 
 | |
| 		if (__btf_member_bitfield_size(t, member)) {
 | |
| 			u32 end_bit = __btf_member_bit_offset(t, member) +
 | |
| 				__btf_member_bitfield_size(t, member);
 | |
| 
 | |
| 			/* off <= moff instead of off == moff because clang
 | |
| 			 * does not generate a BTF member for anonymous
 | |
| 			 * bitfield like the ":16" here:
 | |
| 			 * struct {
 | |
| 			 *	int :16;
 | |
| 			 *	int x:8;
 | |
| 			 * };
 | |
| 			 */
 | |
| 			if (off <= moff &&
 | |
| 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
 | |
| 				return WALK_SCALAR;
 | |
| 
 | |
| 			/* off may be accessing a following member
 | |
| 			 *
 | |
| 			 * or
 | |
| 			 *
 | |
| 			 * Doing partial access at either end of this
 | |
| 			 * bitfield.  Continue on this case also to
 | |
| 			 * treat it as not accessing this bitfield
 | |
| 			 * and eventually error out as field not
 | |
| 			 * found to keep it simple.
 | |
| 			 * It could be relaxed if there was a legit
 | |
| 			 * partial access case later.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* In case of "off" is pointing to holes of a struct */
 | |
| 		if (off < moff)
 | |
| 			break;
 | |
| 
 | |
| 		/* type of the field */
 | |
| 		mid = member->type;
 | |
| 		mtype = btf_type_by_id(btf, member->type);
 | |
| 		mname = __btf_name_by_offset(btf, member->name_off);
 | |
| 
 | |
| 		mtype = __btf_resolve_size(btf, mtype, &msize,
 | |
| 					   &elem_type, &elem_id, &total_nelems,
 | |
| 					   &mid);
 | |
| 		if (IS_ERR(mtype)) {
 | |
| 			bpf_log(log, "field %s doesn't have size\n", mname);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		mtrue_end = moff + msize;
 | |
| 		if (off >= mtrue_end)
 | |
| 			/* no overlap with member, keep iterating */
 | |
| 			continue;
 | |
| 
 | |
| 		if (btf_type_is_array(mtype)) {
 | |
| 			u32 elem_idx;
 | |
| 
 | |
| 			/* __btf_resolve_size() above helps to
 | |
| 			 * linearize a multi-dimensional array.
 | |
| 			 *
 | |
| 			 * The logic here is treating an array
 | |
| 			 * in a struct as the following way:
 | |
| 			 *
 | |
| 			 * struct outer {
 | |
| 			 *	struct inner array[2][2];
 | |
| 			 * };
 | |
| 			 *
 | |
| 			 * looks like:
 | |
| 			 *
 | |
| 			 * struct outer {
 | |
| 			 *	struct inner array_elem0;
 | |
| 			 *	struct inner array_elem1;
 | |
| 			 *	struct inner array_elem2;
 | |
| 			 *	struct inner array_elem3;
 | |
| 			 * };
 | |
| 			 *
 | |
| 			 * When accessing outer->array[1][0], it moves
 | |
| 			 * moff to "array_elem2", set mtype to
 | |
| 			 * "struct inner", and msize also becomes
 | |
| 			 * sizeof(struct inner).  Then most of the
 | |
| 			 * remaining logic will fall through without
 | |
| 			 * caring the current member is an array or
 | |
| 			 * not.
 | |
| 			 *
 | |
| 			 * Unlike mtype/msize/moff, mtrue_end does not
 | |
| 			 * change.  The naming difference ("_true") tells
 | |
| 			 * that it is not always corresponding to
 | |
| 			 * the current mtype/msize/moff.
 | |
| 			 * It is the true end of the current
 | |
| 			 * member (i.e. array in this case).  That
 | |
| 			 * will allow an int array to be accessed like
 | |
| 			 * a scratch space,
 | |
| 			 * i.e. allow access beyond the size of
 | |
| 			 *      the array's element as long as it is
 | |
| 			 *      within the mtrue_end boundary.
 | |
| 			 */
 | |
| 
 | |
| 			/* skip empty array */
 | |
| 			if (moff == mtrue_end)
 | |
| 				continue;
 | |
| 
 | |
| 			msize /= total_nelems;
 | |
| 			elem_idx = (off - moff) / msize;
 | |
| 			moff += elem_idx * msize;
 | |
| 			mtype = elem_type;
 | |
| 			mid = elem_id;
 | |
| 		}
 | |
| 
 | |
| 		/* the 'off' we're looking for is either equal to start
 | |
| 		 * of this field or inside of this struct
 | |
| 		 */
 | |
| 		if (btf_type_is_struct(mtype)) {
 | |
| 			/* our field must be inside that union or struct */
 | |
| 			t = mtype;
 | |
| 
 | |
| 			/* return if the offset matches the member offset */
 | |
| 			if (off == moff) {
 | |
| 				*next_btf_id = mid;
 | |
| 				return WALK_STRUCT;
 | |
| 			}
 | |
| 
 | |
| 			/* adjust offset we're looking for */
 | |
| 			off -= moff;
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		if (btf_type_is_ptr(mtype)) {
 | |
| 			const struct btf_type *stype, *t;
 | |
| 			enum bpf_type_flag tmp_flag = 0;
 | |
| 			u32 id;
 | |
| 
 | |
| 			if (msize != size || off != moff) {
 | |
| 				bpf_log(log,
 | |
| 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
 | |
| 					mname, moff, tname, off, size);
 | |
| 				return -EACCES;
 | |
| 			}
 | |
| 
 | |
| 			/* check type tag */
 | |
| 			t = btf_type_by_id(btf, mtype->type);
 | |
| 			if (btf_type_is_type_tag(t)) {
 | |
| 				tag_value = __btf_name_by_offset(btf, t->name_off);
 | |
| 				/* check __user tag */
 | |
| 				if (strcmp(tag_value, "user") == 0)
 | |
| 					tmp_flag = MEM_USER;
 | |
| 				/* check __percpu tag */
 | |
| 				if (strcmp(tag_value, "percpu") == 0)
 | |
| 					tmp_flag = MEM_PERCPU;
 | |
| 				/* check __rcu tag */
 | |
| 				if (strcmp(tag_value, "rcu") == 0)
 | |
| 					tmp_flag = MEM_RCU;
 | |
| 			}
 | |
| 
 | |
| 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
 | |
| 			if (btf_type_is_struct(stype)) {
 | |
| 				*next_btf_id = id;
 | |
| 				*flag = tmp_flag;
 | |
| 				return WALK_PTR;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Allow more flexible access within an int as long as
 | |
| 		 * it is within mtrue_end.
 | |
| 		 * Since mtrue_end could be the end of an array,
 | |
| 		 * that also allows using an array of int as a scratch
 | |
| 		 * space. e.g. skb->cb[].
 | |
| 		 */
 | |
| 		if (off + size > mtrue_end) {
 | |
| 			bpf_log(log,
 | |
| 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
 | |
| 				mname, mtrue_end, tname, off, size);
 | |
| 			return -EACCES;
 | |
| 		}
 | |
| 
 | |
| 		return WALK_SCALAR;
 | |
| 	}
 | |
| 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int btf_struct_access(struct bpf_verifier_log *log,
 | |
| 		      const struct bpf_reg_state *reg,
 | |
| 		      int off, int size, enum bpf_access_type atype __maybe_unused,
 | |
| 		      u32 *next_btf_id, enum bpf_type_flag *flag)
 | |
| {
 | |
| 	const struct btf *btf = reg->btf;
 | |
| 	enum bpf_type_flag tmp_flag = 0;
 | |
| 	const struct btf_type *t;
 | |
| 	u32 id = reg->btf_id;
 | |
| 	int err;
 | |
| 
 | |
| 	while (type_is_alloc(reg->type)) {
 | |
| 		struct btf_struct_meta *meta;
 | |
| 		struct btf_record *rec;
 | |
| 		int i;
 | |
| 
 | |
| 		meta = btf_find_struct_meta(btf, id);
 | |
| 		if (!meta)
 | |
| 			break;
 | |
| 		rec = meta->record;
 | |
| 		for (i = 0; i < rec->cnt; i++) {
 | |
| 			struct btf_field *field = &rec->fields[i];
 | |
| 			u32 offset = field->offset;
 | |
| 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
 | |
| 				bpf_log(log,
 | |
| 					"direct access to %s is disallowed\n",
 | |
| 					btf_field_type_name(field->type));
 | |
| 				return -EACCES;
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	t = btf_type_by_id(btf, id);
 | |
| 	do {
 | |
| 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
 | |
| 
 | |
| 		switch (err) {
 | |
| 		case WALK_PTR:
 | |
| 			/* For local types, the destination register cannot
 | |
| 			 * become a pointer again.
 | |
| 			 */
 | |
| 			if (type_is_alloc(reg->type))
 | |
| 				return SCALAR_VALUE;
 | |
| 			/* If we found the pointer or scalar on t+off,
 | |
| 			 * we're done.
 | |
| 			 */
 | |
| 			*next_btf_id = id;
 | |
| 			*flag = tmp_flag;
 | |
| 			return PTR_TO_BTF_ID;
 | |
| 		case WALK_SCALAR:
 | |
| 			return SCALAR_VALUE;
 | |
| 		case WALK_STRUCT:
 | |
| 			/* We found nested struct, so continue the search
 | |
| 			 * by diving in it. At this point the offset is
 | |
| 			 * aligned with the new type, so set it to 0.
 | |
| 			 */
 | |
| 			t = btf_type_by_id(btf, id);
 | |
| 			off = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* It's either error or unknown return value..
 | |
| 			 * scream and leave.
 | |
| 			 */
 | |
| 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
 | |
| 				return -EINVAL;
 | |
| 			return err;
 | |
| 		}
 | |
| 	} while (t);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /* Check that two BTF types, each specified as an BTF object + id, are exactly
 | |
|  * the same. Trivial ID check is not enough due to module BTFs, because we can
 | |
|  * end up with two different module BTFs, but IDs point to the common type in
 | |
|  * vmlinux BTF.
 | |
|  */
 | |
| bool btf_types_are_same(const struct btf *btf1, u32 id1,
 | |
| 			const struct btf *btf2, u32 id2)
 | |
| {
 | |
| 	if (id1 != id2)
 | |
| 		return false;
 | |
| 	if (btf1 == btf2)
 | |
| 		return true;
 | |
| 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
 | |
| }
 | |
| 
 | |
| bool btf_struct_ids_match(struct bpf_verifier_log *log,
 | |
| 			  const struct btf *btf, u32 id, int off,
 | |
| 			  const struct btf *need_btf, u32 need_type_id,
 | |
| 			  bool strict)
 | |
| {
 | |
| 	const struct btf_type *type;
 | |
| 	enum bpf_type_flag flag;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Are we already done? */
 | |
| 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
 | |
| 		return true;
 | |
| 	/* In case of strict type match, we do not walk struct, the top level
 | |
| 	 * type match must succeed. When strict is true, off should have already
 | |
| 	 * been 0.
 | |
| 	 */
 | |
| 	if (strict)
 | |
| 		return false;
 | |
| again:
 | |
| 	type = btf_type_by_id(btf, id);
 | |
| 	if (!type)
 | |
| 		return false;
 | |
| 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
 | |
| 	if (err != WALK_STRUCT)
 | |
| 		return false;
 | |
| 
 | |
| 	/* We found nested struct object. If it matches
 | |
| 	 * the requested ID, we're done. Otherwise let's
 | |
| 	 * continue the search with offset 0 in the new
 | |
| 	 * type.
 | |
| 	 */
 | |
| 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
 | |
| 		off = 0;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int __get_type_size(struct btf *btf, u32 btf_id,
 | |
| 			   const struct btf_type **ret_type)
 | |
| {
 | |
| 	const struct btf_type *t;
 | |
| 
 | |
| 	*ret_type = btf_type_by_id(btf, 0);
 | |
| 	if (!btf_id)
 | |
| 		/* void */
 | |
| 		return 0;
 | |
| 	t = btf_type_by_id(btf, btf_id);
 | |
| 	while (t && btf_type_is_modifier(t))
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	if (!t)
 | |
| 		return -EINVAL;
 | |
| 	*ret_type = t;
 | |
| 	if (btf_type_is_ptr(t))
 | |
| 		/* kernel size of pointer. Not BPF's size of pointer*/
 | |
| 		return sizeof(void *);
 | |
| 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
 | |
| 		return t->size;
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static u8 __get_type_fmodel_flags(const struct btf_type *t)
 | |
| {
 | |
| 	u8 flags = 0;
 | |
| 
 | |
| 	if (__btf_type_is_struct(t))
 | |
| 		flags |= BTF_FMODEL_STRUCT_ARG;
 | |
| 	if (btf_type_is_signed_int(t))
 | |
| 		flags |= BTF_FMODEL_SIGNED_ARG;
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| int btf_distill_func_proto(struct bpf_verifier_log *log,
 | |
| 			   struct btf *btf,
 | |
| 			   const struct btf_type *func,
 | |
| 			   const char *tname,
 | |
| 			   struct btf_func_model *m)
 | |
| {
 | |
| 	const struct btf_param *args;
 | |
| 	const struct btf_type *t;
 | |
| 	u32 i, nargs;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!func) {
 | |
| 		/* BTF function prototype doesn't match the verifier types.
 | |
| 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
 | |
| 		 */
 | |
| 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
 | |
| 			m->arg_size[i] = 8;
 | |
| 			m->arg_flags[i] = 0;
 | |
| 		}
 | |
| 		m->ret_size = 8;
 | |
| 		m->ret_flags = 0;
 | |
| 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	args = (const struct btf_param *)(func + 1);
 | |
| 	nargs = btf_type_vlen(func);
 | |
| 	if (nargs > MAX_BPF_FUNC_ARGS) {
 | |
| 		bpf_log(log,
 | |
| 			"The function %s has %d arguments. Too many.\n",
 | |
| 			tname, nargs);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	ret = __get_type_size(btf, func->type, &t);
 | |
| 	if (ret < 0 || __btf_type_is_struct(t)) {
 | |
| 		bpf_log(log,
 | |
| 			"The function %s return type %s is unsupported.\n",
 | |
| 			tname, btf_type_str(t));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	m->ret_size = ret;
 | |
| 	m->ret_flags = __get_type_fmodel_flags(t);
 | |
| 
 | |
| 	for (i = 0; i < nargs; i++) {
 | |
| 		if (i == nargs - 1 && args[i].type == 0) {
 | |
| 			bpf_log(log,
 | |
| 				"The function %s with variable args is unsupported.\n",
 | |
| 				tname);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		ret = __get_type_size(btf, args[i].type, &t);
 | |
| 
 | |
| 		/* No support of struct argument size greater than 16 bytes */
 | |
| 		if (ret < 0 || ret > 16) {
 | |
| 			bpf_log(log,
 | |
| 				"The function %s arg%d type %s is unsupported.\n",
 | |
| 				tname, i, btf_type_str(t));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (ret == 0) {
 | |
| 			bpf_log(log,
 | |
| 				"The function %s has malformed void argument.\n",
 | |
| 				tname);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		m->arg_size[i] = ret;
 | |
| 		m->arg_flags[i] = __get_type_fmodel_flags(t);
 | |
| 	}
 | |
| 	m->nr_args = nargs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Compare BTFs of two functions assuming only scalars and pointers to context.
 | |
|  * t1 points to BTF_KIND_FUNC in btf1
 | |
|  * t2 points to BTF_KIND_FUNC in btf2
 | |
|  * Returns:
 | |
|  * EINVAL - function prototype mismatch
 | |
|  * EFAULT - verifier bug
 | |
|  * 0 - 99% match. The last 1% is validated by the verifier.
 | |
|  */
 | |
| static int btf_check_func_type_match(struct bpf_verifier_log *log,
 | |
| 				     struct btf *btf1, const struct btf_type *t1,
 | |
| 				     struct btf *btf2, const struct btf_type *t2)
 | |
| {
 | |
| 	const struct btf_param *args1, *args2;
 | |
| 	const char *fn1, *fn2, *s1, *s2;
 | |
| 	u32 nargs1, nargs2, i;
 | |
| 
 | |
| 	fn1 = btf_name_by_offset(btf1, t1->name_off);
 | |
| 	fn2 = btf_name_by_offset(btf2, t2->name_off);
 | |
| 
 | |
| 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
 | |
| 		bpf_log(log, "%s() is not a global function\n", fn1);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
 | |
| 		bpf_log(log, "%s() is not a global function\n", fn2);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	t1 = btf_type_by_id(btf1, t1->type);
 | |
| 	if (!t1 || !btf_type_is_func_proto(t1))
 | |
| 		return -EFAULT;
 | |
| 	t2 = btf_type_by_id(btf2, t2->type);
 | |
| 	if (!t2 || !btf_type_is_func_proto(t2))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	args1 = (const struct btf_param *)(t1 + 1);
 | |
| 	nargs1 = btf_type_vlen(t1);
 | |
| 	args2 = (const struct btf_param *)(t2 + 1);
 | |
| 	nargs2 = btf_type_vlen(t2);
 | |
| 
 | |
| 	if (nargs1 != nargs2) {
 | |
| 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
 | |
| 			fn1, nargs1, fn2, nargs2);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
 | |
| 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
 | |
| 	if (t1->info != t2->info) {
 | |
| 		bpf_log(log,
 | |
| 			"Return type %s of %s() doesn't match type %s of %s()\n",
 | |
| 			btf_type_str(t1), fn1,
 | |
| 			btf_type_str(t2), fn2);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nargs1; i++) {
 | |
| 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
 | |
| 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
 | |
| 
 | |
| 		if (t1->info != t2->info) {
 | |
| 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
 | |
| 				i, fn1, btf_type_str(t1),
 | |
| 				fn2, btf_type_str(t2));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (btf_type_has_size(t1) && t1->size != t2->size) {
 | |
| 			bpf_log(log,
 | |
| 				"arg%d in %s() has size %d while %s() has %d\n",
 | |
| 				i, fn1, t1->size,
 | |
| 				fn2, t2->size);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* global functions are validated with scalars and pointers
 | |
| 		 * to context only. And only global functions can be replaced.
 | |
| 		 * Hence type check only those types.
 | |
| 		 */
 | |
| 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
 | |
| 			continue;
 | |
| 		if (!btf_type_is_ptr(t1)) {
 | |
| 			bpf_log(log,
 | |
| 				"arg%d in %s() has unrecognized type\n",
 | |
| 				i, fn1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
 | |
| 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
 | |
| 		if (!btf_type_is_struct(t1)) {
 | |
| 			bpf_log(log,
 | |
| 				"arg%d in %s() is not a pointer to context\n",
 | |
| 				i, fn1);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (!btf_type_is_struct(t2)) {
 | |
| 			bpf_log(log,
 | |
| 				"arg%d in %s() is not a pointer to context\n",
 | |
| 				i, fn2);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		/* This is an optional check to make program writing easier.
 | |
| 		 * Compare names of structs and report an error to the user.
 | |
| 		 * btf_prepare_func_args() already checked that t2 struct
 | |
| 		 * is a context type. btf_prepare_func_args() will check
 | |
| 		 * later that t1 struct is a context type as well.
 | |
| 		 */
 | |
| 		s1 = btf_name_by_offset(btf1, t1->name_off);
 | |
| 		s2 = btf_name_by_offset(btf2, t2->name_off);
 | |
| 		if (strcmp(s1, s2)) {
 | |
| 			bpf_log(log,
 | |
| 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
 | |
| 				i, fn1, s1, fn2, s2);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Compare BTFs of given program with BTF of target program */
 | |
| int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
 | |
| 			 struct btf *btf2, const struct btf_type *t2)
 | |
| {
 | |
| 	struct btf *btf1 = prog->aux->btf;
 | |
| 	const struct btf_type *t1;
 | |
| 	u32 btf_id = 0;
 | |
| 
 | |
| 	if (!prog->aux->func_info) {
 | |
| 		bpf_log(log, "Program extension requires BTF\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btf_id = prog->aux->func_info[0].type_id;
 | |
| 	if (!btf_id)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	t1 = btf_type_by_id(btf1, btf_id);
 | |
| 	if (!t1 || !btf_type_is_func(t1))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
 | |
| }
 | |
| 
 | |
| static int btf_check_func_arg_match(struct bpf_verifier_env *env,
 | |
| 				    const struct btf *btf, u32 func_id,
 | |
| 				    struct bpf_reg_state *regs,
 | |
| 				    bool ptr_to_mem_ok,
 | |
| 				    bool processing_call)
 | |
| {
 | |
| 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	const char *func_name, *ref_tname;
 | |
| 	const struct btf_type *t, *ref_t;
 | |
| 	const struct btf_param *args;
 | |
| 	u32 i, nargs, ref_id;
 | |
| 	int ret;
 | |
| 
 | |
| 	t = btf_type_by_id(btf, func_id);
 | |
| 	if (!t || !btf_type_is_func(t)) {
 | |
| 		/* These checks were already done by the verifier while loading
 | |
| 		 * struct bpf_func_info or in add_kfunc_call().
 | |
| 		 */
 | |
| 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
 | |
| 			func_id);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	func_name = btf_name_by_offset(btf, t->name_off);
 | |
| 
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 	if (!t || !btf_type_is_func_proto(t)) {
 | |
| 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	args = (const struct btf_param *)(t + 1);
 | |
| 	nargs = btf_type_vlen(t);
 | |
| 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
 | |
| 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
 | |
| 			MAX_BPF_FUNC_REG_ARGS);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* check that BTF function arguments match actual types that the
 | |
| 	 * verifier sees.
 | |
| 	 */
 | |
| 	for (i = 0; i < nargs; i++) {
 | |
| 		enum bpf_arg_type arg_type = ARG_DONTCARE;
 | |
| 		u32 regno = i + 1;
 | |
| 		struct bpf_reg_state *reg = ®s[regno];
 | |
| 
 | |
| 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
 | |
| 		if (btf_type_is_scalar(t)) {
 | |
| 			if (reg->type == SCALAR_VALUE)
 | |
| 				continue;
 | |
| 			bpf_log(log, "R%d is not a scalar\n", regno);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (!btf_type_is_ptr(t)) {
 | |
| 			bpf_log(log, "Unrecognized arg#%d type %s\n",
 | |
| 				i, btf_type_str(t));
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
 | |
| 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
 | |
| 
 | |
| 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
 | |
| 			/* If function expects ctx type in BTF check that caller
 | |
| 			 * is passing PTR_TO_CTX.
 | |
| 			 */
 | |
| 			if (reg->type != PTR_TO_CTX) {
 | |
| 				bpf_log(log,
 | |
| 					"arg#%d expected pointer to ctx, but got %s\n",
 | |
| 					i, btf_type_str(t));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		} else if (ptr_to_mem_ok && processing_call) {
 | |
| 			const struct btf_type *resolve_ret;
 | |
| 			u32 type_size;
 | |
| 
 | |
| 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
 | |
| 			if (IS_ERR(resolve_ret)) {
 | |
| 				bpf_log(log,
 | |
| 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
 | |
| 					i, btf_type_str(ref_t), ref_tname,
 | |
| 					PTR_ERR(resolve_ret));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			if (check_mem_reg(env, reg, regno, type_size))
 | |
| 				return -EINVAL;
 | |
| 		} else {
 | |
| 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
 | |
| 				func_name, func_id);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Compare BTF of a function declaration with given bpf_reg_state.
 | |
|  * Returns:
 | |
|  * EFAULT - there is a verifier bug. Abort verification.
 | |
|  * EINVAL - there is a type mismatch or BTF is not available.
 | |
|  * 0 - BTF matches with what bpf_reg_state expects.
 | |
|  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
 | |
|  */
 | |
| int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
 | |
| 				struct bpf_reg_state *regs)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	struct btf *btf = prog->aux->btf;
 | |
| 	bool is_global;
 | |
| 	u32 btf_id;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!prog->aux->func_info)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	btf_id = prog->aux->func_info[subprog].type_id;
 | |
| 	if (!btf_id)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (prog->aux->func_info_aux[subprog].unreliable)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
 | |
| 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
 | |
| 
 | |
| 	/* Compiler optimizations can remove arguments from static functions
 | |
| 	 * or mismatched type can be passed into a global function.
 | |
| 	 * In such cases mark the function as unreliable from BTF point of view.
 | |
| 	 */
 | |
| 	if (err)
 | |
| 		prog->aux->func_info_aux[subprog].unreliable = true;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Compare BTF of a function call with given bpf_reg_state.
 | |
|  * Returns:
 | |
|  * EFAULT - there is a verifier bug. Abort verification.
 | |
|  * EINVAL - there is a type mismatch or BTF is not available.
 | |
|  * 0 - BTF matches with what bpf_reg_state expects.
 | |
|  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
 | |
|  *
 | |
|  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
 | |
|  * because btf_check_func_arg_match() is still doing both. Once that
 | |
|  * function is split in 2, we can call from here btf_check_subprog_arg_match()
 | |
|  * first, and then treat the calling part in a new code path.
 | |
|  */
 | |
| int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
 | |
| 			   struct bpf_reg_state *regs)
 | |
| {
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	struct btf *btf = prog->aux->btf;
 | |
| 	bool is_global;
 | |
| 	u32 btf_id;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!prog->aux->func_info)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	btf_id = prog->aux->func_info[subprog].type_id;
 | |
| 	if (!btf_id)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (prog->aux->func_info_aux[subprog].unreliable)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
 | |
| 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
 | |
| 
 | |
| 	/* Compiler optimizations can remove arguments from static functions
 | |
| 	 * or mismatched type can be passed into a global function.
 | |
| 	 * In such cases mark the function as unreliable from BTF point of view.
 | |
| 	 */
 | |
| 	if (err)
 | |
| 		prog->aux->func_info_aux[subprog].unreliable = true;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Convert BTF of a function into bpf_reg_state if possible
 | |
|  * Returns:
 | |
|  * EFAULT - there is a verifier bug. Abort verification.
 | |
|  * EINVAL - cannot convert BTF.
 | |
|  * 0 - Successfully converted BTF into bpf_reg_state
 | |
|  * (either PTR_TO_CTX or SCALAR_VALUE).
 | |
|  */
 | |
| int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
 | |
| 			  struct bpf_reg_state *regs)
 | |
| {
 | |
| 	struct bpf_verifier_log *log = &env->log;
 | |
| 	struct bpf_prog *prog = env->prog;
 | |
| 	enum bpf_prog_type prog_type = prog->type;
 | |
| 	struct btf *btf = prog->aux->btf;
 | |
| 	const struct btf_param *args;
 | |
| 	const struct btf_type *t, *ref_t;
 | |
| 	u32 i, nargs, btf_id;
 | |
| 	const char *tname;
 | |
| 
 | |
| 	if (!prog->aux->func_info ||
 | |
| 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
 | |
| 		bpf_log(log, "Verifier bug\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	btf_id = prog->aux->func_info[subprog].type_id;
 | |
| 	if (!btf_id) {
 | |
| 		bpf_log(log, "Global functions need valid BTF\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	t = btf_type_by_id(btf, btf_id);
 | |
| 	if (!t || !btf_type_is_func(t)) {
 | |
| 		/* These checks were already done by the verifier while loading
 | |
| 		 * struct bpf_func_info
 | |
| 		 */
 | |
| 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
 | |
| 			subprog);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	tname = btf_name_by_offset(btf, t->name_off);
 | |
| 
 | |
| 	if (log->level & BPF_LOG_LEVEL)
 | |
| 		bpf_log(log, "Validating %s() func#%d...\n",
 | |
| 			tname, subprog);
 | |
| 
 | |
| 	if (prog->aux->func_info_aux[subprog].unreliable) {
 | |
| 		bpf_log(log, "Verifier bug in function %s()\n", tname);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	if (prog_type == BPF_PROG_TYPE_EXT)
 | |
| 		prog_type = prog->aux->dst_prog->type;
 | |
| 
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 	if (!t || !btf_type_is_func_proto(t)) {
 | |
| 		bpf_log(log, "Invalid type of function %s()\n", tname);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 	args = (const struct btf_param *)(t + 1);
 | |
| 	nargs = btf_type_vlen(t);
 | |
| 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
 | |
| 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
 | |
| 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* check that function returns int */
 | |
| 	t = btf_type_by_id(btf, t->type);
 | |
| 	while (btf_type_is_modifier(t))
 | |
| 		t = btf_type_by_id(btf, t->type);
 | |
| 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
 | |
| 		bpf_log(log,
 | |
| 			"Global function %s() doesn't return scalar. Only those are supported.\n",
 | |
| 			tname);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* Convert BTF function arguments into verifier types.
 | |
| 	 * Only PTR_TO_CTX and SCALAR are supported atm.
 | |
| 	 */
 | |
| 	for (i = 0; i < nargs; i++) {
 | |
| 		struct bpf_reg_state *reg = ®s[i + 1];
 | |
| 
 | |
| 		t = btf_type_by_id(btf, args[i].type);
 | |
| 		while (btf_type_is_modifier(t))
 | |
| 			t = btf_type_by_id(btf, t->type);
 | |
| 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
 | |
| 			reg->type = SCALAR_VALUE;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (btf_type_is_ptr(t)) {
 | |
| 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
 | |
| 				reg->type = PTR_TO_CTX;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			t = btf_type_skip_modifiers(btf, t->type, NULL);
 | |
| 
 | |
| 			ref_t = btf_resolve_size(btf, t, ®->mem_size);
 | |
| 			if (IS_ERR(ref_t)) {
 | |
| 				bpf_log(log,
 | |
| 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
 | |
| 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
 | |
| 					PTR_ERR(ref_t));
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
 | |
| 			reg->id = ++env->id_gen;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
 | |
| 			i, btf_type_str(t), tname);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
 | |
| 			  struct btf_show *show)
 | |
| {
 | |
| 	const struct btf_type *t = btf_type_by_id(btf, type_id);
 | |
| 
 | |
| 	show->btf = btf;
 | |
| 	memset(&show->state, 0, sizeof(show->state));
 | |
| 	memset(&show->obj, 0, sizeof(show->obj));
 | |
| 
 | |
| 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
 | |
| }
 | |
| 
 | |
| static void btf_seq_show(struct btf_show *show, const char *fmt,
 | |
| 			 va_list args)
 | |
| {
 | |
| 	seq_vprintf((struct seq_file *)show->target, fmt, args);
 | |
| }
 | |
| 
 | |
| int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
 | |
| 			    void *obj, struct seq_file *m, u64 flags)
 | |
| {
 | |
| 	struct btf_show sseq;
 | |
| 
 | |
| 	sseq.target = m;
 | |
| 	sseq.showfn = btf_seq_show;
 | |
| 	sseq.flags = flags;
 | |
| 
 | |
| 	btf_type_show(btf, type_id, obj, &sseq);
 | |
| 
 | |
| 	return sseq.state.status;
 | |
| }
 | |
| 
 | |
| void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
 | |
| 		       struct seq_file *m)
 | |
| {
 | |
| 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
 | |
| 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
 | |
| 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
 | |
| }
 | |
| 
 | |
| struct btf_show_snprintf {
 | |
| 	struct btf_show show;
 | |
| 	int len_left;		/* space left in string */
 | |
| 	int len;		/* length we would have written */
 | |
| };
 | |
| 
 | |
| static void btf_snprintf_show(struct btf_show *show, const char *fmt,
 | |
| 			      va_list args)
 | |
| {
 | |
| 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
 | |
| 	int len;
 | |
| 
 | |
| 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
 | |
| 
 | |
| 	if (len < 0) {
 | |
| 		ssnprintf->len_left = 0;
 | |
| 		ssnprintf->len = len;
 | |
| 	} else if (len >= ssnprintf->len_left) {
 | |
| 		/* no space, drive on to get length we would have written */
 | |
| 		ssnprintf->len_left = 0;
 | |
| 		ssnprintf->len += len;
 | |
| 	} else {
 | |
| 		ssnprintf->len_left -= len;
 | |
| 		ssnprintf->len += len;
 | |
| 		show->target += len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
 | |
| 			   char *buf, int len, u64 flags)
 | |
| {
 | |
| 	struct btf_show_snprintf ssnprintf;
 | |
| 
 | |
| 	ssnprintf.show.target = buf;
 | |
| 	ssnprintf.show.flags = flags;
 | |
| 	ssnprintf.show.showfn = btf_snprintf_show;
 | |
| 	ssnprintf.len_left = len;
 | |
| 	ssnprintf.len = 0;
 | |
| 
 | |
| 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
 | |
| 
 | |
| 	/* If we encountered an error, return it. */
 | |
| 	if (ssnprintf.show.state.status)
 | |
| 		return ssnprintf.show.state.status;
 | |
| 
 | |
| 	/* Otherwise return length we would have written */
 | |
| 	return ssnprintf.len;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
 | |
| {
 | |
| 	const struct btf *btf = filp->private_data;
 | |
| 
 | |
| 	seq_printf(m, "btf_id:\t%u\n", btf->id);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int btf_release(struct inode *inode, struct file *filp)
 | |
| {
 | |
| 	btf_put(filp->private_data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct file_operations btf_fops = {
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	.show_fdinfo	= bpf_btf_show_fdinfo,
 | |
| #endif
 | |
| 	.release	= btf_release,
 | |
| };
 | |
| 
 | |
| static int __btf_new_fd(struct btf *btf)
 | |
| {
 | |
| 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
 | |
| }
 | |
| 
 | |
| int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	int ret;
 | |
| 
 | |
| 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
 | |
| 			attr->btf_size, attr->btf_log_level,
 | |
| 			u64_to_user_ptr(attr->btf_log_buf),
 | |
| 			attr->btf_log_size);
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 
 | |
| 	ret = btf_alloc_id(btf);
 | |
| 	if (ret) {
 | |
| 		btf_free(btf);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The BTF ID is published to the userspace.
 | |
| 	 * All BTF free must go through call_rcu() from
 | |
| 	 * now on (i.e. free by calling btf_put()).
 | |
| 	 */
 | |
| 
 | |
| 	ret = __btf_new_fd(btf);
 | |
| 	if (ret < 0)
 | |
| 		btf_put(btf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct btf *btf_get_by_fd(int fd)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	struct fd f;
 | |
| 
 | |
| 	f = fdget(fd);
 | |
| 
 | |
| 	if (!f.file)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	if (f.file->f_op != &btf_fops) {
 | |
| 		fdput(f);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	btf = f.file->private_data;
 | |
| 	refcount_inc(&btf->refcnt);
 | |
| 	fdput(f);
 | |
| 
 | |
| 	return btf;
 | |
| }
 | |
| 
 | |
| int btf_get_info_by_fd(const struct btf *btf,
 | |
| 		       const union bpf_attr *attr,
 | |
| 		       union bpf_attr __user *uattr)
 | |
| {
 | |
| 	struct bpf_btf_info __user *uinfo;
 | |
| 	struct bpf_btf_info info;
 | |
| 	u32 info_copy, btf_copy;
 | |
| 	void __user *ubtf;
 | |
| 	char __user *uname;
 | |
| 	u32 uinfo_len, uname_len, name_len;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	uinfo = u64_to_user_ptr(attr->info.info);
 | |
| 	uinfo_len = attr->info.info_len;
 | |
| 
 | |
| 	info_copy = min_t(u32, uinfo_len, sizeof(info));
 | |
| 	memset(&info, 0, sizeof(info));
 | |
| 	if (copy_from_user(&info, uinfo, info_copy))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	info.id = btf->id;
 | |
| 	ubtf = u64_to_user_ptr(info.btf);
 | |
| 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
 | |
| 	if (copy_to_user(ubtf, btf->data, btf_copy))
 | |
| 		return -EFAULT;
 | |
| 	info.btf_size = btf->data_size;
 | |
| 
 | |
| 	info.kernel_btf = btf->kernel_btf;
 | |
| 
 | |
| 	uname = u64_to_user_ptr(info.name);
 | |
| 	uname_len = info.name_len;
 | |
| 	if (!uname ^ !uname_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	name_len = strlen(btf->name);
 | |
| 	info.name_len = name_len;
 | |
| 
 | |
| 	if (uname) {
 | |
| 		if (uname_len >= name_len + 1) {
 | |
| 			if (copy_to_user(uname, btf->name, name_len + 1))
 | |
| 				return -EFAULT;
 | |
| 		} else {
 | |
| 			char zero = '\0';
 | |
| 
 | |
| 			if (copy_to_user(uname, btf->name, uname_len - 1))
 | |
| 				return -EFAULT;
 | |
| 			if (put_user(zero, uname + uname_len - 1))
 | |
| 				return -EFAULT;
 | |
| 			/* let user-space know about too short buffer */
 | |
| 			ret = -ENOSPC;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (copy_to_user(uinfo, &info, info_copy) ||
 | |
| 	    put_user(info_copy, &uattr->info.info_len))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btf_get_fd_by_id(u32 id)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	int fd;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	btf = idr_find(&btf_idr, id);
 | |
| 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
 | |
| 		btf = ERR_PTR(-ENOENT);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 
 | |
| 	fd = __btf_new_fd(btf);
 | |
| 	if (fd < 0)
 | |
| 		btf_put(btf);
 | |
| 
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| u32 btf_obj_id(const struct btf *btf)
 | |
| {
 | |
| 	return btf->id;
 | |
| }
 | |
| 
 | |
| bool btf_is_kernel(const struct btf *btf)
 | |
| {
 | |
| 	return btf->kernel_btf;
 | |
| }
 | |
| 
 | |
| bool btf_is_module(const struct btf *btf)
 | |
| {
 | |
| 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	BTF_MODULE_F_LIVE = (1 << 0),
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| struct btf_module {
 | |
| 	struct list_head list;
 | |
| 	struct module *module;
 | |
| 	struct btf *btf;
 | |
| 	struct bin_attribute *sysfs_attr;
 | |
| 	int flags;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(btf_modules);
 | |
| static DEFINE_MUTEX(btf_module_mutex);
 | |
| 
 | |
| static ssize_t
 | |
| btf_module_read(struct file *file, struct kobject *kobj,
 | |
| 		struct bin_attribute *bin_attr,
 | |
| 		char *buf, loff_t off, size_t len)
 | |
| {
 | |
| 	const struct btf *btf = bin_attr->private;
 | |
| 
 | |
| 	memcpy(buf, btf->data + off, len);
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static void purge_cand_cache(struct btf *btf);
 | |
| 
 | |
| static int btf_module_notify(struct notifier_block *nb, unsigned long op,
 | |
| 			     void *module)
 | |
| {
 | |
| 	struct btf_module *btf_mod, *tmp;
 | |
| 	struct module *mod = module;
 | |
| 	struct btf *btf;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (mod->btf_data_size == 0 ||
 | |
| 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
 | |
| 	     op != MODULE_STATE_GOING))
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (op) {
 | |
| 	case MODULE_STATE_COMING:
 | |
| 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
 | |
| 		if (!btf_mod) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
 | |
| 		if (IS_ERR(btf)) {
 | |
| 			kfree(btf_mod);
 | |
| 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
 | |
| 				pr_warn("failed to validate module [%s] BTF: %ld\n",
 | |
| 					mod->name, PTR_ERR(btf));
 | |
| 				err = PTR_ERR(btf);
 | |
| 			} else {
 | |
| 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
 | |
| 			}
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = btf_alloc_id(btf);
 | |
| 		if (err) {
 | |
| 			btf_free(btf);
 | |
| 			kfree(btf_mod);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		purge_cand_cache(NULL);
 | |
| 		mutex_lock(&btf_module_mutex);
 | |
| 		btf_mod->module = module;
 | |
| 		btf_mod->btf = btf;
 | |
| 		list_add(&btf_mod->list, &btf_modules);
 | |
| 		mutex_unlock(&btf_module_mutex);
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_SYSFS)) {
 | |
| 			struct bin_attribute *attr;
 | |
| 
 | |
| 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 | |
| 			if (!attr)
 | |
| 				goto out;
 | |
| 
 | |
| 			sysfs_bin_attr_init(attr);
 | |
| 			attr->attr.name = btf->name;
 | |
| 			attr->attr.mode = 0444;
 | |
| 			attr->size = btf->data_size;
 | |
| 			attr->private = btf;
 | |
| 			attr->read = btf_module_read;
 | |
| 
 | |
| 			err = sysfs_create_bin_file(btf_kobj, attr);
 | |
| 			if (err) {
 | |
| 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
 | |
| 					mod->name, err);
 | |
| 				kfree(attr);
 | |
| 				err = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			btf_mod->sysfs_attr = attr;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	case MODULE_STATE_LIVE:
 | |
| 		mutex_lock(&btf_module_mutex);
 | |
| 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
 | |
| 			if (btf_mod->module != module)
 | |
| 				continue;
 | |
| 
 | |
| 			btf_mod->flags |= BTF_MODULE_F_LIVE;
 | |
| 			break;
 | |
| 		}
 | |
| 		mutex_unlock(&btf_module_mutex);
 | |
| 		break;
 | |
| 	case MODULE_STATE_GOING:
 | |
| 		mutex_lock(&btf_module_mutex);
 | |
| 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
 | |
| 			if (btf_mod->module != module)
 | |
| 				continue;
 | |
| 
 | |
| 			list_del(&btf_mod->list);
 | |
| 			if (btf_mod->sysfs_attr)
 | |
| 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
 | |
| 			purge_cand_cache(btf_mod->btf);
 | |
| 			btf_put(btf_mod->btf);
 | |
| 			kfree(btf_mod->sysfs_attr);
 | |
| 			kfree(btf_mod);
 | |
| 			break;
 | |
| 		}
 | |
| 		mutex_unlock(&btf_module_mutex);
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	return notifier_from_errno(err);
 | |
| }
 | |
| 
 | |
| static struct notifier_block btf_module_nb = {
 | |
| 	.notifier_call = btf_module_notify,
 | |
| };
 | |
| 
 | |
| static int __init btf_module_init(void)
 | |
| {
 | |
| 	register_module_notifier(&btf_module_nb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| fs_initcall(btf_module_init);
 | |
| #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
 | |
| 
 | |
| struct module *btf_try_get_module(const struct btf *btf)
 | |
| {
 | |
| 	struct module *res = NULL;
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| 	struct btf_module *btf_mod, *tmp;
 | |
| 
 | |
| 	mutex_lock(&btf_module_mutex);
 | |
| 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
 | |
| 		if (btf_mod->btf != btf)
 | |
| 			continue;
 | |
| 
 | |
| 		/* We must only consider module whose __init routine has
 | |
| 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
 | |
| 		 * which is set from the notifier callback for
 | |
| 		 * MODULE_STATE_LIVE.
 | |
| 		 */
 | |
| 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
 | |
| 			res = btf_mod->module;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	mutex_unlock(&btf_module_mutex);
 | |
| #endif
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Returns struct btf corresponding to the struct module.
 | |
|  * This function can return NULL or ERR_PTR.
 | |
|  */
 | |
| static struct btf *btf_get_module_btf(const struct module *module)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| 	struct btf_module *btf_mod, *tmp;
 | |
| #endif
 | |
| 	struct btf *btf = NULL;
 | |
| 
 | |
| 	if (!module) {
 | |
| 		btf = bpf_get_btf_vmlinux();
 | |
| 		if (!IS_ERR_OR_NULL(btf))
 | |
| 			btf_get(btf);
 | |
| 		return btf;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| 	mutex_lock(&btf_module_mutex);
 | |
| 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
 | |
| 		if (btf_mod->module != module)
 | |
| 			continue;
 | |
| 
 | |
| 		btf_get(btf_mod->btf);
 | |
| 		btf = btf_mod->btf;
 | |
| 		break;
 | |
| 	}
 | |
| 	mutex_unlock(&btf_module_mutex);
 | |
| #endif
 | |
| 
 | |
| 	return btf;
 | |
| }
 | |
| 
 | |
| BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
 | |
| {
 | |
| 	struct btf *btf = NULL;
 | |
| 	int btf_obj_fd = 0;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (name_sz <= 1 || name[name_sz - 1])
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = bpf_find_btf_id(name, kind, &btf);
 | |
| 	if (ret > 0 && btf_is_module(btf)) {
 | |
| 		btf_obj_fd = __btf_new_fd(btf);
 | |
| 		if (btf_obj_fd < 0) {
 | |
| 			btf_put(btf);
 | |
| 			return btf_obj_fd;
 | |
| 		}
 | |
| 		return ret | (((u64)btf_obj_fd) << 32);
 | |
| 	}
 | |
| 	if (ret > 0)
 | |
| 		btf_put(btf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
 | |
| 	.func		= bpf_btf_find_by_name_kind,
 | |
| 	.gpl_only	= false,
 | |
| 	.ret_type	= RET_INTEGER,
 | |
| 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
 | |
| 	.arg2_type	= ARG_CONST_SIZE,
 | |
| 	.arg3_type	= ARG_ANYTHING,
 | |
| 	.arg4_type	= ARG_ANYTHING,
 | |
| };
 | |
| 
 | |
| BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
 | |
| #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
 | |
| BTF_TRACING_TYPE_xxx
 | |
| #undef BTF_TRACING_TYPE
 | |
| 
 | |
| /* Kernel Function (kfunc) BTF ID set registration API */
 | |
| 
 | |
| static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
 | |
| 				  struct btf_id_set8 *add_set)
 | |
| {
 | |
| 	bool vmlinux_set = !btf_is_module(btf);
 | |
| 	struct btf_kfunc_set_tab *tab;
 | |
| 	struct btf_id_set8 *set;
 | |
| 	u32 set_cnt;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (hook >= BTF_KFUNC_HOOK_MAX) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (!add_set->cnt)
 | |
| 		return 0;
 | |
| 
 | |
| 	tab = btf->kfunc_set_tab;
 | |
| 	if (!tab) {
 | |
| 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
 | |
| 		if (!tab)
 | |
| 			return -ENOMEM;
 | |
| 		btf->kfunc_set_tab = tab;
 | |
| 	}
 | |
| 
 | |
| 	set = tab->sets[hook];
 | |
| 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
 | |
| 	 * for module sets.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* We don't need to allocate, concatenate, and sort module sets, because
 | |
| 	 * only one is allowed per hook. Hence, we can directly assign the
 | |
| 	 * pointer and return.
 | |
| 	 */
 | |
| 	if (!vmlinux_set) {
 | |
| 		tab->sets[hook] = add_set;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* In case of vmlinux sets, there may be more than one set being
 | |
| 	 * registered per hook. To create a unified set, we allocate a new set
 | |
| 	 * and concatenate all individual sets being registered. While each set
 | |
| 	 * is individually sorted, they may become unsorted when concatenated,
 | |
| 	 * hence re-sorting the final set again is required to make binary
 | |
| 	 * searching the set using btf_id_set8_contains function work.
 | |
| 	 */
 | |
| 	set_cnt = set ? set->cnt : 0;
 | |
| 
 | |
| 	if (set_cnt > U32_MAX - add_set->cnt) {
 | |
| 		ret = -EOVERFLOW;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
 | |
| 		ret = -E2BIG;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* Grow set */
 | |
| 	set = krealloc(tab->sets[hook],
 | |
| 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
 | |
| 		       GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!set) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* For newly allocated set, initialize set->cnt to 0 */
 | |
| 	if (!tab->sets[hook])
 | |
| 		set->cnt = 0;
 | |
| 	tab->sets[hook] = set;
 | |
| 
 | |
| 	/* Concatenate the two sets */
 | |
| 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
 | |
| 	set->cnt += add_set->cnt;
 | |
| 
 | |
| 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| end:
 | |
| 	btf_free_kfunc_set_tab(btf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
 | |
| 					enum btf_kfunc_hook hook,
 | |
| 					u32 kfunc_btf_id)
 | |
| {
 | |
| 	struct btf_id_set8 *set;
 | |
| 	u32 *id;
 | |
| 
 | |
| 	if (hook >= BTF_KFUNC_HOOK_MAX)
 | |
| 		return NULL;
 | |
| 	if (!btf->kfunc_set_tab)
 | |
| 		return NULL;
 | |
| 	set = btf->kfunc_set_tab->sets[hook];
 | |
| 	if (!set)
 | |
| 		return NULL;
 | |
| 	id = btf_id_set8_contains(set, kfunc_btf_id);
 | |
| 	if (!id)
 | |
| 		return NULL;
 | |
| 	/* The flags for BTF ID are located next to it */
 | |
| 	return id + 1;
 | |
| }
 | |
| 
 | |
| static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
 | |
| {
 | |
| 	switch (prog_type) {
 | |
| 	case BPF_PROG_TYPE_UNSPEC:
 | |
| 		return BTF_KFUNC_HOOK_COMMON;
 | |
| 	case BPF_PROG_TYPE_XDP:
 | |
| 		return BTF_KFUNC_HOOK_XDP;
 | |
| 	case BPF_PROG_TYPE_SCHED_CLS:
 | |
| 		return BTF_KFUNC_HOOK_TC;
 | |
| 	case BPF_PROG_TYPE_STRUCT_OPS:
 | |
| 		return BTF_KFUNC_HOOK_STRUCT_OPS;
 | |
| 	case BPF_PROG_TYPE_TRACING:
 | |
| 	case BPF_PROG_TYPE_LSM:
 | |
| 		return BTF_KFUNC_HOOK_TRACING;
 | |
| 	case BPF_PROG_TYPE_SYSCALL:
 | |
| 		return BTF_KFUNC_HOOK_SYSCALL;
 | |
| 	default:
 | |
| 		return BTF_KFUNC_HOOK_MAX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Caution:
 | |
|  * Reference to the module (obtained using btf_try_get_module) corresponding to
 | |
|  * the struct btf *MUST* be held when calling this function from verifier
 | |
|  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
 | |
|  * keeping the reference for the duration of the call provides the necessary
 | |
|  * protection for looking up a well-formed btf->kfunc_set_tab.
 | |
|  */
 | |
| u32 *btf_kfunc_id_set_contains(const struct btf *btf,
 | |
| 			       enum bpf_prog_type prog_type,
 | |
| 			       u32 kfunc_btf_id)
 | |
| {
 | |
| 	enum btf_kfunc_hook hook;
 | |
| 	u32 *kfunc_flags;
 | |
| 
 | |
| 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
 | |
| 	if (kfunc_flags)
 | |
| 		return kfunc_flags;
 | |
| 
 | |
| 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
 | |
| 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
 | |
| }
 | |
| 
 | |
| u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
 | |
| {
 | |
| 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
 | |
| }
 | |
| 
 | |
| static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
 | |
| 				       const struct btf_kfunc_id_set *kset)
 | |
| {
 | |
| 	struct btf *btf;
 | |
| 	int ret;
 | |
| 
 | |
| 	btf = btf_get_module_btf(kset->owner);
 | |
| 	if (!btf) {
 | |
| 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
 | |
| 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
 | |
| 			pr_err("missing module BTF, cannot register kfuncs\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 
 | |
| 	ret = btf_populate_kfunc_set(btf, hook, kset->set);
 | |
| 	btf_put(btf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This function must be invoked only from initcalls/module init functions */
 | |
| int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
 | |
| 			      const struct btf_kfunc_id_set *kset)
 | |
| {
 | |
| 	enum btf_kfunc_hook hook;
 | |
| 
 | |
| 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
 | |
| 	return __register_btf_kfunc_id_set(hook, kset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
 | |
| 
 | |
| /* This function must be invoked only from initcalls/module init functions */
 | |
| int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
 | |
| {
 | |
| 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
 | |
| 
 | |
| s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
 | |
| {
 | |
| 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
 | |
| 	struct btf_id_dtor_kfunc *dtor;
 | |
| 
 | |
| 	if (!tab)
 | |
| 		return -ENOENT;
 | |
| 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
 | |
| 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
 | |
| 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
 | |
| 	if (!dtor)
 | |
| 		return -ENOENT;
 | |
| 	return dtor->kfunc_btf_id;
 | |
| }
 | |
| 
 | |
| static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
 | |
| {
 | |
| 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
 | |
| 	const struct btf_param *args;
 | |
| 	s32 dtor_btf_id;
 | |
| 	u32 nr_args, i;
 | |
| 
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		dtor_btf_id = dtors[i].kfunc_btf_id;
 | |
| 
 | |
| 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
 | |
| 		if (!dtor_func || !btf_type_is_func(dtor_func))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
 | |
| 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
 | |
| 		t = btf_type_by_id(btf, dtor_func_proto->type);
 | |
| 		if (!t || !btf_type_is_void(t))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		nr_args = btf_type_vlen(dtor_func_proto);
 | |
| 		if (nr_args != 1)
 | |
| 			return -EINVAL;
 | |
| 		args = btf_params(dtor_func_proto);
 | |
| 		t = btf_type_by_id(btf, args[0].type);
 | |
| 		/* Allow any pointer type, as width on targets Linux supports
 | |
| 		 * will be same for all pointer types (i.e. sizeof(void *))
 | |
| 		 */
 | |
| 		if (!t || !btf_type_is_ptr(t))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function must be invoked only from initcalls/module init functions */
 | |
| int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
 | |
| 				struct module *owner)
 | |
| {
 | |
| 	struct btf_id_dtor_kfunc_tab *tab;
 | |
| 	struct btf *btf;
 | |
| 	u32 tab_cnt;
 | |
| 	int ret;
 | |
| 
 | |
| 	btf = btf_get_module_btf(owner);
 | |
| 	if (!btf) {
 | |
| 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
 | |
| 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
 | |
| 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (IS_ERR(btf))
 | |
| 		return PTR_ERR(btf);
 | |
| 
 | |
| 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
 | |
| 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
 | |
| 		ret = -E2BIG;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
 | |
| 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
 | |
| 	if (ret < 0)
 | |
| 		goto end;
 | |
| 
 | |
| 	tab = btf->dtor_kfunc_tab;
 | |
| 	/* Only one call allowed for modules */
 | |
| 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	tab_cnt = tab ? tab->cnt : 0;
 | |
| 	if (tab_cnt > U32_MAX - add_cnt) {
 | |
| 		ret = -EOVERFLOW;
 | |
| 		goto end;
 | |
| 	}
 | |
| 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
 | |
| 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
 | |
| 		ret = -E2BIG;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	tab = krealloc(btf->dtor_kfunc_tab,
 | |
| 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
 | |
| 		       GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!tab) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (!btf->dtor_kfunc_tab)
 | |
| 		tab->cnt = 0;
 | |
| 	btf->dtor_kfunc_tab = tab;
 | |
| 
 | |
| 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
 | |
| 	tab->cnt += add_cnt;
 | |
| 
 | |
| 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
 | |
| 
 | |
| end:
 | |
| 	if (ret)
 | |
| 		btf_free_dtor_kfunc_tab(btf);
 | |
| 	btf_put(btf);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
 | |
| 
 | |
| #define MAX_TYPES_ARE_COMPAT_DEPTH 2
 | |
| 
 | |
| /* Check local and target types for compatibility. This check is used for
 | |
|  * type-based CO-RE relocations and follow slightly different rules than
 | |
|  * field-based relocations. This function assumes that root types were already
 | |
|  * checked for name match. Beyond that initial root-level name check, names
 | |
|  * are completely ignored. Compatibility rules are as follows:
 | |
|  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
 | |
|  *     kind should match for local and target types (i.e., STRUCT is not
 | |
|  *     compatible with UNION);
 | |
|  *   - for ENUMs/ENUM64s, the size is ignored;
 | |
|  *   - for INT, size and signedness are ignored;
 | |
|  *   - for ARRAY, dimensionality is ignored, element types are checked for
 | |
|  *     compatibility recursively;
 | |
|  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
 | |
|  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
 | |
|  *   - FUNC_PROTOs are compatible if they have compatible signature: same
 | |
|  *     number of input args and compatible return and argument types.
 | |
|  * These rules are not set in stone and probably will be adjusted as we get
 | |
|  * more experience with using BPF CO-RE relocations.
 | |
|  */
 | |
| int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
 | |
| 			      const struct btf *targ_btf, __u32 targ_id)
 | |
| {
 | |
| 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
 | |
| 					   MAX_TYPES_ARE_COMPAT_DEPTH);
 | |
| }
 | |
| 
 | |
| #define MAX_TYPES_MATCH_DEPTH 2
 | |
| 
 | |
| int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
 | |
| 			 const struct btf *targ_btf, u32 targ_id)
 | |
| {
 | |
| 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
 | |
| 				      MAX_TYPES_MATCH_DEPTH);
 | |
| }
 | |
| 
 | |
| static bool bpf_core_is_flavor_sep(const char *s)
 | |
| {
 | |
| 	/* check X___Y name pattern, where X and Y are not underscores */
 | |
| 	return s[0] != '_' &&				      /* X */
 | |
| 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
 | |
| 	       s[4] != '_';				      /* Y */
 | |
| }
 | |
| 
 | |
| size_t bpf_core_essential_name_len(const char *name)
 | |
| {
 | |
| 	size_t n = strlen(name);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = n - 5; i >= 0; i--) {
 | |
| 		if (bpf_core_is_flavor_sep(name + i))
 | |
| 			return i + 1;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| struct bpf_cand_cache {
 | |
| 	const char *name;
 | |
| 	u32 name_len;
 | |
| 	u16 kind;
 | |
| 	u16 cnt;
 | |
| 	struct {
 | |
| 		const struct btf *btf;
 | |
| 		u32 id;
 | |
| 	} cands[];
 | |
| };
 | |
| 
 | |
| static void bpf_free_cands(struct bpf_cand_cache *cands)
 | |
| {
 | |
| 	if (!cands->cnt)
 | |
| 		/* empty candidate array was allocated on stack */
 | |
| 		return;
 | |
| 	kfree(cands);
 | |
| }
 | |
| 
 | |
| static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
 | |
| {
 | |
| 	kfree(cands->name);
 | |
| 	kfree(cands);
 | |
| }
 | |
| 
 | |
| #define VMLINUX_CAND_CACHE_SIZE 31
 | |
| static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
 | |
| 
 | |
| #define MODULE_CAND_CACHE_SIZE 31
 | |
| static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
 | |
| 
 | |
| static DEFINE_MUTEX(cand_cache_mutex);
 | |
| 
 | |
| static void __print_cand_cache(struct bpf_verifier_log *log,
 | |
| 			       struct bpf_cand_cache **cache,
 | |
| 			       int cache_size)
 | |
| {
 | |
| 	struct bpf_cand_cache *cc;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < cache_size; i++) {
 | |
| 		cc = cache[i];
 | |
| 		if (!cc)
 | |
| 			continue;
 | |
| 		bpf_log(log, "[%d]%s(", i, cc->name);
 | |
| 		for (j = 0; j < cc->cnt; j++) {
 | |
| 			bpf_log(log, "%d", cc->cands[j].id);
 | |
| 			if (j < cc->cnt - 1)
 | |
| 				bpf_log(log, " ");
 | |
| 		}
 | |
| 		bpf_log(log, "), ");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void print_cand_cache(struct bpf_verifier_log *log)
 | |
| {
 | |
| 	mutex_lock(&cand_cache_mutex);
 | |
| 	bpf_log(log, "vmlinux_cand_cache:");
 | |
| 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
 | |
| 	bpf_log(log, "\nmodule_cand_cache:");
 | |
| 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
 | |
| 	bpf_log(log, "\n");
 | |
| 	mutex_unlock(&cand_cache_mutex);
 | |
| }
 | |
| 
 | |
| static u32 hash_cands(struct bpf_cand_cache *cands)
 | |
| {
 | |
| 	return jhash(cands->name, cands->name_len, 0);
 | |
| }
 | |
| 
 | |
| static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
 | |
| 					       struct bpf_cand_cache **cache,
 | |
| 					       int cache_size)
 | |
| {
 | |
| 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
 | |
| 
 | |
| 	if (cc && cc->name_len == cands->name_len &&
 | |
| 	    !strncmp(cc->name, cands->name, cands->name_len))
 | |
| 		return cc;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static size_t sizeof_cands(int cnt)
 | |
| {
 | |
| 	return offsetof(struct bpf_cand_cache, cands[cnt]);
 | |
| }
 | |
| 
 | |
| static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
 | |
| 						  struct bpf_cand_cache **cache,
 | |
| 						  int cache_size)
 | |
| {
 | |
| 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
 | |
| 
 | |
| 	if (*cc) {
 | |
| 		bpf_free_cands_from_cache(*cc);
 | |
| 		*cc = NULL;
 | |
| 	}
 | |
| 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
 | |
| 	if (!new_cands) {
 | |
| 		bpf_free_cands(cands);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	/* strdup the name, since it will stay in cache.
 | |
| 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
 | |
| 	 */
 | |
| 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
 | |
| 	bpf_free_cands(cands);
 | |
| 	if (!new_cands->name) {
 | |
| 		kfree(new_cands);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	*cc = new_cands;
 | |
| 	return new_cands;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
 | |
| static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
 | |
| 			       int cache_size)
 | |
| {
 | |
| 	struct bpf_cand_cache *cc;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; i < cache_size; i++) {
 | |
| 		cc = cache[i];
 | |
| 		if (!cc)
 | |
| 			continue;
 | |
| 		if (!btf) {
 | |
| 			/* when new module is loaded purge all of module_cand_cache,
 | |
| 			 * since new module might have candidates with the name
 | |
| 			 * that matches cached cands.
 | |
| 			 */
 | |
| 			bpf_free_cands_from_cache(cc);
 | |
| 			cache[i] = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* when module is unloaded purge cache entries
 | |
| 		 * that match module's btf
 | |
| 		 */
 | |
| 		for (j = 0; j < cc->cnt; j++)
 | |
| 			if (cc->cands[j].btf == btf) {
 | |
| 				bpf_free_cands_from_cache(cc);
 | |
| 				cache[i] = NULL;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static void purge_cand_cache(struct btf *btf)
 | |
| {
 | |
| 	mutex_lock(&cand_cache_mutex);
 | |
| 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
 | |
| 	mutex_unlock(&cand_cache_mutex);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct bpf_cand_cache *
 | |
| bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
 | |
| 		   int targ_start_id)
 | |
| {
 | |
| 	struct bpf_cand_cache *new_cands;
 | |
| 	const struct btf_type *t;
 | |
| 	const char *targ_name;
 | |
| 	size_t targ_essent_len;
 | |
| 	int n, i;
 | |
| 
 | |
| 	n = btf_nr_types(targ_btf);
 | |
| 	for (i = targ_start_id; i < n; i++) {
 | |
| 		t = btf_type_by_id(targ_btf, i);
 | |
| 		if (btf_kind(t) != cands->kind)
 | |
| 			continue;
 | |
| 
 | |
| 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
 | |
| 		if (!targ_name)
 | |
| 			continue;
 | |
| 
 | |
| 		/* the resched point is before strncmp to make sure that search
 | |
| 		 * for non-existing name will have a chance to schedule().
 | |
| 		 */
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
 | |
| 			continue;
 | |
| 
 | |
| 		targ_essent_len = bpf_core_essential_name_len(targ_name);
 | |
| 		if (targ_essent_len != cands->name_len)
 | |
| 			continue;
 | |
| 
 | |
| 		/* most of the time there is only one candidate for a given kind+name pair */
 | |
| 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
 | |
| 		if (!new_cands) {
 | |
| 			bpf_free_cands(cands);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 
 | |
| 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
 | |
| 		bpf_free_cands(cands);
 | |
| 		cands = new_cands;
 | |
| 		cands->cands[cands->cnt].btf = targ_btf;
 | |
| 		cands->cands[cands->cnt].id = i;
 | |
| 		cands->cnt++;
 | |
| 	}
 | |
| 	return cands;
 | |
| }
 | |
| 
 | |
| static struct bpf_cand_cache *
 | |
| bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
 | |
| {
 | |
| 	struct bpf_cand_cache *cands, *cc, local_cand = {};
 | |
| 	const struct btf *local_btf = ctx->btf;
 | |
| 	const struct btf_type *local_type;
 | |
| 	const struct btf *main_btf;
 | |
| 	size_t local_essent_len;
 | |
| 	struct btf *mod_btf;
 | |
| 	const char *name;
 | |
| 	int id;
 | |
| 
 | |
| 	main_btf = bpf_get_btf_vmlinux();
 | |
| 	if (IS_ERR(main_btf))
 | |
| 		return ERR_CAST(main_btf);
 | |
| 	if (!main_btf)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	local_type = btf_type_by_id(local_btf, local_type_id);
 | |
| 	if (!local_type)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	name = btf_name_by_offset(local_btf, local_type->name_off);
 | |
| 	if (str_is_empty(name))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	local_essent_len = bpf_core_essential_name_len(name);
 | |
| 
 | |
| 	cands = &local_cand;
 | |
| 	cands->name = name;
 | |
| 	cands->kind = btf_kind(local_type);
 | |
| 	cands->name_len = local_essent_len;
 | |
| 
 | |
| 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
 | |
| 	/* cands is a pointer to stack here */
 | |
| 	if (cc) {
 | |
| 		if (cc->cnt)
 | |
| 			return cc;
 | |
| 		goto check_modules;
 | |
| 	}
 | |
| 
 | |
| 	/* Attempt to find target candidates in vmlinux BTF first */
 | |
| 	cands = bpf_core_add_cands(cands, main_btf, 1);
 | |
| 	if (IS_ERR(cands))
 | |
| 		return ERR_CAST(cands);
 | |
| 
 | |
| 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
 | |
| 
 | |
| 	/* populate cache even when cands->cnt == 0 */
 | |
| 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
 | |
| 	if (IS_ERR(cc))
 | |
| 		return ERR_CAST(cc);
 | |
| 
 | |
| 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
 | |
| 	if (cc->cnt)
 | |
| 		return cc;
 | |
| 
 | |
| check_modules:
 | |
| 	/* cands is a pointer to stack here and cands->cnt == 0 */
 | |
| 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
 | |
| 	if (cc)
 | |
| 		/* if cache has it return it even if cc->cnt == 0 */
 | |
| 		return cc;
 | |
| 
 | |
| 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
 | |
| 	spin_lock_bh(&btf_idr_lock);
 | |
| 	idr_for_each_entry(&btf_idr, mod_btf, id) {
 | |
| 		if (!btf_is_module(mod_btf))
 | |
| 			continue;
 | |
| 		/* linear search could be slow hence unlock/lock
 | |
| 		 * the IDR to avoiding holding it for too long
 | |
| 		 */
 | |
| 		btf_get(mod_btf);
 | |
| 		spin_unlock_bh(&btf_idr_lock);
 | |
| 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
 | |
| 		if (IS_ERR(cands)) {
 | |
| 			btf_put(mod_btf);
 | |
| 			return ERR_CAST(cands);
 | |
| 		}
 | |
| 		spin_lock_bh(&btf_idr_lock);
 | |
| 		btf_put(mod_btf);
 | |
| 	}
 | |
| 	spin_unlock_bh(&btf_idr_lock);
 | |
| 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
 | |
| 	 * or pointer to stack if cands->cnd == 0.
 | |
| 	 * Copy it into the cache even when cands->cnt == 0 and
 | |
| 	 * return the result.
 | |
| 	 */
 | |
| 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
 | |
| }
 | |
| 
 | |
| int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
 | |
| 		   int relo_idx, void *insn)
 | |
| {
 | |
| 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
 | |
| 	struct bpf_core_cand_list cands = {};
 | |
| 	struct bpf_core_relo_res targ_res;
 | |
| 	struct bpf_core_spec *specs;
 | |
| 	int err;
 | |
| 
 | |
| 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
 | |
| 	 * into arrays of btf_ids of struct fields and array indices.
 | |
| 	 */
 | |
| 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
 | |
| 	if (!specs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (need_cands) {
 | |
| 		struct bpf_cand_cache *cc;
 | |
| 		int i;
 | |
| 
 | |
| 		mutex_lock(&cand_cache_mutex);
 | |
| 		cc = bpf_core_find_cands(ctx, relo->type_id);
 | |
| 		if (IS_ERR(cc)) {
 | |
| 			bpf_log(ctx->log, "target candidate search failed for %d\n",
 | |
| 				relo->type_id);
 | |
| 			err = PTR_ERR(cc);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (cc->cnt) {
 | |
| 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
 | |
| 			if (!cands.cands) {
 | |
| 				err = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		for (i = 0; i < cc->cnt; i++) {
 | |
| 			bpf_log(ctx->log,
 | |
| 				"CO-RE relocating %s %s: found target candidate [%d]\n",
 | |
| 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
 | |
| 			cands.cands[i].btf = cc->cands[i].btf;
 | |
| 			cands.cands[i].id = cc->cands[i].id;
 | |
| 		}
 | |
| 		cands.len = cc->cnt;
 | |
| 		/* cand_cache_mutex needs to span the cache lookup and
 | |
| 		 * copy of btf pointer into bpf_core_cand_list,
 | |
| 		 * since module can be unloaded while bpf_core_calc_relo_insn
 | |
| 		 * is working with module's btf.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
 | |
| 				      &targ_res);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
 | |
| 				  &targ_res);
 | |
| 
 | |
| out:
 | |
| 	kfree(specs);
 | |
| 	if (need_cands) {
 | |
| 		kfree(cands.cands);
 | |
| 		mutex_unlock(&cand_cache_mutex);
 | |
| 		if (ctx->log->level & BPF_LOG_LEVEL2)
 | |
| 			print_cand_cache(ctx->log);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
 | |
| 				const struct bpf_reg_state *reg,
 | |
| 				int off)
 | |
| {
 | |
| 	struct btf *btf = reg->btf;
 | |
| 	const struct btf_type *walk_type, *safe_type;
 | |
| 	const char *tname;
 | |
| 	char safe_tname[64];
 | |
| 	long ret, safe_id;
 | |
| 	const struct btf_member *member, *m_walk = NULL;
 | |
| 	u32 i;
 | |
| 	const char *walk_name;
 | |
| 
 | |
| 	walk_type = btf_type_by_id(btf, reg->btf_id);
 | |
| 	if (!walk_type)
 | |
| 		return false;
 | |
| 
 | |
| 	tname = btf_name_by_offset(btf, walk_type->name_off);
 | |
| 
 | |
| 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s__safe_fields", tname);
 | |
| 	if (ret < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
 | |
| 	if (safe_id < 0)
 | |
| 		return false;
 | |
| 
 | |
| 	safe_type = btf_type_by_id(btf, safe_id);
 | |
| 	if (!safe_type)
 | |
| 		return false;
 | |
| 
 | |
| 	for_each_member(i, walk_type, member) {
 | |
| 		u32 moff;
 | |
| 
 | |
| 		/* We're looking for the PTR_TO_BTF_ID member in the struct
 | |
| 		 * type we're walking which matches the specified offset.
 | |
| 		 * Below, we'll iterate over the fields in the safe variant of
 | |
| 		 * the struct and see if any of them has a matching type /
 | |
| 		 * name.
 | |
| 		 */
 | |
| 		moff = __btf_member_bit_offset(walk_type, member) / 8;
 | |
| 		if (off == moff) {
 | |
| 			m_walk = member;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (m_walk == NULL)
 | |
| 		return false;
 | |
| 
 | |
| 	walk_name = __btf_name_by_offset(btf, m_walk->name_off);
 | |
| 	for_each_member(i, safe_type, member) {
 | |
| 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
 | |
| 
 | |
| 		/* If we match on both type and name, the field is considered trusted. */
 | |
| 		if (m_walk->type == member->type && !strcmp(walk_name, m_name))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
 | |
| 			       const struct btf *reg_btf, u32 reg_id,
 | |
| 			       const struct btf *arg_btf, u32 arg_id)
 | |
| {
 | |
| 	const char *reg_name, *arg_name, *search_needle;
 | |
| 	const struct btf_type *reg_type, *arg_type;
 | |
| 	int reg_len, arg_len, cmp_len;
 | |
| 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
 | |
| 
 | |
| 	reg_type = btf_type_by_id(reg_btf, reg_id);
 | |
| 	if (!reg_type)
 | |
| 		return false;
 | |
| 
 | |
| 	arg_type = btf_type_by_id(arg_btf, arg_id);
 | |
| 	if (!arg_type)
 | |
| 		return false;
 | |
| 
 | |
| 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
 | |
| 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
 | |
| 
 | |
| 	reg_len = strlen(reg_name);
 | |
| 	arg_len = strlen(arg_name);
 | |
| 
 | |
| 	/* Exactly one of the two type names may be suffixed with ___init, so
 | |
| 	 * if the strings are the same size, they can't possibly be no-cast
 | |
| 	 * aliases of one another. If you have two of the same type names, e.g.
 | |
| 	 * they're both nf_conn___init, it would be improper to return true
 | |
| 	 * because they are _not_ no-cast aliases, they are the same type.
 | |
| 	 */
 | |
| 	if (reg_len == arg_len)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Either of the two names must be the other name, suffixed with ___init. */
 | |
| 	if ((reg_len != arg_len + pattern_len) &&
 | |
| 	    (arg_len != reg_len + pattern_len))
 | |
| 		return false;
 | |
| 
 | |
| 	if (reg_len < arg_len) {
 | |
| 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
 | |
| 		cmp_len = reg_len;
 | |
| 	} else {
 | |
| 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
 | |
| 		cmp_len = arg_len;
 | |
| 	}
 | |
| 
 | |
| 	if (!search_needle)
 | |
| 		return false;
 | |
| 
 | |
| 	/* ___init suffix must come at the end of the name */
 | |
| 	if (*(search_needle + pattern_len) != '\0')
 | |
| 		return false;
 | |
| 
 | |
| 	return !strncmp(reg_name, arg_name, cmp_len);
 | |
| }
 |