mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 960bdff24c
			
		
	
	
		960bdff24c
		
	
	
	
	
		
			
			audit inode marks pin the inode so there is no need to set the FSNOTIFY_GROUP_NOFS flag. Link: https://lore.kernel.org/r/20220422120327.3459282-9-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20220321112310.vpr7oxro2xkz5llh@quack3.lan/ Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
		
			
				
	
	
		
			1086 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1086 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include "audit.h"
 | |
| #include <linux/fsnotify_backend.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| struct audit_tree;
 | |
| struct audit_chunk;
 | |
| 
 | |
| struct audit_tree {
 | |
| 	refcount_t count;
 | |
| 	int goner;
 | |
| 	struct audit_chunk *root;
 | |
| 	struct list_head chunks;
 | |
| 	struct list_head rules;
 | |
| 	struct list_head list;
 | |
| 	struct list_head same_root;
 | |
| 	struct rcu_head head;
 | |
| 	char pathname[];
 | |
| };
 | |
| 
 | |
| struct audit_chunk {
 | |
| 	struct list_head hash;
 | |
| 	unsigned long key;
 | |
| 	struct fsnotify_mark *mark;
 | |
| 	struct list_head trees;		/* with root here */
 | |
| 	int count;
 | |
| 	atomic_long_t refs;
 | |
| 	struct rcu_head head;
 | |
| 	struct audit_node {
 | |
| 		struct list_head list;
 | |
| 		struct audit_tree *owner;
 | |
| 		unsigned index;		/* index; upper bit indicates 'will prune' */
 | |
| 	} owners[];
 | |
| };
 | |
| 
 | |
| struct audit_tree_mark {
 | |
| 	struct fsnotify_mark mark;
 | |
| 	struct audit_chunk *chunk;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(tree_list);
 | |
| static LIST_HEAD(prune_list);
 | |
| static struct task_struct *prune_thread;
 | |
| 
 | |
| /*
 | |
|  * One struct chunk is attached to each inode of interest through
 | |
|  * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
 | |
|  * untagging, the mark is stable as long as there is chunk attached. The
 | |
|  * association between mark and chunk is protected by hash_lock and
 | |
|  * audit_tree_group->mark_mutex. Thus as long as we hold
 | |
|  * audit_tree_group->mark_mutex and check that the mark is alive by
 | |
|  * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
 | |
|  * the current chunk.
 | |
|  *
 | |
|  * Rules have pointer to struct audit_tree.
 | |
|  * Rules have struct list_head rlist forming a list of rules over
 | |
|  * the same tree.
 | |
|  * References to struct chunk are collected at audit_inode{,_child}()
 | |
|  * time and used in AUDIT_TREE rule matching.
 | |
|  * These references are dropped at the same time we are calling
 | |
|  * audit_free_names(), etc.
 | |
|  *
 | |
|  * Cyclic lists galore:
 | |
|  * tree.chunks anchors chunk.owners[].list			hash_lock
 | |
|  * tree.rules anchors rule.rlist				audit_filter_mutex
 | |
|  * chunk.trees anchors tree.same_root				hash_lock
 | |
|  * chunk.hash is a hash with middle bits of watch.inode as
 | |
|  * a hash function.						RCU, hash_lock
 | |
|  *
 | |
|  * tree is refcounted; one reference for "some rules on rules_list refer to
 | |
|  * it", one for each chunk with pointer to it.
 | |
|  *
 | |
|  * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
 | |
|  * one chunk reference. This reference is dropped either when a mark is going
 | |
|  * to be freed (corresponding inode goes away) or when chunk attached to the
 | |
|  * mark gets replaced. This reference must be dropped using
 | |
|  * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
 | |
|  * grace period as it protects RCU readers of the hash table.
 | |
|  *
 | |
|  * node.index allows to get from node.list to containing chunk.
 | |
|  * MSB of that sucker is stolen to mark taggings that we might have to
 | |
|  * revert - several operations have very unpleasant cleanup logics and
 | |
|  * that makes a difference.  Some.
 | |
|  */
 | |
| 
 | |
| static struct fsnotify_group *audit_tree_group;
 | |
| static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
 | |
| 
 | |
| static struct audit_tree *alloc_tree(const char *s)
 | |
| {
 | |
| 	struct audit_tree *tree;
 | |
| 
 | |
| 	tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
 | |
| 	if (tree) {
 | |
| 		refcount_set(&tree->count, 1);
 | |
| 		tree->goner = 0;
 | |
| 		INIT_LIST_HEAD(&tree->chunks);
 | |
| 		INIT_LIST_HEAD(&tree->rules);
 | |
| 		INIT_LIST_HEAD(&tree->list);
 | |
| 		INIT_LIST_HEAD(&tree->same_root);
 | |
| 		tree->root = NULL;
 | |
| 		strcpy(tree->pathname, s);
 | |
| 	}
 | |
| 	return tree;
 | |
| }
 | |
| 
 | |
| static inline void get_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	refcount_inc(&tree->count);
 | |
| }
 | |
| 
 | |
| static inline void put_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&tree->count))
 | |
| 		kfree_rcu(tree, head);
 | |
| }
 | |
| 
 | |
| /* to avoid bringing the entire thing in audit.h */
 | |
| const char *audit_tree_path(struct audit_tree *tree)
 | |
| {
 | |
| 	return tree->pathname;
 | |
| }
 | |
| 
 | |
| static void free_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < chunk->count; i++) {
 | |
| 		if (chunk->owners[i].owner)
 | |
| 			put_tree(chunk->owners[i].owner);
 | |
| 	}
 | |
| 	kfree(chunk);
 | |
| }
 | |
| 
 | |
| void audit_put_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	if (atomic_long_dec_and_test(&chunk->refs))
 | |
| 		free_chunk(chunk);
 | |
| }
 | |
| 
 | |
| static void __put_chunk(struct rcu_head *rcu)
 | |
| {
 | |
| 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
 | |
| 	audit_put_chunk(chunk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drop reference to the chunk that was held by the mark. This is the reference
 | |
|  * that gets dropped after we've removed the chunk from the hash table and we
 | |
|  * use it to make sure chunk cannot be freed before RCU grace period expires.
 | |
|  */
 | |
| static void audit_mark_put_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	call_rcu(&chunk->head, __put_chunk);
 | |
| }
 | |
| 
 | |
| static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
 | |
| {
 | |
| 	return container_of(mark, struct audit_tree_mark, mark);
 | |
| }
 | |
| 
 | |
| static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
 | |
| {
 | |
| 	return audit_mark(mark)->chunk;
 | |
| }
 | |
| 
 | |
| static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
 | |
| {
 | |
| 	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
 | |
| }
 | |
| 
 | |
| static struct fsnotify_mark *alloc_mark(void)
 | |
| {
 | |
| 	struct audit_tree_mark *amark;
 | |
| 
 | |
| 	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
 | |
| 	if (!amark)
 | |
| 		return NULL;
 | |
| 	fsnotify_init_mark(&amark->mark, audit_tree_group);
 | |
| 	amark->mark.mask = FS_IN_IGNORED;
 | |
| 	return &amark->mark;
 | |
| }
 | |
| 
 | |
| static struct audit_chunk *alloc_chunk(int count)
 | |
| {
 | |
| 	struct audit_chunk *chunk;
 | |
| 	int i;
 | |
| 
 | |
| 	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
 | |
| 	if (!chunk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->hash);
 | |
| 	INIT_LIST_HEAD(&chunk->trees);
 | |
| 	chunk->count = count;
 | |
| 	atomic_long_set(&chunk->refs, 1);
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		INIT_LIST_HEAD(&chunk->owners[i].list);
 | |
| 		chunk->owners[i].index = i;
 | |
| 	}
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| enum {HASH_SIZE = 128};
 | |
| static struct list_head chunk_hash_heads[HASH_SIZE];
 | |
| static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
 | |
| 
 | |
| /* Function to return search key in our hash from inode. */
 | |
| static unsigned long inode_to_key(const struct inode *inode)
 | |
| {
 | |
| 	/* Use address pointed to by connector->obj as the key */
 | |
| 	return (unsigned long)&inode->i_fsnotify_marks;
 | |
| }
 | |
| 
 | |
| static inline struct list_head *chunk_hash(unsigned long key)
 | |
| {
 | |
| 	unsigned long n = key / L1_CACHE_BYTES;
 | |
| 	return chunk_hash_heads + n % HASH_SIZE;
 | |
| }
 | |
| 
 | |
| /* hash_lock & mark->group->mark_mutex is held by caller */
 | |
| static void insert_hash(struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure chunk is fully initialized before making it visible in the
 | |
| 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 | |
| 	 * audit_tree_lookup().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	WARN_ON_ONCE(!chunk->key);
 | |
| 	list = chunk_hash(chunk->key);
 | |
| 	list_add_rcu(&chunk->hash, list);
 | |
| }
 | |
| 
 | |
| /* called under rcu_read_lock */
 | |
| struct audit_chunk *audit_tree_lookup(const struct inode *inode)
 | |
| {
 | |
| 	unsigned long key = inode_to_key(inode);
 | |
| 	struct list_head *list = chunk_hash(key);
 | |
| 	struct audit_chunk *p;
 | |
| 
 | |
| 	list_for_each_entry_rcu(p, list, hash) {
 | |
| 		/*
 | |
| 		 * We use a data dependency barrier in READ_ONCE() to make sure
 | |
| 		 * the chunk we see is fully initialized.
 | |
| 		 */
 | |
| 		if (READ_ONCE(p->key) == key) {
 | |
| 			atomic_long_inc(&p->refs);
 | |
| 			return p;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
 | |
| {
 | |
| 	int n;
 | |
| 	for (n = 0; n < chunk->count; n++)
 | |
| 		if (chunk->owners[n].owner == tree)
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* tagging and untagging inodes with trees */
 | |
| 
 | |
| static struct audit_chunk *find_chunk(struct audit_node *p)
 | |
| {
 | |
| 	int index = p->index & ~(1U<<31);
 | |
| 	p -= index;
 | |
| 	return container_of(p, struct audit_chunk, owners[0]);
 | |
| }
 | |
| 
 | |
| static void replace_mark_chunk(struct fsnotify_mark *mark,
 | |
| 			       struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct audit_chunk *old;
 | |
| 
 | |
| 	assert_spin_locked(&hash_lock);
 | |
| 	old = mark_chunk(mark);
 | |
| 	audit_mark(mark)->chunk = chunk;
 | |
| 	if (chunk)
 | |
| 		chunk->mark = mark;
 | |
| 	if (old)
 | |
| 		old->mark = NULL;
 | |
| }
 | |
| 
 | |
| static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
 | |
| {
 | |
| 	struct audit_tree *owner;
 | |
| 	int i, j;
 | |
| 
 | |
| 	new->key = old->key;
 | |
| 	list_splice_init(&old->trees, &new->trees);
 | |
| 	list_for_each_entry(owner, &new->trees, same_root)
 | |
| 		owner->root = new;
 | |
| 	for (i = j = 0; j < old->count; i++, j++) {
 | |
| 		if (!old->owners[j].owner) {
 | |
| 			i--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		owner = old->owners[j].owner;
 | |
| 		new->owners[i].owner = owner;
 | |
| 		new->owners[i].index = old->owners[j].index - j + i;
 | |
| 		if (!owner) /* result of earlier fallback */
 | |
| 			continue;
 | |
| 		get_tree(owner);
 | |
| 		list_replace_init(&old->owners[j].list, &new->owners[i].list);
 | |
| 	}
 | |
| 	replace_mark_chunk(old->mark, new);
 | |
| 	/*
 | |
| 	 * Make sure chunk is fully initialized before making it visible in the
 | |
| 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
 | |
| 	 * audit_tree_lookup().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	list_replace_rcu(&old->hash, &new->hash);
 | |
| }
 | |
| 
 | |
| static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
 | |
| {
 | |
| 	struct audit_tree *owner = p->owner;
 | |
| 
 | |
| 	if (owner->root == chunk) {
 | |
| 		list_del_init(&owner->same_root);
 | |
| 		owner->root = NULL;
 | |
| 	}
 | |
| 	list_del_init(&p->list);
 | |
| 	p->owner = NULL;
 | |
| 	put_tree(owner);
 | |
| }
 | |
| 
 | |
| static int chunk_count_trees(struct audit_chunk *chunk)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	for (i = 0; i < chunk->count; i++)
 | |
| 		if (chunk->owners[i].owner)
 | |
| 			ret++;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
 | |
| {
 | |
| 	struct audit_chunk *new;
 | |
| 	int size;
 | |
| 
 | |
| 	fsnotify_group_lock(audit_tree_group);
 | |
| 	/*
 | |
| 	 * mark_mutex stabilizes chunk attached to the mark so we can check
 | |
| 	 * whether it didn't change while we've dropped hash_lock.
 | |
| 	 */
 | |
| 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
 | |
| 	    mark_chunk(mark) != chunk)
 | |
| 		goto out_mutex;
 | |
| 
 | |
| 	size = chunk_count_trees(chunk);
 | |
| 	if (!size) {
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_del_init(&chunk->trees);
 | |
| 		list_del_rcu(&chunk->hash);
 | |
| 		replace_mark_chunk(mark, NULL);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		fsnotify_detach_mark(mark);
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		audit_mark_put_chunk(chunk);
 | |
| 		fsnotify_free_mark(mark);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	new = alloc_chunk(size);
 | |
| 	if (!new)
 | |
| 		goto out_mutex;
 | |
| 
 | |
| 	spin_lock(&hash_lock);
 | |
| 	/*
 | |
| 	 * This has to go last when updating chunk as once replace_chunk() is
 | |
| 	 * called, new RCU readers can see the new chunk.
 | |
| 	 */
 | |
| 	replace_chunk(new, chunk);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	fsnotify_group_unlock(audit_tree_group);
 | |
| 	audit_mark_put_chunk(chunk);
 | |
| 	return;
 | |
| 
 | |
| out_mutex:
 | |
| 	fsnotify_group_unlock(audit_tree_group);
 | |
| }
 | |
| 
 | |
| /* Call with group->mark_mutex held, releases it */
 | |
| static int create_chunk(struct inode *inode, struct audit_tree *tree)
 | |
| {
 | |
| 	struct fsnotify_mark *mark;
 | |
| 	struct audit_chunk *chunk = alloc_chunk(1);
 | |
| 
 | |
| 	if (!chunk) {
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	mark = alloc_mark();
 | |
| 	if (!mark) {
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		kfree(chunk);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		fsnotify_put_mark(mark);
 | |
| 		kfree(chunk);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		fsnotify_detach_mark(mark);
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		fsnotify_free_mark(mark);
 | |
| 		fsnotify_put_mark(mark);
 | |
| 		kfree(chunk);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	replace_mark_chunk(mark, chunk);
 | |
| 	chunk->owners[0].index = (1U << 31);
 | |
| 	chunk->owners[0].owner = tree;
 | |
| 	get_tree(tree);
 | |
| 	list_add(&chunk->owners[0].list, &tree->chunks);
 | |
| 	if (!tree->root) {
 | |
| 		tree->root = chunk;
 | |
| 		list_add(&tree->same_root, &chunk->trees);
 | |
| 	}
 | |
| 	chunk->key = inode_to_key(inode);
 | |
| 	/*
 | |
| 	 * Inserting into the hash table has to go last as once we do that RCU
 | |
| 	 * readers can see the chunk.
 | |
| 	 */
 | |
| 	insert_hash(chunk);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	fsnotify_group_unlock(audit_tree_group);
 | |
| 	/*
 | |
| 	 * Drop our initial reference. When mark we point to is getting freed,
 | |
| 	 * we get notification through ->freeing_mark callback and cleanup
 | |
| 	 * chunk pointing to this mark.
 | |
| 	 */
 | |
| 	fsnotify_put_mark(mark);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the first tagged inode becomes root of tree */
 | |
| static int tag_chunk(struct inode *inode, struct audit_tree *tree)
 | |
| {
 | |
| 	struct fsnotify_mark *mark;
 | |
| 	struct audit_chunk *chunk, *old;
 | |
| 	struct audit_node *p;
 | |
| 	int n;
 | |
| 
 | |
| 	fsnotify_group_lock(audit_tree_group);
 | |
| 	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
 | |
| 	if (!mark)
 | |
| 		return create_chunk(inode, tree);
 | |
| 
 | |
| 	/*
 | |
| 	 * Found mark is guaranteed to be attached and mark_mutex protects mark
 | |
| 	 * from getting detached and thus it makes sure there is chunk attached
 | |
| 	 * to the mark.
 | |
| 	 */
 | |
| 	/* are we already there? */
 | |
| 	spin_lock(&hash_lock);
 | |
| 	old = mark_chunk(mark);
 | |
| 	for (n = 0; n < old->count; n++) {
 | |
| 		if (old->owners[n].owner == tree) {
 | |
| 			spin_unlock(&hash_lock);
 | |
| 			fsnotify_group_unlock(audit_tree_group);
 | |
| 			fsnotify_put_mark(mark);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| 
 | |
| 	chunk = alloc_chunk(old->count + 1);
 | |
| 	if (!chunk) {
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		fsnotify_put_mark(mark);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		fsnotify_group_unlock(audit_tree_group);
 | |
| 		fsnotify_put_mark(mark);
 | |
| 		kfree(chunk);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	p = &chunk->owners[chunk->count - 1];
 | |
| 	p->index = (chunk->count - 1) | (1U<<31);
 | |
| 	p->owner = tree;
 | |
| 	get_tree(tree);
 | |
| 	list_add(&p->list, &tree->chunks);
 | |
| 	if (!tree->root) {
 | |
| 		tree->root = chunk;
 | |
| 		list_add(&tree->same_root, &chunk->trees);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * This has to go last when updating chunk as once replace_chunk() is
 | |
| 	 * called, new RCU readers can see the new chunk.
 | |
| 	 */
 | |
| 	replace_chunk(chunk, old);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	fsnotify_group_unlock(audit_tree_group);
 | |
| 	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
 | |
| 	audit_mark_put_chunk(old);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void audit_tree_log_remove_rule(struct audit_context *context,
 | |
| 				       struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_buffer *ab;
 | |
| 
 | |
| 	if (!audit_enabled)
 | |
| 		return;
 | |
| 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 | |
| 	if (unlikely(!ab))
 | |
| 		return;
 | |
| 	audit_log_format(ab, "op=remove_rule dir=");
 | |
| 	audit_log_untrustedstring(ab, rule->tree->pathname);
 | |
| 	audit_log_key(ab, rule->filterkey);
 | |
| 	audit_log_format(ab, " list=%d res=1", rule->listnr);
 | |
| 	audit_log_end(ab);
 | |
| }
 | |
| 
 | |
| static void kill_rules(struct audit_context *context, struct audit_tree *tree)
 | |
| {
 | |
| 	struct audit_krule *rule, *next;
 | |
| 	struct audit_entry *entry;
 | |
| 
 | |
| 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
 | |
| 		entry = container_of(rule, struct audit_entry, rule);
 | |
| 
 | |
| 		list_del_init(&rule->rlist);
 | |
| 		if (rule->tree) {
 | |
| 			/* not a half-baked one */
 | |
| 			audit_tree_log_remove_rule(context, rule);
 | |
| 			if (entry->rule.exe)
 | |
| 				audit_remove_mark(entry->rule.exe);
 | |
| 			rule->tree = NULL;
 | |
| 			list_del_rcu(&entry->list);
 | |
| 			list_del(&entry->rule.list);
 | |
| 			call_rcu(&entry->rcu, audit_free_rule_rcu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
 | |
|  * chunks. The function expects tagged chunks are all at the beginning of the
 | |
|  * chunks list.
 | |
|  */
 | |
| static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
 | |
| {
 | |
| 	spin_lock(&hash_lock);
 | |
| 	while (!list_empty(&victim->chunks)) {
 | |
| 		struct audit_node *p;
 | |
| 		struct audit_chunk *chunk;
 | |
| 		struct fsnotify_mark *mark;
 | |
| 
 | |
| 		p = list_first_entry(&victim->chunks, struct audit_node, list);
 | |
| 		/* have we run out of marked? */
 | |
| 		if (tagged && !(p->index & (1U<<31)))
 | |
| 			break;
 | |
| 		chunk = find_chunk(p);
 | |
| 		mark = chunk->mark;
 | |
| 		remove_chunk_node(chunk, p);
 | |
| 		/* Racing with audit_tree_freeing_mark()? */
 | |
| 		if (!mark)
 | |
| 			continue;
 | |
| 		fsnotify_get_mark(mark);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 
 | |
| 		untag_chunk(chunk, mark);
 | |
| 		fsnotify_put_mark(mark);
 | |
| 
 | |
| 		spin_lock(&hash_lock);
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finish killing struct audit_tree
 | |
|  */
 | |
| static void prune_one(struct audit_tree *victim)
 | |
| {
 | |
| 	prune_tree_chunks(victim, false);
 | |
| 	put_tree(victim);
 | |
| }
 | |
| 
 | |
| /* trim the uncommitted chunks from tree */
 | |
| 
 | |
| static void trim_marked(struct audit_tree *tree)
 | |
| {
 | |
| 	struct list_head *p, *q;
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (tree->goner) {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* reorder */
 | |
| 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
 | |
| 		struct audit_node *node = list_entry(p, struct audit_node, list);
 | |
| 		q = p->next;
 | |
| 		if (node->index & (1U<<31)) {
 | |
| 			list_del_init(p);
 | |
| 			list_add(p, &tree->chunks);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&hash_lock);
 | |
| 
 | |
| 	prune_tree_chunks(tree, true);
 | |
| 
 | |
| 	spin_lock(&hash_lock);
 | |
| 	if (!tree->root && !tree->goner) {
 | |
| 		tree->goner = 1;
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 		kill_rules(audit_context(), tree);
 | |
| 		list_del_init(&tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 		prune_one(tree);
 | |
| 	} else {
 | |
| 		spin_unlock(&hash_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void audit_schedule_prune(void);
 | |
| 
 | |
| /* called with audit_filter_mutex */
 | |
| int audit_remove_tree_rule(struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_tree *tree;
 | |
| 	tree = rule->tree;
 | |
| 	if (tree) {
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_del_init(&rule->rlist);
 | |
| 		if (list_empty(&tree->rules) && !tree->goner) {
 | |
| 			tree->root = NULL;
 | |
| 			list_del_init(&tree->same_root);
 | |
| 			tree->goner = 1;
 | |
| 			list_move(&tree->list, &prune_list);
 | |
| 			rule->tree = NULL;
 | |
| 			spin_unlock(&hash_lock);
 | |
| 			audit_schedule_prune();
 | |
| 			return 1;
 | |
| 		}
 | |
| 		rule->tree = NULL;
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int compare_root(struct vfsmount *mnt, void *arg)
 | |
| {
 | |
| 	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
 | |
| 	       (unsigned long)arg;
 | |
| }
 | |
| 
 | |
| void audit_trim_trees(void)
 | |
| {
 | |
| 	struct list_head cursor;
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_add(&cursor, &tree_list);
 | |
| 	while (cursor.next != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 		struct path path;
 | |
| 		struct vfsmount *root_mnt;
 | |
| 		struct audit_node *node;
 | |
| 		int err;
 | |
| 
 | |
| 		tree = container_of(cursor.next, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_move(&cursor, &tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		err = kern_path(tree->pathname, 0, &path);
 | |
| 		if (err)
 | |
| 			goto skip_it;
 | |
| 
 | |
| 		root_mnt = collect_mounts(&path);
 | |
| 		path_put(&path);
 | |
| 		if (IS_ERR(root_mnt))
 | |
| 			goto skip_it;
 | |
| 
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_for_each_entry(node, &tree->chunks, list) {
 | |
| 			struct audit_chunk *chunk = find_chunk(node);
 | |
| 			/* this could be NULL if the watch is dying else where... */
 | |
| 			node->index |= 1U<<31;
 | |
| 			if (iterate_mounts(compare_root,
 | |
| 					   (void *)(chunk->key),
 | |
| 					   root_mnt))
 | |
| 				node->index &= ~(1U<<31);
 | |
| 		}
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		trim_marked(tree);
 | |
| 		drop_collected_mounts(root_mnt);
 | |
| skip_it:
 | |
| 		put_tree(tree);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 	list_del(&cursor);
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| }
 | |
| 
 | |
| int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
 | |
| {
 | |
| 
 | |
| 	if (pathname[0] != '/' ||
 | |
| 	    (rule->listnr != AUDIT_FILTER_EXIT &&
 | |
| 	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
 | |
| 	    op != Audit_equal ||
 | |
| 	    rule->inode_f || rule->watch || rule->tree)
 | |
| 		return -EINVAL;
 | |
| 	rule->tree = alloc_tree(pathname);
 | |
| 	if (!rule->tree)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void audit_put_tree(struct audit_tree *tree)
 | |
| {
 | |
| 	put_tree(tree);
 | |
| }
 | |
| 
 | |
| static int tag_mount(struct vfsmount *mnt, void *arg)
 | |
| {
 | |
| 	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * That gets run when evict_chunk() ends up needing to kill audit_tree.
 | |
|  * Runs from a separate thread.
 | |
|  */
 | |
| static int prune_tree_thread(void *unused)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		if (list_empty(&prune_list)) {
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 			schedule();
 | |
| 		}
 | |
| 
 | |
| 		audit_ctl_lock();
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 
 | |
| 		while (!list_empty(&prune_list)) {
 | |
| 			struct audit_tree *victim;
 | |
| 
 | |
| 			victim = list_entry(prune_list.next,
 | |
| 					struct audit_tree, list);
 | |
| 			list_del_init(&victim->list);
 | |
| 
 | |
| 			mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 			prune_one(victim);
 | |
| 
 | |
| 			mutex_lock(&audit_filter_mutex);
 | |
| 		}
 | |
| 
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 		audit_ctl_unlock();
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int audit_launch_prune(void)
 | |
| {
 | |
| 	if (prune_thread)
 | |
| 		return 0;
 | |
| 	prune_thread = kthread_run(prune_tree_thread, NULL,
 | |
| 				"audit_prune_tree");
 | |
| 	if (IS_ERR(prune_thread)) {
 | |
| 		pr_err("cannot start thread audit_prune_tree");
 | |
| 		prune_thread = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* called with audit_filter_mutex */
 | |
| int audit_add_tree_rule(struct audit_krule *rule)
 | |
| {
 | |
| 	struct audit_tree *seed = rule->tree, *tree;
 | |
| 	struct path path;
 | |
| 	struct vfsmount *mnt;
 | |
| 	int err;
 | |
| 
 | |
| 	rule->tree = NULL;
 | |
| 	list_for_each_entry(tree, &tree_list, list) {
 | |
| 		if (!strcmp(seed->pathname, tree->pathname)) {
 | |
| 			put_tree(seed);
 | |
| 			rule->tree = tree;
 | |
| 			list_add(&rule->rlist, &tree->rules);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	tree = seed;
 | |
| 	list_add(&tree->list, &tree_list);
 | |
| 	list_add(&rule->rlist, &tree->rules);
 | |
| 	/* do not set rule->tree yet */
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 	if (unlikely(!prune_thread)) {
 | |
| 		err = audit_launch_prune();
 | |
| 		if (err)
 | |
| 			goto Err;
 | |
| 	}
 | |
| 
 | |
| 	err = kern_path(tree->pathname, 0, &path);
 | |
| 	if (err)
 | |
| 		goto Err;
 | |
| 	mnt = collect_mounts(&path);
 | |
| 	path_put(&path);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		err = PTR_ERR(mnt);
 | |
| 		goto Err;
 | |
| 	}
 | |
| 
 | |
| 	get_tree(tree);
 | |
| 	err = iterate_mounts(tag_mount, tree, mnt);
 | |
| 	drop_collected_mounts(mnt);
 | |
| 
 | |
| 	if (!err) {
 | |
| 		struct audit_node *node;
 | |
| 		spin_lock(&hash_lock);
 | |
| 		list_for_each_entry(node, &tree->chunks, list)
 | |
| 			node->index &= ~(1U<<31);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 	} else {
 | |
| 		trim_marked(tree);
 | |
| 		goto Err;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	if (list_empty(&rule->rlist)) {
 | |
| 		put_tree(tree);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 	rule->tree = tree;
 | |
| 	put_tree(tree);
 | |
| 
 | |
| 	return 0;
 | |
| Err:
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_del_init(&tree->list);
 | |
| 	list_del_init(&tree->rules);
 | |
| 	put_tree(tree);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int audit_tag_tree(char *old, char *new)
 | |
| {
 | |
| 	struct list_head cursor, barrier;
 | |
| 	int failed = 0;
 | |
| 	struct path path1, path2;
 | |
| 	struct vfsmount *tagged;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kern_path(new, 0, &path2);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	tagged = collect_mounts(&path2);
 | |
| 	path_put(&path2);
 | |
| 	if (IS_ERR(tagged))
 | |
| 		return PTR_ERR(tagged);
 | |
| 
 | |
| 	err = kern_path(old, 0, &path1);
 | |
| 	if (err) {
 | |
| 		drop_collected_mounts(tagged);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	list_add(&barrier, &tree_list);
 | |
| 	list_add(&cursor, &barrier);
 | |
| 
 | |
| 	while (cursor.next != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 		int good_one = 0;
 | |
| 
 | |
| 		tree = container_of(cursor.next, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_move(&cursor, &tree->list);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		err = kern_path(tree->pathname, 0, &path2);
 | |
| 		if (!err) {
 | |
| 			good_one = path_is_under(&path1, &path2);
 | |
| 			path_put(&path2);
 | |
| 		}
 | |
| 
 | |
| 		if (!good_one) {
 | |
| 			put_tree(tree);
 | |
| 			mutex_lock(&audit_filter_mutex);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		failed = iterate_mounts(tag_mount, tree, tagged);
 | |
| 		if (failed) {
 | |
| 			put_tree(tree);
 | |
| 			mutex_lock(&audit_filter_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 		spin_lock(&hash_lock);
 | |
| 		if (!tree->goner) {
 | |
| 			list_move(&tree->list, &tree_list);
 | |
| 		}
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		put_tree(tree);
 | |
| 	}
 | |
| 
 | |
| 	while (barrier.prev != &tree_list) {
 | |
| 		struct audit_tree *tree;
 | |
| 
 | |
| 		tree = container_of(barrier.prev, struct audit_tree, list);
 | |
| 		get_tree(tree);
 | |
| 		list_move(&tree->list, &barrier);
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		if (!failed) {
 | |
| 			struct audit_node *node;
 | |
| 			spin_lock(&hash_lock);
 | |
| 			list_for_each_entry(node, &tree->chunks, list)
 | |
| 				node->index &= ~(1U<<31);
 | |
| 			spin_unlock(&hash_lock);
 | |
| 		} else {
 | |
| 			trim_marked(tree);
 | |
| 		}
 | |
| 
 | |
| 		put_tree(tree);
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 	list_del(&barrier);
 | |
| 	list_del(&cursor);
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	path_put(&path1);
 | |
| 	drop_collected_mounts(tagged);
 | |
| 	return failed;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void audit_schedule_prune(void)
 | |
| {
 | |
| 	wake_up_process(prune_thread);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ... and that one is done if evict_chunk() decides to delay until the end
 | |
|  * of syscall.  Runs synchronously.
 | |
|  */
 | |
| void audit_kill_trees(struct audit_context *context)
 | |
| {
 | |
| 	struct list_head *list = &context->killed_trees;
 | |
| 
 | |
| 	audit_ctl_lock();
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 
 | |
| 	while (!list_empty(list)) {
 | |
| 		struct audit_tree *victim;
 | |
| 
 | |
| 		victim = list_entry(list->next, struct audit_tree, list);
 | |
| 		kill_rules(context, victim);
 | |
| 		list_del_init(&victim->list);
 | |
| 
 | |
| 		mutex_unlock(&audit_filter_mutex);
 | |
| 
 | |
| 		prune_one(victim);
 | |
| 
 | |
| 		mutex_lock(&audit_filter_mutex);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	audit_ctl_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Here comes the stuff asynchronous to auditctl operations
 | |
|  */
 | |
| 
 | |
| static void evict_chunk(struct audit_chunk *chunk)
 | |
| {
 | |
| 	struct audit_tree *owner;
 | |
| 	struct list_head *postponed = audit_killed_trees();
 | |
| 	int need_prune = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	mutex_lock(&audit_filter_mutex);
 | |
| 	spin_lock(&hash_lock);
 | |
| 	while (!list_empty(&chunk->trees)) {
 | |
| 		owner = list_entry(chunk->trees.next,
 | |
| 				   struct audit_tree, same_root);
 | |
| 		owner->goner = 1;
 | |
| 		owner->root = NULL;
 | |
| 		list_del_init(&owner->same_root);
 | |
| 		spin_unlock(&hash_lock);
 | |
| 		if (!postponed) {
 | |
| 			kill_rules(audit_context(), owner);
 | |
| 			list_move(&owner->list, &prune_list);
 | |
| 			need_prune = 1;
 | |
| 		} else {
 | |
| 			list_move(&owner->list, postponed);
 | |
| 		}
 | |
| 		spin_lock(&hash_lock);
 | |
| 	}
 | |
| 	list_del_rcu(&chunk->hash);
 | |
| 	for (n = 0; n < chunk->count; n++)
 | |
| 		list_del_init(&chunk->owners[n].list);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	mutex_unlock(&audit_filter_mutex);
 | |
| 	if (need_prune)
 | |
| 		audit_schedule_prune();
 | |
| }
 | |
| 
 | |
| static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
 | |
| 				   struct inode *inode, struct inode *dir,
 | |
| 				   const struct qstr *file_name, u32 cookie)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
 | |
| 				    struct fsnotify_group *group)
 | |
| {
 | |
| 	struct audit_chunk *chunk;
 | |
| 
 | |
| 	fsnotify_group_lock(mark->group);
 | |
| 	spin_lock(&hash_lock);
 | |
| 	chunk = mark_chunk(mark);
 | |
| 	replace_mark_chunk(mark, NULL);
 | |
| 	spin_unlock(&hash_lock);
 | |
| 	fsnotify_group_unlock(mark->group);
 | |
| 	if (chunk) {
 | |
| 		evict_chunk(chunk);
 | |
| 		audit_mark_put_chunk(chunk);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are guaranteed to have at least one reference to the mark from
 | |
| 	 * either the inode or the caller of fsnotify_destroy_mark().
 | |
| 	 */
 | |
| 	BUG_ON(refcount_read(&mark->refcnt) < 1);
 | |
| }
 | |
| 
 | |
| static const struct fsnotify_ops audit_tree_ops = {
 | |
| 	.handle_inode_event = audit_tree_handle_event,
 | |
| 	.freeing_mark = audit_tree_freeing_mark,
 | |
| 	.free_mark = audit_tree_destroy_watch,
 | |
| };
 | |
| 
 | |
| static int __init audit_tree_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
 | |
| 
 | |
| 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
 | |
| 	if (IS_ERR(audit_tree_group))
 | |
| 		audit_panic("cannot initialize fsnotify group for rectree watches");
 | |
| 
 | |
| 	for (i = 0; i < HASH_SIZE; i++)
 | |
| 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(audit_tree_init);
 |