mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 e9bdcdbf69
			
		
	
	
		e9bdcdbf69
		
			
		
	
	
	
	
		
			
			The number of system calls making use of pidfds is constantly increasing. Some of those new system calls duplicate the code to turn a pidfd into task_struct it refers to. Give them a simple helper for this. Link: https://lore.kernel.org/r/20211004125050.1153693-2-christian.brauner@ubuntu.com Link: https://lore.kernel.org/r/20211011133245.1703103-2-brauner@kernel.org Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Matthew Bobrowski <repnop@google.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Reviewed-by: Matthew Bobrowski <repnop@google.com> Acked-by: David Hildenbrand <david@redhat.com> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
		
			
				
	
	
		
			746 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			746 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Generic pidhash and scalable, time-bounded PID allocator
 | |
|  *
 | |
|  * (C) 2002-2003 Nadia Yvette Chambers, IBM
 | |
|  * (C) 2004 Nadia Yvette Chambers, Oracle
 | |
|  * (C) 2002-2004 Ingo Molnar, Red Hat
 | |
|  *
 | |
|  * pid-structures are backing objects for tasks sharing a given ID to chain
 | |
|  * against. There is very little to them aside from hashing them and
 | |
|  * parking tasks using given ID's on a list.
 | |
|  *
 | |
|  * The hash is always changed with the tasklist_lock write-acquired,
 | |
|  * and the hash is only accessed with the tasklist_lock at least
 | |
|  * read-acquired, so there's no additional SMP locking needed here.
 | |
|  *
 | |
|  * We have a list of bitmap pages, which bitmaps represent the PID space.
 | |
|  * Allocating and freeing PIDs is completely lockless. The worst-case
 | |
|  * allocation scenario when all but one out of 1 million PIDs possible are
 | |
|  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 | |
|  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 | |
|  *
 | |
|  * Pid namespaces:
 | |
|  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 | |
|  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 | |
|  *     Many thanks to Oleg Nesterov for comments and help
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/pid_namespace.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/anon_inodes.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/idr.h>
 | |
| #include <net/sock.h>
 | |
| #include <uapi/linux/pidfd.h>
 | |
| 
 | |
| struct pid init_struct_pid = {
 | |
| 	.count		= REFCOUNT_INIT(1),
 | |
| 	.tasks		= {
 | |
| 		{ .first = NULL },
 | |
| 		{ .first = NULL },
 | |
| 		{ .first = NULL },
 | |
| 	},
 | |
| 	.level		= 0,
 | |
| 	.numbers	= { {
 | |
| 		.nr		= 0,
 | |
| 		.ns		= &init_pid_ns,
 | |
| 	}, }
 | |
| };
 | |
| 
 | |
| int pid_max = PID_MAX_DEFAULT;
 | |
| 
 | |
| #define RESERVED_PIDS		300
 | |
| 
 | |
| int pid_max_min = RESERVED_PIDS + 1;
 | |
| int pid_max_max = PID_MAX_LIMIT;
 | |
| 
 | |
| /*
 | |
|  * PID-map pages start out as NULL, they get allocated upon
 | |
|  * first use and are never deallocated. This way a low pid_max
 | |
|  * value does not cause lots of bitmaps to be allocated, but
 | |
|  * the scheme scales to up to 4 million PIDs, runtime.
 | |
|  */
 | |
| struct pid_namespace init_pid_ns = {
 | |
| 	.ns.count = REFCOUNT_INIT(2),
 | |
| 	.idr = IDR_INIT(init_pid_ns.idr),
 | |
| 	.pid_allocated = PIDNS_ADDING,
 | |
| 	.level = 0,
 | |
| 	.child_reaper = &init_task,
 | |
| 	.user_ns = &init_user_ns,
 | |
| 	.ns.inum = PROC_PID_INIT_INO,
 | |
| #ifdef CONFIG_PID_NS
 | |
| 	.ns.ops = &pidns_operations,
 | |
| #endif
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(init_pid_ns);
 | |
| 
 | |
| /*
 | |
|  * Note: disable interrupts while the pidmap_lock is held as an
 | |
|  * interrupt might come in and do read_lock(&tasklist_lock).
 | |
|  *
 | |
|  * If we don't disable interrupts there is a nasty deadlock between
 | |
|  * detach_pid()->free_pid() and another cpu that does
 | |
|  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
 | |
|  * read_lock(&tasklist_lock);
 | |
|  *
 | |
|  * After we clean up the tasklist_lock and know there are no
 | |
|  * irq handlers that take it we can leave the interrupts enabled.
 | |
|  * For now it is easier to be safe than to prove it can't happen.
 | |
|  */
 | |
| 
 | |
| static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 | |
| 
 | |
| void put_pid(struct pid *pid)
 | |
| {
 | |
| 	struct pid_namespace *ns;
 | |
| 
 | |
| 	if (!pid)
 | |
| 		return;
 | |
| 
 | |
| 	ns = pid->numbers[pid->level].ns;
 | |
| 	if (refcount_dec_and_test(&pid->count)) {
 | |
| 		kmem_cache_free(ns->pid_cachep, pid);
 | |
| 		put_pid_ns(ns);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_pid);
 | |
| 
 | |
| static void delayed_put_pid(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct pid *pid = container_of(rhp, struct pid, rcu);
 | |
| 	put_pid(pid);
 | |
| }
 | |
| 
 | |
| void free_pid(struct pid *pid)
 | |
| {
 | |
| 	/* We can be called with write_lock_irq(&tasklist_lock) held */
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&pidmap_lock, flags);
 | |
| 	for (i = 0; i <= pid->level; i++) {
 | |
| 		struct upid *upid = pid->numbers + i;
 | |
| 		struct pid_namespace *ns = upid->ns;
 | |
| 		switch (--ns->pid_allocated) {
 | |
| 		case 2:
 | |
| 		case 1:
 | |
| 			/* When all that is left in the pid namespace
 | |
| 			 * is the reaper wake up the reaper.  The reaper
 | |
| 			 * may be sleeping in zap_pid_ns_processes().
 | |
| 			 */
 | |
| 			wake_up_process(ns->child_reaper);
 | |
| 			break;
 | |
| 		case PIDNS_ADDING:
 | |
| 			/* Handle a fork failure of the first process */
 | |
| 			WARN_ON(ns->child_reaper);
 | |
| 			ns->pid_allocated = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		idr_remove(&ns->idr, upid->nr);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&pidmap_lock, flags);
 | |
| 
 | |
| 	call_rcu(&pid->rcu, delayed_put_pid);
 | |
| }
 | |
| 
 | |
| struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
 | |
| 		      size_t set_tid_size)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	enum pid_type type;
 | |
| 	int i, nr;
 | |
| 	struct pid_namespace *tmp;
 | |
| 	struct upid *upid;
 | |
| 	int retval = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_tid_size contains the size of the set_tid array. Starting at
 | |
| 	 * the most nested currently active PID namespace it tells alloc_pid()
 | |
| 	 * which PID to set for a process in that most nested PID namespace
 | |
| 	 * up to set_tid_size PID namespaces. It does not have to set the PID
 | |
| 	 * for a process in all nested PID namespaces but set_tid_size must
 | |
| 	 * never be greater than the current ns->level + 1.
 | |
| 	 */
 | |
| 	if (set_tid_size > ns->level + 1)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 | |
| 	if (!pid)
 | |
| 		return ERR_PTR(retval);
 | |
| 
 | |
| 	tmp = ns;
 | |
| 	pid->level = ns->level;
 | |
| 
 | |
| 	for (i = ns->level; i >= 0; i--) {
 | |
| 		int tid = 0;
 | |
| 
 | |
| 		if (set_tid_size) {
 | |
| 			tid = set_tid[ns->level - i];
 | |
| 
 | |
| 			retval = -EINVAL;
 | |
| 			if (tid < 1 || tid >= pid_max)
 | |
| 				goto out_free;
 | |
| 			/*
 | |
| 			 * Also fail if a PID != 1 is requested and
 | |
| 			 * no PID 1 exists.
 | |
| 			 */
 | |
| 			if (tid != 1 && !tmp->child_reaper)
 | |
| 				goto out_free;
 | |
| 			retval = -EPERM;
 | |
| 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
 | |
| 				goto out_free;
 | |
| 			set_tid_size--;
 | |
| 		}
 | |
| 
 | |
| 		idr_preload(GFP_KERNEL);
 | |
| 		spin_lock_irq(&pidmap_lock);
 | |
| 
 | |
| 		if (tid) {
 | |
| 			nr = idr_alloc(&tmp->idr, NULL, tid,
 | |
| 				       tid + 1, GFP_ATOMIC);
 | |
| 			/*
 | |
| 			 * If ENOSPC is returned it means that the PID is
 | |
| 			 * alreay in use. Return EEXIST in that case.
 | |
| 			 */
 | |
| 			if (nr == -ENOSPC)
 | |
| 				nr = -EEXIST;
 | |
| 		} else {
 | |
| 			int pid_min = 1;
 | |
| 			/*
 | |
| 			 * init really needs pid 1, but after reaching the
 | |
| 			 * maximum wrap back to RESERVED_PIDS
 | |
| 			 */
 | |
| 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
 | |
| 				pid_min = RESERVED_PIDS;
 | |
| 
 | |
| 			/*
 | |
| 			 * Store a null pointer so find_pid_ns does not find
 | |
| 			 * a partially initialized PID (see below).
 | |
| 			 */
 | |
| 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
 | |
| 					      pid_max, GFP_ATOMIC);
 | |
| 		}
 | |
| 		spin_unlock_irq(&pidmap_lock);
 | |
| 		idr_preload_end();
 | |
| 
 | |
| 		if (nr < 0) {
 | |
| 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		pid->numbers[i].nr = nr;
 | |
| 		pid->numbers[i].ns = tmp;
 | |
| 		tmp = tmp->parent;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ENOMEM is not the most obvious choice especially for the case
 | |
| 	 * where the child subreaper has already exited and the pid
 | |
| 	 * namespace denies the creation of any new processes. But ENOMEM
 | |
| 	 * is what we have exposed to userspace for a long time and it is
 | |
| 	 * documented behavior for pid namespaces. So we can't easily
 | |
| 	 * change it even if there were an error code better suited.
 | |
| 	 */
 | |
| 	retval = -ENOMEM;
 | |
| 
 | |
| 	get_pid_ns(ns);
 | |
| 	refcount_set(&pid->count, 1);
 | |
| 	spin_lock_init(&pid->lock);
 | |
| 	for (type = 0; type < PIDTYPE_MAX; ++type)
 | |
| 		INIT_HLIST_HEAD(&pid->tasks[type]);
 | |
| 
 | |
| 	init_waitqueue_head(&pid->wait_pidfd);
 | |
| 	INIT_HLIST_HEAD(&pid->inodes);
 | |
| 
 | |
| 	upid = pid->numbers + ns->level;
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	if (!(ns->pid_allocated & PIDNS_ADDING))
 | |
| 		goto out_unlock;
 | |
| 	for ( ; upid >= pid->numbers; --upid) {
 | |
| 		/* Make the PID visible to find_pid_ns. */
 | |
| 		idr_replace(&upid->ns->idr, pid, upid->nr);
 | |
| 		upid->ns->pid_allocated++;
 | |
| 	}
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 
 | |
| 	return pid;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 	put_pid_ns(ns);
 | |
| 
 | |
| out_free:
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	while (++i <= ns->level) {
 | |
| 		upid = pid->numbers + i;
 | |
| 		idr_remove(&upid->ns->idr, upid->nr);
 | |
| 	}
 | |
| 
 | |
| 	/* On failure to allocate the first pid, reset the state */
 | |
| 	if (ns->pid_allocated == PIDNS_ADDING)
 | |
| 		idr_set_cursor(&ns->idr, 0);
 | |
| 
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| 
 | |
| 	kmem_cache_free(ns->pid_cachep, pid);
 | |
| 	return ERR_PTR(retval);
 | |
| }
 | |
| 
 | |
| void disable_pid_allocation(struct pid_namespace *ns)
 | |
| {
 | |
| 	spin_lock_irq(&pidmap_lock);
 | |
| 	ns->pid_allocated &= ~PIDNS_ADDING;
 | |
| 	spin_unlock_irq(&pidmap_lock);
 | |
| }
 | |
| 
 | |
| struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	return idr_find(&ns->idr, nr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_pid_ns);
 | |
| 
 | |
| struct pid *find_vpid(int nr)
 | |
| {
 | |
| 	return find_pid_ns(nr, task_active_pid_ns(current));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_vpid);
 | |
| 
 | |
| static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	return (type == PIDTYPE_PID) ?
 | |
| 		&task->thread_pid :
 | |
| 		&task->signal->pids[type];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * attach_pid() must be called with the tasklist_lock write-held.
 | |
|  */
 | |
| void attach_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid = *task_pid_ptr(task, type);
 | |
| 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
 | |
| }
 | |
| 
 | |
| static void __change_pid(struct task_struct *task, enum pid_type type,
 | |
| 			struct pid *new)
 | |
| {
 | |
| 	struct pid **pid_ptr = task_pid_ptr(task, type);
 | |
| 	struct pid *pid;
 | |
| 	int tmp;
 | |
| 
 | |
| 	pid = *pid_ptr;
 | |
| 
 | |
| 	hlist_del_rcu(&task->pid_links[type]);
 | |
| 	*pid_ptr = new;
 | |
| 
 | |
| 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 | |
| 		if (pid_has_task(pid, tmp))
 | |
| 			return;
 | |
| 
 | |
| 	free_pid(pid);
 | |
| }
 | |
| 
 | |
| void detach_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	__change_pid(task, type, NULL);
 | |
| }
 | |
| 
 | |
| void change_pid(struct task_struct *task, enum pid_type type,
 | |
| 		struct pid *pid)
 | |
| {
 | |
| 	__change_pid(task, type, pid);
 | |
| 	attach_pid(task, type);
 | |
| }
 | |
| 
 | |
| void exchange_tids(struct task_struct *left, struct task_struct *right)
 | |
| {
 | |
| 	struct pid *pid1 = left->thread_pid;
 | |
| 	struct pid *pid2 = right->thread_pid;
 | |
| 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
 | |
| 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
 | |
| 
 | |
| 	/* Swap the single entry tid lists */
 | |
| 	hlists_swap_heads_rcu(head1, head2);
 | |
| 
 | |
| 	/* Swap the per task_struct pid */
 | |
| 	rcu_assign_pointer(left->thread_pid, pid2);
 | |
| 	rcu_assign_pointer(right->thread_pid, pid1);
 | |
| 
 | |
| 	/* Swap the cached value */
 | |
| 	WRITE_ONCE(left->pid, pid_nr(pid2));
 | |
| 	WRITE_ONCE(right->pid, pid_nr(pid1));
 | |
| }
 | |
| 
 | |
| /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 | |
| void transfer_pid(struct task_struct *old, struct task_struct *new,
 | |
| 			   enum pid_type type)
 | |
| {
 | |
| 	if (type == PIDTYPE_PID)
 | |
| 		new->thread_pid = old->thread_pid;
 | |
| 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
 | |
| }
 | |
| 
 | |
| struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result = NULL;
 | |
| 	if (pid) {
 | |
| 		struct hlist_node *first;
 | |
| 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 | |
| 					      lockdep_tasklist_lock_is_held());
 | |
| 		if (first)
 | |
| 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL(pid_task);
 | |
| 
 | |
| /*
 | |
|  * Must be called under rcu_read_lock().
 | |
|  */
 | |
| struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
 | |
| 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 | |
| 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 | |
| }
 | |
| 
 | |
| struct task_struct *find_task_by_vpid(pid_t vnr)
 | |
| {
 | |
| 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 | |
| }
 | |
| 
 | |
| struct task_struct *find_get_task_by_vpid(pid_t nr)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	task = find_task_by_vpid(nr);
 | |
| 	if (task)
 | |
| 		get_task_struct(task);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 | |
| 	rcu_read_unlock();
 | |
| 	return pid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_task_pid);
 | |
| 
 | |
| struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 | |
| {
 | |
| 	struct task_struct *result;
 | |
| 	rcu_read_lock();
 | |
| 	result = pid_task(pid, type);
 | |
| 	if (result)
 | |
| 		get_task_struct(result);
 | |
| 	rcu_read_unlock();
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_pid_task);
 | |
| 
 | |
| struct pid *find_get_pid(pid_t nr)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	pid = get_pid(find_vpid(nr));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return pid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_get_pid);
 | |
| 
 | |
| pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 | |
| {
 | |
| 	struct upid *upid;
 | |
| 	pid_t nr = 0;
 | |
| 
 | |
| 	if (pid && ns->level <= pid->level) {
 | |
| 		upid = &pid->numbers[ns->level];
 | |
| 		if (upid->ns == ns)
 | |
| 			nr = upid->nr;
 | |
| 	}
 | |
| 	return nr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pid_nr_ns);
 | |
| 
 | |
| pid_t pid_vnr(struct pid *pid)
 | |
| {
 | |
| 	return pid_nr_ns(pid, task_active_pid_ns(current));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pid_vnr);
 | |
| 
 | |
| pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 | |
| 			struct pid_namespace *ns)
 | |
| {
 | |
| 	pid_t nr = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (!ns)
 | |
| 		ns = task_active_pid_ns(current);
 | |
| 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return nr;
 | |
| }
 | |
| EXPORT_SYMBOL(__task_pid_nr_ns);
 | |
| 
 | |
| struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 | |
| {
 | |
| 	return ns_of_pid(task_pid(tsk));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(task_active_pid_ns);
 | |
| 
 | |
| /*
 | |
|  * Used by proc to find the first pid that is greater than or equal to nr.
 | |
|  *
 | |
|  * If there is a pid at nr this function is exactly the same as find_pid_ns.
 | |
|  */
 | |
| struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 | |
| {
 | |
| 	return idr_get_next(&ns->idr, &nr);
 | |
| }
 | |
| 
 | |
| struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
 | |
| {
 | |
| 	struct fd f;
 | |
| 	struct pid *pid;
 | |
| 
 | |
| 	f = fdget(fd);
 | |
| 	if (!f.file)
 | |
| 		return ERR_PTR(-EBADF);
 | |
| 
 | |
| 	pid = pidfd_pid(f.file);
 | |
| 	if (!IS_ERR(pid)) {
 | |
| 		get_pid(pid);
 | |
| 		*flags = f.file->f_flags;
 | |
| 	}
 | |
| 
 | |
| 	fdput(f);
 | |
| 	return pid;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_get_task() - Get the task associated with a pidfd
 | |
|  *
 | |
|  * @pidfd: pidfd for which to get the task
 | |
|  * @flags: flags associated with this pidfd
 | |
|  *
 | |
|  * Return the task associated with @pidfd. The function takes a reference on
 | |
|  * the returned task. The caller is responsible for releasing that reference.
 | |
|  *
 | |
|  * Currently, the process identified by @pidfd is always a thread-group leader.
 | |
|  * This restriction currently exists for all aspects of pidfds including pidfd
 | |
|  * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
 | |
|  * (only supports thread group leaders).
 | |
|  *
 | |
|  * Return: On success, the task_struct associated with the pidfd.
 | |
|  *	   On error, a negative errno number will be returned.
 | |
|  */
 | |
| struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
 | |
| {
 | |
| 	unsigned int f_flags;
 | |
| 	struct pid *pid;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	pid = pidfd_get_pid(pidfd, &f_flags);
 | |
| 	if (IS_ERR(pid))
 | |
| 		return ERR_CAST(pid);
 | |
| 
 | |
| 	task = get_pid_task(pid, PIDTYPE_TGID);
 | |
| 	put_pid(pid);
 | |
| 	if (!task)
 | |
| 		return ERR_PTR(-ESRCH);
 | |
| 
 | |
| 	*flags = f_flags;
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_create() - Create a new pid file descriptor.
 | |
|  *
 | |
|  * @pid:   struct pid that the pidfd will reference
 | |
|  * @flags: flags to pass
 | |
|  *
 | |
|  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
 | |
|  *
 | |
|  * Note, that this function can only be called after the fd table has
 | |
|  * been unshared to avoid leaking the pidfd to the new process.
 | |
|  *
 | |
|  * This symbol should not be explicitly exported to loadable modules.
 | |
|  *
 | |
|  * Return: On success, a cloexec pidfd is returned.
 | |
|  *         On error, a negative errno number will be returned.
 | |
|  */
 | |
| int pidfd_create(struct pid *pid, unsigned int flags)
 | |
| {
 | |
| 	int fd;
 | |
| 
 | |
| 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
 | |
| 			      flags | O_RDWR | O_CLOEXEC);
 | |
| 	if (fd < 0)
 | |
| 		put_pid(pid);
 | |
| 
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pidfd_open() - Open new pid file descriptor.
 | |
|  *
 | |
|  * @pid:   pid for which to retrieve a pidfd
 | |
|  * @flags: flags to pass
 | |
|  *
 | |
|  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
 | |
|  * the process identified by @pid. Currently, the process identified by
 | |
|  * @pid must be a thread-group leader. This restriction currently exists
 | |
|  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
 | |
|  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
 | |
|  * leaders).
 | |
|  *
 | |
|  * Return: On success, a cloexec pidfd is returned.
 | |
|  *         On error, a negative errno number will be returned.
 | |
|  */
 | |
| SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
 | |
| {
 | |
| 	int fd;
 | |
| 	struct pid *p;
 | |
| 
 | |
| 	if (flags & ~PIDFD_NONBLOCK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pid <= 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	p = find_get_pid(pid);
 | |
| 	if (!p)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	fd = pidfd_create(p, flags);
 | |
| 
 | |
| 	put_pid(p);
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| void __init pid_idr_init(void)
 | |
| {
 | |
| 	/* Verify no one has done anything silly: */
 | |
| 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
 | |
| 
 | |
| 	/* bump default and minimum pid_max based on number of cpus */
 | |
| 	pid_max = min(pid_max_max, max_t(int, pid_max,
 | |
| 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 | |
| 	pid_max_min = max_t(int, pid_max_min,
 | |
| 				PIDS_PER_CPU_MIN * num_possible_cpus());
 | |
| 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 | |
| 
 | |
| 	idr_init(&init_pid_ns.idr);
 | |
| 
 | |
| 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
 | |
| 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 | |
| }
 | |
| 
 | |
| static struct file *__pidfd_fget(struct task_struct *task, int fd)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = down_read_killable(&task->signal->exec_update_lock);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
 | |
| 		file = fget_task(task, fd);
 | |
| 	else
 | |
| 		file = ERR_PTR(-EPERM);
 | |
| 
 | |
| 	up_read(&task->signal->exec_update_lock);
 | |
| 
 | |
| 	return file ?: ERR_PTR(-EBADF);
 | |
| }
 | |
| 
 | |
| static int pidfd_getfd(struct pid *pid, int fd)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 	struct file *file;
 | |
| 	int ret;
 | |
| 
 | |
| 	task = get_pid_task(pid, PIDTYPE_PID);
 | |
| 	if (!task)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	file = __pidfd_fget(task, fd);
 | |
| 	put_task_struct(task);
 | |
| 	if (IS_ERR(file))
 | |
| 		return PTR_ERR(file);
 | |
| 
 | |
| 	ret = receive_fd(file, O_CLOEXEC);
 | |
| 	fput(file);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sys_pidfd_getfd() - Get a file descriptor from another process
 | |
|  *
 | |
|  * @pidfd:	the pidfd file descriptor of the process
 | |
|  * @fd:		the file descriptor number to get
 | |
|  * @flags:	flags on how to get the fd (reserved)
 | |
|  *
 | |
|  * This syscall gets a copy of a file descriptor from another process
 | |
|  * based on the pidfd, and file descriptor number. It requires that
 | |
|  * the calling process has the ability to ptrace the process represented
 | |
|  * by the pidfd. The process which is having its file descriptor copied
 | |
|  * is otherwise unaffected.
 | |
|  *
 | |
|  * Return: On success, a cloexec file descriptor is returned.
 | |
|  *         On error, a negative errno number will be returned.
 | |
|  */
 | |
| SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
 | |
| 		unsigned int, flags)
 | |
| {
 | |
| 	struct pid *pid;
 | |
| 	struct fd f;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* flags is currently unused - make sure it's unset */
 | |
| 	if (flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	f = fdget(pidfd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	pid = pidfd_pid(f.file);
 | |
| 	if (IS_ERR(pid))
 | |
| 		ret = PTR_ERR(pid);
 | |
| 	else
 | |
| 		ret = pidfd_getfd(pid, fd);
 | |
| 
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 |