mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-09-18 22:14:16 +00:00

Similarly to handling the physical timer accesses early when FEAT_ECV causes a trap, we try to handle the physical counter without returning to the general sysreg handling. More surprisingly, we introduce something similar for the virtual counter. Although this isn't necessary yet, it will prove useful on systems that have a broken CNTVOFF_EL2 implementation. Yes, they exist. Acked-by: Oliver Upton <oliver.upton@linux.dev> Link: https://lore.kernel.org/r/20241217142321.763801-7-maz@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
680 lines
17 KiB
C
680 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#include <hyp/switch.h>
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/percpu.h>
|
|
#include <uapi/linux/psci.h>
|
|
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_hyp.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/vectors.h>
|
|
|
|
/* VHE specific context */
|
|
DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
|
|
DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
|
|
DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
|
|
|
|
/*
|
|
* HCR_EL2 bits that the NV guest can freely change (no RES0/RES1
|
|
* semantics, irrespective of the configuration), but that cannot be
|
|
* applied to the actual HW as things would otherwise break badly.
|
|
*
|
|
* - TGE: we want the guest to use EL1, which is incompatible with
|
|
* this bit being set
|
|
*
|
|
* - API/APK: they are already accounted for by vcpu_load(), and can
|
|
* only take effect across a load/put cycle (such as ERET)
|
|
*/
|
|
#define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK)
|
|
|
|
static u64 __compute_hcr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 hcr = vcpu->arch.hcr_el2;
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return hcr;
|
|
|
|
if (is_hyp_ctxt(vcpu)) {
|
|
hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB;
|
|
|
|
if (!vcpu_el2_e2h_is_set(vcpu))
|
|
hcr |= HCR_NV1;
|
|
|
|
write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2);
|
|
}
|
|
|
|
return hcr | (__vcpu_sys_reg(vcpu, HCR_EL2) & ~NV_HCR_GUEST_EXCLUDE);
|
|
}
|
|
|
|
static void __activate_cptr_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 cptr;
|
|
|
|
/*
|
|
* With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
|
|
* CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
|
|
* except for some missing controls, such as TAM.
|
|
* In this case, CPTR_EL2.TAM has the same position with or without
|
|
* VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
|
|
* shift value for trapping the AMU accesses.
|
|
*/
|
|
u64 val = CPACR_ELx_TTA | CPTR_EL2_TAM;
|
|
|
|
if (guest_owns_fp_regs()) {
|
|
val |= CPACR_ELx_FPEN;
|
|
if (vcpu_has_sve(vcpu))
|
|
val |= CPACR_ELx_ZEN;
|
|
} else {
|
|
__activate_traps_fpsimd32(vcpu);
|
|
}
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
goto write;
|
|
|
|
/*
|
|
* The architecture is a bit crap (what a surprise): an EL2 guest
|
|
* writing to CPTR_EL2 via CPACR_EL1 can't set any of TCPAC or TTA,
|
|
* as they are RES0 in the guest's view. To work around it, trap the
|
|
* sucker using the very same bit it can't set...
|
|
*/
|
|
if (vcpu_el2_e2h_is_set(vcpu) && is_hyp_ctxt(vcpu))
|
|
val |= CPTR_EL2_TCPAC;
|
|
|
|
/*
|
|
* Layer the guest hypervisor's trap configuration on top of our own if
|
|
* we're in a nested context.
|
|
*/
|
|
if (is_hyp_ctxt(vcpu))
|
|
goto write;
|
|
|
|
cptr = vcpu_sanitised_cptr_el2(vcpu);
|
|
|
|
/*
|
|
* Pay attention, there's some interesting detail here.
|
|
*
|
|
* The CPTR_EL2.xEN fields are 2 bits wide, although there are only two
|
|
* meaningful trap states when HCR_EL2.TGE = 0 (running a nested guest):
|
|
*
|
|
* - CPTR_EL2.xEN = x0, traps are enabled
|
|
* - CPTR_EL2.xEN = x1, traps are disabled
|
|
*
|
|
* In other words, bit[0] determines if guest accesses trap or not. In
|
|
* the interest of simplicity, clear the entire field if the guest
|
|
* hypervisor has traps enabled to dispel any illusion of something more
|
|
* complicated taking place.
|
|
*/
|
|
if (!(SYS_FIELD_GET(CPACR_ELx, FPEN, cptr) & BIT(0)))
|
|
val &= ~CPACR_ELx_FPEN;
|
|
if (!(SYS_FIELD_GET(CPACR_ELx, ZEN, cptr) & BIT(0)))
|
|
val &= ~CPACR_ELx_ZEN;
|
|
|
|
if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
|
|
val |= cptr & CPACR_ELx_E0POE;
|
|
|
|
val |= cptr & CPTR_EL2_TCPAC;
|
|
|
|
write:
|
|
write_sysreg(val, cpacr_el1);
|
|
}
|
|
|
|
static void __activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val;
|
|
|
|
___activate_traps(vcpu, __compute_hcr(vcpu));
|
|
|
|
if (has_cntpoff()) {
|
|
struct timer_map map;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
/*
|
|
* We're entrering the guest. Reload the correct
|
|
* values from memory now that TGE is clear.
|
|
*/
|
|
if (map.direct_ptimer == vcpu_ptimer(vcpu))
|
|
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
|
if (map.direct_ptimer == vcpu_hptimer(vcpu))
|
|
val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
|
|
|
|
if (map.direct_ptimer) {
|
|
write_sysreg_el0(val, SYS_CNTP_CVAL);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
__activate_cptr_traps(vcpu);
|
|
|
|
write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
|
|
}
|
|
NOKPROBE_SYMBOL(__activate_traps);
|
|
|
|
static void __deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
const char *host_vectors = vectors;
|
|
|
|
___deactivate_traps(vcpu);
|
|
|
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
|
|
|
if (has_cntpoff()) {
|
|
struct timer_map map;
|
|
u64 val, offset;
|
|
|
|
get_timer_map(vcpu, &map);
|
|
|
|
/*
|
|
* We're exiting the guest. Save the latest CVAL value
|
|
* to memory and apply the offset now that TGE is set.
|
|
*/
|
|
val = read_sysreg_el0(SYS_CNTP_CVAL);
|
|
if (map.direct_ptimer == vcpu_ptimer(vcpu))
|
|
__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = val;
|
|
if (map.direct_ptimer == vcpu_hptimer(vcpu))
|
|
__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = val;
|
|
|
|
offset = read_sysreg_s(SYS_CNTPOFF_EL2);
|
|
|
|
if (map.direct_ptimer && offset) {
|
|
write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ARM errata 1165522 and 1530923 require the actual execution of the
|
|
* above before we can switch to the EL2/EL0 translation regime used by
|
|
* the host.
|
|
*/
|
|
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
|
|
|
|
kvm_reset_cptr_el2(vcpu);
|
|
|
|
if (!arm64_kernel_unmapped_at_el0())
|
|
host_vectors = __this_cpu_read(this_cpu_vector);
|
|
write_sysreg(host_vectors, vbar_el1);
|
|
}
|
|
NOKPROBE_SYMBOL(__deactivate_traps);
|
|
|
|
/*
|
|
* Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to
|
|
* prevent a race condition between context switching of PMUSERENR_EL0
|
|
* in __{activate,deactivate}_traps_common() and IPIs that attempts to
|
|
* update PMUSERENR_EL0. See also kvm_set_pmuserenr().
|
|
*/
|
|
static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__activate_traps_common(vcpu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__deactivate_traps_common(vcpu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu;
|
|
|
|
__vcpu_load_switch_sysregs(vcpu);
|
|
__vcpu_load_activate_traps(vcpu);
|
|
__load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
|
|
}
|
|
|
|
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
__vcpu_put_deactivate_traps(vcpu);
|
|
__vcpu_put_switch_sysregs(vcpu);
|
|
|
|
host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL;
|
|
}
|
|
|
|
static u64 compute_emulated_cntx_ctl_el0(struct kvm_vcpu *vcpu,
|
|
enum vcpu_sysreg reg)
|
|
{
|
|
unsigned long ctl;
|
|
u64 cval, cnt;
|
|
bool stat;
|
|
|
|
switch (reg) {
|
|
case CNTP_CTL_EL0:
|
|
cval = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
|
ctl = __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
|
|
cnt = compute_counter_value(vcpu_ptimer(vcpu));
|
|
break;
|
|
case CNTV_CTL_EL0:
|
|
cval = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
|
|
ctl = __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
|
|
cnt = compute_counter_value(vcpu_vtimer(vcpu));
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
stat = cval <= cnt;
|
|
__assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &ctl, stat);
|
|
|
|
return ctl;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_timer(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u64 esr, val;
|
|
|
|
/*
|
|
* Having FEAT_ECV allows for a better quality of timer emulation.
|
|
* However, this comes at a huge cost in terms of traps. Try and
|
|
* satisfy the reads from guest's hypervisor context without
|
|
* returning to the kernel if we can.
|
|
*/
|
|
if (!is_hyp_ctxt(vcpu))
|
|
return false;
|
|
|
|
esr = kvm_vcpu_get_esr(vcpu);
|
|
if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) != ESR_ELx_SYS64_ISS_DIR_READ)
|
|
return false;
|
|
|
|
switch (esr_sys64_to_sysreg(esr)) {
|
|
case SYS_CNTP_CTL_EL02:
|
|
val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0);
|
|
break;
|
|
case SYS_CNTP_CTL_EL0:
|
|
if (vcpu_el2_e2h_is_set(vcpu))
|
|
val = read_sysreg_el0(SYS_CNTP_CTL);
|
|
else
|
|
val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0);
|
|
break;
|
|
case SYS_CNTP_CVAL_EL02:
|
|
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
|
break;
|
|
case SYS_CNTP_CVAL_EL0:
|
|
if (vcpu_el2_e2h_is_set(vcpu)) {
|
|
val = read_sysreg_el0(SYS_CNTP_CVAL);
|
|
|
|
if (!has_cntpoff())
|
|
val -= timer_get_offset(vcpu_hptimer(vcpu));
|
|
} else {
|
|
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
|
|
}
|
|
break;
|
|
case SYS_CNTPCT_EL0:
|
|
case SYS_CNTPCTSS_EL0:
|
|
val = compute_counter_value(vcpu_hptimer(vcpu));
|
|
break;
|
|
case SYS_CNTV_CTL_EL02:
|
|
val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0);
|
|
break;
|
|
case SYS_CNTV_CTL_EL0:
|
|
if (vcpu_el2_e2h_is_set(vcpu))
|
|
val = read_sysreg_el0(SYS_CNTV_CTL);
|
|
else
|
|
val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0);
|
|
break;
|
|
case SYS_CNTV_CVAL_EL02:
|
|
val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
|
|
break;
|
|
case SYS_CNTV_CVAL_EL0:
|
|
if (vcpu_el2_e2h_is_set(vcpu))
|
|
val = read_sysreg_el0(SYS_CNTV_CVAL);
|
|
else
|
|
val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
|
|
break;
|
|
case SYS_CNTVCT_EL0:
|
|
case SYS_CNTVCTSS_EL0:
|
|
val = compute_counter_value(vcpu_hvtimer(vcpu));
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
|
|
__kvm_skip_instr(vcpu);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
u64 spsr, elr, mode;
|
|
|
|
/*
|
|
* Going through the whole put/load motions is a waste of time
|
|
* if this is a VHE guest hypervisor returning to its own
|
|
* userspace, or the hypervisor performing a local exception
|
|
* return. No need to save/restore registers, no need to
|
|
* switch S2 MMU. Just do the canonical ERET.
|
|
*
|
|
* Unless the trap has to be forwarded further down the line,
|
|
* of course...
|
|
*/
|
|
if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) ||
|
|
(__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET))
|
|
return false;
|
|
|
|
spsr = read_sysreg_el1(SYS_SPSR);
|
|
mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
|
|
|
|
switch (mode) {
|
|
case PSR_MODE_EL0t:
|
|
if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
|
|
return false;
|
|
break;
|
|
case PSR_MODE_EL2t:
|
|
mode = PSR_MODE_EL1t;
|
|
break;
|
|
case PSR_MODE_EL2h:
|
|
mode = PSR_MODE_EL1h;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
/* If ERETAx fails, take the slow path */
|
|
if (esr_iss_is_eretax(esr)) {
|
|
if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr)))
|
|
return false;
|
|
} else {
|
|
elr = read_sysreg_el1(SYS_ELR);
|
|
}
|
|
|
|
spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
|
|
|
|
write_sysreg_el2(spsr, SYS_SPSR);
|
|
write_sysreg_el2(elr, SYS_ELR);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
|
|
{
|
|
__fpsimd_save_state(*host_data_ptr(fpsimd_state));
|
|
|
|
if (kvm_has_fpmr(vcpu->kvm))
|
|
**host_data_ptr(fpmr_ptr) = read_sysreg_s(SYS_FPMR);
|
|
}
|
|
|
|
static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
int ret = -EINVAL;
|
|
u32 instr;
|
|
u64 val;
|
|
|
|
/*
|
|
* Ideally, we would never trap on EL2 S1 TLB invalidations using
|
|
* the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
|
|
* But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
|
|
* meaning that we can't track changes to the virtual TGE bit. So we
|
|
* have to leave HCR_EL2.TTLB set on the host. Oopsie...
|
|
*
|
|
* Try and handle these invalidation as quickly as possible, without
|
|
* fully exiting. Note that we don't need to consider any forwarding
|
|
* here, as having E2H+TGE set is the very definition of being
|
|
* InHost.
|
|
*
|
|
* For the lesser hypervisors out there that have failed to get on
|
|
* with the VHE program, we can also handle the nVHE style of EL2
|
|
* invalidation.
|
|
*/
|
|
if (!(is_hyp_ctxt(vcpu)))
|
|
return false;
|
|
|
|
instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
|
|
|
|
if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
|
|
vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
|
|
kvm_supported_tlbi_s1e2_op (vcpu, instr))
|
|
ret = __kvm_tlbi_s1e2(NULL, val, instr);
|
|
|
|
if (ret)
|
|
return false;
|
|
|
|
__kvm_skip_instr(vcpu);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
int rt;
|
|
|
|
if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1)
|
|
return false;
|
|
|
|
rt = kvm_vcpu_sys_get_rt(vcpu);
|
|
|
|
if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) {
|
|
vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2));
|
|
} else {
|
|
vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2);
|
|
__activate_cptr_traps(vcpu);
|
|
}
|
|
|
|
__kvm_skip_instr(vcpu);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
return false;
|
|
|
|
if (sysreg != SYS_ZCR_EL2)
|
|
return false;
|
|
|
|
if (guest_owns_fp_regs())
|
|
return false;
|
|
|
|
/*
|
|
* ZCR_EL2 traps are handled in the slow path, with the expectation
|
|
* that the guest's FP context has already been loaded onto the CPU.
|
|
*
|
|
* Load the guest's FP context and unconditionally forward to the
|
|
* slow path for handling (i.e. return false).
|
|
*/
|
|
kvm_hyp_handle_fpsimd(vcpu, exit_code);
|
|
return false;
|
|
}
|
|
|
|
static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
|
|
return true;
|
|
|
|
if (kvm_hyp_handle_timer(vcpu, exit_code))
|
|
return true;
|
|
|
|
if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code))
|
|
return true;
|
|
|
|
if (kvm_hyp_handle_zcr_el2(vcpu, exit_code))
|
|
return true;
|
|
|
|
return kvm_hyp_handle_sysreg(vcpu, exit_code);
|
|
}
|
|
|
|
static const exit_handler_fn hyp_exit_handlers[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = NULL,
|
|
[ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
|
|
[ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe,
|
|
[ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
|
|
[ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
|
|
[ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
|
|
[ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
|
|
[ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
|
|
[ESR_ELx_EC_ERET] = kvm_hyp_handle_eret,
|
|
[ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops,
|
|
};
|
|
|
|
static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
|
|
{
|
|
return hyp_exit_handlers;
|
|
}
|
|
|
|
static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
/*
|
|
* If we were in HYP context on entry, adjust the PSTATE view
|
|
* so that the usual helpers work correctly.
|
|
*/
|
|
if (vcpu_has_nv(vcpu) && (read_sysreg(hcr_el2) & HCR_NV)) {
|
|
u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
|
|
|
|
switch (mode) {
|
|
case PSR_MODE_EL1t:
|
|
mode = PSR_MODE_EL2t;
|
|
break;
|
|
case PSR_MODE_EL1h:
|
|
mode = PSR_MODE_EL2h;
|
|
break;
|
|
}
|
|
|
|
*vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
|
|
*vcpu_cpsr(vcpu) |= mode;
|
|
}
|
|
}
|
|
|
|
/* Switch to the guest for VHE systems running in EL2 */
|
|
static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_cpu_context *guest_ctxt;
|
|
u64 exit_code;
|
|
|
|
host_ctxt = host_data_ptr(host_ctxt);
|
|
guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
sysreg_save_host_state_vhe(host_ctxt);
|
|
|
|
/*
|
|
* Note that ARM erratum 1165522 requires us to configure both stage 1
|
|
* and stage 2 translation for the guest context before we clear
|
|
* HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been
|
|
* loaded on the CPU in kvm_vcpu_load_vhe().
|
|
*/
|
|
__activate_traps(vcpu);
|
|
|
|
__kvm_adjust_pc(vcpu);
|
|
|
|
sysreg_restore_guest_state_vhe(guest_ctxt);
|
|
__debug_switch_to_guest(vcpu);
|
|
|
|
do {
|
|
/* Jump in the fire! */
|
|
exit_code = __guest_enter(vcpu);
|
|
|
|
/* And we're baaack! */
|
|
} while (fixup_guest_exit(vcpu, &exit_code));
|
|
|
|
sysreg_save_guest_state_vhe(guest_ctxt);
|
|
|
|
__deactivate_traps(vcpu);
|
|
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
if (guest_owns_fp_regs())
|
|
__fpsimd_save_fpexc32(vcpu);
|
|
|
|
__debug_switch_to_host(vcpu);
|
|
|
|
return exit_code;
|
|
}
|
|
NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
|
|
|
|
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
|
|
local_daif_mask();
|
|
|
|
/*
|
|
* Having IRQs masked via PMR when entering the guest means the GIC
|
|
* will not signal the CPU of interrupts of lower priority, and the
|
|
* only way to get out will be via guest exceptions.
|
|
* Naturally, we want to avoid this.
|
|
*
|
|
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
|
|
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
|
|
*/
|
|
pmr_sync();
|
|
|
|
ret = __kvm_vcpu_run_vhe(vcpu);
|
|
|
|
/*
|
|
* local_daif_restore() takes care to properly restore PSTATE.DAIF
|
|
* and the GIC PMR if the host is using IRQ priorities.
|
|
*/
|
|
local_daif_restore(DAIF_PROCCTX_NOIRQ);
|
|
|
|
/*
|
|
* When we exit from the guest we change a number of CPU configuration
|
|
* parameters, such as traps. We rely on the isb() in kvm_call_hyp*()
|
|
* to make sure these changes take effect before running the host or
|
|
* additional guests.
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par)
|
|
{
|
|
struct kvm_cpu_context *host_ctxt;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
host_ctxt = host_data_ptr(host_ctxt);
|
|
vcpu = host_ctxt->__hyp_running_vcpu;
|
|
|
|
__deactivate_traps(vcpu);
|
|
sysreg_restore_host_state_vhe(host_ctxt);
|
|
|
|
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
|
|
spsr, elr,
|
|
read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
|
|
read_sysreg(hpfar_el2), par, vcpu);
|
|
}
|
|
NOKPROBE_SYMBOL(__hyp_call_panic);
|
|
|
|
void __noreturn hyp_panic(void)
|
|
{
|
|
u64 spsr = read_sysreg_el2(SYS_SPSR);
|
|
u64 elr = read_sysreg_el2(SYS_ELR);
|
|
u64 par = read_sysreg_par();
|
|
|
|
__hyp_call_panic(spsr, elr, par);
|
|
}
|
|
|
|
asmlinkage void kvm_unexpected_el2_exception(void)
|
|
{
|
|
__kvm_unexpected_el2_exception();
|
|
}
|