mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 ec9c82e03a
			
		
	
	
		ec9c82e03a
		
	
	
	
	
		
			
			Declaring the rseq_cs field as a union between __u64 and two __u32 allows both 32-bit and 64-bit kernels to read the full __u64, and therefore validate that a 32-bit user-space cleared the upper 32 bits, thus ensuring a consistent behavior between native 32-bit kernels and 32-bit compat tasks on 64-bit kernels. Check that the rseq_cs value read is < TASK_SIZE. The asm/byteorder.h header needs to be included by rseq.h, now that it is not using linux/types_32_64.h anymore. Considering that only __32 and __u64 types are declared in linux/rseq.h, the linux/types.h header should always be included for both kernel and user-space code: including stdint.h is just for u64 and u32, which are not used in this header at all. Use copy_from_user()/clear_user() to interact with a 64-bit field, because arm32 does not implement 64-bit __get_user, and ppc32 does not 64-bit get_user. Considering that the rseq_cs pointer does not need to be loaded/stored with single-copy atomicity from the kernel anymore, we can simply use copy_from_user()/clear_user(). Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-api@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Watson <davejwatson@fb.com> Cc: Paul Turner <pjt@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Chris Lameter <cl@linux.com> Cc: Ben Maurer <bmaurer@fb.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Joel Fernandes <joelaf@google.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20180709195155.7654-5-mathieu.desnoyers@efficios.com
		
			
				
	
	
		
			367 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			367 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Restartable sequences system call
 | |
|  *
 | |
|  * Copyright (C) 2015, Google, Inc.,
 | |
|  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
 | |
|  * Copyright (C) 2015-2018, EfficiOS Inc.,
 | |
|  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/rseq.h>
 | |
| #include <linux/types.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/rseq.h>
 | |
| 
 | |
| #define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
 | |
| 				       RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Restartable sequences are a lightweight interface that allows
 | |
|  * user-level code to be executed atomically relative to scheduler
 | |
|  * preemption and signal delivery. Typically used for implementing
 | |
|  * per-cpu operations.
 | |
|  *
 | |
|  * It allows user-space to perform update operations on per-cpu data
 | |
|  * without requiring heavy-weight atomic operations.
 | |
|  *
 | |
|  * Detailed algorithm of rseq user-space assembly sequences:
 | |
|  *
 | |
|  *                     init(rseq_cs)
 | |
|  *                     cpu = TLS->rseq::cpu_id_start
 | |
|  *   [1]               TLS->rseq::rseq_cs = rseq_cs
 | |
|  *   [start_ip]        ----------------------------
 | |
|  *   [2]               if (cpu != TLS->rseq::cpu_id)
 | |
|  *                             goto abort_ip;
 | |
|  *   [3]               <last_instruction_in_cs>
 | |
|  *   [post_commit_ip]  ----------------------------
 | |
|  *
 | |
|  *   The address of jump target abort_ip must be outside the critical
 | |
|  *   region, i.e.:
 | |
|  *
 | |
|  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
 | |
|  *
 | |
|  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
 | |
|  *   userspace that can handle being interrupted between any of those
 | |
|  *   instructions, and then resumed to the abort_ip.
 | |
|  *
 | |
|  *   1.  Userspace stores the address of the struct rseq_cs assembly
 | |
|  *       block descriptor into the rseq_cs field of the registered
 | |
|  *       struct rseq TLS area. This update is performed through a single
 | |
|  *       store within the inline assembly instruction sequence.
 | |
|  *       [start_ip]
 | |
|  *
 | |
|  *   2.  Userspace tests to check whether the current cpu_id field match
 | |
|  *       the cpu number loaded before start_ip, branching to abort_ip
 | |
|  *       in case of a mismatch.
 | |
|  *
 | |
|  *       If the sequence is preempted or interrupted by a signal
 | |
|  *       at or after start_ip and before post_commit_ip, then the kernel
 | |
|  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
 | |
|  *       ip to abort_ip before returning to user-space, so the preempted
 | |
|  *       execution resumes at abort_ip.
 | |
|  *
 | |
|  *   3.  Userspace critical section final instruction before
 | |
|  *       post_commit_ip is the commit. The critical section is
 | |
|  *       self-terminating.
 | |
|  *       [post_commit_ip]
 | |
|  *
 | |
|  *   4.  <success>
 | |
|  *
 | |
|  *   On failure at [2], or if interrupted by preempt or signal delivery
 | |
|  *   between [1] and [3]:
 | |
|  *
 | |
|  *       [abort_ip]
 | |
|  *   F1. <failure>
 | |
|  */
 | |
| 
 | |
| static int rseq_update_cpu_id(struct task_struct *t)
 | |
| {
 | |
| 	u32 cpu_id = raw_smp_processor_id();
 | |
| 
 | |
| 	if (put_user(cpu_id, &t->rseq->cpu_id_start))
 | |
| 		return -EFAULT;
 | |
| 	if (put_user(cpu_id, &t->rseq->cpu_id))
 | |
| 		return -EFAULT;
 | |
| 	trace_rseq_update(t);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rseq_reset_rseq_cpu_id(struct task_struct *t)
 | |
| {
 | |
| 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset cpu_id_start to its initial state (0).
 | |
| 	 */
 | |
| 	if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
 | |
| 		return -EFAULT;
 | |
| 	/*
 | |
| 	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
 | |
| 	 * in after unregistration can figure out that rseq needs to be
 | |
| 	 * registered again.
 | |
| 	 */
 | |
| 	if (put_user(cpu_id, &t->rseq->cpu_id))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
 | |
| {
 | |
| 	struct rseq_cs __user *urseq_cs;
 | |
| 	u64 ptr;
 | |
| 	u32 __user *usig;
 | |
| 	u32 sig;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (copy_from_user(&ptr, &t->rseq->rseq_cs.ptr64, sizeof(ptr)))
 | |
| 		return -EFAULT;
 | |
| 	if (!ptr) {
 | |
| 		memset(rseq_cs, 0, sizeof(*rseq_cs));
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (ptr >= TASK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
 | |
| 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (rseq_cs->start_ip >= TASK_SIZE ||
 | |
| 	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
 | |
| 	    rseq_cs->abort_ip >= TASK_SIZE ||
 | |
| 	    rseq_cs->version > 0)
 | |
| 		return -EINVAL;
 | |
| 	/* Check for overflow. */
 | |
| 	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
 | |
| 		return -EINVAL;
 | |
| 	/* Ensure that abort_ip is not in the critical section. */
 | |
| 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
 | |
| 	ret = get_user(sig, usig);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (current->rseq_sig != sig) {
 | |
| 		printk_ratelimited(KERN_WARNING
 | |
| 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
 | |
| 			sig, current->rseq_sig, current->pid, usig);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
 | |
| {
 | |
| 	u32 flags, event_mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Get thread flags. */
 | |
| 	ret = get_user(flags, &t->rseq->flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Take critical section flags into account. */
 | |
| 	flags |= cs_flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restart on signal can only be inhibited when restart on
 | |
| 	 * preempt and restart on migrate are inhibited too. Otherwise,
 | |
| 	 * a preempted signal handler could fail to restart the prior
 | |
| 	 * execution context on sigreturn.
 | |
| 	 */
 | |
| 	if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
 | |
| 		     (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
 | |
| 		     RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Load and clear event mask atomically with respect to
 | |
| 	 * scheduler preemption.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	event_mask = t->rseq_event_mask;
 | |
| 	t->rseq_event_mask = 0;
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return !!(event_mask & ~flags);
 | |
| }
 | |
| 
 | |
| static int clear_rseq_cs(struct task_struct *t)
 | |
| {
 | |
| 	/*
 | |
| 	 * The rseq_cs field is set to NULL on preemption or signal
 | |
| 	 * delivery on top of rseq assembly block, as well as on top
 | |
| 	 * of code outside of the rseq assembly block. This performs
 | |
| 	 * a lazy clear of the rseq_cs field.
 | |
| 	 *
 | |
| 	 * Set rseq_cs to NULL.
 | |
| 	 */
 | |
| 	if (clear_user(&t->rseq->rseq_cs.ptr64, sizeof(t->rseq->rseq_cs.ptr64)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned comparison will be true when ip >= start_ip, and when
 | |
|  * ip < start_ip + post_commit_offset.
 | |
|  */
 | |
| static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
 | |
| {
 | |
| 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
 | |
| }
 | |
| 
 | |
| static int rseq_ip_fixup(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ip = instruction_pointer(regs);
 | |
| 	struct task_struct *t = current;
 | |
| 	struct rseq_cs rseq_cs;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = rseq_get_rseq_cs(t, &rseq_cs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle potentially not being within a critical section.
 | |
| 	 * If not nested over a rseq critical section, restart is useless.
 | |
| 	 * Clear the rseq_cs pointer and return.
 | |
| 	 */
 | |
| 	if (!in_rseq_cs(ip, &rseq_cs))
 | |
| 		return clear_rseq_cs(t);
 | |
| 	ret = rseq_need_restart(t, rseq_cs.flags);
 | |
| 	if (ret <= 0)
 | |
| 		return ret;
 | |
| 	ret = clear_rseq_cs(t);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
 | |
| 			    rseq_cs.abort_ip);
 | |
| 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This resume handler must always be executed between any of:
 | |
|  * - preemption,
 | |
|  * - signal delivery,
 | |
|  * and return to user-space.
 | |
|  *
 | |
|  * This is how we can ensure that the entire rseq critical section,
 | |
|  * consisting of both the C part and the assembly instruction sequence,
 | |
|  * will issue the commit instruction only if executed atomically with
 | |
|  * respect to other threads scheduled on the same CPU, and with respect
 | |
|  * to signal handlers.
 | |
|  */
 | |
| void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *t = current;
 | |
| 	int ret, sig;
 | |
| 
 | |
| 	if (unlikely(t->flags & PF_EXITING))
 | |
| 		return;
 | |
| 	if (unlikely(!access_ok(VERIFY_WRITE, t->rseq, sizeof(*t->rseq))))
 | |
| 		goto error;
 | |
| 	ret = rseq_ip_fixup(regs);
 | |
| 	if (unlikely(ret < 0))
 | |
| 		goto error;
 | |
| 	if (unlikely(rseq_update_cpu_id(t)))
 | |
| 		goto error;
 | |
| 	return;
 | |
| 
 | |
| error:
 | |
| 	sig = ksig ? ksig->sig : 0;
 | |
| 	force_sigsegv(sig, t);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RSEQ
 | |
| 
 | |
| /*
 | |
|  * Terminate the process if a syscall is issued within a restartable
 | |
|  * sequence.
 | |
|  */
 | |
| void rseq_syscall(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long ip = instruction_pointer(regs);
 | |
| 	struct task_struct *t = current;
 | |
| 	struct rseq_cs rseq_cs;
 | |
| 
 | |
| 	if (!t->rseq)
 | |
| 		return;
 | |
| 	if (!access_ok(VERIFY_READ, t->rseq, sizeof(*t->rseq)) ||
 | |
| 	    rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
 | |
| 		force_sig(SIGSEGV, t);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * sys_rseq - setup restartable sequences for caller thread.
 | |
|  */
 | |
| SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
 | |
| 		int, flags, u32, sig)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (flags & RSEQ_FLAG_UNREGISTER) {
 | |
| 		/* Unregister rseq for current thread. */
 | |
| 		if (current->rseq != rseq || !current->rseq)
 | |
| 			return -EINVAL;
 | |
| 		if (current->rseq_len != rseq_len)
 | |
| 			return -EINVAL;
 | |
| 		if (current->rseq_sig != sig)
 | |
| 			return -EPERM;
 | |
| 		ret = rseq_reset_rseq_cpu_id(current);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		current->rseq = NULL;
 | |
| 		current->rseq_len = 0;
 | |
| 		current->rseq_sig = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (current->rseq) {
 | |
| 		/*
 | |
| 		 * If rseq is already registered, check whether
 | |
| 		 * the provided address differs from the prior
 | |
| 		 * one.
 | |
| 		 */
 | |
| 		if (current->rseq != rseq || current->rseq_len != rseq_len)
 | |
| 			return -EINVAL;
 | |
| 		if (current->rseq_sig != sig)
 | |
| 			return -EPERM;
 | |
| 		/* Already registered. */
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there was no rseq previously registered,
 | |
| 	 * ensure the provided rseq is properly aligned and valid.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
 | |
| 	    rseq_len != sizeof(*rseq))
 | |
| 		return -EINVAL;
 | |
| 	if (!access_ok(VERIFY_WRITE, rseq, rseq_len))
 | |
| 		return -EFAULT;
 | |
| 	current->rseq = rseq;
 | |
| 	current->rseq_len = rseq_len;
 | |
| 	current->rseq_sig = sig;
 | |
| 	/*
 | |
| 	 * If rseq was previously inactive, and has just been
 | |
| 	 * registered, ensure the cpu_id_start and cpu_id fields
 | |
| 	 * are updated before returning to user-space.
 | |
| 	 */
 | |
| 	rseq_set_notify_resume(current);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |