linux/drivers/gpu/drm/msm/adreno/adreno_gpu.c
Linus Torvalds 4f9701057a IOMMU Updates for Linux v5.13
Including:
 
 	- Big cleanup of almost unsused parts of the IOMMU API by
 	  Christoph Hellwig. This mostly affects the Freescale PAMU
 	  driver.
 
 	- New IOMMU driver for Unisoc SOCs
 
 	- ARM SMMU Updates from Will:
 
 	  - SMMUv3: Drop vestigial PREFETCH_ADDR support
 	  - SMMUv3: Elide TLB sync logic for empty gather
 	  - SMMUv3: Fix "Service Failure Mode" handling
     	  - SMMUv2: New Qualcomm compatible string
 
 	- Removal of the AMD IOMMU performance counter writeable check
 	  on AMD. It caused long boot delays on some machines and is
 	  only needed to work around an errata on some older (possibly
 	  pre-production) chips. If someone is still hit by this
 	  hardware issue anyway the performance counters will just
 	  return 0.
 
 	- Support for targeted invalidations in the AMD IOMMU driver.
 	  Before that the driver only invalidated a single 4k page or the
 	  whole IO/TLB for an address space. This has been extended now
 	  and is mostly useful for emulated AMD IOMMUs.
 
 	- Several fixes for the Shared Virtual Memory support in the
 	  Intel VT-d driver
 
 	- Mediatek drivers can now be built as modules
 
 	- Re-introduction of the forcedac boot option which got lost
 	  when converting the Intel VT-d driver to the common dma-iommu
 	  implementation.
 
 	- Extension of the IOMMU device registration interface and
 	  support iommu_ops to be const again when drivers are built as
 	  modules.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmCMEIoACgkQK/BELZcB
 GuOu9xAAvg6aR0uHlxvRq6cgNnHN9Ltp5+t3qFYtRRrauY0iOPMO62k0QQli5shX
 CGeczD0e59KAZqI0zNJnQn8hMY5dg7XVkFCC5BrSzuCDCtwJZ0N5Tq3pfUlaV1rw
 BJf41t79Fd+jp7kn53tu+vRAfYZ3+sLOx/6U3c15pqKRZSkyFWbQllOtD3J5LnLu
 1PyPlfiNpMwCajiS7aQbN+fuJ/lKIFeA2MDPOsCBzhbfxiJUqJxZOKAZO3rOjFfK
 feTibqQ+3Zz6MPXt9st1cvPpy8jCosv81OY6Knqvxf/oB5q+fEdi2uNrKISonb/t
 Fw331oOIwg2A+HOpwC9MN1AumOIqiHSWWENAMk9SlP+TMIWKQ8kZreyI6IEB23dV
 +QvP3DVA+CfLwtNY/Zh0IqKh28D+IHlKbpWNU1m+9AUe468mV/MTjfwxr9Yfffhm
 LZ6C0DgFdmtqv8jPuDGUOgo3RNeN8bLnUSEHG9gHibA+RKujl5BWDjKkwILqMQTt
 Ysdsu8TiNtFIULomizqCpgqEbQfW8TLFvASXCM1VMQ/PDURxvchZPxFDJonYXy+K
 z2HGaG3eUE07YrAdRKH69aMVIbmS+sjEhvmi4xZ1Lh7wWcIE2AZVvO8qNb+Ckcp3
 4tLPPDksm/iQngnFf6gdgH3qv4rgbzE4+74GXqeANiQCjY9dSJI=
 =qF2C
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull iommu updates from Joerg Roedel:

 - Big cleanup of almost unsused parts of the IOMMU API by Christoph
   Hellwig. This mostly affects the Freescale PAMU driver.

 - New IOMMU driver for Unisoc SOCs

 - ARM SMMU Updates from Will:
     - Drop vestigial PREFETCH_ADDR support (SMMUv3)
     - Elide TLB sync logic for empty gather (SMMUv3)
     - Fix "Service Failure Mode" handling (SMMUv3)
     - New Qualcomm compatible string (SMMUv2)

 - Removal of the AMD IOMMU performance counter writeable check on AMD.
   It caused long boot delays on some machines and is only needed to
   work around an errata on some older (possibly pre-production) chips.
   If someone is still hit by this hardware issue anyway the performance
   counters will just return 0.

 - Support for targeted invalidations in the AMD IOMMU driver. Before
   that the driver only invalidated a single 4k page or the whole IO/TLB
   for an address space. This has been extended now and is mostly useful
   for emulated AMD IOMMUs.

 - Several fixes for the Shared Virtual Memory support in the Intel VT-d
   driver

 - Mediatek drivers can now be built as modules

 - Re-introduction of the forcedac boot option which got lost when
   converting the Intel VT-d driver to the common dma-iommu
   implementation.

 - Extension of the IOMMU device registration interface and support
   iommu_ops to be const again when drivers are built as modules.

* tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (84 commits)
  iommu: Streamline registration interface
  iommu: Statically set module owner
  iommu/mediatek-v1: Add error handle for mtk_iommu_probe
  iommu/mediatek-v1: Avoid build fail when build as module
  iommu/mediatek: Always enable the clk on resume
  iommu/fsl-pamu: Fix uninitialized variable warning
  iommu/vt-d: Force to flush iotlb before creating superpage
  iommu/amd: Put newline after closing bracket in warning
  iommu/vt-d: Fix an error handling path in 'intel_prepare_irq_remapping()'
  iommu/vt-d: Fix build error of pasid_enable_wpe() with !X86
  iommu/amd: Remove performance counter pre-initialization test
  Revert "iommu/amd: Fix performance counter initialization"
  iommu/amd: Remove duplicate check of devid
  iommu/exynos: Remove unneeded local variable initialization
  iommu/amd: Page-specific invalidations for more than one page
  iommu/arm-smmu-v3: Remove the unused fields for PREFETCH_CONFIG command
  iommu/vt-d: Avoid unnecessary cache flush in pasid entry teardown
  iommu/vt-d: Invalidate PASID cache when root/context entry changed
  iommu/vt-d: Remove WO permissions on second-level paging entries
  iommu/vt-d: Report the right page fault address
  ...
2021-05-01 09:33:00 -07:00

952 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
*/
#include <linux/ascii85.h>
#include <linux/interconnect.h>
#include <linux/qcom_scm.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <soc/qcom/ocmem.h>
#include "adreno_gpu.h"
#include "a6xx_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
static bool zap_available = true;
static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname,
u32 pasid)
{
struct device *dev = &gpu->pdev->dev;
const struct firmware *fw;
const char *signed_fwname = NULL;
struct device_node *np, *mem_np;
struct resource r;
phys_addr_t mem_phys;
ssize_t mem_size;
void *mem_region = NULL;
int ret;
if (!IS_ENABLED(CONFIG_ARCH_QCOM)) {
zap_available = false;
return -EINVAL;
}
np = of_get_child_by_name(dev->of_node, "zap-shader");
if (!np) {
zap_available = false;
return -ENODEV;
}
mem_np = of_parse_phandle(np, "memory-region", 0);
of_node_put(np);
if (!mem_np) {
zap_available = false;
return -EINVAL;
}
ret = of_address_to_resource(mem_np, 0, &r);
of_node_put(mem_np);
if (ret)
return ret;
mem_phys = r.start;
/*
* Check for a firmware-name property. This is the new scheme
* to handle firmware that may be signed with device specific
* keys, allowing us to have a different zap fw path for different
* devices.
*
* If the firmware-name property is found, we bypass the
* adreno_request_fw() mechanism, because we don't need to handle
* the /lib/firmware/qcom/... vs /lib/firmware/... case.
*
* If the firmware-name property is not found, for backwards
* compatibility we fall back to the fwname from the gpulist
* table.
*/
of_property_read_string_index(np, "firmware-name", 0, &signed_fwname);
if (signed_fwname) {
fwname = signed_fwname;
ret = request_firmware_direct(&fw, fwname, gpu->dev->dev);
if (ret)
fw = ERR_PTR(ret);
} else if (fwname) {
/* Request the MDT file from the default location: */
fw = adreno_request_fw(to_adreno_gpu(gpu), fwname);
} else {
/*
* For new targets, we require the firmware-name property,
* if a zap-shader is required, rather than falling back
* to a firmware name specified in gpulist.
*
* Because the firmware is signed with a (potentially)
* device specific key, having the name come from gpulist
* was a bad idea, and is only provided for backwards
* compatibility for older targets.
*/
return -ENODEV;
}
if (IS_ERR(fw)) {
DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname);
return PTR_ERR(fw);
}
/* Figure out how much memory we need */
mem_size = qcom_mdt_get_size(fw);
if (mem_size < 0) {
ret = mem_size;
goto out;
}
if (mem_size > resource_size(&r)) {
DRM_DEV_ERROR(dev,
"memory region is too small to load the MDT\n");
ret = -E2BIG;
goto out;
}
/* Allocate memory for the firmware image */
mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC);
if (!mem_region) {
ret = -ENOMEM;
goto out;
}
/*
* Load the rest of the MDT
*
* Note that we could be dealing with two different paths, since
* with upstream linux-firmware it would be in a qcom/ subdir..
* adreno_request_fw() handles this, but qcom_mdt_load() does
* not. But since we've already gotten through adreno_request_fw()
* we know which of the two cases it is:
*/
if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) {
ret = qcom_mdt_load(dev, fw, fwname, pasid,
mem_region, mem_phys, mem_size, NULL);
} else {
char *newname;
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
ret = qcom_mdt_load(dev, fw, newname, pasid,
mem_region, mem_phys, mem_size, NULL);
kfree(newname);
}
if (ret)
goto out;
/* Send the image to the secure world */
ret = qcom_scm_pas_auth_and_reset(pasid);
/*
* If the scm call returns -EOPNOTSUPP we assume that this target
* doesn't need/support the zap shader so quietly fail
*/
if (ret == -EOPNOTSUPP)
zap_available = false;
else if (ret)
DRM_DEV_ERROR(dev, "Unable to authorize the image\n");
out:
if (mem_region)
memunmap(mem_region);
release_firmware(fw);
return ret;
}
int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct platform_device *pdev = gpu->pdev;
/* Short cut if we determine the zap shader isn't available/needed */
if (!zap_available)
return -ENODEV;
/* We need SCM to be able to load the firmware */
if (!qcom_scm_is_available()) {
DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n");
return -EPROBE_DEFER;
}
return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid);
}
void adreno_set_llc_attributes(struct iommu_domain *iommu)
{
iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA);
}
struct msm_gem_address_space *
adreno_iommu_create_address_space(struct msm_gpu *gpu,
struct platform_device *pdev)
{
struct iommu_domain *iommu;
struct msm_mmu *mmu;
struct msm_gem_address_space *aspace;
u64 start, size;
iommu = iommu_domain_alloc(&platform_bus_type);
if (!iommu)
return NULL;
mmu = msm_iommu_new(&pdev->dev, iommu);
if (IS_ERR(mmu)) {
iommu_domain_free(iommu);
return ERR_CAST(mmu);
}
/*
* Use the aperture start or SZ_16M, whichever is greater. This will
* ensure that we align with the allocated pagetable range while still
* allowing room in the lower 32 bits for GMEM and whatnot
*/
start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
size = iommu->geometry.aperture_end - start + 1;
aspace = msm_gem_address_space_create(mmu, "gpu",
start & GENMASK_ULL(48, 0), size);
if (IS_ERR(aspace) && !IS_ERR(mmu))
mmu->funcs->destroy(mmu);
return aspace;
}
int adreno_get_param(struct msm_gpu *gpu, uint32_t param, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
switch (param) {
case MSM_PARAM_GPU_ID:
*value = adreno_gpu->info->revn;
return 0;
case MSM_PARAM_GMEM_SIZE:
*value = adreno_gpu->gmem;
return 0;
case MSM_PARAM_GMEM_BASE:
*value = !adreno_is_a650(adreno_gpu) ? 0x100000 : 0;
return 0;
case MSM_PARAM_CHIP_ID:
*value = adreno_gpu->rev.patchid |
(adreno_gpu->rev.minor << 8) |
(adreno_gpu->rev.major << 16) |
(adreno_gpu->rev.core << 24);
return 0;
case MSM_PARAM_MAX_FREQ:
*value = adreno_gpu->base.fast_rate;
return 0;
case MSM_PARAM_TIMESTAMP:
if (adreno_gpu->funcs->get_timestamp) {
int ret;
pm_runtime_get_sync(&gpu->pdev->dev);
ret = adreno_gpu->funcs->get_timestamp(gpu, value);
pm_runtime_put_autosuspend(&gpu->pdev->dev);
return ret;
}
return -EINVAL;
case MSM_PARAM_NR_RINGS:
*value = gpu->nr_rings;
return 0;
case MSM_PARAM_PP_PGTABLE:
*value = 0;
return 0;
case MSM_PARAM_FAULTS:
*value = gpu->global_faults;
return 0;
case MSM_PARAM_SUSPENDS:
*value = gpu->suspend_count;
return 0;
default:
DBG("%s: invalid param: %u", gpu->name, param);
return -EINVAL;
}
}
const struct firmware *
adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname)
{
struct drm_device *drm = adreno_gpu->base.dev;
const struct firmware *fw = NULL;
char *newname;
int ret;
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
if (!newname)
return ERR_PTR(-ENOMEM);
/*
* Try first to load from qcom/$fwfile using a direct load (to avoid
* a potential timeout waiting for usermode helper)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_NEW)) {
ret = request_firmware_direct(&fw, newname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s from new location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_NEW;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Then try the legacy location without qcom/ prefix
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_LEGACY)) {
ret = request_firmware_direct(&fw, fwname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_LEGACY;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
fwname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Finally fall back to request_firmware() for cases where the
* usermode helper is needed (I think mainly android)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_HELPER)) {
ret = request_firmware(&fw, newname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s with helper\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_HELPER;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname);
fw = ERR_PTR(-ENOENT);
out:
kfree(newname);
return fw;
}
int adreno_load_fw(struct adreno_gpu *adreno_gpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) {
const struct firmware *fw;
if (!adreno_gpu->info->fw[i])
continue;
/* Skip if the firmware has already been loaded */
if (adreno_gpu->fw[i])
continue;
fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]);
if (IS_ERR(fw))
return PTR_ERR(fw);
adreno_gpu->fw[i] = fw;
}
return 0;
}
struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu,
const struct firmware *fw, u64 *iova)
{
struct drm_gem_object *bo;
void *ptr;
ptr = msm_gem_kernel_new_locked(gpu->dev, fw->size - 4,
MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova);
if (IS_ERR(ptr))
return ERR_CAST(ptr);
memcpy(ptr, &fw->data[4], fw->size - 4);
msm_gem_put_vaddr(bo);
return bo;
}
int adreno_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret, i;
DBG("%s", gpu->name);
ret = adreno_load_fw(adreno_gpu);
if (ret)
return ret;
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
if (!ring)
continue;
ring->cur = ring->start;
ring->next = ring->start;
/* reset completed fence seqno: */
ring->memptrs->fence = ring->fctx->completed_fence;
ring->memptrs->rptr = 0;
}
return 0;
}
/* Use this helper to read rptr, since a430 doesn't update rptr in memory */
static uint32_t get_rptr(struct adreno_gpu *adreno_gpu,
struct msm_ringbuffer *ring)
{
struct msm_gpu *gpu = &adreno_gpu->base;
return gpu->funcs->get_rptr(gpu, ring);
}
struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu)
{
return gpu->rb[0];
}
void adreno_recover(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
int ret;
// XXX pm-runtime?? we *need* the device to be off after this
// so maybe continuing to call ->pm_suspend/resume() is better?
gpu->funcs->pm_suspend(gpu);
gpu->funcs->pm_resume(gpu);
ret = msm_gpu_hw_init(gpu);
if (ret) {
DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret);
/* hmm, oh well? */
}
}
void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg)
{
uint32_t wptr;
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/*
* Mask wptr value that we calculate to fit in the HW range. This is
* to account for the possibility that the last command fit exactly into
* the ringbuffer and rb->next hasn't wrapped to zero yet
*/
wptr = get_wptr(ring);
/* ensure writes to ringbuffer have hit system memory: */
mb();
gpu_write(gpu, reg, wptr);
}
bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
uint32_t wptr = get_wptr(ring);
/* wait for CP to drain ringbuffer: */
if (!spin_until(get_rptr(adreno_gpu, ring) == wptr))
return true;
/* TODO maybe we need to reset GPU here to recover from hang? */
DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n",
gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr);
return false;
}
int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i, count = 0;
kref_init(&state->ref);
ktime_get_real_ts64(&state->time);
for (i = 0; i < gpu->nr_rings; i++) {
int size = 0, j;
state->ring[i].fence = gpu->rb[i]->memptrs->fence;
state->ring[i].iova = gpu->rb[i]->iova;
state->ring[i].seqno = gpu->rb[i]->seqno;
state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]);
state->ring[i].wptr = get_wptr(gpu->rb[i]);
/* Copy at least 'wptr' dwords of the data */
size = state->ring[i].wptr;
/* After wptr find the last non zero dword to save space */
for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++)
if (gpu->rb[i]->start[j])
size = j + 1;
if (size) {
state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL);
if (state->ring[i].data) {
memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2);
state->ring[i].data_size = size << 2;
}
}
}
/* Some targets prefer to collect their own registers */
if (!adreno_gpu->registers)
return 0;
/* Count the number of registers */
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2)
count += adreno_gpu->registers[i + 1] -
adreno_gpu->registers[i] + 1;
state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL);
if (state->registers) {
int pos = 0;
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
u32 start = adreno_gpu->registers[i];
u32 end = adreno_gpu->registers[i + 1];
u32 addr;
for (addr = start; addr <= end; addr++) {
state->registers[pos++] = addr;
state->registers[pos++] = gpu_read(gpu, addr);
}
}
state->nr_registers = count;
}
return 0;
}
void adreno_gpu_state_destroy(struct msm_gpu_state *state)
{
int i;
for (i = 0; i < ARRAY_SIZE(state->ring); i++)
kvfree(state->ring[i].data);
for (i = 0; state->bos && i < state->nr_bos; i++)
kvfree(state->bos[i].data);
kfree(state->bos);
kfree(state->comm);
kfree(state->cmd);
kfree(state->registers);
}
static void adreno_gpu_state_kref_destroy(struct kref *kref)
{
struct msm_gpu_state *state = container_of(kref,
struct msm_gpu_state, ref);
adreno_gpu_state_destroy(state);
kfree(state);
}
int adreno_gpu_state_put(struct msm_gpu_state *state)
{
if (IS_ERR_OR_NULL(state))
return 1;
return kref_put(&state->ref, adreno_gpu_state_kref_destroy);
}
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
static char *adreno_gpu_ascii85_encode(u32 *src, size_t len)
{
void *buf;
size_t buf_itr = 0, buffer_size;
char out[ASCII85_BUFSZ];
long l;
int i;
if (!src || !len)
return NULL;
l = ascii85_encode_len(len);
/*
* Ascii85 outputs either a 5 byte string or a 1 byte string. So we
* account for the worst case of 5 bytes per dword plus the 1 for '\0'
*/
buffer_size = (l * 5) + 1;
buf = kvmalloc(buffer_size, GFP_KERNEL);
if (!buf)
return NULL;
for (i = 0; i < l; i++)
buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s",
ascii85_encode(src[i], out));
return buf;
}
/* len is expected to be in bytes */
static void adreno_show_object(struct drm_printer *p, void **ptr, int len,
bool *encoded)
{
if (!*ptr || !len)
return;
if (!*encoded) {
long datalen, i;
u32 *buf = *ptr;
/*
* Only dump the non-zero part of the buffer - rarely will
* any data completely fill the entire allocated size of
* the buffer.
*/
for (datalen = 0, i = 0; i < len >> 2; i++)
if (buf[i])
datalen = ((i + 1) << 2);
/*
* If we reach here, then the originally captured binary buffer
* will be replaced with the ascii85 encoded string
*/
*ptr = adreno_gpu_ascii85_encode(buf, datalen);
kvfree(buf);
*encoded = true;
}
if (!*ptr)
return;
drm_puts(p, " data: !!ascii85 |\n");
drm_puts(p, " ");
drm_puts(p, *ptr);
drm_puts(p, "\n");
}
void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
if (IS_ERR_OR_NULL(state))
return;
drm_printf(p, "revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status);
drm_puts(p, "ringbuffer:\n");
for (i = 0; i < gpu->nr_rings; i++) {
drm_printf(p, " - id: %d\n", i);
drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova);
drm_printf(p, " last-fence: %d\n", state->ring[i].seqno);
drm_printf(p, " retired-fence: %d\n", state->ring[i].fence);
drm_printf(p, " rptr: %d\n", state->ring[i].rptr);
drm_printf(p, " wptr: %d\n", state->ring[i].wptr);
drm_printf(p, " size: %d\n", MSM_GPU_RINGBUFFER_SZ);
adreno_show_object(p, &state->ring[i].data,
state->ring[i].data_size, &state->ring[i].encoded);
}
if (state->bos) {
drm_puts(p, "bos:\n");
for (i = 0; i < state->nr_bos; i++) {
drm_printf(p, " - iova: 0x%016llx\n",
state->bos[i].iova);
drm_printf(p, " size: %zd\n", state->bos[i].size);
adreno_show_object(p, &state->bos[i].data,
state->bos[i].size, &state->bos[i].encoded);
}
}
if (state->nr_registers) {
drm_puts(p, "registers:\n");
for (i = 0; i < state->nr_registers; i++) {
drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n",
state->registers[i * 2] << 2,
state->registers[(i * 2) + 1]);
}
}
}
#endif
/* Dump common gpu status and scratch registers on any hang, to make
* the hangcheck logs more useful. The scratch registers seem always
* safe to read when GPU has hung (unlike some other regs, depending
* on how the GPU hung), and they are useful to match up to cmdstream
* dumps when debugging hangs:
*/
void adreno_dump_info(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
printk("revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
printk("rb %d: fence: %d/%d\n", i,
ring->memptrs->fence,
ring->seqno);
printk("rptr: %d\n", get_rptr(adreno_gpu, ring));
printk("rb wptr: %d\n", get_wptr(ring));
}
}
/* would be nice to not have to duplicate the _show() stuff with printk(): */
void adreno_dump(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
if (!adreno_gpu->registers)
return;
/* dump these out in a form that can be parsed by demsm: */
printk("IO:region %s 00000000 00020000\n", gpu->name);
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
uint32_t start = adreno_gpu->registers[i];
uint32_t end = adreno_gpu->registers[i+1];
uint32_t addr;
for (addr = start; addr <= end; addr++) {
uint32_t val = gpu_read(gpu, addr);
printk("IO:R %08x %08x\n", addr<<2, val);
}
}
}
static uint32_t ring_freewords(struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu);
uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2;
/* Use ring->next to calculate free size */
uint32_t wptr = ring->next - ring->start;
uint32_t rptr = get_rptr(adreno_gpu, ring);
return (rptr + (size - 1) - wptr) % size;
}
void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords)
{
if (spin_until(ring_freewords(ring) >= ndwords))
DRM_DEV_ERROR(ring->gpu->dev->dev,
"timeout waiting for space in ringbuffer %d\n",
ring->id);
}
/* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */
static int adreno_get_legacy_pwrlevels(struct device *dev)
{
struct device_node *child, *node;
int ret;
node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels");
if (!node) {
DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n");
return -ENXIO;
}
for_each_child_of_node(node, child) {
unsigned int val;
ret = of_property_read_u32(child, "qcom,gpu-freq", &val);
if (ret)
continue;
/*
* Skip the intentionally bogus clock value found at the bottom
* of most legacy frequency tables
*/
if (val != 27000000)
dev_pm_opp_add(dev, val, 0);
}
of_node_put(node);
return 0;
}
static void adreno_get_pwrlevels(struct device *dev,
struct msm_gpu *gpu)
{
unsigned long freq = ULONG_MAX;
struct dev_pm_opp *opp;
int ret;
gpu->fast_rate = 0;
/* You down with OPP? */
if (!of_find_property(dev->of_node, "operating-points-v2", NULL))
ret = adreno_get_legacy_pwrlevels(dev);
else {
ret = dev_pm_opp_of_add_table(dev);
if (ret)
DRM_DEV_ERROR(dev, "Unable to set the OPP table\n");
}
if (!ret) {
/* Find the fastest defined rate */
opp = dev_pm_opp_find_freq_floor(dev, &freq);
if (!IS_ERR(opp)) {
gpu->fast_rate = freq;
dev_pm_opp_put(opp);
}
}
if (!gpu->fast_rate) {
dev_warn(dev,
"Could not find a clock rate. Using a reasonable default\n");
/* Pick a suitably safe clock speed for any target */
gpu->fast_rate = 200000000;
}
DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate);
}
int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu,
struct adreno_ocmem *adreno_ocmem)
{
struct ocmem_buf *ocmem_hdl;
struct ocmem *ocmem;
ocmem = of_get_ocmem(dev);
if (IS_ERR(ocmem)) {
if (PTR_ERR(ocmem) == -ENODEV) {
/*
* Return success since either the ocmem property was
* not specified in device tree, or ocmem support is
* not compiled into the kernel.
*/
return 0;
}
return PTR_ERR(ocmem);
}
ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem);
if (IS_ERR(ocmem_hdl))
return PTR_ERR(ocmem_hdl);
adreno_ocmem->ocmem = ocmem;
adreno_ocmem->base = ocmem_hdl->addr;
adreno_ocmem->hdl = ocmem_hdl;
adreno_gpu->gmem = ocmem_hdl->len;
return 0;
}
void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem)
{
if (adreno_ocmem && adreno_ocmem->base)
ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS,
adreno_ocmem->hdl);
}
int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct adreno_gpu *adreno_gpu,
const struct adreno_gpu_funcs *funcs, int nr_rings)
{
struct device *dev = &pdev->dev;
struct adreno_platform_config *config = dev->platform_data;
struct msm_gpu_config adreno_gpu_config = { 0 };
struct msm_gpu *gpu = &adreno_gpu->base;
adreno_gpu->funcs = funcs;
adreno_gpu->info = adreno_info(config->rev);
adreno_gpu->gmem = adreno_gpu->info->gmem;
adreno_gpu->revn = adreno_gpu->info->revn;
adreno_gpu->rev = config->rev;
adreno_gpu_config.ioname = "kgsl_3d0_reg_memory";
adreno_gpu_config.nr_rings = nr_rings;
adreno_get_pwrlevels(dev, gpu);
pm_runtime_set_autosuspend_delay(dev,
adreno_gpu->info->inactive_period);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base,
adreno_gpu->info->name, &adreno_gpu_config);
}
void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu)
{
struct msm_gpu *gpu = &adreno_gpu->base;
struct msm_drm_private *priv = gpu->dev->dev_private;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++)
release_firmware(adreno_gpu->fw[i]);
pm_runtime_disable(&priv->gpu_pdev->dev);
msm_gpu_cleanup(&adreno_gpu->base);
icc_put(gpu->icc_path);
icc_put(gpu->ocmem_icc_path);
}