mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 afabada957
			
		
	
	
		afabada957
		
	
	
	
	
		
			
			we can't get to do_coredump() if that condition isn't satisfied... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
		
			
				
	
	
		
			2219 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2219 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/fs/binfmt_elf.c
 | |
|  *
 | |
|  * These are the functions used to load ELF format executables as used
 | |
|  * on SVr4 machines.  Information on the format may be found in the book
 | |
|  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
 | |
|  * Tools".
 | |
|  *
 | |
|  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/elfcore.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/highuid.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/coredump.h>
 | |
| #include <linux/sched.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/param.h>
 | |
| #include <asm/page.h>
 | |
| 
 | |
| #ifndef user_long_t
 | |
| #define user_long_t long
 | |
| #endif
 | |
| #ifndef user_siginfo_t
 | |
| #define user_siginfo_t siginfo_t
 | |
| #endif
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm);
 | |
| static int load_elf_library(struct file *);
 | |
| static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
 | |
| 				int, int, unsigned long);
 | |
| 
 | |
| /*
 | |
|  * If we don't support core dumping, then supply a NULL so we
 | |
|  * don't even try.
 | |
|  */
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| static int elf_core_dump(struct coredump_params *cprm);
 | |
| #else
 | |
| #define elf_core_dump	NULL
 | |
| #endif
 | |
| 
 | |
| #if ELF_EXEC_PAGESIZE > PAGE_SIZE
 | |
| #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
 | |
| #else
 | |
| #define ELF_MIN_ALIGN	PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_CORE_EFLAGS
 | |
| #define ELF_CORE_EFLAGS	0
 | |
| #endif
 | |
| 
 | |
| #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
 | |
| #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
 | |
| 
 | |
| static struct linux_binfmt elf_format = {
 | |
| 	.module		= THIS_MODULE,
 | |
| 	.load_binary	= load_elf_binary,
 | |
| 	.load_shlib	= load_elf_library,
 | |
| 	.core_dump	= elf_core_dump,
 | |
| 	.min_coredump	= ELF_EXEC_PAGESIZE,
 | |
| };
 | |
| 
 | |
| #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
 | |
| 
 | |
| static int set_brk(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	start = ELF_PAGEALIGN(start);
 | |
| 	end = ELF_PAGEALIGN(end);
 | |
| 	if (end > start) {
 | |
| 		unsigned long addr;
 | |
| 		addr = vm_brk(start, end - start);
 | |
| 		if (BAD_ADDR(addr))
 | |
| 			return addr;
 | |
| 	}
 | |
| 	current->mm->start_brk = current->mm->brk = end;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We need to explicitly zero any fractional pages
 | |
|    after the data section (i.e. bss).  This would
 | |
|    contain the junk from the file that should not
 | |
|    be in memory
 | |
|  */
 | |
| static int padzero(unsigned long elf_bss)
 | |
| {
 | |
| 	unsigned long nbyte;
 | |
| 
 | |
| 	nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 	if (nbyte) {
 | |
| 		nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 		if (clear_user((void __user *) elf_bss, nbyte))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Let's use some macros to make this stack manipulation a little clearer */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) ({ \
 | |
| 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 | |
| 	old_sp; })
 | |
| #else
 | |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 | |
| #define STACK_ROUND(sp, items) \
 | |
| 	(((unsigned long) (sp - items)) &~ 15UL)
 | |
| #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_BASE_PLATFORM
 | |
| /*
 | |
|  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 | |
|  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 | |
|  * will be copied to the user stack in the same manner as AT_PLATFORM.
 | |
|  */
 | |
| #define ELF_BASE_PLATFORM NULL
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 | |
| 		unsigned long load_addr, unsigned long interp_load_addr)
 | |
| {
 | |
| 	unsigned long p = bprm->p;
 | |
| 	int argc = bprm->argc;
 | |
| 	int envc = bprm->envc;
 | |
| 	elf_addr_t __user *argv;
 | |
| 	elf_addr_t __user *envp;
 | |
| 	elf_addr_t __user *sp;
 | |
| 	elf_addr_t __user *u_platform;
 | |
| 	elf_addr_t __user *u_base_platform;
 | |
| 	elf_addr_t __user *u_rand_bytes;
 | |
| 	const char *k_platform = ELF_PLATFORM;
 | |
| 	const char *k_base_platform = ELF_BASE_PLATFORM;
 | |
| 	unsigned char k_rand_bytes[16];
 | |
| 	int items;
 | |
| 	elf_addr_t *elf_info;
 | |
| 	int ei_index = 0;
 | |
| 	const struct cred *cred = current_cred();
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
 | |
| 	 * evictions by the processes running on the same package. One
 | |
| 	 * thing we can do is to shuffle the initial stack for them.
 | |
| 	 */
 | |
| 
 | |
| 	p = arch_align_stack(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this architecture has a platform capability string, copy it
 | |
| 	 * to userspace.  In some cases (Sparc), this info is impossible
 | |
| 	 * for userspace to get any other way, in others (i386) it is
 | |
| 	 * merely difficult.
 | |
| 	 */
 | |
| 	u_platform = NULL;
 | |
| 	if (k_platform) {
 | |
| 		size_t len = strlen(k_platform) + 1;
 | |
| 
 | |
| 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | |
| 		if (__copy_to_user(u_platform, k_platform, len))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this architecture has a "base" platform capability
 | |
| 	 * string, copy it to userspace.
 | |
| 	 */
 | |
| 	u_base_platform = NULL;
 | |
| 	if (k_base_platform) {
 | |
| 		size_t len = strlen(k_base_platform) + 1;
 | |
| 
 | |
| 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 | |
| 		if (__copy_to_user(u_base_platform, k_base_platform, len))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate 16 random bytes for userspace PRNG seeding.
 | |
| 	 */
 | |
| 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 | |
| 	u_rand_bytes = (elf_addr_t __user *)
 | |
| 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
 | |
| 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Create the ELF interpreter info */
 | |
| 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
 | |
| 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 | |
| #define NEW_AUX_ENT(id, val) \
 | |
| 	do { \
 | |
| 		elf_info[ei_index++] = id; \
 | |
| 		elf_info[ei_index++] = val; \
 | |
| 	} while (0)
 | |
| 
 | |
| #ifdef ARCH_DLINFO
 | |
| 	/* 
 | |
| 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
 | |
| 	 * AUXV.
 | |
| 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 | |
| 	 * ARCH_DLINFO changes
 | |
| 	 */
 | |
| 	ARCH_DLINFO;
 | |
| #endif
 | |
| 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 | |
| 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 | |
| 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 | |
| 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 | |
| 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 | |
| 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 | |
| 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
 | |
| 	NEW_AUX_ENT(AT_FLAGS, 0);
 | |
| 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 | |
| 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 | |
| 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 | |
| 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 | |
| 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 | |
|  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 | |
| 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 | |
| #ifdef ELF_HWCAP2
 | |
| 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 | |
| #endif
 | |
| 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 | |
| 	if (k_platform) {
 | |
| 		NEW_AUX_ENT(AT_PLATFORM,
 | |
| 			    (elf_addr_t)(unsigned long)u_platform);
 | |
| 	}
 | |
| 	if (k_base_platform) {
 | |
| 		NEW_AUX_ENT(AT_BASE_PLATFORM,
 | |
| 			    (elf_addr_t)(unsigned long)u_base_platform);
 | |
| 	}
 | |
| 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 | |
| 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 | |
| 	}
 | |
| #undef NEW_AUX_ENT
 | |
| 	/* AT_NULL is zero; clear the rest too */
 | |
| 	memset(&elf_info[ei_index], 0,
 | |
| 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 | |
| 
 | |
| 	/* And advance past the AT_NULL entry.  */
 | |
| 	ei_index += 2;
 | |
| 
 | |
| 	sp = STACK_ADD(p, ei_index);
 | |
| 
 | |
| 	items = (argc + 1) + (envc + 1) + 1;
 | |
| 	bprm->p = STACK_ROUND(sp, items);
 | |
| 
 | |
| 	/* Point sp at the lowest address on the stack */
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 | |
| 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 | |
| #else
 | |
| 	sp = (elf_addr_t __user *)bprm->p;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Grow the stack manually; some architectures have a limit on how
 | |
| 	 * far ahead a user-space access may be in order to grow the stack.
 | |
| 	 */
 | |
| 	vma = find_extend_vma(current->mm, bprm->p);
 | |
| 	if (!vma)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
 | |
| 	if (__put_user(argc, sp++))
 | |
| 		return -EFAULT;
 | |
| 	argv = sp;
 | |
| 	envp = argv + argc + 1;
 | |
| 
 | |
| 	/* Populate argv and envp */
 | |
| 	p = current->mm->arg_end = current->mm->arg_start;
 | |
| 	while (argc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (__put_user((elf_addr_t)p, argv++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | |
| 		if (!len || len > MAX_ARG_STRLEN)
 | |
| 			return -EINVAL;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (__put_user(0, argv))
 | |
| 		return -EFAULT;
 | |
| 	current->mm->arg_end = current->mm->env_start = p;
 | |
| 	while (envc-- > 0) {
 | |
| 		size_t len;
 | |
| 		if (__put_user((elf_addr_t)p, envp++))
 | |
| 			return -EFAULT;
 | |
| 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 | |
| 		if (!len || len > MAX_ARG_STRLEN)
 | |
| 			return -EINVAL;
 | |
| 		p += len;
 | |
| 	}
 | |
| 	if (__put_user(0, envp))
 | |
| 		return -EFAULT;
 | |
| 	current->mm->env_end = p;
 | |
| 
 | |
| 	/* Put the elf_info on the stack in the right place.  */
 | |
| 	sp = (elf_addr_t __user *)envp + 1;
 | |
| 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifndef elf_map
 | |
| 
 | |
| static unsigned long elf_map(struct file *filep, unsigned long addr,
 | |
| 		struct elf_phdr *eppnt, int prot, int type,
 | |
| 		unsigned long total_size)
 | |
| {
 | |
| 	unsigned long map_addr;
 | |
| 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 | |
| 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 | |
| 	addr = ELF_PAGESTART(addr);
 | |
| 	size = ELF_PAGEALIGN(size);
 | |
| 
 | |
| 	/* mmap() will return -EINVAL if given a zero size, but a
 | |
| 	 * segment with zero filesize is perfectly valid */
 | |
| 	if (!size)
 | |
| 		return addr;
 | |
| 
 | |
| 	/*
 | |
| 	* total_size is the size of the ELF (interpreter) image.
 | |
| 	* The _first_ mmap needs to know the full size, otherwise
 | |
| 	* randomization might put this image into an overlapping
 | |
| 	* position with the ELF binary image. (since size < total_size)
 | |
| 	* So we first map the 'big' image - and unmap the remainder at
 | |
| 	* the end. (which unmap is needed for ELF images with holes.)
 | |
| 	*/
 | |
| 	if (total_size) {
 | |
| 		total_size = ELF_PAGEALIGN(total_size);
 | |
| 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 | |
| 		if (!BAD_ADDR(map_addr))
 | |
| 			vm_munmap(map_addr+size, total_size-size);
 | |
| 	} else
 | |
| 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
 | |
| 
 | |
| 	return(map_addr);
 | |
| }
 | |
| 
 | |
| #endif /* !elf_map */
 | |
| 
 | |
| static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 | |
| {
 | |
| 	int i, first_idx = -1, last_idx = -1;
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		if (cmds[i].p_type == PT_LOAD) {
 | |
| 			last_idx = i;
 | |
| 			if (first_idx == -1)
 | |
| 				first_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 	if (first_idx == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 | |
| 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This is much more generalized than the library routine read function,
 | |
|    so we keep this separate.  Technically the library read function
 | |
|    is only provided so that we can read a.out libraries that have
 | |
|    an ELF header */
 | |
| 
 | |
| static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 | |
| 		struct file *interpreter, unsigned long *interp_map_addr,
 | |
| 		unsigned long no_base)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata;
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long load_addr = 0;
 | |
| 	int load_addr_set = 0;
 | |
| 	unsigned long last_bss = 0, elf_bss = 0;
 | |
| 	unsigned long error = ~0UL;
 | |
| 	unsigned long total_size;
 | |
| 	int retval, i, size;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (interp_elf_ex->e_type != ET_EXEC &&
 | |
| 	    interp_elf_ex->e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(interp_elf_ex))
 | |
| 		goto out;
 | |
| 	if (!interpreter->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the size of this structure has changed, then punt, since
 | |
| 	 * we will be doing the wrong thing.
 | |
| 	 */
 | |
| 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	if (interp_elf_ex->e_phnum < 1 ||
 | |
| 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
 | |
| 	if (size > ELF_MIN_ALIGN)
 | |
| 		goto out;
 | |
| 	elf_phdata = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
 | |
| 			     (char *)elf_phdata, size);
 | |
| 	error = -EIO;
 | |
| 	if (retval != size) {
 | |
| 		if (retval < 0)
 | |
| 			error = retval;	
 | |
| 		goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
 | |
| 	if (!total_size) {
 | |
| 		error = -EINVAL;
 | |
| 		goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	eppnt = elf_phdata;
 | |
| 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 | |
| 		if (eppnt->p_type == PT_LOAD) {
 | |
| 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 | |
| 			int elf_prot = 0;
 | |
| 			unsigned long vaddr = 0;
 | |
| 			unsigned long k, map_addr;
 | |
| 
 | |
| 			if (eppnt->p_flags & PF_R)
 | |
| 		    		elf_prot = PROT_READ;
 | |
| 			if (eppnt->p_flags & PF_W)
 | |
| 				elf_prot |= PROT_WRITE;
 | |
| 			if (eppnt->p_flags & PF_X)
 | |
| 				elf_prot |= PROT_EXEC;
 | |
| 			vaddr = eppnt->p_vaddr;
 | |
| 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 | |
| 				elf_type |= MAP_FIXED;
 | |
| 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
 | |
| 				load_addr = -vaddr;
 | |
| 
 | |
| 			map_addr = elf_map(interpreter, load_addr + vaddr,
 | |
| 					eppnt, elf_prot, elf_type, total_size);
 | |
| 			total_size = 0;
 | |
| 			if (!*interp_map_addr)
 | |
| 				*interp_map_addr = map_addr;
 | |
| 			error = map_addr;
 | |
| 			if (BAD_ADDR(map_addr))
 | |
| 				goto out_close;
 | |
| 
 | |
| 			if (!load_addr_set &&
 | |
| 			    interp_elf_ex->e_type == ET_DYN) {
 | |
| 				load_addr = map_addr - ELF_PAGESTART(vaddr);
 | |
| 				load_addr_set = 1;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Check to see if the section's size will overflow the
 | |
| 			 * allowed task size. Note that p_filesz must always be
 | |
| 			 * <= p_memsize so it's only necessary to check p_memsz.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr;
 | |
| 			if (BAD_ADDR(k) ||
 | |
| 			    eppnt->p_filesz > eppnt->p_memsz ||
 | |
| 			    eppnt->p_memsz > TASK_SIZE ||
 | |
| 			    TASK_SIZE - eppnt->p_memsz < k) {
 | |
| 				error = -ENOMEM;
 | |
| 				goto out_close;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Find the end of the file mapping for this phdr, and
 | |
| 			 * keep track of the largest address we see for this.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 			if (k > elf_bss)
 | |
| 				elf_bss = k;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do the same thing for the memory mapping - between
 | |
| 			 * elf_bss and last_bss is the bss section.
 | |
| 			 */
 | |
| 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
 | |
| 			if (k > last_bss)
 | |
| 				last_bss = k;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (last_bss > elf_bss) {
 | |
| 		/*
 | |
| 		 * Now fill out the bss section.  First pad the last page up
 | |
| 		 * to the page boundary, and then perform a mmap to make sure
 | |
| 		 * that there are zero-mapped pages up to and including the
 | |
| 		 * last bss page.
 | |
| 		 */
 | |
| 		if (padzero(elf_bss)) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out_close;
 | |
| 		}
 | |
| 
 | |
| 		/* What we have mapped so far */
 | |
| 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
 | |
| 
 | |
| 		/* Map the last of the bss segment */
 | |
| 		error = vm_brk(elf_bss, last_bss - elf_bss);
 | |
| 		if (BAD_ADDR(error))
 | |
| 			goto out_close;
 | |
| 	}
 | |
| 
 | |
| 	error = load_addr;
 | |
| 
 | |
| out_close:
 | |
| 	kfree(elf_phdata);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the functions used to load ELF style executables and shared
 | |
|  * libraries.  There is no binary dependent code anywhere else.
 | |
|  */
 | |
| 
 | |
| #define INTERPRETER_NONE 0
 | |
| #define INTERPRETER_ELF 2
 | |
| 
 | |
| #ifndef STACK_RND_MASK
 | |
| #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
 | |
| #endif
 | |
| 
 | |
| static unsigned long randomize_stack_top(unsigned long stack_top)
 | |
| {
 | |
| 	unsigned int random_variable = 0;
 | |
| 
 | |
| 	if ((current->flags & PF_RANDOMIZE) &&
 | |
| 		!(current->personality & ADDR_NO_RANDOMIZE)) {
 | |
| 		random_variable = get_random_int() & STACK_RND_MASK;
 | |
| 		random_variable <<= PAGE_SHIFT;
 | |
| 	}
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| 	return PAGE_ALIGN(stack_top) + random_variable;
 | |
| #else
 | |
| 	return PAGE_ALIGN(stack_top) - random_variable;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int load_elf_binary(struct linux_binprm *bprm)
 | |
| {
 | |
| 	struct file *interpreter = NULL; /* to shut gcc up */
 | |
|  	unsigned long load_addr = 0, load_bias = 0;
 | |
| 	int load_addr_set = 0;
 | |
| 	char * elf_interpreter = NULL;
 | |
| 	unsigned long error;
 | |
| 	struct elf_phdr *elf_ppnt, *elf_phdata;
 | |
| 	unsigned long elf_bss, elf_brk;
 | |
| 	int retval, i;
 | |
| 	unsigned int size;
 | |
| 	unsigned long elf_entry;
 | |
| 	unsigned long interp_load_addr = 0;
 | |
| 	unsigned long start_code, end_code, start_data, end_data;
 | |
| 	unsigned long reloc_func_desc __maybe_unused = 0;
 | |
| 	int executable_stack = EXSTACK_DEFAULT;
 | |
| 	unsigned long def_flags = 0;
 | |
| 	struct pt_regs *regs = current_pt_regs();
 | |
| 	struct {
 | |
| 		struct elfhdr elf_ex;
 | |
| 		struct elfhdr interp_elf_ex;
 | |
| 	} *loc;
 | |
| 
 | |
| 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 | |
| 	if (!loc) {
 | |
| 		retval = -ENOMEM;
 | |
| 		goto out_ret;
 | |
| 	}
 | |
| 	
 | |
| 	/* Get the exec-header */
 | |
| 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
 | |
| 
 | |
| 	retval = -ENOEXEC;
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 | |
| 		goto out;
 | |
| 	if (!elf_check_arch(&loc->elf_ex))
 | |
| 		goto out;
 | |
| 	if (!bprm->file->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	if (loc->elf_ex.e_phnum < 1 ||
 | |
| 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
 | |
| 		goto out;
 | |
| 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
 | |
| 	retval = -ENOMEM;
 | |
| 	elf_phdata = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
 | |
| 			     (char *)elf_phdata, size);
 | |
| 	if (retval != size) {
 | |
| 		if (retval >= 0)
 | |
| 			retval = -EIO;
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	elf_bss = 0;
 | |
| 	elf_brk = 0;
 | |
| 
 | |
| 	start_code = ~0UL;
 | |
| 	end_code = 0;
 | |
| 	start_data = 0;
 | |
| 	end_data = 0;
 | |
| 
 | |
| 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 | |
| 		if (elf_ppnt->p_type == PT_INTERP) {
 | |
| 			/* This is the program interpreter used for
 | |
| 			 * shared libraries - for now assume that this
 | |
| 			 * is an a.out format binary
 | |
| 			 */
 | |
| 			retval = -ENOEXEC;
 | |
| 			if (elf_ppnt->p_filesz > PATH_MAX || 
 | |
| 			    elf_ppnt->p_filesz < 2)
 | |
| 				goto out_free_ph;
 | |
| 
 | |
| 			retval = -ENOMEM;
 | |
| 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 | |
| 						  GFP_KERNEL);
 | |
| 			if (!elf_interpreter)
 | |
| 				goto out_free_ph;
 | |
| 
 | |
| 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 | |
| 					     elf_interpreter,
 | |
| 					     elf_ppnt->p_filesz);
 | |
| 			if (retval != elf_ppnt->p_filesz) {
 | |
| 				if (retval >= 0)
 | |
| 					retval = -EIO;
 | |
| 				goto out_free_interp;
 | |
| 			}
 | |
| 			/* make sure path is NULL terminated */
 | |
| 			retval = -ENOEXEC;
 | |
| 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 | |
| 				goto out_free_interp;
 | |
| 
 | |
| 			interpreter = open_exec(elf_interpreter);
 | |
| 			retval = PTR_ERR(interpreter);
 | |
| 			if (IS_ERR(interpreter))
 | |
| 				goto out_free_interp;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the binary is not readable then enforce
 | |
| 			 * mm->dumpable = 0 regardless of the interpreter's
 | |
| 			 * permissions.
 | |
| 			 */
 | |
| 			would_dump(bprm, interpreter);
 | |
| 
 | |
| 			retval = kernel_read(interpreter, 0, bprm->buf,
 | |
| 					     BINPRM_BUF_SIZE);
 | |
| 			if (retval != BINPRM_BUF_SIZE) {
 | |
| 				if (retval >= 0)
 | |
| 					retval = -EIO;
 | |
| 				goto out_free_dentry;
 | |
| 			}
 | |
| 
 | |
| 			/* Get the exec headers */
 | |
| 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
 | |
| 			break;
 | |
| 		}
 | |
| 		elf_ppnt++;
 | |
| 	}
 | |
| 
 | |
| 	elf_ppnt = elf_phdata;
 | |
| 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 | |
| 		if (elf_ppnt->p_type == PT_GNU_STACK) {
 | |
| 			if (elf_ppnt->p_flags & PF_X)
 | |
| 				executable_stack = EXSTACK_ENABLE_X;
 | |
| 			else
 | |
| 				executable_stack = EXSTACK_DISABLE_X;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	/* Some simple consistency checks for the interpreter */
 | |
| 	if (elf_interpreter) {
 | |
| 		retval = -ELIBBAD;
 | |
| 		/* Not an ELF interpreter */
 | |
| 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 			goto out_free_dentry;
 | |
| 		/* Verify the interpreter has a valid arch */
 | |
| 		if (!elf_check_arch(&loc->interp_elf_ex))
 | |
| 			goto out_free_dentry;
 | |
| 	}
 | |
| 
 | |
| 	/* Flush all traces of the currently running executable */
 | |
| 	retval = flush_old_exec(bprm);
 | |
| 	if (retval)
 | |
| 		goto out_free_dentry;
 | |
| 
 | |
| 	/* OK, This is the point of no return */
 | |
| 	current->mm->def_flags = def_flags;
 | |
| 
 | |
| 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
 | |
| 	   may depend on the personality.  */
 | |
| 	SET_PERSONALITY(loc->elf_ex);
 | |
| 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 | |
| 		current->personality |= READ_IMPLIES_EXEC;
 | |
| 
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		current->flags |= PF_RANDOMIZE;
 | |
| 
 | |
| 	setup_new_exec(bprm);
 | |
| 
 | |
| 	/* Do this so that we can load the interpreter, if need be.  We will
 | |
| 	   change some of these later */
 | |
| 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 | |
| 				 executable_stack);
 | |
| 	if (retval < 0) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 	
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 
 | |
| 	/* Now we do a little grungy work by mmapping the ELF image into
 | |
| 	   the correct location in memory. */
 | |
| 	for(i = 0, elf_ppnt = elf_phdata;
 | |
| 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 | |
| 		int elf_prot = 0, elf_flags;
 | |
| 		unsigned long k, vaddr;
 | |
| 
 | |
| 		if (elf_ppnt->p_type != PT_LOAD)
 | |
| 			continue;
 | |
| 
 | |
| 		if (unlikely (elf_brk > elf_bss)) {
 | |
| 			unsigned long nbyte;
 | |
| 	            
 | |
| 			/* There was a PT_LOAD segment with p_memsz > p_filesz
 | |
| 			   before this one. Map anonymous pages, if needed,
 | |
| 			   and clear the area.  */
 | |
| 			retval = set_brk(elf_bss + load_bias,
 | |
| 					 elf_brk + load_bias);
 | |
| 			if (retval) {
 | |
| 				send_sig(SIGKILL, current, 0);
 | |
| 				goto out_free_dentry;
 | |
| 			}
 | |
| 			nbyte = ELF_PAGEOFFSET(elf_bss);
 | |
| 			if (nbyte) {
 | |
| 				nbyte = ELF_MIN_ALIGN - nbyte;
 | |
| 				if (nbyte > elf_brk - elf_bss)
 | |
| 					nbyte = elf_brk - elf_bss;
 | |
| 				if (clear_user((void __user *)elf_bss +
 | |
| 							load_bias, nbyte)) {
 | |
| 					/*
 | |
| 					 * This bss-zeroing can fail if the ELF
 | |
| 					 * file specifies odd protections. So
 | |
| 					 * we don't check the return value
 | |
| 					 */
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (elf_ppnt->p_flags & PF_R)
 | |
| 			elf_prot |= PROT_READ;
 | |
| 		if (elf_ppnt->p_flags & PF_W)
 | |
| 			elf_prot |= PROT_WRITE;
 | |
| 		if (elf_ppnt->p_flags & PF_X)
 | |
| 			elf_prot |= PROT_EXEC;
 | |
| 
 | |
| 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 | |
| 
 | |
| 		vaddr = elf_ppnt->p_vaddr;
 | |
| 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 | |
| 			elf_flags |= MAP_FIXED;
 | |
| 		} else if (loc->elf_ex.e_type == ET_DYN) {
 | |
| 			/* Try and get dynamic programs out of the way of the
 | |
| 			 * default mmap base, as well as whatever program they
 | |
| 			 * might try to exec.  This is because the brk will
 | |
| 			 * follow the loader, and is not movable.  */
 | |
| #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
 | |
| 			/* Memory randomization might have been switched off
 | |
| 			 * in runtime via sysctl or explicit setting of
 | |
| 			 * personality flags.
 | |
| 			 * If that is the case, retain the original non-zero
 | |
| 			 * load_bias value in order to establish proper
 | |
| 			 * non-randomized mappings.
 | |
| 			 */
 | |
| 			if (current->flags & PF_RANDOMIZE)
 | |
| 				load_bias = 0;
 | |
| 			else
 | |
| 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 | |
| #else
 | |
| 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 | |
| 				elf_prot, elf_flags, 0);
 | |
| 		if (BAD_ADDR(error)) {
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			retval = IS_ERR((void *)error) ?
 | |
| 				PTR_ERR((void*)error) : -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		if (!load_addr_set) {
 | |
| 			load_addr_set = 1;
 | |
| 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 | |
| 			if (loc->elf_ex.e_type == ET_DYN) {
 | |
| 				load_bias += error -
 | |
| 				             ELF_PAGESTART(load_bias + vaddr);
 | |
| 				load_addr += load_bias;
 | |
| 				reloc_func_desc = load_bias;
 | |
| 			}
 | |
| 		}
 | |
| 		k = elf_ppnt->p_vaddr;
 | |
| 		if (k < start_code)
 | |
| 			start_code = k;
 | |
| 		if (start_data < k)
 | |
| 			start_data = k;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to see if the section's size will overflow the
 | |
| 		 * allowed task size. Note that p_filesz must always be
 | |
| 		 * <= p_memsz so it is only necessary to check p_memsz.
 | |
| 		 */
 | |
| 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 | |
| 		    elf_ppnt->p_memsz > TASK_SIZE ||
 | |
| 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
 | |
| 			/* set_brk can never work. Avoid overflows. */
 | |
| 			send_sig(SIGKILL, current, 0);
 | |
| 			retval = -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 | |
| 
 | |
| 		if (k > elf_bss)
 | |
| 			elf_bss = k;
 | |
| 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 | |
| 			end_code = k;
 | |
| 		if (end_data < k)
 | |
| 			end_data = k;
 | |
| 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 | |
| 		if (k > elf_brk)
 | |
| 			elf_brk = k;
 | |
| 	}
 | |
| 
 | |
| 	loc->elf_ex.e_entry += load_bias;
 | |
| 	elf_bss += load_bias;
 | |
| 	elf_brk += load_bias;
 | |
| 	start_code += load_bias;
 | |
| 	end_code += load_bias;
 | |
| 	start_data += load_bias;
 | |
| 	end_data += load_bias;
 | |
| 
 | |
| 	/* Calling set_brk effectively mmaps the pages that we need
 | |
| 	 * for the bss and break sections.  We must do this before
 | |
| 	 * mapping in the interpreter, to make sure it doesn't wind
 | |
| 	 * up getting placed where the bss needs to go.
 | |
| 	 */
 | |
| 	retval = set_brk(elf_bss, elf_brk);
 | |
| 	if (retval) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
 | |
| 		send_sig(SIGSEGV, current, 0);
 | |
| 		retval = -EFAULT; /* Nobody gets to see this, but.. */
 | |
| 		goto out_free_dentry;
 | |
| 	}
 | |
| 
 | |
| 	if (elf_interpreter) {
 | |
| 		unsigned long interp_map_addr = 0;
 | |
| 
 | |
| 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
 | |
| 					    interpreter,
 | |
| 					    &interp_map_addr,
 | |
| 					    load_bias);
 | |
| 		if (!IS_ERR((void *)elf_entry)) {
 | |
| 			/*
 | |
| 			 * load_elf_interp() returns relocation
 | |
| 			 * adjustment
 | |
| 			 */
 | |
| 			interp_load_addr = elf_entry;
 | |
| 			elf_entry += loc->interp_elf_ex.e_entry;
 | |
| 		}
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			force_sig(SIGSEGV, current);
 | |
| 			retval = IS_ERR((void *)elf_entry) ?
 | |
| 					(int)elf_entry : -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 		reloc_func_desc = interp_load_addr;
 | |
| 
 | |
| 		allow_write_access(interpreter);
 | |
| 		fput(interpreter);
 | |
| 		kfree(elf_interpreter);
 | |
| 	} else {
 | |
| 		elf_entry = loc->elf_ex.e_entry;
 | |
| 		if (BAD_ADDR(elf_entry)) {
 | |
| 			force_sig(SIGSEGV, current);
 | |
| 			retval = -EINVAL;
 | |
| 			goto out_free_dentry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(elf_phdata);
 | |
| 
 | |
| 	set_binfmt(&elf_format);
 | |
| 
 | |
| #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
 | |
| 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
 | |
| 	if (retval < 0) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
 | |
| 
 | |
| 	install_exec_creds(bprm);
 | |
| 	retval = create_elf_tables(bprm, &loc->elf_ex,
 | |
| 			  load_addr, interp_load_addr);
 | |
| 	if (retval < 0) {
 | |
| 		send_sig(SIGKILL, current, 0);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/* N.B. passed_fileno might not be initialized? */
 | |
| 	current->mm->end_code = end_code;
 | |
| 	current->mm->start_code = start_code;
 | |
| 	current->mm->start_data = start_data;
 | |
| 	current->mm->end_data = end_data;
 | |
| 	current->mm->start_stack = bprm->p;
 | |
| 
 | |
| #ifdef arch_randomize_brk
 | |
| 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
 | |
| 		current->mm->brk = current->mm->start_brk =
 | |
| 			arch_randomize_brk(current->mm);
 | |
| #ifdef CONFIG_COMPAT_BRK
 | |
| 		current->brk_randomized = 1;
 | |
| #endif
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (current->personality & MMAP_PAGE_ZERO) {
 | |
| 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
| 		   and some applications "depend" upon this behavior.
 | |
| 		   Since we do not have the power to recompile these, we
 | |
| 		   emulate the SVr4 behavior. Sigh. */
 | |
| 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
 | |
| 				MAP_FIXED | MAP_PRIVATE, 0);
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_PLAT_INIT
 | |
| 	/*
 | |
| 	 * The ABI may specify that certain registers be set up in special
 | |
| 	 * ways (on i386 %edx is the address of a DT_FINI function, for
 | |
| 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
 | |
| 	 * that the e_entry field is the address of the function descriptor
 | |
| 	 * for the startup routine, rather than the address of the startup
 | |
| 	 * routine itself.  This macro performs whatever initialization to
 | |
| 	 * the regs structure is required as well as any relocations to the
 | |
| 	 * function descriptor entries when executing dynamically links apps.
 | |
| 	 */
 | |
| 	ELF_PLAT_INIT(regs, reloc_func_desc);
 | |
| #endif
 | |
| 
 | |
| 	start_thread(regs, elf_entry, bprm->p);
 | |
| 	retval = 0;
 | |
| out:
 | |
| 	kfree(loc);
 | |
| out_ret:
 | |
| 	return retval;
 | |
| 
 | |
| 	/* error cleanup */
 | |
| out_free_dentry:
 | |
| 	allow_write_access(interpreter);
 | |
| 	if (interpreter)
 | |
| 		fput(interpreter);
 | |
| out_free_interp:
 | |
| 	kfree(elf_interpreter);
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /* This is really simpleminded and specialized - we are loading an
 | |
|    a.out library that is given an ELF header. */
 | |
| static int load_elf_library(struct file *file)
 | |
| {
 | |
| 	struct elf_phdr *elf_phdata;
 | |
| 	struct elf_phdr *eppnt;
 | |
| 	unsigned long elf_bss, bss, len;
 | |
| 	int retval, error, i, j;
 | |
| 	struct elfhdr elf_ex;
 | |
| 
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
 | |
| 	if (retval != sizeof(elf_ex))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* First of all, some simple consistency checks */
 | |
| 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
 | |
| 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Now read in all of the header information */
 | |
| 
 | |
| 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
 | |
| 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
 | |
| 
 | |
| 	error = -ENOMEM;
 | |
| 	elf_phdata = kmalloc(j, GFP_KERNEL);
 | |
| 	if (!elf_phdata)
 | |
| 		goto out;
 | |
| 
 | |
| 	eppnt = elf_phdata;
 | |
| 	error = -ENOEXEC;
 | |
| 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
 | |
| 	if (retval != j)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
 | |
| 		if ((eppnt + i)->p_type == PT_LOAD)
 | |
| 			j++;
 | |
| 	if (j != 1)
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	while (eppnt->p_type != PT_LOAD)
 | |
| 		eppnt++;
 | |
| 
 | |
| 	/* Now use mmap to map the library into memory. */
 | |
| 	error = vm_mmap(file,
 | |
| 			ELF_PAGESTART(eppnt->p_vaddr),
 | |
| 			(eppnt->p_filesz +
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
 | |
| 			PROT_READ | PROT_WRITE | PROT_EXEC,
 | |
| 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
 | |
| 			(eppnt->p_offset -
 | |
| 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
 | |
| 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
 | |
| 		goto out_free_ph;
 | |
| 
 | |
| 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
 | |
| 	if (padzero(elf_bss)) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out_free_ph;
 | |
| 	}
 | |
| 
 | |
| 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
 | |
| 			    ELF_MIN_ALIGN - 1);
 | |
| 	bss = eppnt->p_memsz + eppnt->p_vaddr;
 | |
| 	if (bss > len)
 | |
| 		vm_brk(len, bss - len);
 | |
| 	error = 0;
 | |
| 
 | |
| out_free_ph:
 | |
| 	kfree(elf_phdata);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ELF_CORE
 | |
| /*
 | |
|  * ELF core dumper
 | |
|  *
 | |
|  * Modelled on fs/exec.c:aout_core_dump()
 | |
|  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The purpose of always_dump_vma() is to make sure that special kernel mappings
 | |
|  * that are useful for post-mortem analysis are included in every core dump.
 | |
|  * In that way we ensure that the core dump is fully interpretable later
 | |
|  * without matching up the same kernel and hardware config to see what PC values
 | |
|  * meant. These special mappings include - vDSO, vsyscall, and other
 | |
|  * architecture specific mappings
 | |
|  */
 | |
| static bool always_dump_vma(struct vm_area_struct *vma)
 | |
| {
 | |
| 	/* Any vsyscall mappings? */
 | |
| 	if (vma == get_gate_vma(vma->vm_mm))
 | |
| 		return true;
 | |
| 	/*
 | |
| 	 * arch_vma_name() returns non-NULL for special architecture mappings,
 | |
| 	 * such as vDSO sections.
 | |
| 	 */
 | |
| 	if (arch_vma_name(vma))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decide what to dump of a segment, part, all or none.
 | |
|  */
 | |
| static unsigned long vma_dump_size(struct vm_area_struct *vma,
 | |
| 				   unsigned long mm_flags)
 | |
| {
 | |
| #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
 | |
| 
 | |
| 	/* always dump the vdso and vsyscall sections */
 | |
| 	if (always_dump_vma(vma))
 | |
| 		goto whole;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_DONTDUMP)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Hugetlb memory check */
 | |
| 	if (vma->vm_flags & VM_HUGETLB) {
 | |
| 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
 | |
| 			goto whole;
 | |
| 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
 | |
| 			goto whole;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Do not dump I/O mapped devices or special mappings */
 | |
| 	if (vma->vm_flags & VM_IO)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* By default, dump shared memory if mapped from an anonymous file. */
 | |
| 	if (vma->vm_flags & VM_SHARED) {
 | |
| 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
 | |
| 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
 | |
| 			goto whole;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Dump segments that have been written to.  */
 | |
| 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
 | |
| 		goto whole;
 | |
| 	if (vma->vm_file == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (FILTER(MAPPED_PRIVATE))
 | |
| 		goto whole;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this looks like the beginning of a DSO or executable mapping,
 | |
| 	 * check for an ELF header.  If we find one, dump the first page to
 | |
| 	 * aid in determining what was mapped here.
 | |
| 	 */
 | |
| 	if (FILTER(ELF_HEADERS) &&
 | |
| 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
 | |
| 		u32 __user *header = (u32 __user *) vma->vm_start;
 | |
| 		u32 word;
 | |
| 		mm_segment_t fs = get_fs();
 | |
| 		/*
 | |
| 		 * Doing it this way gets the constant folded by GCC.
 | |
| 		 */
 | |
| 		union {
 | |
| 			u32 cmp;
 | |
| 			char elfmag[SELFMAG];
 | |
| 		} magic;
 | |
| 		BUILD_BUG_ON(SELFMAG != sizeof word);
 | |
| 		magic.elfmag[EI_MAG0] = ELFMAG0;
 | |
| 		magic.elfmag[EI_MAG1] = ELFMAG1;
 | |
| 		magic.elfmag[EI_MAG2] = ELFMAG2;
 | |
| 		magic.elfmag[EI_MAG3] = ELFMAG3;
 | |
| 		/*
 | |
| 		 * Switch to the user "segment" for get_user(),
 | |
| 		 * then put back what elf_core_dump() had in place.
 | |
| 		 */
 | |
| 		set_fs(USER_DS);
 | |
| 		if (unlikely(get_user(word, header)))
 | |
| 			word = 0;
 | |
| 		set_fs(fs);
 | |
| 		if (word == magic.cmp)
 | |
| 			return PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| #undef	FILTER
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| whole:
 | |
| 	return vma->vm_end - vma->vm_start;
 | |
| }
 | |
| 
 | |
| /* An ELF note in memory */
 | |
| struct memelfnote
 | |
| {
 | |
| 	const char *name;
 | |
| 	int type;
 | |
| 	unsigned int datasz;
 | |
| 	void *data;
 | |
| };
 | |
| 
 | |
| static int notesize(struct memelfnote *en)
 | |
| {
 | |
| 	int sz;
 | |
| 
 | |
| 	sz = sizeof(struct elf_note);
 | |
| 	sz += roundup(strlen(en->name) + 1, 4);
 | |
| 	sz += roundup(en->datasz, 4);
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static int writenote(struct memelfnote *men, struct coredump_params *cprm)
 | |
| {
 | |
| 	struct elf_note en;
 | |
| 	en.n_namesz = strlen(men->name) + 1;
 | |
| 	en.n_descsz = men->datasz;
 | |
| 	en.n_type = men->type;
 | |
| 
 | |
| 	return dump_emit(cprm, &en, sizeof(en)) &&
 | |
| 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
 | |
| 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
 | |
| }
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs,
 | |
| 			    u16 machine, u32 flags)
 | |
| {
 | |
| 	memset(elf, 0, sizeof(*elf));
 | |
| 
 | |
| 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
| 	elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
| 	elf->e_ident[EI_DATA] = ELF_DATA;
 | |
| 	elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 
 | |
| 	elf->e_type = ET_CORE;
 | |
| 	elf->e_machine = machine;
 | |
| 	elf->e_version = EV_CURRENT;
 | |
| 	elf->e_phoff = sizeof(struct elfhdr);
 | |
| 	elf->e_flags = flags;
 | |
| 	elf->e_ehsize = sizeof(struct elfhdr);
 | |
| 	elf->e_phentsize = sizeof(struct elf_phdr);
 | |
| 	elf->e_phnum = segs;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
 | |
| {
 | |
| 	phdr->p_type = PT_NOTE;
 | |
| 	phdr->p_offset = offset;
 | |
| 	phdr->p_vaddr = 0;
 | |
| 	phdr->p_paddr = 0;
 | |
| 	phdr->p_filesz = sz;
 | |
| 	phdr->p_memsz = 0;
 | |
| 	phdr->p_flags = 0;
 | |
| 	phdr->p_align = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void fill_note(struct memelfnote *note, const char *name, int type, 
 | |
| 		unsigned int sz, void *data)
 | |
| {
 | |
| 	note->name = name;
 | |
| 	note->type = type;
 | |
| 	note->datasz = sz;
 | |
| 	note->data = data;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fill up all the fields in prstatus from the given task struct, except
 | |
|  * registers which need to be filled up separately.
 | |
|  */
 | |
| static void fill_prstatus(struct elf_prstatus *prstatus,
 | |
| 		struct task_struct *p, long signr)
 | |
| {
 | |
| 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | |
| 	prstatus->pr_sigpend = p->pending.signal.sig[0];
 | |
| 	prstatus->pr_sighold = p->blocked.sig[0];
 | |
| 	rcu_read_lock();
 | |
| 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | |
| 	rcu_read_unlock();
 | |
| 	prstatus->pr_pid = task_pid_vnr(p);
 | |
| 	prstatus->pr_pgrp = task_pgrp_vnr(p);
 | |
| 	prstatus->pr_sid = task_session_vnr(p);
 | |
| 	if (thread_group_leader(p)) {
 | |
| 		struct task_cputime cputime;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the record for the group leader.  It shows the
 | |
| 		 * group-wide total, not its individual thread total.
 | |
| 		 */
 | |
| 		thread_group_cputime(p, &cputime);
 | |
| 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
 | |
| 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
 | |
| 	} else {
 | |
| 		cputime_t utime, stime;
 | |
| 
 | |
| 		task_cputime(p, &utime, &stime);
 | |
| 		cputime_to_timeval(utime, &prstatus->pr_utime);
 | |
| 		cputime_to_timeval(stime, &prstatus->pr_stime);
 | |
| 	}
 | |
| 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
 | |
| 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
 | |
| }
 | |
| 
 | |
| static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
 | |
| 		       struct mm_struct *mm)
 | |
| {
 | |
| 	const struct cred *cred;
 | |
| 	unsigned int i, len;
 | |
| 	
 | |
| 	/* first copy the parameters from user space */
 | |
| 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
 | |
| 
 | |
| 	len = mm->arg_end - mm->arg_start;
 | |
| 	if (len >= ELF_PRARGSZ)
 | |
| 		len = ELF_PRARGSZ-1;
 | |
| 	if (copy_from_user(&psinfo->pr_psargs,
 | |
| 		           (const char __user *)mm->arg_start, len))
 | |
| 		return -EFAULT;
 | |
| 	for(i = 0; i < len; i++)
 | |
| 		if (psinfo->pr_psargs[i] == 0)
 | |
| 			psinfo->pr_psargs[i] = ' ';
 | |
| 	psinfo->pr_psargs[len] = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
 | |
| 	rcu_read_unlock();
 | |
| 	psinfo->pr_pid = task_pid_vnr(p);
 | |
| 	psinfo->pr_pgrp = task_pgrp_vnr(p);
 | |
| 	psinfo->pr_sid = task_session_vnr(p);
 | |
| 
 | |
| 	i = p->state ? ffz(~p->state) + 1 : 0;
 | |
| 	psinfo->pr_state = i;
 | |
| 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
 | |
| 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
 | |
| 	psinfo->pr_nice = task_nice(p);
 | |
| 	psinfo->pr_flag = p->flags;
 | |
| 	rcu_read_lock();
 | |
| 	cred = __task_cred(p);
 | |
| 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
 | |
| 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
 | |
| 	rcu_read_unlock();
 | |
| 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
 | |
| {
 | |
| 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
 | |
| 	int i = 0;
 | |
| 	do
 | |
| 		i += 2;
 | |
| 	while (auxv[i - 2] != AT_NULL);
 | |
| 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
 | |
| }
 | |
| 
 | |
| static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
 | |
| 		const siginfo_t *siginfo)
 | |
| {
 | |
| 	mm_segment_t old_fs = get_fs();
 | |
| 	set_fs(KERNEL_DS);
 | |
| 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
 | |
| 	set_fs(old_fs);
 | |
| 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
 | |
| }
 | |
| 
 | |
| #define MAX_FILE_NOTE_SIZE (4*1024*1024)
 | |
| /*
 | |
|  * Format of NT_FILE note:
 | |
|  *
 | |
|  * long count     -- how many files are mapped
 | |
|  * long page_size -- units for file_ofs
 | |
|  * array of [COUNT] elements of
 | |
|  *   long start
 | |
|  *   long end
 | |
|  *   long file_ofs
 | |
|  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
 | |
|  */
 | |
| static int fill_files_note(struct memelfnote *note)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned count, size, names_ofs, remaining, n;
 | |
| 	user_long_t *data;
 | |
| 	user_long_t *start_end_ofs;
 | |
| 	char *name_base, *name_curpos;
 | |
| 
 | |
| 	/* *Estimated* file count and total data size needed */
 | |
| 	count = current->mm->map_count;
 | |
| 	size = count * 64;
 | |
| 
 | |
| 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
 | |
|  alloc:
 | |
| 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
 | |
| 		return -EINVAL;
 | |
| 	size = round_up(size, PAGE_SIZE);
 | |
| 	data = vmalloc(size);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	start_end_ofs = data + 2;
 | |
| 	name_base = name_curpos = ((char *)data) + names_ofs;
 | |
| 	remaining = size - names_ofs;
 | |
| 	count = 0;
 | |
| 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
 | |
| 		struct file *file;
 | |
| 		const char *filename;
 | |
| 
 | |
| 		file = vma->vm_file;
 | |
| 		if (!file)
 | |
| 			continue;
 | |
| 		filename = d_path(&file->f_path, name_curpos, remaining);
 | |
| 		if (IS_ERR(filename)) {
 | |
| 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
 | |
| 				vfree(data);
 | |
| 				size = size * 5 / 4;
 | |
| 				goto alloc;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* d_path() fills at the end, move name down */
 | |
| 		/* n = strlen(filename) + 1: */
 | |
| 		n = (name_curpos + remaining) - filename;
 | |
| 		remaining = filename - name_curpos;
 | |
| 		memmove(name_curpos, filename, n);
 | |
| 		name_curpos += n;
 | |
| 
 | |
| 		*start_end_ofs++ = vma->vm_start;
 | |
| 		*start_end_ofs++ = vma->vm_end;
 | |
| 		*start_end_ofs++ = vma->vm_pgoff;
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	/* Now we know exact count of files, can store it */
 | |
| 	data[0] = count;
 | |
| 	data[1] = PAGE_SIZE;
 | |
| 	/*
 | |
| 	 * Count usually is less than current->mm->map_count,
 | |
| 	 * we need to move filenames down.
 | |
| 	 */
 | |
| 	n = current->mm->map_count - count;
 | |
| 	if (n != 0) {
 | |
| 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
 | |
| 		memmove(name_base - shift_bytes, name_base,
 | |
| 			name_curpos - name_base);
 | |
| 		name_curpos -= shift_bytes;
 | |
| 	}
 | |
| 
 | |
| 	size = name_curpos - (char *)data;
 | |
| 	fill_note(note, "CORE", NT_FILE, size, data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CORE_DUMP_USE_REGSET
 | |
| #include <linux/regset.h>
 | |
| 
 | |
| struct elf_thread_core_info {
 | |
| 	struct elf_thread_core_info *next;
 | |
| 	struct task_struct *task;
 | |
| 	struct elf_prstatus prstatus;
 | |
| 	struct memelfnote notes[0];
 | |
| };
 | |
| 
 | |
| struct elf_note_info {
 | |
| 	struct elf_thread_core_info *thread;
 | |
| 	struct memelfnote psinfo;
 | |
| 	struct memelfnote signote;
 | |
| 	struct memelfnote auxv;
 | |
| 	struct memelfnote files;
 | |
| 	user_siginfo_t csigdata;
 | |
| 	size_t size;
 | |
| 	int thread_notes;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * When a regset has a writeback hook, we call it on each thread before
 | |
|  * dumping user memory.  On register window machines, this makes sure the
 | |
|  * user memory backing the register data is up to date before we read it.
 | |
|  */
 | |
| static void do_thread_regset_writeback(struct task_struct *task,
 | |
| 				       const struct user_regset *regset)
 | |
| {
 | |
| 	if (regset->writeback)
 | |
| 		regset->writeback(task, regset, 1);
 | |
| }
 | |
| 
 | |
| #ifndef PR_REG_SIZE
 | |
| #define PR_REG_SIZE(S) sizeof(S)
 | |
| #endif
 | |
| 
 | |
| #ifndef PRSTATUS_SIZE
 | |
| #define PRSTATUS_SIZE(S) sizeof(S)
 | |
| #endif
 | |
| 
 | |
| #ifndef PR_REG_PTR
 | |
| #define PR_REG_PTR(S) (&((S)->pr_reg))
 | |
| #endif
 | |
| 
 | |
| #ifndef SET_PR_FPVALID
 | |
| #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
 | |
| #endif
 | |
| 
 | |
| static int fill_thread_core_info(struct elf_thread_core_info *t,
 | |
| 				 const struct user_regset_view *view,
 | |
| 				 long signr, size_t *total)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * NT_PRSTATUS is the one special case, because the regset data
 | |
| 	 * goes into the pr_reg field inside the note contents, rather
 | |
| 	 * than being the whole note contents.  We fill the reset in here.
 | |
| 	 * We assume that regset 0 is NT_PRSTATUS.
 | |
| 	 */
 | |
| 	fill_prstatus(&t->prstatus, t->task, signr);
 | |
| 	(void) view->regsets[0].get(t->task, &view->regsets[0],
 | |
| 				    0, PR_REG_SIZE(t->prstatus.pr_reg),
 | |
| 				    PR_REG_PTR(&t->prstatus), NULL);
 | |
| 
 | |
| 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
 | |
| 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
 | |
| 	*total += notesize(&t->notes[0]);
 | |
| 
 | |
| 	do_thread_regset_writeback(t->task, &view->regsets[0]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Each other regset might generate a note too.  For each regset
 | |
| 	 * that has no core_note_type or is inactive, we leave t->notes[i]
 | |
| 	 * all zero and we'll know to skip writing it later.
 | |
| 	 */
 | |
| 	for (i = 1; i < view->n; ++i) {
 | |
| 		const struct user_regset *regset = &view->regsets[i];
 | |
| 		do_thread_regset_writeback(t->task, regset);
 | |
| 		if (regset->core_note_type && regset->get &&
 | |
| 		    (!regset->active || regset->active(t->task, regset))) {
 | |
| 			int ret;
 | |
| 			size_t size = regset->n * regset->size;
 | |
| 			void *data = kmalloc(size, GFP_KERNEL);
 | |
| 			if (unlikely(!data))
 | |
| 				return 0;
 | |
| 			ret = regset->get(t->task, regset,
 | |
| 					  0, size, data, NULL);
 | |
| 			if (unlikely(ret))
 | |
| 				kfree(data);
 | |
| 			else {
 | |
| 				if (regset->core_note_type != NT_PRFPREG)
 | |
| 					fill_note(&t->notes[i], "LINUX",
 | |
| 						  regset->core_note_type,
 | |
| 						  size, data);
 | |
| 				else {
 | |
| 					SET_PR_FPVALID(&t->prstatus, 1);
 | |
| 					fill_note(&t->notes[i], "CORE",
 | |
| 						  NT_PRFPREG, size, data);
 | |
| 				}
 | |
| 				*total += notesize(&t->notes[i]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int fill_note_info(struct elfhdr *elf, int phdrs,
 | |
| 			  struct elf_note_info *info,
 | |
| 			  const siginfo_t *siginfo, struct pt_regs *regs)
 | |
| {
 | |
| 	struct task_struct *dump_task = current;
 | |
| 	const struct user_regset_view *view = task_user_regset_view(dump_task);
 | |
| 	struct elf_thread_core_info *t;
 | |
| 	struct elf_prpsinfo *psinfo;
 | |
| 	struct core_thread *ct;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	info->size = 0;
 | |
| 	info->thread = NULL;
 | |
| 
 | |
| 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
 | |
| 	if (psinfo == NULL) {
 | |
| 		info->psinfo.data = NULL; /* So we don't free this wrongly */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out how many notes we're going to need for each thread.
 | |
| 	 */
 | |
| 	info->thread_notes = 0;
 | |
| 	for (i = 0; i < view->n; ++i)
 | |
| 		if (view->regsets[i].core_note_type != 0)
 | |
| 			++info->thread_notes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
 | |
| 	 * since it is our one special case.
 | |
| 	 */
 | |
| 	if (unlikely(info->thread_notes == 0) ||
 | |
| 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
 | |
| 		WARN_ON(1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the ELF file header.
 | |
| 	 */
 | |
| 	fill_elf_header(elf, phdrs,
 | |
| 			view->e_machine, view->e_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a structure for each thread.
 | |
| 	 */
 | |
| 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
 | |
| 		t = kzalloc(offsetof(struct elf_thread_core_info,
 | |
| 				     notes[info->thread_notes]),
 | |
| 			    GFP_KERNEL);
 | |
| 		if (unlikely(!t))
 | |
| 			return 0;
 | |
| 
 | |
| 		t->task = ct->task;
 | |
| 		if (ct->task == dump_task || !info->thread) {
 | |
| 			t->next = info->thread;
 | |
| 			info->thread = t;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Make sure to keep the original task at
 | |
| 			 * the head of the list.
 | |
| 			 */
 | |
| 			t->next = info->thread->next;
 | |
| 			info->thread->next = t;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now fill in each thread's information.
 | |
| 	 */
 | |
| 	for (t = info->thread; t != NULL; t = t->next)
 | |
| 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
 | |
| 			return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill in the two process-wide notes.
 | |
| 	 */
 | |
| 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
 | |
| 	info->size += notesize(&info->psinfo);
 | |
| 
 | |
| 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
 | |
| 	info->size += notesize(&info->signote);
 | |
| 
 | |
| 	fill_auxv_note(&info->auxv, current->mm);
 | |
| 	info->size += notesize(&info->auxv);
 | |
| 
 | |
| 	if (fill_files_note(&info->files) == 0)
 | |
| 		info->size += notesize(&info->files);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static size_t get_note_info_size(struct elf_note_info *info)
 | |
| {
 | |
| 	return info->size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write all the notes for each thread.  When writing the first thread, the
 | |
|  * process-wide notes are interleaved after the first thread-specific note.
 | |
|  */
 | |
| static int write_note_info(struct elf_note_info *info,
 | |
| 			   struct coredump_params *cprm)
 | |
| {
 | |
| 	bool first = 1;
 | |
| 	struct elf_thread_core_info *t = info->thread;
 | |
| 
 | |
| 	do {
 | |
| 		int i;
 | |
| 
 | |
| 		if (!writenote(&t->notes[0], cprm))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (first && !writenote(&info->psinfo, cprm))
 | |
| 			return 0;
 | |
| 		if (first && !writenote(&info->signote, cprm))
 | |
| 			return 0;
 | |
| 		if (first && !writenote(&info->auxv, cprm))
 | |
| 			return 0;
 | |
| 		if (first && info->files.data &&
 | |
| 				!writenote(&info->files, cprm))
 | |
| 			return 0;
 | |
| 
 | |
| 		for (i = 1; i < info->thread_notes; ++i)
 | |
| 			if (t->notes[i].data &&
 | |
| 			    !writenote(&t->notes[i], cprm))
 | |
| 				return 0;
 | |
| 
 | |
| 		first = 0;
 | |
| 		t = t->next;
 | |
| 	} while (t);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void free_note_info(struct elf_note_info *info)
 | |
| {
 | |
| 	struct elf_thread_core_info *threads = info->thread;
 | |
| 	while (threads) {
 | |
| 		unsigned int i;
 | |
| 		struct elf_thread_core_info *t = threads;
 | |
| 		threads = t->next;
 | |
| 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
 | |
| 		for (i = 1; i < info->thread_notes; ++i)
 | |
| 			kfree(t->notes[i].data);
 | |
| 		kfree(t);
 | |
| 	}
 | |
| 	kfree(info->psinfo.data);
 | |
| 	vfree(info->files.data);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Here is the structure in which status of each thread is captured. */
 | |
| struct elf_thread_status
 | |
| {
 | |
| 	struct list_head list;
 | |
| 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
 | |
| 	elf_fpregset_t fpu;		/* NT_PRFPREG */
 | |
| 	struct task_struct *thread;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
 | |
| #endif
 | |
| 	struct memelfnote notes[3];
 | |
| 	int num_notes;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * In order to add the specific thread information for the elf file format,
 | |
|  * we need to keep a linked list of every threads pr_status and then create
 | |
|  * a single section for them in the final core file.
 | |
|  */
 | |
| static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
 | |
| {
 | |
| 	int sz = 0;
 | |
| 	struct task_struct *p = t->thread;
 | |
| 	t->num_notes = 0;
 | |
| 
 | |
| 	fill_prstatus(&t->prstatus, p, signr);
 | |
| 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	
 | |
| 	
 | |
| 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
 | |
| 		  &(t->prstatus));
 | |
| 	t->num_notes++;
 | |
| 	sz += notesize(&t->notes[0]);
 | |
| 
 | |
| 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
 | |
| 								&t->fpu))) {
 | |
| 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
 | |
| 			  &(t->fpu));
 | |
| 		t->num_notes++;
 | |
| 		sz += notesize(&t->notes[1]);
 | |
| 	}
 | |
| 
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
 | |
| 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
 | |
| 			  sizeof(t->xfpu), &t->xfpu);
 | |
| 		t->num_notes++;
 | |
| 		sz += notesize(&t->notes[2]);
 | |
| 	}
 | |
| #endif	
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| struct elf_note_info {
 | |
| 	struct memelfnote *notes;
 | |
| 	struct memelfnote *notes_files;
 | |
| 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
 | |
| 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
 | |
| 	struct list_head thread_list;
 | |
| 	elf_fpregset_t *fpu;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	elf_fpxregset_t *xfpu;
 | |
| #endif
 | |
| 	user_siginfo_t csigdata;
 | |
| 	int thread_status_size;
 | |
| 	int numnote;
 | |
| };
 | |
| 
 | |
| static int elf_note_info_init(struct elf_note_info *info)
 | |
| {
 | |
| 	memset(info, 0, sizeof(*info));
 | |
| 	INIT_LIST_HEAD(&info->thread_list);
 | |
| 
 | |
| 	/* Allocate space for ELF notes */
 | |
| 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
 | |
| 	if (!info->notes)
 | |
| 		return 0;
 | |
| 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
 | |
| 	if (!info->psinfo)
 | |
| 		return 0;
 | |
| 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
 | |
| 	if (!info->prstatus)
 | |
| 		return 0;
 | |
| 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
 | |
| 	if (!info->fpu)
 | |
| 		return 0;
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
 | |
| 	if (!info->xfpu)
 | |
| 		return 0;
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int fill_note_info(struct elfhdr *elf, int phdrs,
 | |
| 			  struct elf_note_info *info,
 | |
| 			  const siginfo_t *siginfo, struct pt_regs *regs)
 | |
| {
 | |
| 	struct list_head *t;
 | |
| 	struct core_thread *ct;
 | |
| 	struct elf_thread_status *ets;
 | |
| 
 | |
| 	if (!elf_note_info_init(info))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (ct = current->mm->core_state->dumper.next;
 | |
| 					ct; ct = ct->next) {
 | |
| 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
 | |
| 		if (!ets)
 | |
| 			return 0;
 | |
| 
 | |
| 		ets->thread = ct->task;
 | |
| 		list_add(&ets->list, &info->thread_list);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each(t, &info->thread_list) {
 | |
| 		int sz;
 | |
| 
 | |
| 		ets = list_entry(t, struct elf_thread_status, list);
 | |
| 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
 | |
| 		info->thread_status_size += sz;
 | |
| 	}
 | |
| 	/* now collect the dump for the current */
 | |
| 	memset(info->prstatus, 0, sizeof(*info->prstatus));
 | |
| 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
 | |
| 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
 | |
| 
 | |
| 	/* Set up header */
 | |
| 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the notes in similar form to SVR4 core dumps made
 | |
| 	 * with info from their /proc.
 | |
| 	 */
 | |
| 
 | |
| 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
 | |
| 		  sizeof(*info->prstatus), info->prstatus);
 | |
| 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
 | |
| 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
 | |
| 		  sizeof(*info->psinfo), info->psinfo);
 | |
| 
 | |
| 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
 | |
| 	fill_auxv_note(info->notes + 3, current->mm);
 | |
| 	info->numnote = 4;
 | |
| 
 | |
| 	if (fill_files_note(info->notes + info->numnote) == 0) {
 | |
| 		info->notes_files = info->notes + info->numnote;
 | |
| 		info->numnote++;
 | |
| 	}
 | |
| 
 | |
| 	/* Try to dump the FPU. */
 | |
| 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
 | |
| 							       info->fpu);
 | |
| 	if (info->prstatus->pr_fpvalid)
 | |
| 		fill_note(info->notes + info->numnote++,
 | |
| 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
 | |
| 		fill_note(info->notes + info->numnote++,
 | |
| 			  "LINUX", ELF_CORE_XFPREG_TYPE,
 | |
| 			  sizeof(*info->xfpu), info->xfpu);
 | |
| #endif
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static size_t get_note_info_size(struct elf_note_info *info)
 | |
| {
 | |
| 	int sz = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < info->numnote; i++)
 | |
| 		sz += notesize(info->notes + i);
 | |
| 
 | |
| 	sz += info->thread_status_size;
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static int write_note_info(struct elf_note_info *info,
 | |
| 			   struct coredump_params *cprm)
 | |
| {
 | |
| 	int i;
 | |
| 	struct list_head *t;
 | |
| 
 | |
| 	for (i = 0; i < info->numnote; i++)
 | |
| 		if (!writenote(info->notes + i, cprm))
 | |
| 			return 0;
 | |
| 
 | |
| 	/* write out the thread status notes section */
 | |
| 	list_for_each(t, &info->thread_list) {
 | |
| 		struct elf_thread_status *tmp =
 | |
| 				list_entry(t, struct elf_thread_status, list);
 | |
| 
 | |
| 		for (i = 0; i < tmp->num_notes; i++)
 | |
| 			if (!writenote(&tmp->notes[i], cprm))
 | |
| 				return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void free_note_info(struct elf_note_info *info)
 | |
| {
 | |
| 	while (!list_empty(&info->thread_list)) {
 | |
| 		struct list_head *tmp = info->thread_list.next;
 | |
| 		list_del(tmp);
 | |
| 		kfree(list_entry(tmp, struct elf_thread_status, list));
 | |
| 	}
 | |
| 
 | |
| 	/* Free data possibly allocated by fill_files_note(): */
 | |
| 	if (info->notes_files)
 | |
| 		vfree(info->notes_files->data);
 | |
| 
 | |
| 	kfree(info->prstatus);
 | |
| 	kfree(info->psinfo);
 | |
| 	kfree(info->notes);
 | |
| 	kfree(info->fpu);
 | |
| #ifdef ELF_CORE_COPY_XFPREGS
 | |
| 	kfree(info->xfpu);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static struct vm_area_struct *first_vma(struct task_struct *tsk,
 | |
| 					struct vm_area_struct *gate_vma)
 | |
| {
 | |
| 	struct vm_area_struct *ret = tsk->mm->mmap;
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	return gate_vma;
 | |
| }
 | |
| /*
 | |
|  * Helper function for iterating across a vma list.  It ensures that the caller
 | |
|  * will visit `gate_vma' prior to terminating the search.
 | |
|  */
 | |
| static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
 | |
| 					struct vm_area_struct *gate_vma)
 | |
| {
 | |
| 	struct vm_area_struct *ret;
 | |
| 
 | |
| 	ret = this_vma->vm_next;
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (this_vma == gate_vma)
 | |
| 		return NULL;
 | |
| 	return gate_vma;
 | |
| }
 | |
| 
 | |
| static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
 | |
| 			     elf_addr_t e_shoff, int segs)
 | |
| {
 | |
| 	elf->e_shoff = e_shoff;
 | |
| 	elf->e_shentsize = sizeof(*shdr4extnum);
 | |
| 	elf->e_shnum = 1;
 | |
| 	elf->e_shstrndx = SHN_UNDEF;
 | |
| 
 | |
| 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
 | |
| 
 | |
| 	shdr4extnum->sh_type = SHT_NULL;
 | |
| 	shdr4extnum->sh_size = elf->e_shnum;
 | |
| 	shdr4extnum->sh_link = elf->e_shstrndx;
 | |
| 	shdr4extnum->sh_info = segs;
 | |
| }
 | |
| 
 | |
| static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
 | |
| 				     unsigned long mm_flags)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	size_t size = 0;
 | |
| 
 | |
| 	for (vma = first_vma(current, gate_vma); vma != NULL;
 | |
| 	     vma = next_vma(vma, gate_vma))
 | |
| 		size += vma_dump_size(vma, mm_flags);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Actual dumper
 | |
|  *
 | |
|  * This is a two-pass process; first we find the offsets of the bits,
 | |
|  * and then they are actually written out.  If we run out of core limit
 | |
|  * we just truncate.
 | |
|  */
 | |
| static int elf_core_dump(struct coredump_params *cprm)
 | |
| {
 | |
| 	int has_dumped = 0;
 | |
| 	mm_segment_t fs;
 | |
| 	int segs;
 | |
| 	struct vm_area_struct *vma, *gate_vma;
 | |
| 	struct elfhdr *elf = NULL;
 | |
| 	loff_t offset = 0, dataoff;
 | |
| 	struct elf_note_info info = { };
 | |
| 	struct elf_phdr *phdr4note = NULL;
 | |
| 	struct elf_shdr *shdr4extnum = NULL;
 | |
| 	Elf_Half e_phnum;
 | |
| 	elf_addr_t e_shoff;
 | |
| 
 | |
| 	/*
 | |
| 	 * We no longer stop all VM operations.
 | |
| 	 * 
 | |
| 	 * This is because those proceses that could possibly change map_count
 | |
| 	 * or the mmap / vma pages are now blocked in do_exit on current
 | |
| 	 * finishing this core dump.
 | |
| 	 *
 | |
| 	 * Only ptrace can touch these memory addresses, but it doesn't change
 | |
| 	 * the map_count or the pages allocated. So no possibility of crashing
 | |
| 	 * exists while dumping the mm->vm_next areas to the core file.
 | |
| 	 */
 | |
|   
 | |
| 	/* alloc memory for large data structures: too large to be on stack */
 | |
| 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
 | |
| 	if (!elf)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * The number of segs are recored into ELF header as 16bit value.
 | |
| 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
 | |
| 	 */
 | |
| 	segs = current->mm->map_count;
 | |
| 	segs += elf_core_extra_phdrs();
 | |
| 
 | |
| 	gate_vma = get_gate_vma(current->mm);
 | |
| 	if (gate_vma != NULL)
 | |
| 		segs++;
 | |
| 
 | |
| 	/* for notes section */
 | |
| 	segs++;
 | |
| 
 | |
| 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
 | |
| 	 * this, kernel supports extended numbering. Have a look at
 | |
| 	 * include/linux/elf.h for further information. */
 | |
| 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Collect all the non-memory information about the process for the
 | |
| 	 * notes.  This also sets up the file header.
 | |
| 	 */
 | |
| 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	has_dumped = 1;
 | |
| 
 | |
| 	fs = get_fs();
 | |
| 	set_fs(KERNEL_DS);
 | |
| 
 | |
| 	offset += sizeof(*elf);				/* Elf header */
 | |
| 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
 | |
| 
 | |
| 	/* Write notes phdr entry */
 | |
| 	{
 | |
| 		size_t sz = get_note_info_size(&info);
 | |
| 
 | |
| 		sz += elf_coredump_extra_notes_size();
 | |
| 
 | |
| 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
 | |
| 		if (!phdr4note)
 | |
| 			goto end_coredump;
 | |
| 
 | |
| 		fill_elf_note_phdr(phdr4note, sz, offset);
 | |
| 		offset += sz;
 | |
| 	}
 | |
| 
 | |
| 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
| 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
 | |
| 	offset += elf_core_extra_data_size();
 | |
| 	e_shoff = offset;
 | |
| 
 | |
| 	if (e_phnum == PN_XNUM) {
 | |
| 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
 | |
| 		if (!shdr4extnum)
 | |
| 			goto end_coredump;
 | |
| 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
 | |
| 	}
 | |
| 
 | |
| 	offset = dataoff;
 | |
| 
 | |
| 	if (!dump_emit(cprm, elf, sizeof(*elf)))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* Write program headers for segments dump */
 | |
| 	for (vma = first_vma(current, gate_vma); vma != NULL;
 | |
| 			vma = next_vma(vma, gate_vma)) {
 | |
| 		struct elf_phdr phdr;
 | |
| 
 | |
| 		phdr.p_type = PT_LOAD;
 | |
| 		phdr.p_offset = offset;
 | |
| 		phdr.p_vaddr = vma->vm_start;
 | |
| 		phdr.p_paddr = 0;
 | |
| 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
 | |
| 		phdr.p_memsz = vma->vm_end - vma->vm_start;
 | |
| 		offset += phdr.p_filesz;
 | |
| 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
 | |
| 		if (vma->vm_flags & VM_WRITE)
 | |
| 			phdr.p_flags |= PF_W;
 | |
| 		if (vma->vm_flags & VM_EXEC)
 | |
| 			phdr.p_flags |= PF_X;
 | |
| 		phdr.p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
| 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
 | |
| 			goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| 	if (!elf_core_write_extra_phdrs(cprm, offset))
 | |
| 		goto end_coredump;
 | |
| 
 | |
|  	/* write out the notes section */
 | |
| 	if (!write_note_info(&info, cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	if (elf_coredump_extra_notes_write(cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	/* Align to page */
 | |
| 	if (!dump_skip(cprm, dataoff - cprm->written))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	for (vma = first_vma(current, gate_vma); vma != NULL;
 | |
| 			vma = next_vma(vma, gate_vma)) {
 | |
| 		unsigned long addr;
 | |
| 		unsigned long end;
 | |
| 
 | |
| 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
 | |
| 
 | |
| 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
 | |
| 			struct page *page;
 | |
| 			int stop;
 | |
| 
 | |
| 			page = get_dump_page(addr);
 | |
| 			if (page) {
 | |
| 				void *kaddr = kmap(page);
 | |
| 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
 | |
| 				kunmap(page);
 | |
| 				page_cache_release(page);
 | |
| 			} else
 | |
| 				stop = !dump_skip(cprm, PAGE_SIZE);
 | |
| 			if (stop)
 | |
| 				goto end_coredump;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!elf_core_write_extra_data(cprm))
 | |
| 		goto end_coredump;
 | |
| 
 | |
| 	if (e_phnum == PN_XNUM) {
 | |
| 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
 | |
| 			goto end_coredump;
 | |
| 	}
 | |
| 
 | |
| end_coredump:
 | |
| 	set_fs(fs);
 | |
| 
 | |
| cleanup:
 | |
| 	free_note_info(&info);
 | |
| 	kfree(shdr4extnum);
 | |
| 	kfree(phdr4note);
 | |
| 	kfree(elf);
 | |
| out:
 | |
| 	return has_dumped;
 | |
| }
 | |
| 
 | |
| #endif		/* CONFIG_ELF_CORE */
 | |
| 
 | |
| static int __init init_elf_binfmt(void)
 | |
| {
 | |
| 	register_binfmt(&elf_format);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit exit_elf_binfmt(void)
 | |
| {
 | |
| 	/* Remove the COFF and ELF loaders. */
 | |
| 	unregister_binfmt(&elf_format);
 | |
| }
 | |
| 
 | |
| core_initcall(init_elf_binfmt);
 | |
| module_exit(exit_elf_binfmt);
 | |
| MODULE_LICENSE("GPL");
 |