linux/kernel/bpf/log.c
Andrii Nakryiko 7cc13adbd0 bpf: emit source code file name and line number in verifier log
As BPF applications grow in size and complexity and are separated into
multiple .bpf.c files that are statically linked together, it becomes
harder and harder to match verifier's BPF assembly level output to
original C code. While often annotated C source code is unique enough to
be able to identify the file it belongs to, quite often this is actually
problematic as parts of source code can be quite generic.

Long story short, it is very useful to see source code file name and
line number information along with the original C code. Verifier already
knows this information, we just need to output it.

This patch extends verifier log with file name and line number
information, emitted next to original (presumably C) source code,
annotating BPF assembly output, like so:

  ; <original C code> @ <filename>.bpf.c:<line>

If file name has directory names in it, they are stripped away. This
should be fine in practice as file names tend to be pretty unique with
C code anyways, and keeping log size smaller is always good.

In practice this might look something like below, where some code is
coming from application files, while others are from libbpf's usdt.bpf.h
header file:

  ; if (STROBEMETA_READ( @ strobemeta_probe.bpf.c:534
  5592: (79) r1 = *(u64 *)(r10 -56)     ; R1_w=mem_or_null(id=1589,sz=7680) R10=fp0
  5593: (7b) *(u64 *)(r10 -56) = r1     ; R1_w=mem_or_null(id=1589,sz=7680) R10=fp0
  5594: (79) r3 = *(u64 *)(r10 -8)      ; R3_w=scalar() R10=fp0 fp-8=mmmmmmmm

  ...

  170: (71) r1 = *(u8 *)(r8 +15)        ; frame1: R1_w=scalar(...) R8_w=map_value(map=__bpf_usdt_spec,ks=4,vs=208)
  171: (67) r1 <<= 56                   ; frame1: R1_w=scalar(...)
  172: (c7) r1 s>>= 56                  ; frame1: R1_w=scalar(smin=smin32=-128,smax=smax32=127)
  ; val <<= arg_spec->arg_bitshift; @ usdt.bpf.h:183
  173: (67) r1 <<= 32                   ; frame1: R1_w=scalar(...)
  174: (77) r1 >>= 32                   ; frame1: R1_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  175: (79) r2 = *(u64 *)(r10 -8)       ; frame1: R2_w=scalar() R10=fp0 fp-8=mmmmmmmm
  176: (6f) r2 <<= r1                   ; frame1: R1_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R2_w=scalar()
  177: (7b) *(u64 *)(r10 -8) = r2       ; frame1: R2_w=scalar(id=61) R10=fp0 fp-8_w=scalar(id=61)
  ; if (arg_spec->arg_signed) @ usdt.bpf.h:184
  178: (bf) r3 = r2                     ; frame1: R2_w=scalar(id=61) R3_w=scalar(id=61)
  179: (7f) r3 >>= r1                   ; frame1: R1_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R3_w=scalar()
  ; if (arg_spec->arg_signed) @ usdt.bpf.h:184
  180: (71) r4 = *(u8 *)(r8 +14)
  181: safe

log_fixup tests needed a minor adjustment as verifier log output
increased a bit and that test is quite sensitive to such changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240212235944.2816107-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-13 18:51:32 -08:00

840 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
*/
#include <uapi/linux/btf.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/math64.h>
#include <linux/string.h>
#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args)
static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
{
/* ubuf and len_total should both be specified (or not) together */
if (!!log->ubuf != !!log->len_total)
return false;
/* log buf without log_level is meaningless */
if (log->ubuf && log->level == 0)
return false;
if (log->level & ~BPF_LOG_MASK)
return false;
if (log->len_total > UINT_MAX >> 2)
return false;
return true;
}
int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
char __user *log_buf, u32 log_size)
{
log->level = log_level;
log->ubuf = log_buf;
log->len_total = log_size;
/* log attributes have to be sane */
if (!bpf_verifier_log_attr_valid(log))
return -EINVAL;
return 0;
}
static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len)
{
/* add_len includes terminal \0, so no need for +1. */
u64 len = log->end_pos + add_len;
/* log->len_max could be larger than our current len due to
* bpf_vlog_reset() calls, so we maintain the max of any length at any
* previous point
*/
if (len > UINT_MAX)
log->len_max = UINT_MAX;
else if (len > log->len_max)
log->len_max = len;
}
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
va_list args)
{
u64 cur_pos;
u32 new_n, n;
n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
if (log->level == BPF_LOG_KERNEL) {
bool newline = n > 0 && log->kbuf[n - 1] == '\n';
pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
return;
}
n += 1; /* include terminating zero */
bpf_vlog_update_len_max(log, n);
if (log->level & BPF_LOG_FIXED) {
/* check if we have at least something to put into user buf */
new_n = 0;
if (log->end_pos < log->len_total) {
new_n = min_t(u32, log->len_total - log->end_pos, n);
log->kbuf[new_n - 1] = '\0';
}
cur_pos = log->end_pos;
log->end_pos += n - 1; /* don't count terminating '\0' */
if (log->ubuf && new_n &&
copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n))
goto fail;
} else {
u64 new_end, new_start;
u32 buf_start, buf_end, new_n;
new_end = log->end_pos + n;
if (new_end - log->start_pos >= log->len_total)
new_start = new_end - log->len_total;
else
new_start = log->start_pos;
log->start_pos = new_start;
log->end_pos = new_end - 1; /* don't count terminating '\0' */
if (!log->ubuf)
return;
new_n = min(n, log->len_total);
cur_pos = new_end - new_n;
div_u64_rem(cur_pos, log->len_total, &buf_start);
div_u64_rem(new_end, log->len_total, &buf_end);
/* new_end and buf_end are exclusive indices, so if buf_end is
* exactly zero, then it actually points right to the end of
* ubuf and there is no wrap around
*/
if (buf_end == 0)
buf_end = log->len_total;
/* if buf_start > buf_end, we wrapped around;
* if buf_start == buf_end, then we fill ubuf completely; we
* can't have buf_start == buf_end to mean that there is
* nothing to write, because we always write at least
* something, even if terminal '\0'
*/
if (buf_start < buf_end) {
/* message fits within contiguous chunk of ubuf */
if (copy_to_user(log->ubuf + buf_start,
log->kbuf + n - new_n,
buf_end - buf_start))
goto fail;
} else {
/* message wraps around the end of ubuf, copy in two chunks */
if (copy_to_user(log->ubuf + buf_start,
log->kbuf + n - new_n,
log->len_total - buf_start))
goto fail;
if (copy_to_user(log->ubuf,
log->kbuf + n - buf_end,
buf_end))
goto fail;
}
}
return;
fail:
log->ubuf = NULL;
}
void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos)
{
char zero = 0;
u32 pos;
if (WARN_ON_ONCE(new_pos > log->end_pos))
return;
if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL)
return;
/* if position to which we reset is beyond current log window,
* then we didn't preserve any useful content and should adjust
* start_pos to end up with an empty log (start_pos == end_pos)
*/
log->end_pos = new_pos;
if (log->end_pos < log->start_pos)
log->start_pos = log->end_pos;
if (!log->ubuf)
return;
if (log->level & BPF_LOG_FIXED)
pos = log->end_pos + 1;
else
div_u64_rem(new_pos, log->len_total, &pos);
if (pos < log->len_total && put_user(zero, log->ubuf + pos))
log->ubuf = NULL;
}
static void bpf_vlog_reverse_kbuf(char *buf, int len)
{
int i, j;
for (i = 0, j = len - 1; i < j; i++, j--)
swap(buf[i], buf[j]);
}
static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end)
{
/* we split log->kbuf into two equal parts for both ends of array */
int n = sizeof(log->kbuf) / 2, nn;
char *lbuf = log->kbuf, *rbuf = log->kbuf + n;
/* Read ubuf's section [start, end) two chunks at a time, from left
* and right side; within each chunk, swap all the bytes; after that
* reverse the order of lbuf and rbuf and write result back to ubuf.
* This way we'll end up with swapped contents of specified
* [start, end) ubuf segment.
*/
while (end - start > 1) {
nn = min(n, (end - start ) / 2);
if (copy_from_user(lbuf, log->ubuf + start, nn))
return -EFAULT;
if (copy_from_user(rbuf, log->ubuf + end - nn, nn))
return -EFAULT;
bpf_vlog_reverse_kbuf(lbuf, nn);
bpf_vlog_reverse_kbuf(rbuf, nn);
/* we write lbuf to the right end of ubuf, while rbuf to the
* left one to end up with properly reversed overall ubuf
*/
if (copy_to_user(log->ubuf + start, rbuf, nn))
return -EFAULT;
if (copy_to_user(log->ubuf + end - nn, lbuf, nn))
return -EFAULT;
start += nn;
end -= nn;
}
return 0;
}
int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual)
{
u32 sublen;
int err;
*log_size_actual = 0;
if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL)
return 0;
if (!log->ubuf)
goto skip_log_rotate;
/* If we never truncated log, there is nothing to move around. */
if (log->start_pos == 0)
goto skip_log_rotate;
/* Otherwise we need to rotate log contents to make it start from the
* buffer beginning and be a continuous zero-terminated string. Note
* that if log->start_pos != 0 then we definitely filled up entire log
* buffer with no gaps, and we just need to shift buffer contents to
* the left by (log->start_pos % log->len_total) bytes.
*
* Unfortunately, user buffer could be huge and we don't want to
* allocate temporary kernel memory of the same size just to shift
* contents in a straightforward fashion. Instead, we'll be clever and
* do in-place array rotation. This is a leetcode-style problem, which
* could be solved by three rotations.
*
* Let's say we have log buffer that has to be shifted left by 7 bytes
* (spaces and vertical bar is just for demonstrative purposes):
* E F G H I J K | A B C D
*
* First, we reverse entire array:
* D C B A | K J I H G F E
*
* Then we rotate first 4 bytes (DCBA) and separately last 7 bytes
* (KJIHGFE), resulting in a properly rotated array:
* A B C D | E F G H I J K
*
* We'll utilize log->kbuf to read user memory chunk by chunk, swap
* bytes, and write them back. Doing it byte-by-byte would be
* unnecessarily inefficient. Altogether we are going to read and
* write each byte twice, for total 4 memory copies between kernel and
* user space.
*/
/* length of the chopped off part that will be the beginning;
* len(ABCD) in the example above
*/
div_u64_rem(log->start_pos, log->len_total, &sublen);
sublen = log->len_total - sublen;
err = bpf_vlog_reverse_ubuf(log, 0, log->len_total);
err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen);
err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total);
if (err)
log->ubuf = NULL;
skip_log_rotate:
*log_size_actual = log->len_max;
/* properly initialized log has either both ubuf!=NULL and len_total>0
* or ubuf==NULL and len_total==0, so if this condition doesn't hold,
* we got a fault somewhere along the way, so report it back
*/
if (!!log->ubuf != !!log->len_total)
return -EFAULT;
/* did truncation actually happen? */
if (log->ubuf && log->len_max > log->len_total)
return -ENOSPC;
return 0;
}
/* log_level controls verbosity level of eBPF verifier.
* bpf_verifier_log_write() is used to dump the verification trace to the log,
* so the user can figure out what's wrong with the program
*/
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(&env->log))
return;
va_start(args, fmt);
bpf_verifier_vlog(&env->log, fmt, args);
va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
const char *fmt, ...)
{
va_list args;
if (!bpf_verifier_log_needed(log))
return;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_log);
static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
{
const struct bpf_line_info *linfo;
const struct bpf_prog *prog;
u32 i, nr_linfo;
prog = env->prog;
nr_linfo = prog->aux->nr_linfo;
if (!nr_linfo || insn_off >= prog->len)
return NULL;
linfo = prog->aux->linfo;
for (i = 1; i < nr_linfo; i++)
if (insn_off < linfo[i].insn_off)
break;
return &linfo[i - 1];
}
static const char *ltrim(const char *s)
{
while (isspace(*s))
s++;
return s;
}
__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
u32 insn_off,
const char *prefix_fmt, ...)
{
const struct bpf_line_info *linfo;
const struct btf *btf;
const char *s, *fname;
if (!bpf_verifier_log_needed(&env->log))
return;
linfo = find_linfo(env, insn_off);
if (!linfo || linfo == env->prev_linfo)
return;
if (prefix_fmt) {
va_list args;
va_start(args, prefix_fmt);
bpf_verifier_vlog(&env->log, prefix_fmt, args);
va_end(args);
}
btf = env->prog->aux->btf;
s = ltrim(btf_name_by_offset(btf, linfo->line_off));
verbose(env, "%s", s); /* source code line */
s = btf_name_by_offset(btf, linfo->file_name_off);
/* leave only file name */
fname = strrchr(s, '/');
fname = fname ? fname + 1 : s;
verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col));
env->prev_linfo = linfo;
}
static const char *btf_type_name(const struct btf *btf, u32 id)
{
return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
}
/* string representation of 'enum bpf_reg_type'
*
* Note that reg_type_str() can not appear more than once in a single verbose()
* statement.
*/
const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
{
char postfix[16] = {0}, prefix[64] = {0};
static const char * const str[] = {
[NOT_INIT] = "?",
[SCALAR_VALUE] = "scalar",
[PTR_TO_CTX] = "ctx",
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_STACK] = "fp",
[PTR_TO_PACKET] = "pkt",
[PTR_TO_PACKET_META] = "pkt_meta",
[PTR_TO_PACKET_END] = "pkt_end",
[PTR_TO_FLOW_KEYS] = "flow_keys",
[PTR_TO_SOCKET] = "sock",
[PTR_TO_SOCK_COMMON] = "sock_common",
[PTR_TO_TCP_SOCK] = "tcp_sock",
[PTR_TO_TP_BUFFER] = "tp_buffer",
[PTR_TO_XDP_SOCK] = "xdp_sock",
[PTR_TO_BTF_ID] = "ptr_",
[PTR_TO_MEM] = "mem",
[PTR_TO_BUF] = "buf",
[PTR_TO_FUNC] = "func",
[PTR_TO_MAP_KEY] = "map_key",
[CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
};
if (type & PTR_MAYBE_NULL) {
if (base_type(type) == PTR_TO_BTF_ID)
strncpy(postfix, "or_null_", 16);
else
strncpy(postfix, "_or_null", 16);
}
snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
type & MEM_RDONLY ? "rdonly_" : "",
type & MEM_RINGBUF ? "ringbuf_" : "",
type & MEM_USER ? "user_" : "",
type & MEM_PERCPU ? "percpu_" : "",
type & MEM_RCU ? "rcu_" : "",
type & PTR_UNTRUSTED ? "untrusted_" : "",
type & PTR_TRUSTED ? "trusted_" : ""
);
snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
prefix, str[base_type(type)], postfix);
return env->tmp_str_buf;
}
const char *dynptr_type_str(enum bpf_dynptr_type type)
{
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
return "local";
case BPF_DYNPTR_TYPE_RINGBUF:
return "ringbuf";
case BPF_DYNPTR_TYPE_SKB:
return "skb";
case BPF_DYNPTR_TYPE_XDP:
return "xdp";
case BPF_DYNPTR_TYPE_INVALID:
return "<invalid>";
default:
WARN_ONCE(1, "unknown dynptr type %d\n", type);
return "<unknown>";
}
}
const char *iter_type_str(const struct btf *btf, u32 btf_id)
{
if (!btf || btf_id == 0)
return "<invalid>";
/* we already validated that type is valid and has conforming name */
return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
}
const char *iter_state_str(enum bpf_iter_state state)
{
switch (state) {
case BPF_ITER_STATE_ACTIVE:
return "active";
case BPF_ITER_STATE_DRAINED:
return "drained";
case BPF_ITER_STATE_INVALID:
return "<invalid>";
default:
WARN_ONCE(1, "unknown iter state %d\n", state);
return "<unknown>";
}
}
static char slot_type_char[] = {
[STACK_INVALID] = '?',
[STACK_SPILL] = 'r',
[STACK_MISC] = 'm',
[STACK_ZERO] = '0',
[STACK_DYNPTR] = 'd',
[STACK_ITER] = 'i',
};
static void print_liveness(struct bpf_verifier_env *env,
enum bpf_reg_liveness live)
{
if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
verbose(env, "_");
if (live & REG_LIVE_READ)
verbose(env, "r");
if (live & REG_LIVE_WRITTEN)
verbose(env, "w");
if (live & REG_LIVE_DONE)
verbose(env, "D");
}
#define UNUM_MAX_DECIMAL U16_MAX
#define SNUM_MAX_DECIMAL S16_MAX
#define SNUM_MIN_DECIMAL S16_MIN
static bool is_unum_decimal(u64 num)
{
return num <= UNUM_MAX_DECIMAL;
}
static bool is_snum_decimal(s64 num)
{
return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL;
}
static void verbose_unum(struct bpf_verifier_env *env, u64 num)
{
if (is_unum_decimal(num))
verbose(env, "%llu", num);
else
verbose(env, "%#llx", num);
}
static void verbose_snum(struct bpf_verifier_env *env, s64 num)
{
if (is_snum_decimal(num))
verbose(env, "%lld", num);
else
verbose(env, "%#llx", num);
}
int tnum_strn(char *str, size_t size, struct tnum a)
{
/* print as a constant, if tnum is fully known */
if (a.mask == 0) {
if (is_unum_decimal(a.value))
return snprintf(str, size, "%llu", a.value);
else
return snprintf(str, size, "%#llx", a.value);
}
return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
}
EXPORT_SYMBOL_GPL(tnum_strn);
static void print_scalar_ranges(struct bpf_verifier_env *env,
const struct bpf_reg_state *reg,
const char **sep)
{
/* For signed ranges, we want to unify 64-bit and 32-bit values in the
* output as much as possible, but there is a bit of a complication.
* If we choose to print values as decimals, this is natural to do,
* because negative 64-bit and 32-bit values >= -S32_MIN have the same
* representation due to sign extension. But if we choose to print
* them in hex format (see is_snum_decimal()), then sign extension is
* misleading.
* E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in
* hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two
* very different numbers.
* So we avoid sign extension if we choose to print values in hex.
*/
struct {
const char *name;
u64 val;
bool omit;
} minmaxs[] = {
{"smin", reg->smin_value, reg->smin_value == S64_MIN},
{"smax", reg->smax_value, reg->smax_value == S64_MAX},
{"umin", reg->umin_value, reg->umin_value == 0},
{"umax", reg->umax_value, reg->umax_value == U64_MAX},
{"smin32",
is_snum_decimal((s64)reg->s32_min_value)
? (s64)reg->s32_min_value
: (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN},
{"smax32",
is_snum_decimal((s64)reg->s32_max_value)
? (s64)reg->s32_max_value
: (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX},
{"umin32", reg->u32_min_value, reg->u32_min_value == 0},
{"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX},
}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
bool neg1, neg2;
for (m1 = &minmaxs[0]; m1 < mend; m1++) {
if (m1->omit)
continue;
neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
verbose(env, "%s%s=", *sep, m1->name);
*sep = ",";
for (m2 = m1 + 2; m2 < mend; m2 += 2) {
if (m2->omit || m2->val != m1->val)
continue;
/* don't mix negatives with positives */
neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
if (neg2 != neg1)
continue;
m2->omit = true;
verbose(env, "%s=", m2->name);
}
if (m1->name[0] == 's')
verbose_snum(env, m1->val);
else
verbose_unum(env, m1->val);
}
}
static bool type_is_map_ptr(enum bpf_reg_type t) {
switch (base_type(t)) {
case CONST_PTR_TO_MAP:
case PTR_TO_MAP_KEY:
case PTR_TO_MAP_VALUE:
return true;
default:
return false;
}
}
/*
* _a stands for append, was shortened to avoid multiline statements below.
* This macro is used to output a comma separated list of attributes.
*/
#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; })
static void print_reg_state(struct bpf_verifier_env *env,
const struct bpf_func_state *state,
const struct bpf_reg_state *reg)
{
enum bpf_reg_type t;
const char *sep = "";
t = reg->type;
if (t == SCALAR_VALUE && reg->precise)
verbose(env, "P");
if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {
/* reg->off should be 0 for SCALAR_VALUE */
verbose_snum(env, reg->var_off.value + reg->off);
return;
}
verbose(env, "%s", reg_type_str(env, t));
if (t == PTR_TO_STACK) {
if (state->frameno != reg->frameno)
verbose(env, "[%d]", reg->frameno);
if (tnum_is_const(reg->var_off)) {
verbose_snum(env, reg->var_off.value + reg->off);
return;
}
}
if (base_type(t) == PTR_TO_BTF_ID)
verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
verbose(env, "(");
if (reg->id)
verbose_a("id=%d", reg->id);
if (reg->ref_obj_id)
verbose_a("ref_obj_id=%d", reg->ref_obj_id);
if (type_is_non_owning_ref(reg->type))
verbose_a("%s", "non_own_ref");
if (type_is_map_ptr(t)) {
if (reg->map_ptr->name[0])
verbose_a("map=%s", reg->map_ptr->name);
verbose_a("ks=%d,vs=%d",
reg->map_ptr->key_size,
reg->map_ptr->value_size);
}
if (t != SCALAR_VALUE && reg->off) {
verbose_a("off=");
verbose_snum(env, reg->off);
}
if (type_is_pkt_pointer(t)) {
verbose_a("r=");
verbose_unum(env, reg->range);
}
if (base_type(t) == PTR_TO_MEM) {
verbose_a("sz=");
verbose_unum(env, reg->mem_size);
}
if (t == CONST_PTR_TO_DYNPTR)
verbose_a("type=%s", dynptr_type_str(reg->dynptr.type));
if (tnum_is_const(reg->var_off)) {
/* a pointer register with fixed offset */
if (reg->var_off.value) {
verbose_a("imm=");
verbose_snum(env, reg->var_off.value);
}
} else {
print_scalar_ranges(env, reg, &sep);
if (!tnum_is_unknown(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose_a("var_off=%s", tn_buf);
}
}
verbose(env, ")");
}
void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state,
bool print_all)
{
const struct bpf_reg_state *reg;
int i;
if (state->frameno)
verbose(env, " frame%d:", state->frameno);
for (i = 0; i < MAX_BPF_REG; i++) {
reg = &state->regs[i];
if (reg->type == NOT_INIT)
continue;
if (!print_all && !reg_scratched(env, i))
continue;
verbose(env, " R%d", i);
print_liveness(env, reg->live);
verbose(env, "=");
print_reg_state(env, state, reg);
}
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
char types_buf[BPF_REG_SIZE + 1];
const char *sep = "";
bool valid = false;
u8 slot_type;
int j;
if (!print_all && !stack_slot_scratched(env, i))
continue;
for (j = 0; j < BPF_REG_SIZE; j++) {
slot_type = state->stack[i].slot_type[j];
if (slot_type != STACK_INVALID)
valid = true;
types_buf[j] = slot_type_char[slot_type];
}
types_buf[BPF_REG_SIZE] = 0;
if (!valid)
continue;
reg = &state->stack[i].spilled_ptr;
switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
case STACK_SPILL:
/* print MISC/ZERO/INVALID slots above subreg spill */
for (j = 0; j < BPF_REG_SIZE; j++)
if (state->stack[i].slot_type[j] == STACK_SPILL)
break;
types_buf[j] = '\0';
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=%s", types_buf);
print_reg_state(env, state, reg);
break;
case STACK_DYNPTR:
/* skip to main dynptr slot */
i += BPF_DYNPTR_NR_SLOTS - 1;
reg = &state->stack[i].spilled_ptr;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
if (reg->id)
verbose_a("id=%d", reg->id);
if (reg->ref_obj_id)
verbose_a("ref_id=%d", reg->ref_obj_id);
if (reg->dynptr_id)
verbose_a("dynptr_id=%d", reg->dynptr_id);
verbose(env, ")");
break;
case STACK_ITER:
/* only main slot has ref_obj_id set; skip others */
if (!reg->ref_obj_id)
continue;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
iter_type_str(reg->iter.btf, reg->iter.btf_id),
reg->ref_obj_id, iter_state_str(reg->iter.state),
reg->iter.depth);
break;
case STACK_MISC:
case STACK_ZERO:
default:
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=%s", types_buf);
break;
}
}
if (state->acquired_refs && state->refs[0].id) {
verbose(env, " refs=%d", state->refs[0].id);
for (i = 1; i < state->acquired_refs; i++)
if (state->refs[i].id)
verbose(env, ",%d", state->refs[i].id);
}
if (state->in_callback_fn)
verbose(env, " cb");
if (state->in_async_callback_fn)
verbose(env, " async_cb");
verbose(env, "\n");
if (!print_all)
mark_verifier_state_clean(env);
}
static inline u32 vlog_alignment(u32 pos)
{
return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
BPF_LOG_MIN_ALIGNMENT) - pos - 1;
}
void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state)
{
if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
/* remove new line character */
bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
} else {
verbose(env, "%d:", env->insn_idx);
}
print_verifier_state(env, state, false);
}