mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 452c472e26
			
		
	
	
		452c472e26
		
	
	
	
	
		
			
			Add a convenience function, folio_inode() that will get the host inode from a folio's mapping. Changes: ver #3: - Fix mistake in function description[2]. ver #2: - Fix contradiction between doc and implementation by disallowing use with swap caches[1]. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Tested-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dominique Martinet <asmadeus@codewreck.org> Tested-by: kafs-testing@auristor.com Link: https://lore.kernel.org/r/YST8OcVNy02Rivbm@casper.infradead.org/ [1] Link: https://lore.kernel.org/r/YYKLkBwQdtn4ja+i@casper.infradead.org/ [2] Link: https://lore.kernel.org/r/162880453171.3369675.3704943108660112470.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/162981151155.1901565.7010079316994382707.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/163005744370.2472992.18324470937328925723.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163584184628.4023316.9386282630968981869.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/163649325519.309189.15072332908703129455.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/163657850401.834781.1031963517399283294.stgit@warthog.procyon.org.uk/ # v5
		
			
				
	
	
		
			2973 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2973 lines
		
	
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/page-writeback.c
 | |
|  *
 | |
|  * Copyright (C) 2002, Linus Torvalds.
 | |
|  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
 | |
|  *
 | |
|  * Contains functions related to writing back dirty pages at the
 | |
|  * address_space level.
 | |
|  *
 | |
|  * 10Apr2002	Andrew Morton
 | |
|  *		Initial version
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/sched/rt.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <trace/events/writeback.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Sleep at most 200ms at a time in balance_dirty_pages().
 | |
|  */
 | |
| #define MAX_PAUSE		max(HZ/5, 1)
 | |
| 
 | |
| /*
 | |
|  * Try to keep balance_dirty_pages() call intervals higher than this many pages
 | |
|  * by raising pause time to max_pause when falls below it.
 | |
|  */
 | |
| #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
 | |
| 
 | |
| /*
 | |
|  * Estimate write bandwidth at 200ms intervals.
 | |
|  */
 | |
| #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
 | |
| 
 | |
| #define RATELIMIT_CALC_SHIFT	10
 | |
| 
 | |
| /*
 | |
|  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 | |
|  * will look to see if it needs to force writeback or throttling.
 | |
|  */
 | |
| static long ratelimit_pages = 32;
 | |
| 
 | |
| /* The following parameters are exported via /proc/sys/vm */
 | |
| 
 | |
| /*
 | |
|  * Start background writeback (via writeback threads) at this percentage
 | |
|  */
 | |
| int dirty_background_ratio = 10;
 | |
| 
 | |
| /*
 | |
|  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 | |
|  * dirty_background_ratio * the amount of dirtyable memory
 | |
|  */
 | |
| unsigned long dirty_background_bytes;
 | |
| 
 | |
| /*
 | |
|  * free highmem will not be subtracted from the total free memory
 | |
|  * for calculating free ratios if vm_highmem_is_dirtyable is true
 | |
|  */
 | |
| int vm_highmem_is_dirtyable;
 | |
| 
 | |
| /*
 | |
|  * The generator of dirty data starts writeback at this percentage
 | |
|  */
 | |
| int vm_dirty_ratio = 20;
 | |
| 
 | |
| /*
 | |
|  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 | |
|  * vm_dirty_ratio * the amount of dirtyable memory
 | |
|  */
 | |
| unsigned long vm_dirty_bytes;
 | |
| 
 | |
| /*
 | |
|  * The interval between `kupdate'-style writebacks
 | |
|  */
 | |
| unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 | |
| 
 | |
| /*
 | |
|  * The longest time for which data is allowed to remain dirty
 | |
|  */
 | |
| unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 | |
| 
 | |
| /*
 | |
|  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 | |
|  * a full sync is triggered after this time elapses without any disk activity.
 | |
|  */
 | |
| int laptop_mode;
 | |
| 
 | |
| EXPORT_SYMBOL(laptop_mode);
 | |
| 
 | |
| /* End of sysctl-exported parameters */
 | |
| 
 | |
| struct wb_domain global_wb_domain;
 | |
| 
 | |
| /* consolidated parameters for balance_dirty_pages() and its subroutines */
 | |
| struct dirty_throttle_control {
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 	struct wb_domain	*dom;
 | |
| 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 | |
| #endif
 | |
| 	struct bdi_writeback	*wb;
 | |
| 	struct fprop_local_percpu *wb_completions;
 | |
| 
 | |
| 	unsigned long		avail;		/* dirtyable */
 | |
| 	unsigned long		dirty;		/* file_dirty + write + nfs */
 | |
| 	unsigned long		thresh;		/* dirty threshold */
 | |
| 	unsigned long		bg_thresh;	/* dirty background threshold */
 | |
| 
 | |
| 	unsigned long		wb_dirty;	/* per-wb counterparts */
 | |
| 	unsigned long		wb_thresh;
 | |
| 	unsigned long		wb_bg_thresh;
 | |
| 
 | |
| 	unsigned long		pos_ratio;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Length of period for aging writeout fractions of bdis. This is an
 | |
|  * arbitrarily chosen number. The longer the period, the slower fractions will
 | |
|  * reflect changes in current writeout rate.
 | |
|  */
 | |
| #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| 
 | |
| #define GDTC_INIT(__wb)		.wb = (__wb),				\
 | |
| 				.dom = &global_wb_domain,		\
 | |
| 				.wb_completions = &(__wb)->completions
 | |
| 
 | |
| #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 | |
| 
 | |
| #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 | |
| 				.dom = mem_cgroup_wb_domain(__wb),	\
 | |
| 				.wb_completions = &(__wb)->memcg_completions, \
 | |
| 				.gdtc = __gdtc
 | |
| 
 | |
| static bool mdtc_valid(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	return dtc->dom;
 | |
| }
 | |
| 
 | |
| static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	return dtc->dom;
 | |
| }
 | |
| 
 | |
| static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 | |
| {
 | |
| 	return mdtc->gdtc;
 | |
| }
 | |
| 
 | |
| static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 | |
| {
 | |
| 	return &wb->memcg_completions;
 | |
| }
 | |
| 
 | |
| static void wb_min_max_ratio(struct bdi_writeback *wb,
 | |
| 			     unsigned long *minp, unsigned long *maxp)
 | |
| {
 | |
| 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
 | |
| 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 | |
| 	unsigned long long min = wb->bdi->min_ratio;
 | |
| 	unsigned long long max = wb->bdi->max_ratio;
 | |
| 
 | |
| 	/*
 | |
| 	 * @wb may already be clean by the time control reaches here and
 | |
| 	 * the total may not include its bw.
 | |
| 	 */
 | |
| 	if (this_bw < tot_bw) {
 | |
| 		if (min) {
 | |
| 			min *= this_bw;
 | |
| 			min = div64_ul(min, tot_bw);
 | |
| 		}
 | |
| 		if (max < 100) {
 | |
| 			max *= this_bw;
 | |
| 			max = div64_ul(max, tot_bw);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*minp = min;
 | |
| 	*maxp = max;
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| #define GDTC_INIT(__wb)		.wb = (__wb),                           \
 | |
| 				.wb_completions = &(__wb)->completions
 | |
| #define GDTC_INIT_NO_WB
 | |
| #define MDTC_INIT(__wb, __gdtc)
 | |
| 
 | |
| static bool mdtc_valid(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	return &global_wb_domain;
 | |
| }
 | |
| 
 | |
| static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void wb_min_max_ratio(struct bdi_writeback *wb,
 | |
| 			     unsigned long *minp, unsigned long *maxp)
 | |
| {
 | |
| 	*minp = wb->bdi->min_ratio;
 | |
| 	*maxp = wb->bdi->max_ratio;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_CGROUP_WRITEBACK */
 | |
| 
 | |
| /*
 | |
|  * In a memory zone, there is a certain amount of pages we consider
 | |
|  * available for the page cache, which is essentially the number of
 | |
|  * free and reclaimable pages, minus some zone reserves to protect
 | |
|  * lowmem and the ability to uphold the zone's watermarks without
 | |
|  * requiring writeback.
 | |
|  *
 | |
|  * This number of dirtyable pages is the base value of which the
 | |
|  * user-configurable dirty ratio is the effective number of pages that
 | |
|  * are allowed to be actually dirtied.  Per individual zone, or
 | |
|  * globally by using the sum of dirtyable pages over all zones.
 | |
|  *
 | |
|  * Because the user is allowed to specify the dirty limit globally as
 | |
|  * absolute number of bytes, calculating the per-zone dirty limit can
 | |
|  * require translating the configured limit into a percentage of
 | |
|  * global dirtyable memory first.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * node_dirtyable_memory - number of dirtyable pages in a node
 | |
|  * @pgdat: the node
 | |
|  *
 | |
|  * Return: the node's number of pages potentially available for dirty
 | |
|  * page cache.  This is the base value for the per-node dirty limits.
 | |
|  */
 | |
| static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 | |
| {
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	int z;
 | |
| 
 | |
| 	for (z = 0; z < MAX_NR_ZONES; z++) {
 | |
| 		struct zone *zone = pgdat->node_zones + z;
 | |
| 
 | |
| 		if (!populated_zone(zone))
 | |
| 			continue;
 | |
| 
 | |
| 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Pages reserved for the kernel should not be considered
 | |
| 	 * dirtyable, to prevent a situation where reclaim has to
 | |
| 	 * clean pages in order to balance the zones.
 | |
| 	 */
 | |
| 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 | |
| 
 | |
| 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 | |
| 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 | |
| 
 | |
| 	return nr_pages;
 | |
| }
 | |
| 
 | |
| static unsigned long highmem_dirtyable_memory(unsigned long total)
 | |
| {
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	int node;
 | |
| 	unsigned long x = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_node_state(node, N_HIGH_MEMORY) {
 | |
| 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 | |
| 			struct zone *z;
 | |
| 			unsigned long nr_pages;
 | |
| 
 | |
| 			if (!is_highmem_idx(i))
 | |
| 				continue;
 | |
| 
 | |
| 			z = &NODE_DATA(node)->node_zones[i];
 | |
| 			if (!populated_zone(z))
 | |
| 				continue;
 | |
| 
 | |
| 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 | |
| 			/* watch for underflows */
 | |
| 			nr_pages -= min(nr_pages, high_wmark_pages(z));
 | |
| 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 | |
| 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 | |
| 			x += nr_pages;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unreclaimable memory (kernel memory or anonymous memory
 | |
| 	 * without swap) can bring down the dirtyable pages below
 | |
| 	 * the zone's dirty balance reserve and the above calculation
 | |
| 	 * will underflow.  However we still want to add in nodes
 | |
| 	 * which are below threshold (negative values) to get a more
 | |
| 	 * accurate calculation but make sure that the total never
 | |
| 	 * underflows.
 | |
| 	 */
 | |
| 	if ((long)x < 0)
 | |
| 		x = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the number of highmem pages is never larger
 | |
| 	 * than the number of the total dirtyable memory. This can only
 | |
| 	 * occur in very strange VM situations but we want to make sure
 | |
| 	 * that this does not occur.
 | |
| 	 */
 | |
| 	return min(x, total);
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * global_dirtyable_memory - number of globally dirtyable pages
 | |
|  *
 | |
|  * Return: the global number of pages potentially available for dirty
 | |
|  * page cache.  This is the base value for the global dirty limits.
 | |
|  */
 | |
| static unsigned long global_dirtyable_memory(void)
 | |
| {
 | |
| 	unsigned long x;
 | |
| 
 | |
| 	x = global_zone_page_state(NR_FREE_PAGES);
 | |
| 	/*
 | |
| 	 * Pages reserved for the kernel should not be considered
 | |
| 	 * dirtyable, to prevent a situation where reclaim has to
 | |
| 	 * clean pages in order to balance the zones.
 | |
| 	 */
 | |
| 	x -= min(x, totalreserve_pages);
 | |
| 
 | |
| 	x += global_node_page_state(NR_INACTIVE_FILE);
 | |
| 	x += global_node_page_state(NR_ACTIVE_FILE);
 | |
| 
 | |
| 	if (!vm_highmem_is_dirtyable)
 | |
| 		x -= highmem_dirtyable_memory(x);
 | |
| 
 | |
| 	return x + 1;	/* Ensure that we never return 0 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 | |
|  * @dtc: dirty_throttle_control of interest
 | |
|  *
 | |
|  * Calculate @dtc->thresh and ->bg_thresh considering
 | |
|  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 | |
|  * must ensure that @dtc->avail is set before calling this function.  The
 | |
|  * dirty limits will be lifted by 1/4 for real-time tasks.
 | |
|  */
 | |
| static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	const unsigned long available_memory = dtc->avail;
 | |
| 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 | |
| 	unsigned long bytes = vm_dirty_bytes;
 | |
| 	unsigned long bg_bytes = dirty_background_bytes;
 | |
| 	/* convert ratios to per-PAGE_SIZE for higher precision */
 | |
| 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 | |
| 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 | |
| 	unsigned long thresh;
 | |
| 	unsigned long bg_thresh;
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	/* gdtc is !NULL iff @dtc is for memcg domain */
 | |
| 	if (gdtc) {
 | |
| 		unsigned long global_avail = gdtc->avail;
 | |
| 
 | |
| 		/*
 | |
| 		 * The byte settings can't be applied directly to memcg
 | |
| 		 * domains.  Convert them to ratios by scaling against
 | |
| 		 * globally available memory.  As the ratios are in
 | |
| 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 | |
| 		 * number of pages.
 | |
| 		 */
 | |
| 		if (bytes)
 | |
| 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 | |
| 				    PAGE_SIZE);
 | |
| 		if (bg_bytes)
 | |
| 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 | |
| 				       PAGE_SIZE);
 | |
| 		bytes = bg_bytes = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bytes)
 | |
| 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 | |
| 	else
 | |
| 		thresh = (ratio * available_memory) / PAGE_SIZE;
 | |
| 
 | |
| 	if (bg_bytes)
 | |
| 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 | |
| 	else
 | |
| 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 | |
| 
 | |
| 	if (bg_thresh >= thresh)
 | |
| 		bg_thresh = thresh / 2;
 | |
| 	tsk = current;
 | |
| 	if (rt_task(tsk)) {
 | |
| 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 | |
| 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 | |
| 	}
 | |
| 	dtc->thresh = thresh;
 | |
| 	dtc->bg_thresh = bg_thresh;
 | |
| 
 | |
| 	/* we should eventually report the domain in the TP */
 | |
| 	if (!gdtc)
 | |
| 		trace_global_dirty_state(bg_thresh, thresh);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * global_dirty_limits - background-writeback and dirty-throttling thresholds
 | |
|  * @pbackground: out parameter for bg_thresh
 | |
|  * @pdirty: out parameter for thresh
 | |
|  *
 | |
|  * Calculate bg_thresh and thresh for global_wb_domain.  See
 | |
|  * domain_dirty_limits() for details.
 | |
|  */
 | |
| void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 | |
| {
 | |
| 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 | |
| 
 | |
| 	gdtc.avail = global_dirtyable_memory();
 | |
| 	domain_dirty_limits(&gdtc);
 | |
| 
 | |
| 	*pbackground = gdtc.bg_thresh;
 | |
| 	*pdirty = gdtc.thresh;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * node_dirty_limit - maximum number of dirty pages allowed in a node
 | |
|  * @pgdat: the node
 | |
|  *
 | |
|  * Return: the maximum number of dirty pages allowed in a node, based
 | |
|  * on the node's dirtyable memory.
 | |
|  */
 | |
| static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 | |
| {
 | |
| 	unsigned long node_memory = node_dirtyable_memory(pgdat);
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned long dirty;
 | |
| 
 | |
| 	if (vm_dirty_bytes)
 | |
| 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 | |
| 			node_memory / global_dirtyable_memory();
 | |
| 	else
 | |
| 		dirty = vm_dirty_ratio * node_memory / 100;
 | |
| 
 | |
| 	if (rt_task(tsk))
 | |
| 		dirty += dirty / 4;
 | |
| 
 | |
| 	return dirty;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * node_dirty_ok - tells whether a node is within its dirty limits
 | |
|  * @pgdat: the node to check
 | |
|  *
 | |
|  * Return: %true when the dirty pages in @pgdat are within the node's
 | |
|  * dirty limit, %false if the limit is exceeded.
 | |
|  */
 | |
| bool node_dirty_ok(struct pglist_data *pgdat)
 | |
| {
 | |
| 	unsigned long limit = node_dirty_limit(pgdat);
 | |
| 	unsigned long nr_pages = 0;
 | |
| 
 | |
| 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 | |
| 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 | |
| 
 | |
| 	return nr_pages <= limit;
 | |
| }
 | |
| 
 | |
| int dirty_background_ratio_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		dirty_background_bytes = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dirty_background_bytes_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write)
 | |
| 		dirty_background_ratio = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 | |
| 		size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	int old_ratio = vm_dirty_ratio;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 | |
| 		writeback_set_ratelimit();
 | |
| 		vm_dirty_bytes = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dirty_bytes_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	unsigned long old_bytes = vm_dirty_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 | |
| 		writeback_set_ratelimit();
 | |
| 		vm_dirty_ratio = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned long wp_next_time(unsigned long cur_time)
 | |
| {
 | |
| 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 | |
| 	/* 0 has a special meaning... */
 | |
| 	if (!cur_time)
 | |
| 		return 1;
 | |
| 	return cur_time;
 | |
| }
 | |
| 
 | |
| static void wb_domain_writeout_add(struct wb_domain *dom,
 | |
| 				   struct fprop_local_percpu *completions,
 | |
| 				   unsigned int max_prop_frac, long nr)
 | |
| {
 | |
| 	__fprop_add_percpu_max(&dom->completions, completions,
 | |
| 			       max_prop_frac, nr);
 | |
| 	/* First event after period switching was turned off? */
 | |
| 	if (unlikely(!dom->period_time)) {
 | |
| 		/*
 | |
| 		 * We can race with other __bdi_writeout_inc calls here but
 | |
| 		 * it does not cause any harm since the resulting time when
 | |
| 		 * timer will fire and what is in writeout_period_time will be
 | |
| 		 * roughly the same.
 | |
| 		 */
 | |
| 		dom->period_time = wp_next_time(jiffies);
 | |
| 		mod_timer(&dom->period_timer, dom->period_time);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment @wb's writeout completion count and the global writeout
 | |
|  * completion count. Called from __folio_end_writeback().
 | |
|  */
 | |
| static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
 | |
| {
 | |
| 	struct wb_domain *cgdom;
 | |
| 
 | |
| 	wb_stat_mod(wb, WB_WRITTEN, nr);
 | |
| 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
 | |
| 			       wb->bdi->max_prop_frac, nr);
 | |
| 
 | |
| 	cgdom = mem_cgroup_wb_domain(wb);
 | |
| 	if (cgdom)
 | |
| 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
 | |
| 				       wb->bdi->max_prop_frac, nr);
 | |
| }
 | |
| 
 | |
| void wb_writeout_inc(struct bdi_writeback *wb)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	__wb_writeout_add(wb, 1);
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(wb_writeout_inc);
 | |
| 
 | |
| /*
 | |
|  * On idle system, we can be called long after we scheduled because we use
 | |
|  * deferred timers so count with missed periods.
 | |
|  */
 | |
| static void writeout_period(struct timer_list *t)
 | |
| {
 | |
| 	struct wb_domain *dom = from_timer(dom, t, period_timer);
 | |
| 	int miss_periods = (jiffies - dom->period_time) /
 | |
| 						 VM_COMPLETIONS_PERIOD_LEN;
 | |
| 
 | |
| 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 | |
| 		dom->period_time = wp_next_time(dom->period_time +
 | |
| 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 | |
| 		mod_timer(&dom->period_timer, dom->period_time);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Aging has zeroed all fractions. Stop wasting CPU on period
 | |
| 		 * updates.
 | |
| 		 */
 | |
| 		dom->period_time = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 | |
| {
 | |
| 	memset(dom, 0, sizeof(*dom));
 | |
| 
 | |
| 	spin_lock_init(&dom->lock);
 | |
| 
 | |
| 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 | |
| 
 | |
| 	dom->dirty_limit_tstamp = jiffies;
 | |
| 
 | |
| 	return fprop_global_init(&dom->completions, gfp);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_WRITEBACK
 | |
| void wb_domain_exit(struct wb_domain *dom)
 | |
| {
 | |
| 	del_timer_sync(&dom->period_timer);
 | |
| 	fprop_global_destroy(&dom->completions);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 | |
|  * registered backing devices, which, for obvious reasons, can not
 | |
|  * exceed 100%.
 | |
|  */
 | |
| static unsigned int bdi_min_ratio;
 | |
| 
 | |
| int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock_bh(&bdi_lock);
 | |
| 	if (min_ratio > bdi->max_ratio) {
 | |
| 		ret = -EINVAL;
 | |
| 	} else {
 | |
| 		min_ratio -= bdi->min_ratio;
 | |
| 		if (bdi_min_ratio + min_ratio < 100) {
 | |
| 			bdi_min_ratio += min_ratio;
 | |
| 			bdi->min_ratio += min_ratio;
 | |
| 		} else {
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&bdi_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (max_ratio > 100)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_bh(&bdi_lock);
 | |
| 	if (bdi->min_ratio > max_ratio) {
 | |
| 		ret = -EINVAL;
 | |
| 	} else {
 | |
| 		bdi->max_ratio = max_ratio;
 | |
| 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 | |
| 	}
 | |
| 	spin_unlock_bh(&bdi_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(bdi_set_max_ratio);
 | |
| 
 | |
| static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 | |
| 					   unsigned long bg_thresh)
 | |
| {
 | |
| 	return (thresh + bg_thresh) / 2;
 | |
| }
 | |
| 
 | |
| static unsigned long hard_dirty_limit(struct wb_domain *dom,
 | |
| 				      unsigned long thresh)
 | |
| {
 | |
| 	return max(thresh, dom->dirty_limit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory which can be further allocated to a memcg domain is capped by
 | |
|  * system-wide clean memory excluding the amount being used in the domain.
 | |
|  */
 | |
| static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 | |
| 			    unsigned long filepages, unsigned long headroom)
 | |
| {
 | |
| 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 | |
| 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 | |
| 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 | |
| 	unsigned long other_clean = global_clean - min(global_clean, clean);
 | |
| 
 | |
| 	mdtc->avail = filepages + min(headroom, other_clean);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __wb_calc_thresh - @wb's share of dirty throttling threshold
 | |
|  * @dtc: dirty_throttle_context of interest
 | |
|  *
 | |
|  * Note that balance_dirty_pages() will only seriously take it as a hard limit
 | |
|  * when sleeping max_pause per page is not enough to keep the dirty pages under
 | |
|  * control. For example, when the device is completely stalled due to some error
 | |
|  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 | |
|  * In the other normal situations, it acts more gently by throttling the tasks
 | |
|  * more (rather than completely block them) when the wb dirty pages go high.
 | |
|  *
 | |
|  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 | |
|  * - starving fast devices
 | |
|  * - piling up dirty pages (that will take long time to sync) on slow devices
 | |
|  *
 | |
|  * The wb's share of dirty limit will be adapting to its throughput and
 | |
|  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 | |
|  *
 | |
|  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 | |
|  * dirty balancing includes all PG_dirty and PG_writeback pages.
 | |
|  */
 | |
| static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	struct wb_domain *dom = dtc_dom(dtc);
 | |
| 	unsigned long thresh = dtc->thresh;
 | |
| 	u64 wb_thresh;
 | |
| 	unsigned long numerator, denominator;
 | |
| 	unsigned long wb_min_ratio, wb_max_ratio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate this BDI's share of the thresh ratio.
 | |
| 	 */
 | |
| 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 | |
| 			      &numerator, &denominator);
 | |
| 
 | |
| 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 | |
| 	wb_thresh *= numerator;
 | |
| 	wb_thresh = div64_ul(wb_thresh, denominator);
 | |
| 
 | |
| 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 | |
| 
 | |
| 	wb_thresh += (thresh * wb_min_ratio) / 100;
 | |
| 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 | |
| 		wb_thresh = thresh * wb_max_ratio / 100;
 | |
| 
 | |
| 	return wb_thresh;
 | |
| }
 | |
| 
 | |
| unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 | |
| {
 | |
| 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 | |
| 					       .thresh = thresh };
 | |
| 	return __wb_calc_thresh(&gdtc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *                           setpoint - dirty 3
 | |
|  *        f(dirty) := 1.0 + (----------------)
 | |
|  *                           limit - setpoint
 | |
|  *
 | |
|  * it's a 3rd order polynomial that subjects to
 | |
|  *
 | |
|  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 | |
|  * (2) f(setpoint) = 1.0 => the balance point
 | |
|  * (3) f(limit)    = 0   => the hard limit
 | |
|  * (4) df/dx      <= 0	 => negative feedback control
 | |
|  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 | |
|  *     => fast response on large errors; small oscillation near setpoint
 | |
|  */
 | |
| static long long pos_ratio_polynom(unsigned long setpoint,
 | |
| 					  unsigned long dirty,
 | |
| 					  unsigned long limit)
 | |
| {
 | |
| 	long long pos_ratio;
 | |
| 	long x;
 | |
| 
 | |
| 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 | |
| 		      (limit - setpoint) | 1);
 | |
| 	pos_ratio = x;
 | |
| 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 | |
| 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 | |
| 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 | |
| 
 | |
| 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dirty position control.
 | |
|  *
 | |
|  * (o) global/bdi setpoints
 | |
|  *
 | |
|  * We want the dirty pages be balanced around the global/wb setpoints.
 | |
|  * When the number of dirty pages is higher/lower than the setpoint, the
 | |
|  * dirty position control ratio (and hence task dirty ratelimit) will be
 | |
|  * decreased/increased to bring the dirty pages back to the setpoint.
 | |
|  *
 | |
|  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 | |
|  *
 | |
|  *     if (dirty < setpoint) scale up   pos_ratio
 | |
|  *     if (dirty > setpoint) scale down pos_ratio
 | |
|  *
 | |
|  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 | |
|  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 | |
|  *
 | |
|  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 | |
|  *
 | |
|  * (o) global control line
 | |
|  *
 | |
|  *     ^ pos_ratio
 | |
|  *     |
 | |
|  *     |            |<===== global dirty control scope ======>|
 | |
|  * 2.0  * * * * * * *
 | |
|  *     |            .*
 | |
|  *     |            . *
 | |
|  *     |            .   *
 | |
|  *     |            .     *
 | |
|  *     |            .        *
 | |
|  *     |            .            *
 | |
|  * 1.0 ................................*
 | |
|  *     |            .                  .     *
 | |
|  *     |            .                  .          *
 | |
|  *     |            .                  .              *
 | |
|  *     |            .                  .                 *
 | |
|  *     |            .                  .                    *
 | |
|  *   0 +------------.------------------.----------------------*------------->
 | |
|  *           freerun^          setpoint^                 limit^   dirty pages
 | |
|  *
 | |
|  * (o) wb control line
 | |
|  *
 | |
|  *     ^ pos_ratio
 | |
|  *     |
 | |
|  *     |            *
 | |
|  *     |              *
 | |
|  *     |                *
 | |
|  *     |                  *
 | |
|  *     |                    * |<=========== span ============>|
 | |
|  * 1.0 .......................*
 | |
|  *     |                      . *
 | |
|  *     |                      .   *
 | |
|  *     |                      .     *
 | |
|  *     |                      .       *
 | |
|  *     |                      .         *
 | |
|  *     |                      .           *
 | |
|  *     |                      .             *
 | |
|  *     |                      .               *
 | |
|  *     |                      .                 *
 | |
|  *     |                      .                   *
 | |
|  *     |                      .                     *
 | |
|  * 1/4 ...............................................* * * * * * * * * * * *
 | |
|  *     |                      .                         .
 | |
|  *     |                      .                           .
 | |
|  *     |                      .                             .
 | |
|  *   0 +----------------------.-------------------------------.------------->
 | |
|  *                wb_setpoint^                    x_intercept^
 | |
|  *
 | |
|  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 | |
|  * be smoothly throttled down to normal if it starts high in situations like
 | |
|  * - start writing to a slow SD card and a fast disk at the same time. The SD
 | |
|  *   card's wb_dirty may rush to many times higher than wb_setpoint.
 | |
|  * - the wb dirty thresh drops quickly due to change of JBOD workload
 | |
|  */
 | |
| static void wb_position_ratio(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	struct bdi_writeback *wb = dtc->wb;
 | |
| 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
 | |
| 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 | |
| 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 | |
| 	unsigned long wb_thresh = dtc->wb_thresh;
 | |
| 	unsigned long x_intercept;
 | |
| 	unsigned long setpoint;		/* dirty pages' target balance point */
 | |
| 	unsigned long wb_setpoint;
 | |
| 	unsigned long span;
 | |
| 	long long pos_ratio;		/* for scaling up/down the rate limit */
 | |
| 	long x;
 | |
| 
 | |
| 	dtc->pos_ratio = 0;
 | |
| 
 | |
| 	if (unlikely(dtc->dirty >= limit))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * global setpoint
 | |
| 	 *
 | |
| 	 * See comment for pos_ratio_polynom().
 | |
| 	 */
 | |
| 	setpoint = (freerun + limit) / 2;
 | |
| 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 | |
| 
 | |
| 	/*
 | |
| 	 * The strictlimit feature is a tool preventing mistrusted filesystems
 | |
| 	 * from growing a large number of dirty pages before throttling. For
 | |
| 	 * such filesystems balance_dirty_pages always checks wb counters
 | |
| 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 | |
| 	 * This is especially important for fuse which sets bdi->max_ratio to
 | |
| 	 * 1% by default. Without strictlimit feature, fuse writeback may
 | |
| 	 * consume arbitrary amount of RAM because it is accounted in
 | |
| 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 | |
| 	 *
 | |
| 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 | |
| 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 | |
| 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 | |
| 	 * limits are set by default to 10% and 20% (background and throttle).
 | |
| 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 | |
| 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 | |
| 	 * about ~6K pages (as the average of background and throttle wb
 | |
| 	 * limits). The 3rd order polynomial will provide positive feedback if
 | |
| 	 * wb_dirty is under wb_setpoint and vice versa.
 | |
| 	 *
 | |
| 	 * Note, that we cannot use global counters in these calculations
 | |
| 	 * because we want to throttle process writing to a strictlimit wb
 | |
| 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 | |
| 	 * in the example above).
 | |
| 	 */
 | |
| 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 | |
| 		long long wb_pos_ratio;
 | |
| 
 | |
| 		if (dtc->wb_dirty < 8) {
 | |
| 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 | |
| 					   2 << RATELIMIT_CALC_SHIFT);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (dtc->wb_dirty >= wb_thresh)
 | |
| 			return;
 | |
| 
 | |
| 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 | |
| 						    dtc->wb_bg_thresh);
 | |
| 
 | |
| 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 | |
| 			return;
 | |
| 
 | |
| 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 | |
| 						 wb_thresh);
 | |
| 
 | |
| 		/*
 | |
| 		 * Typically, for strictlimit case, wb_setpoint << setpoint
 | |
| 		 * and pos_ratio >> wb_pos_ratio. In the other words global
 | |
| 		 * state ("dirty") is not limiting factor and we have to
 | |
| 		 * make decision based on wb counters. But there is an
 | |
| 		 * important case when global pos_ratio should get precedence:
 | |
| 		 * global limits are exceeded (e.g. due to activities on other
 | |
| 		 * wb's) while given strictlimit wb is below limit.
 | |
| 		 *
 | |
| 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 | |
| 		 * but it would look too non-natural for the case of all
 | |
| 		 * activity in the system coming from a single strictlimit wb
 | |
| 		 * with bdi->max_ratio == 100%.
 | |
| 		 *
 | |
| 		 * Note that min() below somewhat changes the dynamics of the
 | |
| 		 * control system. Normally, pos_ratio value can be well over 3
 | |
| 		 * (when globally we are at freerun and wb is well below wb
 | |
| 		 * setpoint). Now the maximum pos_ratio in the same situation
 | |
| 		 * is 2. We might want to tweak this if we observe the control
 | |
| 		 * system is too slow to adapt.
 | |
| 		 */
 | |
| 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have computed basic pos_ratio above based on global situation. If
 | |
| 	 * the wb is over/under its share of dirty pages, we want to scale
 | |
| 	 * pos_ratio further down/up. That is done by the following mechanism.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * wb setpoint
 | |
| 	 *
 | |
| 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 | |
| 	 *
 | |
| 	 *                        x_intercept - wb_dirty
 | |
| 	 *                     := --------------------------
 | |
| 	 *                        x_intercept - wb_setpoint
 | |
| 	 *
 | |
| 	 * The main wb control line is a linear function that subjects to
 | |
| 	 *
 | |
| 	 * (1) f(wb_setpoint) = 1.0
 | |
| 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 | |
| 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 | |
| 	 *
 | |
| 	 * For single wb case, the dirty pages are observed to fluctuate
 | |
| 	 * regularly within range
 | |
| 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 | |
| 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 | |
| 	 * fluctuation range for pos_ratio.
 | |
| 	 *
 | |
| 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 | |
| 	 * own size, so move the slope over accordingly and choose a slope that
 | |
| 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
 | |
| 	 */
 | |
| 	if (unlikely(wb_thresh > dtc->thresh))
 | |
| 		wb_thresh = dtc->thresh;
 | |
| 	/*
 | |
| 	 * It's very possible that wb_thresh is close to 0 not because the
 | |
| 	 * device is slow, but that it has remained inactive for long time.
 | |
| 	 * Honour such devices a reasonable good (hopefully IO efficient)
 | |
| 	 * threshold, so that the occasional writes won't be blocked and active
 | |
| 	 * writes can rampup the threshold quickly.
 | |
| 	 */
 | |
| 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
 | |
| 	/*
 | |
| 	 * scale global setpoint to wb's:
 | |
| 	 *	wb_setpoint = setpoint * wb_thresh / thresh
 | |
| 	 */
 | |
| 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
 | |
| 	wb_setpoint = setpoint * (u64)x >> 16;
 | |
| 	/*
 | |
| 	 * Use span=(8*write_bw) in single wb case as indicated by
 | |
| 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
 | |
| 	 *
 | |
| 	 *        wb_thresh                    thresh - wb_thresh
 | |
| 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
 | |
| 	 *         thresh                           thresh
 | |
| 	 */
 | |
| 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
 | |
| 	x_intercept = wb_setpoint + span;
 | |
| 
 | |
| 	if (dtc->wb_dirty < x_intercept - span / 4) {
 | |
| 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
 | |
| 				      (x_intercept - wb_setpoint) | 1);
 | |
| 	} else
 | |
| 		pos_ratio /= 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
 | |
| 	 * It may push the desired control point of global dirty pages higher
 | |
| 	 * than setpoint.
 | |
| 	 */
 | |
| 	x_intercept = wb_thresh / 2;
 | |
| 	if (dtc->wb_dirty < x_intercept) {
 | |
| 		if (dtc->wb_dirty > x_intercept / 8)
 | |
| 			pos_ratio = div_u64(pos_ratio * x_intercept,
 | |
| 					    dtc->wb_dirty);
 | |
| 		else
 | |
| 			pos_ratio *= 8;
 | |
| 	}
 | |
| 
 | |
| 	dtc->pos_ratio = pos_ratio;
 | |
| }
 | |
| 
 | |
| static void wb_update_write_bandwidth(struct bdi_writeback *wb,
 | |
| 				      unsigned long elapsed,
 | |
| 				      unsigned long written)
 | |
| {
 | |
| 	const unsigned long period = roundup_pow_of_two(3 * HZ);
 | |
| 	unsigned long avg = wb->avg_write_bandwidth;
 | |
| 	unsigned long old = wb->write_bandwidth;
 | |
| 	u64 bw;
 | |
| 
 | |
| 	/*
 | |
| 	 * bw = written * HZ / elapsed
 | |
| 	 *
 | |
| 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 | |
| 	 * write_bandwidth = ---------------------------------------------------
 | |
| 	 *                                          period
 | |
| 	 *
 | |
| 	 * @written may have decreased due to folio_account_redirty().
 | |
| 	 * Avoid underflowing @bw calculation.
 | |
| 	 */
 | |
| 	bw = written - min(written, wb->written_stamp);
 | |
| 	bw *= HZ;
 | |
| 	if (unlikely(elapsed > period)) {
 | |
| 		bw = div64_ul(bw, elapsed);
 | |
| 		avg = bw;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	bw += (u64)wb->write_bandwidth * (period - elapsed);
 | |
| 	bw >>= ilog2(period);
 | |
| 
 | |
| 	/*
 | |
| 	 * one more level of smoothing, for filtering out sudden spikes
 | |
| 	 */
 | |
| 	if (avg > old && old >= (unsigned long)bw)
 | |
| 		avg -= (avg - old) >> 3;
 | |
| 
 | |
| 	if (avg < old && old <= (unsigned long)bw)
 | |
| 		avg += (old - avg) >> 3;
 | |
| 
 | |
| out:
 | |
| 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
 | |
| 	avg = max(avg, 1LU);
 | |
| 	if (wb_has_dirty_io(wb)) {
 | |
| 		long delta = avg - wb->avg_write_bandwidth;
 | |
| 		WARN_ON_ONCE(atomic_long_add_return(delta,
 | |
| 					&wb->bdi->tot_write_bandwidth) <= 0);
 | |
| 	}
 | |
| 	wb->write_bandwidth = bw;
 | |
| 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
 | |
| }
 | |
| 
 | |
| static void update_dirty_limit(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	struct wb_domain *dom = dtc_dom(dtc);
 | |
| 	unsigned long thresh = dtc->thresh;
 | |
| 	unsigned long limit = dom->dirty_limit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Follow up in one step.
 | |
| 	 */
 | |
| 	if (limit < thresh) {
 | |
| 		limit = thresh;
 | |
| 		goto update;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Follow down slowly. Use the higher one as the target, because thresh
 | |
| 	 * may drop below dirty. This is exactly the reason to introduce
 | |
| 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
 | |
| 	 */
 | |
| 	thresh = max(thresh, dtc->dirty);
 | |
| 	if (limit > thresh) {
 | |
| 		limit -= (limit - thresh) >> 5;
 | |
| 		goto update;
 | |
| 	}
 | |
| 	return;
 | |
| update:
 | |
| 	dom->dirty_limit = limit;
 | |
| }
 | |
| 
 | |
| static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
 | |
| 				      unsigned long now)
 | |
| {
 | |
| 	struct wb_domain *dom = dtc_dom(dtc);
 | |
| 
 | |
| 	/*
 | |
| 	 * check locklessly first to optimize away locking for the most time
 | |
| 	 */
 | |
| 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&dom->lock);
 | |
| 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
 | |
| 		update_dirty_limit(dtc);
 | |
| 		dom->dirty_limit_tstamp = now;
 | |
| 	}
 | |
| 	spin_unlock(&dom->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
 | |
|  *
 | |
|  * Normal wb tasks will be curbed at or below it in long term.
 | |
|  * Obviously it should be around (write_bw / N) when there are N dd tasks.
 | |
|  */
 | |
| static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
 | |
| 				      unsigned long dirtied,
 | |
| 				      unsigned long elapsed)
 | |
| {
 | |
| 	struct bdi_writeback *wb = dtc->wb;
 | |
| 	unsigned long dirty = dtc->dirty;
 | |
| 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 | |
| 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 | |
| 	unsigned long setpoint = (freerun + limit) / 2;
 | |
| 	unsigned long write_bw = wb->avg_write_bandwidth;
 | |
| 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
 | |
| 	unsigned long dirty_rate;
 | |
| 	unsigned long task_ratelimit;
 | |
| 	unsigned long balanced_dirty_ratelimit;
 | |
| 	unsigned long step;
 | |
| 	unsigned long x;
 | |
| 	unsigned long shift;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dirty rate will match the writeout rate in long term, except
 | |
| 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
 | |
| 	 */
 | |
| 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
 | |
| 
 | |
| 	/*
 | |
| 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 | |
| 	 */
 | |
| 	task_ratelimit = (u64)dirty_ratelimit *
 | |
| 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
 | |
| 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
 | |
| 
 | |
| 	/*
 | |
| 	 * A linear estimation of the "balanced" throttle rate. The theory is,
 | |
| 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
 | |
| 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
 | |
| 	 * formula will yield the balanced rate limit (write_bw / N).
 | |
| 	 *
 | |
| 	 * Note that the expanded form is not a pure rate feedback:
 | |
| 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
 | |
| 	 * but also takes pos_ratio into account:
 | |
| 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
 | |
| 	 *
 | |
| 	 * (1) is not realistic because pos_ratio also takes part in balancing
 | |
| 	 * the dirty rate.  Consider the state
 | |
| 	 *	pos_ratio = 0.5						     (3)
 | |
| 	 *	rate = 2 * (write_bw / N)				     (4)
 | |
| 	 * If (1) is used, it will stuck in that state! Because each dd will
 | |
| 	 * be throttled at
 | |
| 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
 | |
| 	 * yielding
 | |
| 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
 | |
| 	 * put (6) into (1) we get
 | |
| 	 *	rate_(i+1) = rate_(i)					     (7)
 | |
| 	 *
 | |
| 	 * So we end up using (2) to always keep
 | |
| 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
 | |
| 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
 | |
| 	 * pos_ratio is able to drive itself to 1.0, which is not only where
 | |
| 	 * the dirty count meet the setpoint, but also where the slope of
 | |
| 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
 | |
| 	 */
 | |
| 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
 | |
| 					   dirty_rate | 1);
 | |
| 	/*
 | |
| 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
 | |
| 	 */
 | |
| 	if (unlikely(balanced_dirty_ratelimit > write_bw))
 | |
| 		balanced_dirty_ratelimit = write_bw;
 | |
| 
 | |
| 	/*
 | |
| 	 * We could safely do this and return immediately:
 | |
| 	 *
 | |
| 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
 | |
| 	 *
 | |
| 	 * However to get a more stable dirty_ratelimit, the below elaborated
 | |
| 	 * code makes use of task_ratelimit to filter out singular points and
 | |
| 	 * limit the step size.
 | |
| 	 *
 | |
| 	 * The below code essentially only uses the relative value of
 | |
| 	 *
 | |
| 	 *	task_ratelimit - dirty_ratelimit
 | |
| 	 *	= (pos_ratio - 1) * dirty_ratelimit
 | |
| 	 *
 | |
| 	 * which reflects the direction and size of dirty position error.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
 | |
| 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
 | |
| 	 * For example, when
 | |
| 	 * - dirty_ratelimit > balanced_dirty_ratelimit
 | |
| 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
 | |
| 	 * lowering dirty_ratelimit will help meet both the position and rate
 | |
| 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
 | |
| 	 * only help meet the rate target. After all, what the users ultimately
 | |
| 	 * feel and care are stable dirty rate and small position error.
 | |
| 	 *
 | |
| 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
 | |
| 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
 | |
| 	 * keeps jumping around randomly and can even leap far away at times
 | |
| 	 * due to the small 200ms estimation period of dirty_rate (we want to
 | |
| 	 * keep that period small to reduce time lags).
 | |
| 	 */
 | |
| 	step = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For strictlimit case, calculations above were based on wb counters
 | |
| 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
 | |
| 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
 | |
| 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
 | |
| 	 * "dirty" and wb_setpoint as "setpoint".
 | |
| 	 *
 | |
| 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
 | |
| 	 * it's possible that wb_thresh is close to zero due to inactivity
 | |
| 	 * of backing device.
 | |
| 	 */
 | |
| 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 | |
| 		dirty = dtc->wb_dirty;
 | |
| 		if (dtc->wb_dirty < 8)
 | |
| 			setpoint = dtc->wb_dirty + 1;
 | |
| 		else
 | |
| 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
 | |
| 	}
 | |
| 
 | |
| 	if (dirty < setpoint) {
 | |
| 		x = min3(wb->balanced_dirty_ratelimit,
 | |
| 			 balanced_dirty_ratelimit, task_ratelimit);
 | |
| 		if (dirty_ratelimit < x)
 | |
| 			step = x - dirty_ratelimit;
 | |
| 	} else {
 | |
| 		x = max3(wb->balanced_dirty_ratelimit,
 | |
| 			 balanced_dirty_ratelimit, task_ratelimit);
 | |
| 		if (dirty_ratelimit > x)
 | |
| 			step = dirty_ratelimit - x;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't pursue 100% rate matching. It's impossible since the balanced
 | |
| 	 * rate itself is constantly fluctuating. So decrease the track speed
 | |
| 	 * when it gets close to the target. Helps eliminate pointless tremors.
 | |
| 	 */
 | |
| 	shift = dirty_ratelimit / (2 * step + 1);
 | |
| 	if (shift < BITS_PER_LONG)
 | |
| 		step = DIV_ROUND_UP(step >> shift, 8);
 | |
| 	else
 | |
| 		step = 0;
 | |
| 
 | |
| 	if (dirty_ratelimit < balanced_dirty_ratelimit)
 | |
| 		dirty_ratelimit += step;
 | |
| 	else
 | |
| 		dirty_ratelimit -= step;
 | |
| 
 | |
| 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
 | |
| 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
 | |
| 
 | |
| 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
 | |
| }
 | |
| 
 | |
| static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
 | |
| 				  struct dirty_throttle_control *mdtc,
 | |
| 				  bool update_ratelimit)
 | |
| {
 | |
| 	struct bdi_writeback *wb = gdtc->wb;
 | |
| 	unsigned long now = jiffies;
 | |
| 	unsigned long elapsed;
 | |
| 	unsigned long dirtied;
 | |
| 	unsigned long written;
 | |
| 
 | |
| 	spin_lock(&wb->list_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lockless checks for elapsed time are racy and delayed update after
 | |
| 	 * IO completion doesn't do it at all (to make sure written pages are
 | |
| 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
 | |
| 	 * division errors.
 | |
| 	 */
 | |
| 	elapsed = max(now - wb->bw_time_stamp, 1UL);
 | |
| 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
 | |
| 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
 | |
| 
 | |
| 	if (update_ratelimit) {
 | |
| 		domain_update_dirty_limit(gdtc, now);
 | |
| 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
 | |
| 
 | |
| 		/*
 | |
| 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
 | |
| 		 * compiler has no way to figure that out.  Help it.
 | |
| 		 */
 | |
| 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
 | |
| 			domain_update_dirty_limit(mdtc, now);
 | |
| 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
 | |
| 		}
 | |
| 	}
 | |
| 	wb_update_write_bandwidth(wb, elapsed, written);
 | |
| 
 | |
| 	wb->dirtied_stamp = dirtied;
 | |
| 	wb->written_stamp = written;
 | |
| 	WRITE_ONCE(wb->bw_time_stamp, now);
 | |
| 	spin_unlock(&wb->list_lock);
 | |
| }
 | |
| 
 | |
| void wb_update_bandwidth(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
 | |
| 
 | |
| 	__wb_update_bandwidth(&gdtc, NULL, false);
 | |
| }
 | |
| 
 | |
| /* Interval after which we consider wb idle and don't estimate bandwidth */
 | |
| #define WB_BANDWIDTH_IDLE_JIF (HZ)
 | |
| 
 | |
| static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
 | |
| 
 | |
| 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
 | |
| 	    !atomic_read(&wb->writeback_inodes)) {
 | |
| 		spin_lock(&wb->list_lock);
 | |
| 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
 | |
| 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
 | |
| 		WRITE_ONCE(wb->bw_time_stamp, now);
 | |
| 		spin_unlock(&wb->list_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
 | |
|  * will look to see if it needs to start dirty throttling.
 | |
|  *
 | |
|  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 | |
|  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
 | |
|  * (the number of pages we may dirty without exceeding the dirty limits).
 | |
|  */
 | |
| static unsigned long dirty_poll_interval(unsigned long dirty,
 | |
| 					 unsigned long thresh)
 | |
| {
 | |
| 	if (thresh > dirty)
 | |
| 		return 1UL << (ilog2(thresh - dirty) >> 1);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static unsigned long wb_max_pause(struct bdi_writeback *wb,
 | |
| 				  unsigned long wb_dirty)
 | |
| {
 | |
| 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
 | |
| 	unsigned long t;
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit pause time for small memory systems. If sleeping for too long
 | |
| 	 * time, a small pool of dirty/writeback pages may go empty and disk go
 | |
| 	 * idle.
 | |
| 	 *
 | |
| 	 * 8 serves as the safety ratio.
 | |
| 	 */
 | |
| 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
 | |
| 	t++;
 | |
| 
 | |
| 	return min_t(unsigned long, t, MAX_PAUSE);
 | |
| }
 | |
| 
 | |
| static long wb_min_pause(struct bdi_writeback *wb,
 | |
| 			 long max_pause,
 | |
| 			 unsigned long task_ratelimit,
 | |
| 			 unsigned long dirty_ratelimit,
 | |
| 			 int *nr_dirtied_pause)
 | |
| {
 | |
| 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
 | |
| 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
 | |
| 	long t;		/* target pause */
 | |
| 	long pause;	/* estimated next pause */
 | |
| 	int pages;	/* target nr_dirtied_pause */
 | |
| 
 | |
| 	/* target for 10ms pause on 1-dd case */
 | |
| 	t = max(1, HZ / 100);
 | |
| 
 | |
| 	/*
 | |
| 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
 | |
| 	 * overheads.
 | |
| 	 *
 | |
| 	 * (N * 10ms) on 2^N concurrent tasks.
 | |
| 	 */
 | |
| 	if (hi > lo)
 | |
| 		t += (hi - lo) * (10 * HZ) / 1024;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
 | |
| 	 * on the much more stable dirty_ratelimit. However the next pause time
 | |
| 	 * will be computed based on task_ratelimit and the two rate limits may
 | |
| 	 * depart considerably at some time. Especially if task_ratelimit goes
 | |
| 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
 | |
| 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
 | |
| 	 * result task_ratelimit won't be executed faithfully, which could
 | |
| 	 * eventually bring down dirty_ratelimit.
 | |
| 	 *
 | |
| 	 * We apply two rules to fix it up:
 | |
| 	 * 1) try to estimate the next pause time and if necessary, use a lower
 | |
| 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
 | |
| 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
 | |
| 	 * 2) limit the target pause time to max_pause/2, so that the normal
 | |
| 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
 | |
| 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
 | |
| 	 */
 | |
| 	t = min(t, 1 + max_pause / 2);
 | |
| 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
 | |
| 
 | |
| 	/*
 | |
| 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
 | |
| 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
 | |
| 	 * When the 16 consecutive reads are often interrupted by some dirty
 | |
| 	 * throttling pause during the async writes, cfq will go into idles
 | |
| 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
 | |
| 	 * until reaches DIRTY_POLL_THRESH=32 pages.
 | |
| 	 */
 | |
| 	if (pages < DIRTY_POLL_THRESH) {
 | |
| 		t = max_pause;
 | |
| 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
 | |
| 		if (pages > DIRTY_POLL_THRESH) {
 | |
| 			pages = DIRTY_POLL_THRESH;
 | |
| 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pause = HZ * pages / (task_ratelimit + 1);
 | |
| 	if (pause > max_pause) {
 | |
| 		t = max_pause;
 | |
| 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
 | |
| 	}
 | |
| 
 | |
| 	*nr_dirtied_pause = pages;
 | |
| 	/*
 | |
| 	 * The minimal pause time will normally be half the target pause time.
 | |
| 	 */
 | |
| 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
 | |
| }
 | |
| 
 | |
| static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
 | |
| {
 | |
| 	struct bdi_writeback *wb = dtc->wb;
 | |
| 	unsigned long wb_reclaimable;
 | |
| 
 | |
| 	/*
 | |
| 	 * wb_thresh is not treated as some limiting factor as
 | |
| 	 * dirty_thresh, due to reasons
 | |
| 	 * - in JBOD setup, wb_thresh can fluctuate a lot
 | |
| 	 * - in a system with HDD and USB key, the USB key may somehow
 | |
| 	 *   go into state (wb_dirty >> wb_thresh) either because
 | |
| 	 *   wb_dirty starts high, or because wb_thresh drops low.
 | |
| 	 *   In this case we don't want to hard throttle the USB key
 | |
| 	 *   dirtiers for 100 seconds until wb_dirty drops under
 | |
| 	 *   wb_thresh. Instead the auxiliary wb control line in
 | |
| 	 *   wb_position_ratio() will let the dirtier task progress
 | |
| 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
 | |
| 	 */
 | |
| 	dtc->wb_thresh = __wb_calc_thresh(dtc);
 | |
| 	dtc->wb_bg_thresh = dtc->thresh ?
 | |
| 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to avoid the stacked BDI deadlock we need
 | |
| 	 * to ensure we accurately count the 'dirty' pages when
 | |
| 	 * the threshold is low.
 | |
| 	 *
 | |
| 	 * Otherwise it would be possible to get thresh+n pages
 | |
| 	 * reported dirty, even though there are thresh-m pages
 | |
| 	 * actually dirty; with m+n sitting in the percpu
 | |
| 	 * deltas.
 | |
| 	 */
 | |
| 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
 | |
| 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
 | |
| 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
 | |
| 	} else {
 | |
| 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
 | |
| 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * balance_dirty_pages() must be called by processes which are generating dirty
 | |
|  * data.  It looks at the number of dirty pages in the machine and will force
 | |
|  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
 | |
|  * If we're over `background_thresh' then the writeback threads are woken to
 | |
|  * perform some writeout.
 | |
|  */
 | |
| static void balance_dirty_pages(struct bdi_writeback *wb,
 | |
| 				unsigned long pages_dirtied)
 | |
| {
 | |
| 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
 | |
| 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
 | |
| 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
 | |
| 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
 | |
| 						     &mdtc_stor : NULL;
 | |
| 	struct dirty_throttle_control *sdtc;
 | |
| 	unsigned long nr_reclaimable;	/* = file_dirty */
 | |
| 	long period;
 | |
| 	long pause;
 | |
| 	long max_pause;
 | |
| 	long min_pause;
 | |
| 	int nr_dirtied_pause;
 | |
| 	bool dirty_exceeded = false;
 | |
| 	unsigned long task_ratelimit;
 | |
| 	unsigned long dirty_ratelimit;
 | |
| 	struct backing_dev_info *bdi = wb->bdi;
 | |
| 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
 | |
| 	unsigned long start_time = jiffies;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		unsigned long now = jiffies;
 | |
| 		unsigned long dirty, thresh, bg_thresh;
 | |
| 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
 | |
| 		unsigned long m_thresh = 0;
 | |
| 		unsigned long m_bg_thresh = 0;
 | |
| 
 | |
| 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
 | |
| 		gdtc->avail = global_dirtyable_memory();
 | |
| 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
 | |
| 
 | |
| 		domain_dirty_limits(gdtc);
 | |
| 
 | |
| 		if (unlikely(strictlimit)) {
 | |
| 			wb_dirty_limits(gdtc);
 | |
| 
 | |
| 			dirty = gdtc->wb_dirty;
 | |
| 			thresh = gdtc->wb_thresh;
 | |
| 			bg_thresh = gdtc->wb_bg_thresh;
 | |
| 		} else {
 | |
| 			dirty = gdtc->dirty;
 | |
| 			thresh = gdtc->thresh;
 | |
| 			bg_thresh = gdtc->bg_thresh;
 | |
| 		}
 | |
| 
 | |
| 		if (mdtc) {
 | |
| 			unsigned long filepages, headroom, writeback;
 | |
| 
 | |
| 			/*
 | |
| 			 * If @wb belongs to !root memcg, repeat the same
 | |
| 			 * basic calculations for the memcg domain.
 | |
| 			 */
 | |
| 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
 | |
| 					    &mdtc->dirty, &writeback);
 | |
| 			mdtc->dirty += writeback;
 | |
| 			mdtc_calc_avail(mdtc, filepages, headroom);
 | |
| 
 | |
| 			domain_dirty_limits(mdtc);
 | |
| 
 | |
| 			if (unlikely(strictlimit)) {
 | |
| 				wb_dirty_limits(mdtc);
 | |
| 				m_dirty = mdtc->wb_dirty;
 | |
| 				m_thresh = mdtc->wb_thresh;
 | |
| 				m_bg_thresh = mdtc->wb_bg_thresh;
 | |
| 			} else {
 | |
| 				m_dirty = mdtc->dirty;
 | |
| 				m_thresh = mdtc->thresh;
 | |
| 				m_bg_thresh = mdtc->bg_thresh;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Throttle it only when the background writeback cannot
 | |
| 		 * catch-up. This avoids (excessively) small writeouts
 | |
| 		 * when the wb limits are ramping up in case of !strictlimit.
 | |
| 		 *
 | |
| 		 * In strictlimit case make decision based on the wb counters
 | |
| 		 * and limits. Small writeouts when the wb limits are ramping
 | |
| 		 * up are the price we consciously pay for strictlimit-ing.
 | |
| 		 *
 | |
| 		 * If memcg domain is in effect, @dirty should be under
 | |
| 		 * both global and memcg freerun ceilings.
 | |
| 		 */
 | |
| 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
 | |
| 		    (!mdtc ||
 | |
| 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
 | |
| 			unsigned long intv;
 | |
| 			unsigned long m_intv;
 | |
| 
 | |
| free_running:
 | |
| 			intv = dirty_poll_interval(dirty, thresh);
 | |
| 			m_intv = ULONG_MAX;
 | |
| 
 | |
| 			current->dirty_paused_when = now;
 | |
| 			current->nr_dirtied = 0;
 | |
| 			if (mdtc)
 | |
| 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
 | |
| 			current->nr_dirtied_pause = min(intv, m_intv);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(!writeback_in_progress(wb)))
 | |
| 			wb_start_background_writeback(wb);
 | |
| 
 | |
| 		mem_cgroup_flush_foreign(wb);
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate global domain's pos_ratio and select the
 | |
| 		 * global dtc by default.
 | |
| 		 */
 | |
| 		if (!strictlimit) {
 | |
| 			wb_dirty_limits(gdtc);
 | |
| 
 | |
| 			if ((current->flags & PF_LOCAL_THROTTLE) &&
 | |
| 			    gdtc->wb_dirty <
 | |
| 			    dirty_freerun_ceiling(gdtc->wb_thresh,
 | |
| 						  gdtc->wb_bg_thresh))
 | |
| 				/*
 | |
| 				 * LOCAL_THROTTLE tasks must not be throttled
 | |
| 				 * when below the per-wb freerun ceiling.
 | |
| 				 */
 | |
| 				goto free_running;
 | |
| 		}
 | |
| 
 | |
| 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
 | |
| 			((gdtc->dirty > gdtc->thresh) || strictlimit);
 | |
| 
 | |
| 		wb_position_ratio(gdtc);
 | |
| 		sdtc = gdtc;
 | |
| 
 | |
| 		if (mdtc) {
 | |
| 			/*
 | |
| 			 * If memcg domain is in effect, calculate its
 | |
| 			 * pos_ratio.  @wb should satisfy constraints from
 | |
| 			 * both global and memcg domains.  Choose the one
 | |
| 			 * w/ lower pos_ratio.
 | |
| 			 */
 | |
| 			if (!strictlimit) {
 | |
| 				wb_dirty_limits(mdtc);
 | |
| 
 | |
| 				if ((current->flags & PF_LOCAL_THROTTLE) &&
 | |
| 				    mdtc->wb_dirty <
 | |
| 				    dirty_freerun_ceiling(mdtc->wb_thresh,
 | |
| 							  mdtc->wb_bg_thresh))
 | |
| 					/*
 | |
| 					 * LOCAL_THROTTLE tasks must not be
 | |
| 					 * throttled when below the per-wb
 | |
| 					 * freerun ceiling.
 | |
| 					 */
 | |
| 					goto free_running;
 | |
| 			}
 | |
| 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
 | |
| 				((mdtc->dirty > mdtc->thresh) || strictlimit);
 | |
| 
 | |
| 			wb_position_ratio(mdtc);
 | |
| 			if (mdtc->pos_ratio < gdtc->pos_ratio)
 | |
| 				sdtc = mdtc;
 | |
| 		}
 | |
| 
 | |
| 		if (dirty_exceeded && !wb->dirty_exceeded)
 | |
| 			wb->dirty_exceeded = 1;
 | |
| 
 | |
| 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
 | |
| 					   BANDWIDTH_INTERVAL))
 | |
| 			__wb_update_bandwidth(gdtc, mdtc, true);
 | |
| 
 | |
| 		/* throttle according to the chosen dtc */
 | |
| 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
 | |
| 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
 | |
| 							RATELIMIT_CALC_SHIFT;
 | |
| 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
 | |
| 		min_pause = wb_min_pause(wb, max_pause,
 | |
| 					 task_ratelimit, dirty_ratelimit,
 | |
| 					 &nr_dirtied_pause);
 | |
| 
 | |
| 		if (unlikely(task_ratelimit == 0)) {
 | |
| 			period = max_pause;
 | |
| 			pause = max_pause;
 | |
| 			goto pause;
 | |
| 		}
 | |
| 		period = HZ * pages_dirtied / task_ratelimit;
 | |
| 		pause = period;
 | |
| 		if (current->dirty_paused_when)
 | |
| 			pause -= now - current->dirty_paused_when;
 | |
| 		/*
 | |
| 		 * For less than 1s think time (ext3/4 may block the dirtier
 | |
| 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
 | |
| 		 * however at much less frequency), try to compensate it in
 | |
| 		 * future periods by updating the virtual time; otherwise just
 | |
| 		 * do a reset, as it may be a light dirtier.
 | |
| 		 */
 | |
| 		if (pause < min_pause) {
 | |
| 			trace_balance_dirty_pages(wb,
 | |
| 						  sdtc->thresh,
 | |
| 						  sdtc->bg_thresh,
 | |
| 						  sdtc->dirty,
 | |
| 						  sdtc->wb_thresh,
 | |
| 						  sdtc->wb_dirty,
 | |
| 						  dirty_ratelimit,
 | |
| 						  task_ratelimit,
 | |
| 						  pages_dirtied,
 | |
| 						  period,
 | |
| 						  min(pause, 0L),
 | |
| 						  start_time);
 | |
| 			if (pause < -HZ) {
 | |
| 				current->dirty_paused_when = now;
 | |
| 				current->nr_dirtied = 0;
 | |
| 			} else if (period) {
 | |
| 				current->dirty_paused_when += period;
 | |
| 				current->nr_dirtied = 0;
 | |
| 			} else if (current->nr_dirtied_pause <= pages_dirtied)
 | |
| 				current->nr_dirtied_pause += pages_dirtied;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (unlikely(pause > max_pause)) {
 | |
| 			/* for occasional dropped task_ratelimit */
 | |
| 			now += min(pause - max_pause, max_pause);
 | |
| 			pause = max_pause;
 | |
| 		}
 | |
| 
 | |
| pause:
 | |
| 		trace_balance_dirty_pages(wb,
 | |
| 					  sdtc->thresh,
 | |
| 					  sdtc->bg_thresh,
 | |
| 					  sdtc->dirty,
 | |
| 					  sdtc->wb_thresh,
 | |
| 					  sdtc->wb_dirty,
 | |
| 					  dirty_ratelimit,
 | |
| 					  task_ratelimit,
 | |
| 					  pages_dirtied,
 | |
| 					  period,
 | |
| 					  pause,
 | |
| 					  start_time);
 | |
| 		__set_current_state(TASK_KILLABLE);
 | |
| 		wb->dirty_sleep = now;
 | |
| 		io_schedule_timeout(pause);
 | |
| 
 | |
| 		current->dirty_paused_when = now + pause;
 | |
| 		current->nr_dirtied = 0;
 | |
| 		current->nr_dirtied_pause = nr_dirtied_pause;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is typically equal to (dirty < thresh) and can also
 | |
| 		 * keep "1000+ dd on a slow USB stick" under control.
 | |
| 		 */
 | |
| 		if (task_ratelimit)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In the case of an unresponsive NFS server and the NFS dirty
 | |
| 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
 | |
| 		 * to go through, so that tasks on them still remain responsive.
 | |
| 		 *
 | |
| 		 * In theory 1 page is enough to keep the consumer-producer
 | |
| 		 * pipe going: the flusher cleans 1 page => the task dirties 1
 | |
| 		 * more page. However wb_dirty has accounting errors.  So use
 | |
| 		 * the larger and more IO friendly wb_stat_error.
 | |
| 		 */
 | |
| 		if (sdtc->wb_dirty <= wb_stat_error())
 | |
| 			break;
 | |
| 
 | |
| 		if (fatal_signal_pending(current))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!dirty_exceeded && wb->dirty_exceeded)
 | |
| 		wb->dirty_exceeded = 0;
 | |
| 
 | |
| 	if (writeback_in_progress(wb))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * In laptop mode, we wait until hitting the higher threshold before
 | |
| 	 * starting background writeout, and then write out all the way down
 | |
| 	 * to the lower threshold.  So slow writers cause minimal disk activity.
 | |
| 	 *
 | |
| 	 * In normal mode, we start background writeout at the lower
 | |
| 	 * background_thresh, to keep the amount of dirty memory low.
 | |
| 	 */
 | |
| 	if (laptop_mode)
 | |
| 		return;
 | |
| 
 | |
| 	if (nr_reclaimable > gdtc->bg_thresh)
 | |
| 		wb_start_background_writeback(wb);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(int, bdp_ratelimits);
 | |
| 
 | |
| /*
 | |
|  * Normal tasks are throttled by
 | |
|  *	loop {
 | |
|  *		dirty tsk->nr_dirtied_pause pages;
 | |
|  *		take a snap in balance_dirty_pages();
 | |
|  *	}
 | |
|  * However there is a worst case. If every task exit immediately when dirtied
 | |
|  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 | |
|  * called to throttle the page dirties. The solution is to save the not yet
 | |
|  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 | |
|  * randomly into the running tasks. This works well for the above worst case,
 | |
|  * as the new task will pick up and accumulate the old task's leaked dirty
 | |
|  * count and eventually get throttled.
 | |
|  */
 | |
| DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
 | |
| 
 | |
| /**
 | |
|  * balance_dirty_pages_ratelimited - balance dirty memory state
 | |
|  * @mapping: address_space which was dirtied
 | |
|  *
 | |
|  * Processes which are dirtying memory should call in here once for each page
 | |
|  * which was newly dirtied.  The function will periodically check the system's
 | |
|  * dirty state and will initiate writeback if needed.
 | |
|  *
 | |
|  * Once we're over the dirty memory limit we decrease the ratelimiting
 | |
|  * by a lot, to prevent individual processes from overshooting the limit
 | |
|  * by (ratelimit_pages) each.
 | |
|  */
 | |
| void balance_dirty_pages_ratelimited(struct address_space *mapping)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct backing_dev_info *bdi = inode_to_bdi(inode);
 | |
| 	struct bdi_writeback *wb = NULL;
 | |
| 	int ratelimit;
 | |
| 	int *p;
 | |
| 
 | |
| 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
 | |
| 		return;
 | |
| 
 | |
| 	if (inode_cgwb_enabled(inode))
 | |
| 		wb = wb_get_create_current(bdi, GFP_KERNEL);
 | |
| 	if (!wb)
 | |
| 		wb = &bdi->wb;
 | |
| 
 | |
| 	ratelimit = current->nr_dirtied_pause;
 | |
| 	if (wb->dirty_exceeded)
 | |
| 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	/*
 | |
| 	 * This prevents one CPU to accumulate too many dirtied pages without
 | |
| 	 * calling into balance_dirty_pages(), which can happen when there are
 | |
| 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
 | |
| 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
 | |
| 	 */
 | |
| 	p =  this_cpu_ptr(&bdp_ratelimits);
 | |
| 	if (unlikely(current->nr_dirtied >= ratelimit))
 | |
| 		*p = 0;
 | |
| 	else if (unlikely(*p >= ratelimit_pages)) {
 | |
| 		*p = 0;
 | |
| 		ratelimit = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
 | |
| 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
 | |
| 	 * the dirty throttling and livelock other long-run dirtiers.
 | |
| 	 */
 | |
| 	p = this_cpu_ptr(&dirty_throttle_leaks);
 | |
| 	if (*p > 0 && current->nr_dirtied < ratelimit) {
 | |
| 		unsigned long nr_pages_dirtied;
 | |
| 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
 | |
| 		*p -= nr_pages_dirtied;
 | |
| 		current->nr_dirtied += nr_pages_dirtied;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	if (unlikely(current->nr_dirtied >= ratelimit))
 | |
| 		balance_dirty_pages(wb, current->nr_dirtied);
 | |
| 
 | |
| 	wb_put(wb);
 | |
| }
 | |
| EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
 | |
| 
 | |
| /**
 | |
|  * wb_over_bg_thresh - does @wb need to be written back?
 | |
|  * @wb: bdi_writeback of interest
 | |
|  *
 | |
|  * Determines whether background writeback should keep writing @wb or it's
 | |
|  * clean enough.
 | |
|  *
 | |
|  * Return: %true if writeback should continue.
 | |
|  */
 | |
| bool wb_over_bg_thresh(struct bdi_writeback *wb)
 | |
| {
 | |
| 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
 | |
| 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
 | |
| 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
 | |
| 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
 | |
| 						     &mdtc_stor : NULL;
 | |
| 	unsigned long reclaimable;
 | |
| 	unsigned long thresh;
 | |
| 
 | |
| 	/*
 | |
| 	 * Similar to balance_dirty_pages() but ignores pages being written
 | |
| 	 * as we're trying to decide whether to put more under writeback.
 | |
| 	 */
 | |
| 	gdtc->avail = global_dirtyable_memory();
 | |
| 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
 | |
| 	domain_dirty_limits(gdtc);
 | |
| 
 | |
| 	if (gdtc->dirty > gdtc->bg_thresh)
 | |
| 		return true;
 | |
| 
 | |
| 	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
 | |
| 	if (thresh < 2 * wb_stat_error())
 | |
| 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
 | |
| 	else
 | |
| 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
 | |
| 
 | |
| 	if (reclaimable > thresh)
 | |
| 		return true;
 | |
| 
 | |
| 	if (mdtc) {
 | |
| 		unsigned long filepages, headroom, writeback;
 | |
| 
 | |
| 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
 | |
| 				    &writeback);
 | |
| 		mdtc_calc_avail(mdtc, filepages, headroom);
 | |
| 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
 | |
| 
 | |
| 		if (mdtc->dirty > mdtc->bg_thresh)
 | |
| 			return true;
 | |
| 
 | |
| 		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
 | |
| 		if (thresh < 2 * wb_stat_error())
 | |
| 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
 | |
| 		else
 | |
| 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
 | |
| 
 | |
| 		if (reclaimable > thresh)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 | |
|  */
 | |
| int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
 | |
| 		void *buffer, size_t *length, loff_t *ppos)
 | |
| {
 | |
| 	unsigned int old_interval = dirty_writeback_interval;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = proc_dointvec(table, write, buffer, length, ppos);
 | |
| 
 | |
| 	/*
 | |
| 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
 | |
| 	 * and a different non-zero value will wakeup the writeback threads.
 | |
| 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
 | |
| 	 * iterate over all bdis and wbs.
 | |
| 	 * The reason we do this is to make the change take effect immediately.
 | |
| 	 */
 | |
| 	if (!ret && write && dirty_writeback_interval &&
 | |
| 		dirty_writeback_interval != old_interval)
 | |
| 		wakeup_flusher_threads(WB_REASON_PERIODIC);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void laptop_mode_timer_fn(struct timer_list *t)
 | |
| {
 | |
| 	struct backing_dev_info *backing_dev_info =
 | |
| 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
 | |
| 
 | |
| 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We've spun up the disk and we're in laptop mode: schedule writeback
 | |
|  * of all dirty data a few seconds from now.  If the flush is already scheduled
 | |
|  * then push it back - the user is still using the disk.
 | |
|  */
 | |
| void laptop_io_completion(struct backing_dev_info *info)
 | |
| {
 | |
| 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're in laptop mode and we've just synced. The sync's writes will have
 | |
|  * caused another writeback to be scheduled by laptop_io_completion.
 | |
|  * Nothing needs to be written back anymore, so we unschedule the writeback.
 | |
|  */
 | |
| void laptop_sync_completion(void)
 | |
| {
 | |
| 	struct backing_dev_info *bdi;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
 | |
| 		del_timer(&bdi->laptop_mode_wb_timer);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If ratelimit_pages is too high then we can get into dirty-data overload
 | |
|  * if a large number of processes all perform writes at the same time.
 | |
|  *
 | |
|  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 | |
|  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 | |
|  * thresholds.
 | |
|  */
 | |
| 
 | |
| void writeback_set_ratelimit(void)
 | |
| {
 | |
| 	struct wb_domain *dom = &global_wb_domain;
 | |
| 	unsigned long background_thresh;
 | |
| 	unsigned long dirty_thresh;
 | |
| 
 | |
| 	global_dirty_limits(&background_thresh, &dirty_thresh);
 | |
| 	dom->dirty_limit = dirty_thresh;
 | |
| 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
 | |
| 	if (ratelimit_pages < 16)
 | |
| 		ratelimit_pages = 16;
 | |
| }
 | |
| 
 | |
| static int page_writeback_cpu_online(unsigned int cpu)
 | |
| {
 | |
| 	writeback_set_ratelimit();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called early on to tune the page writeback dirty limits.
 | |
|  *
 | |
|  * We used to scale dirty pages according to how total memory
 | |
|  * related to pages that could be allocated for buffers.
 | |
|  *
 | |
|  * However, that was when we used "dirty_ratio" to scale with
 | |
|  * all memory, and we don't do that any more. "dirty_ratio"
 | |
|  * is now applied to total non-HIGHPAGE memory, and as such we can't
 | |
|  * get into the old insane situation any more where we had
 | |
|  * large amounts of dirty pages compared to a small amount of
 | |
|  * non-HIGHMEM memory.
 | |
|  *
 | |
|  * But we might still want to scale the dirty_ratio by how
 | |
|  * much memory the box has..
 | |
|  */
 | |
| void __init page_writeback_init(void)
 | |
| {
 | |
| 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
 | |
| 
 | |
| 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
 | |
| 			  page_writeback_cpu_online, NULL);
 | |
| 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
 | |
| 			  page_writeback_cpu_online);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 | |
|  * @mapping: address space structure to write
 | |
|  * @start: starting page index
 | |
|  * @end: ending page index (inclusive)
 | |
|  *
 | |
|  * This function scans the page range from @start to @end (inclusive) and tags
 | |
|  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 | |
|  * that write_cache_pages (or whoever calls this function) will then use
 | |
|  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 | |
|  * used to avoid livelocking of writeback by a process steadily creating new
 | |
|  * dirty pages in the file (thus it is important for this function to be quick
 | |
|  * so that it can tag pages faster than a dirtying process can create them).
 | |
|  */
 | |
| void tag_pages_for_writeback(struct address_space *mapping,
 | |
| 			     pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, start);
 | |
| 	unsigned int tagged = 0;
 | |
| 	void *page;
 | |
| 
 | |
| 	xas_lock_irq(&xas);
 | |
| 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
 | |
| 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
 | |
| 		if (++tagged % XA_CHECK_SCHED)
 | |
| 			continue;
 | |
| 
 | |
| 		xas_pause(&xas);
 | |
| 		xas_unlock_irq(&xas);
 | |
| 		cond_resched();
 | |
| 		xas_lock_irq(&xas);
 | |
| 	}
 | |
| 	xas_unlock_irq(&xas);
 | |
| }
 | |
| EXPORT_SYMBOL(tag_pages_for_writeback);
 | |
| 
 | |
| /**
 | |
|  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  * @writepage: function called for each page
 | |
|  * @data: data passed to writepage function
 | |
|  *
 | |
|  * If a page is already under I/O, write_cache_pages() skips it, even
 | |
|  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 | |
|  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 | |
|  * and msync() need to guarantee that all the data which was dirty at the time
 | |
|  * the call was made get new I/O started against them.  If wbc->sync_mode is
 | |
|  * WB_SYNC_ALL then we were called for data integrity and we must wait for
 | |
|  * existing IO to complete.
 | |
|  *
 | |
|  * To avoid livelocks (when other process dirties new pages), we first tag
 | |
|  * pages which should be written back with TOWRITE tag and only then start
 | |
|  * writing them. For data-integrity sync we have to be careful so that we do
 | |
|  * not miss some pages (e.g., because some other process has cleared TOWRITE
 | |
|  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 | |
|  * by the process clearing the DIRTY tag (and submitting the page for IO).
 | |
|  *
 | |
|  * To avoid deadlocks between range_cyclic writeback and callers that hold
 | |
|  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
 | |
|  * we do not loop back to the start of the file. Doing so causes a page
 | |
|  * lock/page writeback access order inversion - we should only ever lock
 | |
|  * multiple pages in ascending page->index order, and looping back to the start
 | |
|  * of the file violates that rule and causes deadlocks.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise
 | |
|  */
 | |
| int write_cache_pages(struct address_space *mapping,
 | |
| 		      struct writeback_control *wbc, writepage_t writepage,
 | |
| 		      void *data)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	int done = 0;
 | |
| 	int error;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 	pgoff_t index;
 | |
| 	pgoff_t end;		/* Inclusive */
 | |
| 	pgoff_t done_index;
 | |
| 	int range_whole = 0;
 | |
| 	xa_mark_t tag;
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	if (wbc->range_cyclic) {
 | |
| 		index = mapping->writeback_index; /* prev offset */
 | |
| 		end = -1;
 | |
| 	} else {
 | |
| 		index = wbc->range_start >> PAGE_SHIFT;
 | |
| 		end = wbc->range_end >> PAGE_SHIFT;
 | |
| 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 | |
| 			range_whole = 1;
 | |
| 	}
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
 | |
| 		tag_pages_for_writeback(mapping, index, end);
 | |
| 		tag = PAGECACHE_TAG_TOWRITE;
 | |
| 	} else {
 | |
| 		tag = PAGECACHE_TAG_DIRTY;
 | |
| 	}
 | |
| 	done_index = index;
 | |
| 	while (!done && (index <= end)) {
 | |
| 		int i;
 | |
| 
 | |
| 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
 | |
| 				tag);
 | |
| 		if (nr_pages == 0)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			done_index = page->index;
 | |
| 
 | |
| 			lock_page(page);
 | |
| 
 | |
| 			/*
 | |
| 			 * Page truncated or invalidated. We can freely skip it
 | |
| 			 * then, even for data integrity operations: the page
 | |
| 			 * has disappeared concurrently, so there could be no
 | |
| 			 * real expectation of this data integrity operation
 | |
| 			 * even if there is now a new, dirty page at the same
 | |
| 			 * pagecache address.
 | |
| 			 */
 | |
| 			if (unlikely(page->mapping != mapping)) {
 | |
| continue_unlock:
 | |
| 				unlock_page(page);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!PageDirty(page)) {
 | |
| 				/* someone wrote it for us */
 | |
| 				goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			if (PageWriteback(page)) {
 | |
| 				if (wbc->sync_mode != WB_SYNC_NONE)
 | |
| 					wait_on_page_writeback(page);
 | |
| 				else
 | |
| 					goto continue_unlock;
 | |
| 			}
 | |
| 
 | |
| 			BUG_ON(PageWriteback(page));
 | |
| 			if (!clear_page_dirty_for_io(page))
 | |
| 				goto continue_unlock;
 | |
| 
 | |
| 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
 | |
| 			error = (*writepage)(page, wbc, data);
 | |
| 			if (unlikely(error)) {
 | |
| 				/*
 | |
| 				 * Handle errors according to the type of
 | |
| 				 * writeback. There's no need to continue for
 | |
| 				 * background writeback. Just push done_index
 | |
| 				 * past this page so media errors won't choke
 | |
| 				 * writeout for the entire file. For integrity
 | |
| 				 * writeback, we must process the entire dirty
 | |
| 				 * set regardless of errors because the fs may
 | |
| 				 * still have state to clear for each page. In
 | |
| 				 * that case we continue processing and return
 | |
| 				 * the first error.
 | |
| 				 */
 | |
| 				if (error == AOP_WRITEPAGE_ACTIVATE) {
 | |
| 					unlock_page(page);
 | |
| 					error = 0;
 | |
| 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
 | |
| 					ret = error;
 | |
| 					done_index = page->index + 1;
 | |
| 					done = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (!ret)
 | |
| 					ret = error;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We stop writing back only if we are not doing
 | |
| 			 * integrity sync. In case of integrity sync we have to
 | |
| 			 * keep going until we have written all the pages
 | |
| 			 * we tagged for writeback prior to entering this loop.
 | |
| 			 */
 | |
| 			if (--wbc->nr_to_write <= 0 &&
 | |
| 			    wbc->sync_mode == WB_SYNC_NONE) {
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we hit the last page and there is more work to be done: wrap
 | |
| 	 * back the index back to the start of the file for the next
 | |
| 	 * time we are called.
 | |
| 	 */
 | |
| 	if (wbc->range_cyclic && !done)
 | |
| 		done_index = 0;
 | |
| 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 | |
| 		mapping->writeback_index = done_index;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(write_cache_pages);
 | |
| 
 | |
| /*
 | |
|  * Function used by generic_writepages to call the real writepage
 | |
|  * function and set the mapping flags on error
 | |
|  */
 | |
| static int __writepage(struct page *page, struct writeback_control *wbc,
 | |
| 		       void *data)
 | |
| {
 | |
| 	struct address_space *mapping = data;
 | |
| 	int ret = mapping->a_ops->writepage(page, wbc);
 | |
| 	mapping_set_error(mapping, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 | |
|  * @mapping: address space structure to write
 | |
|  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 | |
|  *
 | |
|  * This is a library function, which implements the writepages()
 | |
|  * address_space_operation.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise
 | |
|  */
 | |
| int generic_writepages(struct address_space *mapping,
 | |
| 		       struct writeback_control *wbc)
 | |
| {
 | |
| 	struct blk_plug plug;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* deal with chardevs and other special file */
 | |
| 	if (!mapping->a_ops->writepage)
 | |
| 		return 0;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
 | |
| 	blk_finish_plug(&plug);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(generic_writepages);
 | |
| 
 | |
| int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct bdi_writeback *wb;
 | |
| 
 | |
| 	if (wbc->nr_to_write <= 0)
 | |
| 		return 0;
 | |
| 	wb = inode_to_wb_wbc(mapping->host, wbc);
 | |
| 	wb_bandwidth_estimate_start(wb);
 | |
| 	while (1) {
 | |
| 		if (mapping->a_ops->writepages)
 | |
| 			ret = mapping->a_ops->writepages(mapping, wbc);
 | |
| 		else
 | |
| 			ret = generic_writepages(mapping, wbc);
 | |
| 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Lacking an allocation context or the locality or writeback
 | |
| 		 * state of any of the inode's pages, throttle based on
 | |
| 		 * writeback activity on the local node. It's as good a
 | |
| 		 * guess as any.
 | |
| 		 */
 | |
| 		reclaim_throttle(NODE_DATA(numa_node_id()),
 | |
| 			VMSCAN_THROTTLE_WRITEBACK);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Usually few pages are written by now from those we've just submitted
 | |
| 	 * but if there's constant writeback being submitted, this makes sure
 | |
| 	 * writeback bandwidth is updated once in a while.
 | |
| 	 */
 | |
| 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
 | |
| 				   BANDWIDTH_INTERVAL))
 | |
| 		wb_update_bandwidth(wb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_write_one - write out a single folio and wait on I/O.
 | |
|  * @folio: The folio to write.
 | |
|  *
 | |
|  * The folio must be locked by the caller and will be unlocked upon return.
 | |
|  *
 | |
|  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
 | |
|  * function returns.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise
 | |
|  */
 | |
| int folio_write_one(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 	int ret = 0;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = folio_nr_pages(folio),
 | |
| 	};
 | |
| 
 | |
| 	BUG_ON(!folio_test_locked(folio));
 | |
| 
 | |
| 	folio_wait_writeback(folio);
 | |
| 
 | |
| 	if (folio_clear_dirty_for_io(folio)) {
 | |
| 		folio_get(folio);
 | |
| 		ret = mapping->a_ops->writepage(&folio->page, &wbc);
 | |
| 		if (ret == 0)
 | |
| 			folio_wait_writeback(folio);
 | |
| 		folio_put(folio);
 | |
| 	} else {
 | |
| 		folio_unlock(folio);
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = filemap_check_errors(mapping);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_write_one);
 | |
| 
 | |
| /*
 | |
|  * For address_spaces which do not use buffers nor write back.
 | |
|  */
 | |
| int __set_page_dirty_no_writeback(struct page *page)
 | |
| {
 | |
| 	if (!PageDirty(page))
 | |
| 		return !TestSetPageDirty(page);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(__set_page_dirty_no_writeback);
 | |
| 
 | |
| /*
 | |
|  * Helper function for set_page_dirty family.
 | |
|  *
 | |
|  * Caller must hold lock_page_memcg().
 | |
|  *
 | |
|  * NOTE: This relies on being atomic wrt interrupts.
 | |
|  */
 | |
| static void folio_account_dirtied(struct folio *folio,
 | |
| 		struct address_space *mapping)
 | |
| {
 | |
| 	struct inode *inode = mapping->host;
 | |
| 
 | |
| 	trace_writeback_dirty_folio(folio, mapping);
 | |
| 
 | |
| 	if (mapping_can_writeback(mapping)) {
 | |
| 		struct bdi_writeback *wb;
 | |
| 		long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 		inode_attach_wb(inode, &folio->page);
 | |
| 		wb = inode_to_wb(inode);
 | |
| 
 | |
| 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
 | |
| 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
 | |
| 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
 | |
| 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
 | |
| 		wb_stat_mod(wb, WB_DIRTIED, nr);
 | |
| 		task_io_account_write(nr * PAGE_SIZE);
 | |
| 		current->nr_dirtied += nr;
 | |
| 		__this_cpu_add(bdp_ratelimits, nr);
 | |
| 
 | |
| 		mem_cgroup_track_foreign_dirty(folio, wb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function for deaccounting dirty page without writeback.
 | |
|  *
 | |
|  * Caller must hold lock_page_memcg().
 | |
|  */
 | |
| void folio_account_cleaned(struct folio *folio, struct address_space *mapping,
 | |
| 			  struct bdi_writeback *wb)
 | |
| {
 | |
| 	if (mapping_can_writeback(mapping)) {
 | |
| 		long nr = folio_nr_pages(folio);
 | |
| 		lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
 | |
| 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
 | |
| 		wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
 | |
| 		task_io_account_cancelled_write(nr * PAGE_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the folio dirty, and set it dirty in the page cache, and mark
 | |
|  * the inode dirty.
 | |
|  *
 | |
|  * If warn is true, then emit a warning if the folio is not uptodate and has
 | |
|  * not been truncated.
 | |
|  *
 | |
|  * The caller must hold lock_page_memcg().
 | |
|  */
 | |
| void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
 | |
| 			     int warn)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	xa_lock_irqsave(&mapping->i_pages, flags);
 | |
| 	if (folio->mapping) {	/* Race with truncate? */
 | |
| 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
 | |
| 		folio_account_dirtied(folio, mapping);
 | |
| 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
 | |
| 				PAGECACHE_TAG_DIRTY);
 | |
| 	}
 | |
| 	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
 | |
|  * @mapping: Address space this folio belongs to.
 | |
|  * @folio: Folio to be marked as dirty.
 | |
|  *
 | |
|  * Filesystems which do not use buffer heads should call this function
 | |
|  * from their set_page_dirty address space operation.  It ignores the
 | |
|  * contents of folio_get_private(), so if the filesystem marks individual
 | |
|  * blocks as dirty, the filesystem should handle that itself.
 | |
|  *
 | |
|  * This is also sometimes used by filesystems which use buffer_heads when
 | |
|  * a single buffer is being dirtied: we want to set the folio dirty in
 | |
|  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
 | |
|  * whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 | |
|  *
 | |
|  * The caller must ensure this doesn't race with truncation.  Most will
 | |
|  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
 | |
|  * folio mapped and the pte lock held, which also locks out truncation.
 | |
|  */
 | |
| bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
 | |
| {
 | |
| 	folio_memcg_lock(folio);
 | |
| 	if (folio_test_set_dirty(folio)) {
 | |
| 		folio_memcg_unlock(folio);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
 | |
| 	folio_memcg_unlock(folio);
 | |
| 
 | |
| 	if (mapping->host) {
 | |
| 		/* !PageAnon && !swapper_space */
 | |
| 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_dirty_folio);
 | |
| 
 | |
| /**
 | |
|  * folio_account_redirty - Manually account for redirtying a page.
 | |
|  * @folio: The folio which is being redirtied.
 | |
|  *
 | |
|  * Most filesystems should call folio_redirty_for_writepage() instead
 | |
|  * of this fuction.  If your filesystem is doing writeback outside the
 | |
|  * context of a writeback_control(), it can call this when redirtying
 | |
|  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
 | |
|  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
 | |
|  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
 | |
|  * in balanced_dirty_ratelimit and the dirty pages position control.
 | |
|  */
 | |
| void folio_account_redirty(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio->mapping;
 | |
| 
 | |
| 	if (mapping && mapping_can_writeback(mapping)) {
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		struct bdi_writeback *wb;
 | |
| 		struct wb_lock_cookie cookie = {};
 | |
| 		long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
 | |
| 		current->nr_dirtied -= nr;
 | |
| 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
 | |
| 		wb_stat_mod(wb, WB_DIRTIED, -nr);
 | |
| 		unlocked_inode_to_wb_end(inode, &cookie);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(folio_account_redirty);
 | |
| 
 | |
| /**
 | |
|  * folio_redirty_for_writepage - Decline to write a dirty folio.
 | |
|  * @wbc: The writeback control.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * When a writepage implementation decides that it doesn't want to write
 | |
|  * @folio for some reason, it should call this function, unlock @folio and
 | |
|  * return 0.
 | |
|  *
 | |
|  * Return: True if we redirtied the folio.  False if someone else dirtied
 | |
|  * it first.
 | |
|  */
 | |
| bool folio_redirty_for_writepage(struct writeback_control *wbc,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	bool ret;
 | |
| 	long nr = folio_nr_pages(folio);
 | |
| 
 | |
| 	wbc->pages_skipped += nr;
 | |
| 	ret = filemap_dirty_folio(folio->mapping, folio);
 | |
| 	folio_account_redirty(folio);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_redirty_for_writepage);
 | |
| 
 | |
| /**
 | |
|  * folio_mark_dirty - Mark a folio as being modified.
 | |
|  * @folio: The folio.
 | |
|  *
 | |
|  * For folios with a mapping this should be done under the page lock
 | |
|  * for the benefit of asynchronous memory errors who prefer a consistent
 | |
|  * dirty state. This rule can be broken in some special cases,
 | |
|  * but should be better not to.
 | |
|  *
 | |
|  * Return: True if the folio was newly dirtied, false if it was already dirty.
 | |
|  */
 | |
| bool folio_mark_dirty(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 
 | |
| 	if (likely(mapping)) {
 | |
| 		/*
 | |
| 		 * readahead/lru_deactivate_page could remain
 | |
| 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
 | |
| 		 * About readahead, if the page is written, the flags would be
 | |
| 		 * reset. So no problem.
 | |
| 		 * About lru_deactivate_page, if the page is redirty, the flag
 | |
| 		 * will be reset. So no problem. but if the page is used by readahead
 | |
| 		 * it will confuse readahead and make it restart the size rampup
 | |
| 		 * process. But it's a trivial problem.
 | |
| 		 */
 | |
| 		if (folio_test_reclaim(folio))
 | |
| 			folio_clear_reclaim(folio);
 | |
| 		return mapping->a_ops->set_page_dirty(&folio->page);
 | |
| 	}
 | |
| 	if (!folio_test_dirty(folio)) {
 | |
| 		if (!folio_test_set_dirty(folio))
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL(folio_mark_dirty);
 | |
| 
 | |
| /*
 | |
|  * set_page_dirty() is racy if the caller has no reference against
 | |
|  * page->mapping->host, and if the page is unlocked.  This is because another
 | |
|  * CPU could truncate the page off the mapping and then free the mapping.
 | |
|  *
 | |
|  * Usually, the page _is_ locked, or the caller is a user-space process which
 | |
|  * holds a reference on the inode by having an open file.
 | |
|  *
 | |
|  * In other cases, the page should be locked before running set_page_dirty().
 | |
|  */
 | |
| int set_page_dirty_lock(struct page *page)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lock_page(page);
 | |
| 	ret = set_page_dirty(page);
 | |
| 	unlock_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_page_dirty_lock);
 | |
| 
 | |
| /*
 | |
|  * This cancels just the dirty bit on the kernel page itself, it does NOT
 | |
|  * actually remove dirty bits on any mmap's that may be around. It also
 | |
|  * leaves the page tagged dirty, so any sync activity will still find it on
 | |
|  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 | |
|  * look at the dirty bits in the VM.
 | |
|  *
 | |
|  * Doing this should *normally* only ever be done when a page is truncated,
 | |
|  * and is not actually mapped anywhere at all. However, fs/buffer.c does
 | |
|  * this when it notices that somebody has cleaned out all the buffers on a
 | |
|  * page without actually doing it through the VM. Can you say "ext3 is
 | |
|  * horribly ugly"? Thought you could.
 | |
|  */
 | |
| void __folio_cancel_dirty(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 
 | |
| 	if (mapping_can_writeback(mapping)) {
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		struct bdi_writeback *wb;
 | |
| 		struct wb_lock_cookie cookie = {};
 | |
| 
 | |
| 		folio_memcg_lock(folio);
 | |
| 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
 | |
| 
 | |
| 		if (folio_test_clear_dirty(folio))
 | |
| 			folio_account_cleaned(folio, mapping, wb);
 | |
| 
 | |
| 		unlocked_inode_to_wb_end(inode, &cookie);
 | |
| 		folio_memcg_unlock(folio);
 | |
| 	} else {
 | |
| 		folio_clear_dirty(folio);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__folio_cancel_dirty);
 | |
| 
 | |
| /*
 | |
|  * Clear a folio's dirty flag, while caring for dirty memory accounting.
 | |
|  * Returns true if the folio was previously dirty.
 | |
|  *
 | |
|  * This is for preparing to put the folio under writeout.  We leave
 | |
|  * the folio tagged as dirty in the xarray so that a concurrent
 | |
|  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
 | |
|  * The ->writepage implementation will run either folio_start_writeback()
 | |
|  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
 | |
|  * and xarray dirty tag back into sync.
 | |
|  *
 | |
|  * This incoherency between the folio's dirty flag and xarray tag is
 | |
|  * unfortunate, but it only exists while the folio is locked.
 | |
|  */
 | |
| bool folio_clear_dirty_for_io(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 
 | |
| 	if (mapping && mapping_can_writeback(mapping)) {
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		struct bdi_writeback *wb;
 | |
| 		struct wb_lock_cookie cookie = {};
 | |
| 
 | |
| 		/*
 | |
| 		 * Yes, Virginia, this is indeed insane.
 | |
| 		 *
 | |
| 		 * We use this sequence to make sure that
 | |
| 		 *  (a) we account for dirty stats properly
 | |
| 		 *  (b) we tell the low-level filesystem to
 | |
| 		 *      mark the whole folio dirty if it was
 | |
| 		 *      dirty in a pagetable. Only to then
 | |
| 		 *  (c) clean the folio again and return 1 to
 | |
| 		 *      cause the writeback.
 | |
| 		 *
 | |
| 		 * This way we avoid all nasty races with the
 | |
| 		 * dirty bit in multiple places and clearing
 | |
| 		 * them concurrently from different threads.
 | |
| 		 *
 | |
| 		 * Note! Normally the "folio_mark_dirty(folio)"
 | |
| 		 * has no effect on the actual dirty bit - since
 | |
| 		 * that will already usually be set. But we
 | |
| 		 * need the side effects, and it can help us
 | |
| 		 * avoid races.
 | |
| 		 *
 | |
| 		 * We basically use the folio "master dirty bit"
 | |
| 		 * as a serialization point for all the different
 | |
| 		 * threads doing their things.
 | |
| 		 */
 | |
| 		if (folio_mkclean(folio))
 | |
| 			folio_mark_dirty(folio);
 | |
| 		/*
 | |
| 		 * We carefully synchronise fault handlers against
 | |
| 		 * installing a dirty pte and marking the folio dirty
 | |
| 		 * at this point.  We do this by having them hold the
 | |
| 		 * page lock while dirtying the folio, and folios are
 | |
| 		 * always locked coming in here, so we get the desired
 | |
| 		 * exclusion.
 | |
| 		 */
 | |
| 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
 | |
| 		if (folio_test_clear_dirty(folio)) {
 | |
| 			long nr = folio_nr_pages(folio);
 | |
| 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
 | |
| 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
 | |
| 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
 | |
| 			ret = true;
 | |
| 		}
 | |
| 		unlocked_inode_to_wb_end(inode, &cookie);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return folio_test_clear_dirty(folio);
 | |
| }
 | |
| EXPORT_SYMBOL(folio_clear_dirty_for_io);
 | |
| 
 | |
| static void wb_inode_writeback_start(struct bdi_writeback *wb)
 | |
| {
 | |
| 	atomic_inc(&wb->writeback_inodes);
 | |
| }
 | |
| 
 | |
| static void wb_inode_writeback_end(struct bdi_writeback *wb)
 | |
| {
 | |
| 	atomic_dec(&wb->writeback_inodes);
 | |
| 	/*
 | |
| 	 * Make sure estimate of writeback throughput gets updated after
 | |
| 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
 | |
| 	 * (which is the interval other bandwidth updates use for batching) so
 | |
| 	 * that if multiple inodes end writeback at a similar time, they get
 | |
| 	 * batched into one bandwidth update.
 | |
| 	 */
 | |
| 	queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
 | |
| }
 | |
| 
 | |
| bool __folio_end_writeback(struct folio *folio)
 | |
| {
 | |
| 	long nr = folio_nr_pages(folio);
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 	bool ret;
 | |
| 
 | |
| 	folio_memcg_lock(folio);
 | |
| 	if (mapping && mapping_use_writeback_tags(mapping)) {
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		struct backing_dev_info *bdi = inode_to_bdi(inode);
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		xa_lock_irqsave(&mapping->i_pages, flags);
 | |
| 		ret = folio_test_clear_writeback(folio);
 | |
| 		if (ret) {
 | |
| 			__xa_clear_mark(&mapping->i_pages, folio_index(folio),
 | |
| 						PAGECACHE_TAG_WRITEBACK);
 | |
| 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
 | |
| 				struct bdi_writeback *wb = inode_to_wb(inode);
 | |
| 
 | |
| 				wb_stat_mod(wb, WB_WRITEBACK, -nr);
 | |
| 				__wb_writeout_add(wb, nr);
 | |
| 				if (!mapping_tagged(mapping,
 | |
| 						    PAGECACHE_TAG_WRITEBACK))
 | |
| 					wb_inode_writeback_end(wb);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (mapping->host && !mapping_tagged(mapping,
 | |
| 						     PAGECACHE_TAG_WRITEBACK))
 | |
| 			sb_clear_inode_writeback(mapping->host);
 | |
| 
 | |
| 		xa_unlock_irqrestore(&mapping->i_pages, flags);
 | |
| 	} else {
 | |
| 		ret = folio_test_clear_writeback(folio);
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
 | |
| 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
 | |
| 		node_stat_mod_folio(folio, NR_WRITTEN, nr);
 | |
| 	}
 | |
| 	folio_memcg_unlock(folio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool __folio_start_writeback(struct folio *folio, bool keep_write)
 | |
| {
 | |
| 	long nr = folio_nr_pages(folio);
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 	bool ret;
 | |
| 	int access_ret;
 | |
| 
 | |
| 	folio_memcg_lock(folio);
 | |
| 	if (mapping && mapping_use_writeback_tags(mapping)) {
 | |
| 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		struct backing_dev_info *bdi = inode_to_bdi(inode);
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		xas_lock_irqsave(&xas, flags);
 | |
| 		xas_load(&xas);
 | |
| 		ret = folio_test_set_writeback(folio);
 | |
| 		if (!ret) {
 | |
| 			bool on_wblist;
 | |
| 
 | |
| 			on_wblist = mapping_tagged(mapping,
 | |
| 						   PAGECACHE_TAG_WRITEBACK);
 | |
| 
 | |
| 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
 | |
| 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
 | |
| 				struct bdi_writeback *wb = inode_to_wb(inode);
 | |
| 
 | |
| 				wb_stat_mod(wb, WB_WRITEBACK, nr);
 | |
| 				if (!on_wblist)
 | |
| 					wb_inode_writeback_start(wb);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We can come through here when swapping
 | |
| 			 * anonymous folios, so we don't necessarily
 | |
| 			 * have an inode to track for sync.
 | |
| 			 */
 | |
| 			if (mapping->host && !on_wblist)
 | |
| 				sb_mark_inode_writeback(mapping->host);
 | |
| 		}
 | |
| 		if (!folio_test_dirty(folio))
 | |
| 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
 | |
| 		if (!keep_write)
 | |
| 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
 | |
| 		xas_unlock_irqrestore(&xas, flags);
 | |
| 	} else {
 | |
| 		ret = folio_test_set_writeback(folio);
 | |
| 	}
 | |
| 	if (!ret) {
 | |
| 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
 | |
| 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
 | |
| 	}
 | |
| 	folio_memcg_unlock(folio);
 | |
| 	access_ret = arch_make_folio_accessible(folio);
 | |
| 	/*
 | |
| 	 * If writeback has been triggered on a page that cannot be made
 | |
| 	 * accessible, it is too late to recover here.
 | |
| 	 */
 | |
| 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__folio_start_writeback);
 | |
| 
 | |
| /**
 | |
|  * folio_wait_writeback - Wait for a folio to finish writeback.
 | |
|  * @folio: The folio to wait for.
 | |
|  *
 | |
|  * If the folio is currently being written back to storage, wait for the
 | |
|  * I/O to complete.
 | |
|  *
 | |
|  * Context: Sleeps.  Must be called in process context and with
 | |
|  * no spinlocks held.  Caller should hold a reference on the folio.
 | |
|  * If the folio is not locked, writeback may start again after writeback
 | |
|  * has finished.
 | |
|  */
 | |
| void folio_wait_writeback(struct folio *folio)
 | |
| {
 | |
| 	while (folio_test_writeback(folio)) {
 | |
| 		trace_folio_wait_writeback(folio, folio_mapping(folio));
 | |
| 		folio_wait_bit(folio, PG_writeback);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_wait_writeback);
 | |
| 
 | |
| /**
 | |
|  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
 | |
|  * @folio: The folio to wait for.
 | |
|  *
 | |
|  * If the folio is currently being written back to storage, wait for the
 | |
|  * I/O to complete or a fatal signal to arrive.
 | |
|  *
 | |
|  * Context: Sleeps.  Must be called in process context and with
 | |
|  * no spinlocks held.  Caller should hold a reference on the folio.
 | |
|  * If the folio is not locked, writeback may start again after writeback
 | |
|  * has finished.
 | |
|  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
 | |
|  */
 | |
| int folio_wait_writeback_killable(struct folio *folio)
 | |
| {
 | |
| 	while (folio_test_writeback(folio)) {
 | |
| 		trace_folio_wait_writeback(folio, folio_mapping(folio));
 | |
| 		if (folio_wait_bit_killable(folio, PG_writeback))
 | |
| 			return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
 | |
| 
 | |
| /**
 | |
|  * folio_wait_stable() - wait for writeback to finish, if necessary.
 | |
|  * @folio: The folio to wait on.
 | |
|  *
 | |
|  * This function determines if the given folio is related to a backing
 | |
|  * device that requires folio contents to be held stable during writeback.
 | |
|  * If so, then it will wait for any pending writeback to complete.
 | |
|  *
 | |
|  * Context: Sleeps.  Must be called in process context and with
 | |
|  * no spinlocks held.  Caller should hold a reference on the folio.
 | |
|  * If the folio is not locked, writeback may start again after writeback
 | |
|  * has finished.
 | |
|  */
 | |
| void folio_wait_stable(struct folio *folio)
 | |
| {
 | |
| 	if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
 | |
| 		folio_wait_writeback(folio);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_wait_stable);
 |