mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 abfc7fad63
			
		
	
	
		abfc7fad63
		
	
	
	
	
		
			
			Replace the obsolete and ambiguos macro in_irq() with new macro in_hardirq(). Signed-off-by: Changbin Du <changbin.du@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			984 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			984 lines
		
	
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Symmetric key cipher operations.
 | |
|  *
 | |
|  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
 | |
|  * multiple page boundaries by using temporary blocks.  In user context,
 | |
|  * the kernel is given a chance to schedule us once per page.
 | |
|  *
 | |
|  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
 | |
|  */
 | |
| 
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/internal/cipher.h>
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/cryptouser.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/rtnetlink.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <net/netlink.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| enum {
 | |
| 	SKCIPHER_WALK_PHYS = 1 << 0,
 | |
| 	SKCIPHER_WALK_SLOW = 1 << 1,
 | |
| 	SKCIPHER_WALK_COPY = 1 << 2,
 | |
| 	SKCIPHER_WALK_DIFF = 1 << 3,
 | |
| 	SKCIPHER_WALK_SLEEP = 1 << 4,
 | |
| };
 | |
| 
 | |
| struct skcipher_walk_buffer {
 | |
| 	struct list_head entry;
 | |
| 	struct scatter_walk dst;
 | |
| 	unsigned int len;
 | |
| 	u8 *data;
 | |
| 	u8 buffer[];
 | |
| };
 | |
| 
 | |
| static int skcipher_walk_next(struct skcipher_walk *walk);
 | |
| 
 | |
| static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
 | |
| {
 | |
| 	if (PageHighMem(scatterwalk_page(walk)))
 | |
| 		kunmap_atomic(vaddr);
 | |
| }
 | |
| 
 | |
| static inline void *skcipher_map(struct scatter_walk *walk)
 | |
| {
 | |
| 	struct page *page = scatterwalk_page(walk);
 | |
| 
 | |
| 	return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
 | |
| 	       offset_in_page(walk->offset);
 | |
| }
 | |
| 
 | |
| static inline void skcipher_map_src(struct skcipher_walk *walk)
 | |
| {
 | |
| 	walk->src.virt.addr = skcipher_map(&walk->in);
 | |
| }
 | |
| 
 | |
| static inline void skcipher_map_dst(struct skcipher_walk *walk)
 | |
| {
 | |
| 	walk->dst.virt.addr = skcipher_map(&walk->out);
 | |
| }
 | |
| 
 | |
| static inline void skcipher_unmap_src(struct skcipher_walk *walk)
 | |
| {
 | |
| 	skcipher_unmap(&walk->in, walk->src.virt.addr);
 | |
| }
 | |
| 
 | |
| static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
 | |
| {
 | |
| 	skcipher_unmap(&walk->out, walk->dst.virt.addr);
 | |
| }
 | |
| 
 | |
| static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
 | |
| {
 | |
| 	return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
 | |
| }
 | |
| 
 | |
| /* Get a spot of the specified length that does not straddle a page.
 | |
|  * The caller needs to ensure that there is enough space for this operation.
 | |
|  */
 | |
| static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
 | |
| {
 | |
| 	u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
 | |
| 
 | |
| 	return max(start, end_page);
 | |
| }
 | |
| 
 | |
| static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
 | |
| {
 | |
| 	u8 *addr;
 | |
| 
 | |
| 	addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
 | |
| 	addr = skcipher_get_spot(addr, bsize);
 | |
| 	scatterwalk_copychunks(addr, &walk->out, bsize,
 | |
| 			       (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int skcipher_walk_done(struct skcipher_walk *walk, int err)
 | |
| {
 | |
| 	unsigned int n = walk->nbytes;
 | |
| 	unsigned int nbytes = 0;
 | |
| 
 | |
| 	if (!n)
 | |
| 		goto finish;
 | |
| 
 | |
| 	if (likely(err >= 0)) {
 | |
| 		n -= err;
 | |
| 		nbytes = walk->total - n;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
 | |
| 				    SKCIPHER_WALK_SLOW |
 | |
| 				    SKCIPHER_WALK_COPY |
 | |
| 				    SKCIPHER_WALK_DIFF)))) {
 | |
| unmap_src:
 | |
| 		skcipher_unmap_src(walk);
 | |
| 	} else if (walk->flags & SKCIPHER_WALK_DIFF) {
 | |
| 		skcipher_unmap_dst(walk);
 | |
| 		goto unmap_src;
 | |
| 	} else if (walk->flags & SKCIPHER_WALK_COPY) {
 | |
| 		skcipher_map_dst(walk);
 | |
| 		memcpy(walk->dst.virt.addr, walk->page, n);
 | |
| 		skcipher_unmap_dst(walk);
 | |
| 	} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
 | |
| 		if (err > 0) {
 | |
| 			/*
 | |
| 			 * Didn't process all bytes.  Either the algorithm is
 | |
| 			 * broken, or this was the last step and it turned out
 | |
| 			 * the message wasn't evenly divisible into blocks but
 | |
| 			 * the algorithm requires it.
 | |
| 			 */
 | |
| 			err = -EINVAL;
 | |
| 			nbytes = 0;
 | |
| 		} else
 | |
| 			n = skcipher_done_slow(walk, n);
 | |
| 	}
 | |
| 
 | |
| 	if (err > 0)
 | |
| 		err = 0;
 | |
| 
 | |
| 	walk->total = nbytes;
 | |
| 	walk->nbytes = 0;
 | |
| 
 | |
| 	scatterwalk_advance(&walk->in, n);
 | |
| 	scatterwalk_advance(&walk->out, n);
 | |
| 	scatterwalk_done(&walk->in, 0, nbytes);
 | |
| 	scatterwalk_done(&walk->out, 1, nbytes);
 | |
| 
 | |
| 	if (nbytes) {
 | |
| 		crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
 | |
| 			     CRYPTO_TFM_REQ_MAY_SLEEP : 0);
 | |
| 		return skcipher_walk_next(walk);
 | |
| 	}
 | |
| 
 | |
| finish:
 | |
| 	/* Short-circuit for the common/fast path. */
 | |
| 	if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (walk->flags & SKCIPHER_WALK_PHYS)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (walk->iv != walk->oiv)
 | |
| 		memcpy(walk->oiv, walk->iv, walk->ivsize);
 | |
| 	if (walk->buffer != walk->page)
 | |
| 		kfree(walk->buffer);
 | |
| 	if (walk->page)
 | |
| 		free_page((unsigned long)walk->page);
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_done);
 | |
| 
 | |
| void skcipher_walk_complete(struct skcipher_walk *walk, int err)
 | |
| {
 | |
| 	struct skcipher_walk_buffer *p, *tmp;
 | |
| 
 | |
| 	list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
 | |
| 		u8 *data;
 | |
| 
 | |
| 		if (err)
 | |
| 			goto done;
 | |
| 
 | |
| 		data = p->data;
 | |
| 		if (!data) {
 | |
| 			data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
 | |
| 			data = skcipher_get_spot(data, walk->stride);
 | |
| 		}
 | |
| 
 | |
| 		scatterwalk_copychunks(data, &p->dst, p->len, 1);
 | |
| 
 | |
| 		if (offset_in_page(p->data) + p->len + walk->stride >
 | |
| 		    PAGE_SIZE)
 | |
| 			free_page((unsigned long)p->data);
 | |
| 
 | |
| done:
 | |
| 		list_del(&p->entry);
 | |
| 		kfree(p);
 | |
| 	}
 | |
| 
 | |
| 	if (!err && walk->iv != walk->oiv)
 | |
| 		memcpy(walk->oiv, walk->iv, walk->ivsize);
 | |
| 	if (walk->buffer != walk->page)
 | |
| 		kfree(walk->buffer);
 | |
| 	if (walk->page)
 | |
| 		free_page((unsigned long)walk->page);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_complete);
 | |
| 
 | |
| static void skcipher_queue_write(struct skcipher_walk *walk,
 | |
| 				 struct skcipher_walk_buffer *p)
 | |
| {
 | |
| 	p->dst = walk->out;
 | |
| 	list_add_tail(&p->entry, &walk->buffers);
 | |
| }
 | |
| 
 | |
| static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
 | |
| {
 | |
| 	bool phys = walk->flags & SKCIPHER_WALK_PHYS;
 | |
| 	unsigned alignmask = walk->alignmask;
 | |
| 	struct skcipher_walk_buffer *p;
 | |
| 	unsigned a;
 | |
| 	unsigned n;
 | |
| 	u8 *buffer;
 | |
| 	void *v;
 | |
| 
 | |
| 	if (!phys) {
 | |
| 		if (!walk->buffer)
 | |
| 			walk->buffer = walk->page;
 | |
| 		buffer = walk->buffer;
 | |
| 		if (buffer)
 | |
| 			goto ok;
 | |
| 	}
 | |
| 
 | |
| 	/* Start with the minimum alignment of kmalloc. */
 | |
| 	a = crypto_tfm_ctx_alignment() - 1;
 | |
| 	n = bsize;
 | |
| 
 | |
| 	if (phys) {
 | |
| 		/* Calculate the minimum alignment of p->buffer. */
 | |
| 		a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
 | |
| 		n += sizeof(*p);
 | |
| 	}
 | |
| 
 | |
| 	/* Minimum size to align p->buffer by alignmask. */
 | |
| 	n += alignmask & ~a;
 | |
| 
 | |
| 	/* Minimum size to ensure p->buffer does not straddle a page. */
 | |
| 	n += (bsize - 1) & ~(alignmask | a);
 | |
| 
 | |
| 	v = kzalloc(n, skcipher_walk_gfp(walk));
 | |
| 	if (!v)
 | |
| 		return skcipher_walk_done(walk, -ENOMEM);
 | |
| 
 | |
| 	if (phys) {
 | |
| 		p = v;
 | |
| 		p->len = bsize;
 | |
| 		skcipher_queue_write(walk, p);
 | |
| 		buffer = p->buffer;
 | |
| 	} else {
 | |
| 		walk->buffer = v;
 | |
| 		buffer = v;
 | |
| 	}
 | |
| 
 | |
| ok:
 | |
| 	walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
 | |
| 	walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
 | |
| 	walk->src.virt.addr = walk->dst.virt.addr;
 | |
| 
 | |
| 	scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
 | |
| 
 | |
| 	walk->nbytes = bsize;
 | |
| 	walk->flags |= SKCIPHER_WALK_SLOW;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skcipher_next_copy(struct skcipher_walk *walk)
 | |
| {
 | |
| 	struct skcipher_walk_buffer *p;
 | |
| 	u8 *tmp = walk->page;
 | |
| 
 | |
| 	skcipher_map_src(walk);
 | |
| 	memcpy(tmp, walk->src.virt.addr, walk->nbytes);
 | |
| 	skcipher_unmap_src(walk);
 | |
| 
 | |
| 	walk->src.virt.addr = tmp;
 | |
| 	walk->dst.virt.addr = tmp;
 | |
| 
 | |
| 	if (!(walk->flags & SKCIPHER_WALK_PHYS))
 | |
| 		return 0;
 | |
| 
 | |
| 	p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	p->data = walk->page;
 | |
| 	p->len = walk->nbytes;
 | |
| 	skcipher_queue_write(walk, p);
 | |
| 
 | |
| 	if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
 | |
| 	    PAGE_SIZE)
 | |
| 		walk->page = NULL;
 | |
| 	else
 | |
| 		walk->page += walk->nbytes;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skcipher_next_fast(struct skcipher_walk *walk)
 | |
| {
 | |
| 	unsigned long diff;
 | |
| 
 | |
| 	walk->src.phys.page = scatterwalk_page(&walk->in);
 | |
| 	walk->src.phys.offset = offset_in_page(walk->in.offset);
 | |
| 	walk->dst.phys.page = scatterwalk_page(&walk->out);
 | |
| 	walk->dst.phys.offset = offset_in_page(walk->out.offset);
 | |
| 
 | |
| 	if (walk->flags & SKCIPHER_WALK_PHYS)
 | |
| 		return 0;
 | |
| 
 | |
| 	diff = walk->src.phys.offset - walk->dst.phys.offset;
 | |
| 	diff |= walk->src.virt.page - walk->dst.virt.page;
 | |
| 
 | |
| 	skcipher_map_src(walk);
 | |
| 	walk->dst.virt.addr = walk->src.virt.addr;
 | |
| 
 | |
| 	if (diff) {
 | |
| 		walk->flags |= SKCIPHER_WALK_DIFF;
 | |
| 		skcipher_map_dst(walk);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skcipher_walk_next(struct skcipher_walk *walk)
 | |
| {
 | |
| 	unsigned int bsize;
 | |
| 	unsigned int n;
 | |
| 	int err;
 | |
| 
 | |
| 	walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
 | |
| 			 SKCIPHER_WALK_DIFF);
 | |
| 
 | |
| 	n = walk->total;
 | |
| 	bsize = min(walk->stride, max(n, walk->blocksize));
 | |
| 	n = scatterwalk_clamp(&walk->in, n);
 | |
| 	n = scatterwalk_clamp(&walk->out, n);
 | |
| 
 | |
| 	if (unlikely(n < bsize)) {
 | |
| 		if (unlikely(walk->total < walk->blocksize))
 | |
| 			return skcipher_walk_done(walk, -EINVAL);
 | |
| 
 | |
| slow_path:
 | |
| 		err = skcipher_next_slow(walk, bsize);
 | |
| 		goto set_phys_lowmem;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
 | |
| 		if (!walk->page) {
 | |
| 			gfp_t gfp = skcipher_walk_gfp(walk);
 | |
| 
 | |
| 			walk->page = (void *)__get_free_page(gfp);
 | |
| 			if (!walk->page)
 | |
| 				goto slow_path;
 | |
| 		}
 | |
| 
 | |
| 		walk->nbytes = min_t(unsigned, n,
 | |
| 				     PAGE_SIZE - offset_in_page(walk->page));
 | |
| 		walk->flags |= SKCIPHER_WALK_COPY;
 | |
| 		err = skcipher_next_copy(walk);
 | |
| 		goto set_phys_lowmem;
 | |
| 	}
 | |
| 
 | |
| 	walk->nbytes = n;
 | |
| 
 | |
| 	return skcipher_next_fast(walk);
 | |
| 
 | |
| set_phys_lowmem:
 | |
| 	if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
 | |
| 		walk->src.phys.page = virt_to_page(walk->src.virt.addr);
 | |
| 		walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
 | |
| 		walk->src.phys.offset &= PAGE_SIZE - 1;
 | |
| 		walk->dst.phys.offset &= PAGE_SIZE - 1;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int skcipher_copy_iv(struct skcipher_walk *walk)
 | |
| {
 | |
| 	unsigned a = crypto_tfm_ctx_alignment() - 1;
 | |
| 	unsigned alignmask = walk->alignmask;
 | |
| 	unsigned ivsize = walk->ivsize;
 | |
| 	unsigned bs = walk->stride;
 | |
| 	unsigned aligned_bs;
 | |
| 	unsigned size;
 | |
| 	u8 *iv;
 | |
| 
 | |
| 	aligned_bs = ALIGN(bs, alignmask + 1);
 | |
| 
 | |
| 	/* Minimum size to align buffer by alignmask. */
 | |
| 	size = alignmask & ~a;
 | |
| 
 | |
| 	if (walk->flags & SKCIPHER_WALK_PHYS)
 | |
| 		size += ivsize;
 | |
| 	else {
 | |
| 		size += aligned_bs + ivsize;
 | |
| 
 | |
| 		/* Minimum size to ensure buffer does not straddle a page. */
 | |
| 		size += (bs - 1) & ~(alignmask | a);
 | |
| 	}
 | |
| 
 | |
| 	walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
 | |
| 	if (!walk->buffer)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	iv = PTR_ALIGN(walk->buffer, alignmask + 1);
 | |
| 	iv = skcipher_get_spot(iv, bs) + aligned_bs;
 | |
| 
 | |
| 	walk->iv = memcpy(iv, walk->iv, walk->ivsize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int skcipher_walk_first(struct skcipher_walk *walk)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(in_hardirq()))
 | |
| 		return -EDEADLK;
 | |
| 
 | |
| 	walk->buffer = NULL;
 | |
| 	if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
 | |
| 		int err = skcipher_copy_iv(walk);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	walk->page = NULL;
 | |
| 
 | |
| 	return skcipher_walk_next(walk);
 | |
| }
 | |
| 
 | |
| static int skcipher_walk_skcipher(struct skcipher_walk *walk,
 | |
| 				  struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 
 | |
| 	walk->total = req->cryptlen;
 | |
| 	walk->nbytes = 0;
 | |
| 	walk->iv = req->iv;
 | |
| 	walk->oiv = req->iv;
 | |
| 
 | |
| 	if (unlikely(!walk->total))
 | |
| 		return 0;
 | |
| 
 | |
| 	scatterwalk_start(&walk->in, req->src);
 | |
| 	scatterwalk_start(&walk->out, req->dst);
 | |
| 
 | |
| 	walk->flags &= ~SKCIPHER_WALK_SLEEP;
 | |
| 	walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
 | |
| 		       SKCIPHER_WALK_SLEEP : 0;
 | |
| 
 | |
| 	walk->blocksize = crypto_skcipher_blocksize(tfm);
 | |
| 	walk->stride = crypto_skcipher_walksize(tfm);
 | |
| 	walk->ivsize = crypto_skcipher_ivsize(tfm);
 | |
| 	walk->alignmask = crypto_skcipher_alignmask(tfm);
 | |
| 
 | |
| 	return skcipher_walk_first(walk);
 | |
| }
 | |
| 
 | |
| int skcipher_walk_virt(struct skcipher_walk *walk,
 | |
| 		       struct skcipher_request *req, bool atomic)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
 | |
| 
 | |
| 	walk->flags &= ~SKCIPHER_WALK_PHYS;
 | |
| 
 | |
| 	err = skcipher_walk_skcipher(walk, req);
 | |
| 
 | |
| 	walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_virt);
 | |
| 
 | |
| int skcipher_walk_async(struct skcipher_walk *walk,
 | |
| 			struct skcipher_request *req)
 | |
| {
 | |
| 	walk->flags |= SKCIPHER_WALK_PHYS;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&walk->buffers);
 | |
| 
 | |
| 	return skcipher_walk_skcipher(walk, req);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_async);
 | |
| 
 | |
| static int skcipher_walk_aead_common(struct skcipher_walk *walk,
 | |
| 				     struct aead_request *req, bool atomic)
 | |
| {
 | |
| 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 | |
| 	int err;
 | |
| 
 | |
| 	walk->nbytes = 0;
 | |
| 	walk->iv = req->iv;
 | |
| 	walk->oiv = req->iv;
 | |
| 
 | |
| 	if (unlikely(!walk->total))
 | |
| 		return 0;
 | |
| 
 | |
| 	walk->flags &= ~SKCIPHER_WALK_PHYS;
 | |
| 
 | |
| 	scatterwalk_start(&walk->in, req->src);
 | |
| 	scatterwalk_start(&walk->out, req->dst);
 | |
| 
 | |
| 	scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
 | |
| 	scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
 | |
| 
 | |
| 	scatterwalk_done(&walk->in, 0, walk->total);
 | |
| 	scatterwalk_done(&walk->out, 0, walk->total);
 | |
| 
 | |
| 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
 | |
| 		walk->flags |= SKCIPHER_WALK_SLEEP;
 | |
| 	else
 | |
| 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
 | |
| 
 | |
| 	walk->blocksize = crypto_aead_blocksize(tfm);
 | |
| 	walk->stride = crypto_aead_chunksize(tfm);
 | |
| 	walk->ivsize = crypto_aead_ivsize(tfm);
 | |
| 	walk->alignmask = crypto_aead_alignmask(tfm);
 | |
| 
 | |
| 	err = skcipher_walk_first(walk);
 | |
| 
 | |
| 	if (atomic)
 | |
| 		walk->flags &= ~SKCIPHER_WALK_SLEEP;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
 | |
| 			       struct aead_request *req, bool atomic)
 | |
| {
 | |
| 	walk->total = req->cryptlen;
 | |
| 
 | |
| 	return skcipher_walk_aead_common(walk, req, atomic);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
 | |
| 
 | |
| int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
 | |
| 			       struct aead_request *req, bool atomic)
 | |
| {
 | |
| 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 | |
| 
 | |
| 	walk->total = req->cryptlen - crypto_aead_authsize(tfm);
 | |
| 
 | |
| 	return skcipher_walk_aead_common(walk, req, atomic);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
 | |
| 
 | |
| static void skcipher_set_needkey(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	if (crypto_skcipher_max_keysize(tfm) != 0)
 | |
| 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
 | |
| }
 | |
| 
 | |
| static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
 | |
| 				     const u8 *key, unsigned int keylen)
 | |
| {
 | |
| 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
 | |
| 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
 | |
| 	u8 *buffer, *alignbuffer;
 | |
| 	unsigned long absize;
 | |
| 	int ret;
 | |
| 
 | |
| 	absize = keylen + alignmask;
 | |
| 	buffer = kmalloc(absize, GFP_ATOMIC);
 | |
| 	if (!buffer)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
 | |
| 	memcpy(alignbuffer, key, keylen);
 | |
| 	ret = cipher->setkey(tfm, alignbuffer, keylen);
 | |
| 	kfree_sensitive(buffer);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 			   unsigned int keylen)
 | |
| {
 | |
| 	struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
 | |
| 	unsigned long alignmask = crypto_skcipher_alignmask(tfm);
 | |
| 	int err;
 | |
| 
 | |
| 	if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((unsigned long)key & alignmask)
 | |
| 		err = skcipher_setkey_unaligned(tfm, key, keylen);
 | |
| 	else
 | |
| 		err = cipher->setkey(tfm, key, keylen);
 | |
| 
 | |
| 	if (unlikely(err)) {
 | |
| 		skcipher_set_needkey(tfm);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
 | |
| 
 | |
| int crypto_skcipher_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_alg *alg = tfm->base.__crt_alg;
 | |
| 	unsigned int cryptlen = req->cryptlen;
 | |
| 	int ret;
 | |
| 
 | |
| 	crypto_stats_get(alg);
 | |
| 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 | |
| 		ret = -ENOKEY;
 | |
| 	else
 | |
| 		ret = crypto_skcipher_alg(tfm)->encrypt(req);
 | |
| 	crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
 | |
| 
 | |
| int crypto_skcipher_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	struct crypto_alg *alg = tfm->base.__crt_alg;
 | |
| 	unsigned int cryptlen = req->cryptlen;
 | |
| 	int ret;
 | |
| 
 | |
| 	crypto_stats_get(alg);
 | |
| 	if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 | |
| 		ret = -ENOKEY;
 | |
| 	else
 | |
| 		ret = crypto_skcipher_alg(tfm)->decrypt(req);
 | |
| 	crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
 | |
| 
 | |
| static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 | |
| 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
 | |
| 
 | |
| 	alg->exit(skcipher);
 | |
| }
 | |
| 
 | |
| static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
 | |
| 	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
 | |
| 
 | |
| 	skcipher_set_needkey(skcipher);
 | |
| 
 | |
| 	if (alg->exit)
 | |
| 		skcipher->base.exit = crypto_skcipher_exit_tfm;
 | |
| 
 | |
| 	if (alg->init)
 | |
| 		return alg->init(skcipher);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void crypto_skcipher_free_instance(struct crypto_instance *inst)
 | |
| {
 | |
| 	struct skcipher_instance *skcipher =
 | |
| 		container_of(inst, struct skcipher_instance, s.base);
 | |
| 
 | |
| 	skcipher->free(skcipher);
 | |
| }
 | |
| 
 | |
| static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
 | |
| 	__maybe_unused;
 | |
| static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
 | |
| {
 | |
| 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
 | |
| 						     base);
 | |
| 
 | |
| 	seq_printf(m, "type         : skcipher\n");
 | |
| 	seq_printf(m, "async        : %s\n",
 | |
| 		   alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
 | |
| 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
 | |
| 	seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
 | |
| 	seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
 | |
| 	seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
 | |
| 	seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
 | |
| 	seq_printf(m, "walksize     : %u\n", skcipher->walksize);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NET
 | |
| static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
 | |
| {
 | |
| 	struct crypto_report_blkcipher rblkcipher;
 | |
| 	struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
 | |
| 						     base);
 | |
| 
 | |
| 	memset(&rblkcipher, 0, sizeof(rblkcipher));
 | |
| 
 | |
| 	strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
 | |
| 	strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
 | |
| 
 | |
| 	rblkcipher.blocksize = alg->cra_blocksize;
 | |
| 	rblkcipher.min_keysize = skcipher->min_keysize;
 | |
| 	rblkcipher.max_keysize = skcipher->max_keysize;
 | |
| 	rblkcipher.ivsize = skcipher->ivsize;
 | |
| 
 | |
| 	return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
 | |
| 		       sizeof(rblkcipher), &rblkcipher);
 | |
| }
 | |
| #else
 | |
| static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct crypto_type crypto_skcipher_type = {
 | |
| 	.extsize = crypto_alg_extsize,
 | |
| 	.init_tfm = crypto_skcipher_init_tfm,
 | |
| 	.free = crypto_skcipher_free_instance,
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 	.show = crypto_skcipher_show,
 | |
| #endif
 | |
| 	.report = crypto_skcipher_report,
 | |
| 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
 | |
| 	.maskset = CRYPTO_ALG_TYPE_MASK,
 | |
| 	.type = CRYPTO_ALG_TYPE_SKCIPHER,
 | |
| 	.tfmsize = offsetof(struct crypto_skcipher, base),
 | |
| };
 | |
| 
 | |
| int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
 | |
| 			 struct crypto_instance *inst,
 | |
| 			 const char *name, u32 type, u32 mask)
 | |
| {
 | |
| 	spawn->base.frontend = &crypto_skcipher_type;
 | |
| 	return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
 | |
| 
 | |
| struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 | |
| 					      u32 type, u32 mask)
 | |
| {
 | |
| 	return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
 | |
| 
 | |
| struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
 | |
| 				const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	struct crypto_skcipher *tfm;
 | |
| 
 | |
| 	/* Only sync algorithms allowed. */
 | |
| 	mask |= CRYPTO_ALG_ASYNC;
 | |
| 
 | |
| 	tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we do not allocate something that might get used with
 | |
| 	 * an on-stack request: check the request size.
 | |
| 	 */
 | |
| 	if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
 | |
| 				    MAX_SYNC_SKCIPHER_REQSIZE)) {
 | |
| 		crypto_free_skcipher(tfm);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	return (struct crypto_sync_skcipher *)tfm;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
 | |
| 
 | |
| int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
 | |
| {
 | |
| 	return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_has_skcipher);
 | |
| 
 | |
| static int skcipher_prepare_alg(struct skcipher_alg *alg)
 | |
| {
 | |
| 	struct crypto_alg *base = &alg->base;
 | |
| 
 | |
| 	if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
 | |
| 	    alg->walksize > PAGE_SIZE / 8)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!alg->chunksize)
 | |
| 		alg->chunksize = base->cra_blocksize;
 | |
| 	if (!alg->walksize)
 | |
| 		alg->walksize = alg->chunksize;
 | |
| 
 | |
| 	base->cra_type = &crypto_skcipher_type;
 | |
| 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
 | |
| 	base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int crypto_register_skcipher(struct skcipher_alg *alg)
 | |
| {
 | |
| 	struct crypto_alg *base = &alg->base;
 | |
| 	int err;
 | |
| 
 | |
| 	err = skcipher_prepare_alg(alg);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return crypto_register_alg(base);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_register_skcipher);
 | |
| 
 | |
| void crypto_unregister_skcipher(struct skcipher_alg *alg)
 | |
| {
 | |
| 	crypto_unregister_alg(&alg->base);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
 | |
| 
 | |
| int crypto_register_skciphers(struct skcipher_alg *algs, int count)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		ret = crypto_register_skcipher(&algs[i]);
 | |
| 		if (ret)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	for (--i; i >= 0; --i)
 | |
| 		crypto_unregister_skcipher(&algs[i]);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_register_skciphers);
 | |
| 
 | |
| void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = count - 1; i >= 0; --i)
 | |
| 		crypto_unregister_skcipher(&algs[i]);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
 | |
| 
 | |
| int skcipher_register_instance(struct crypto_template *tmpl,
 | |
| 			   struct skcipher_instance *inst)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON(!inst->free))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = skcipher_prepare_alg(&inst->alg);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_register_instance);
 | |
| 
 | |
| static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
 | |
| 				  unsigned int keylen)
 | |
| {
 | |
| 	struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
 | |
| 
 | |
| 	crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
 | |
| 	crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
 | |
| 				CRYPTO_TFM_REQ_MASK);
 | |
| 	return crypto_cipher_setkey(cipher, key, keylen);
 | |
| }
 | |
| 
 | |
| static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 | |
| 	struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
 | |
| 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct crypto_cipher *cipher;
 | |
| 
 | |
| 	cipher = crypto_spawn_cipher(spawn);
 | |
| 	if (IS_ERR(cipher))
 | |
| 		return PTR_ERR(cipher);
 | |
| 
 | |
| 	ctx->cipher = cipher;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	crypto_free_cipher(ctx->cipher);
 | |
| }
 | |
| 
 | |
| static void skcipher_free_instance_simple(struct skcipher_instance *inst)
 | |
| {
 | |
| 	crypto_drop_cipher(skcipher_instance_ctx(inst));
 | |
| 	kfree(inst);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
 | |
|  *
 | |
|  * Allocate an skcipher_instance for a simple block cipher mode of operation,
 | |
|  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
 | |
|  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
 | |
|  * alignmask, and priority are set from the underlying cipher but can be
 | |
|  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
 | |
|  * default ->setkey(), ->init(), and ->exit() methods are installed.
 | |
|  *
 | |
|  * @tmpl: the template being instantiated
 | |
|  * @tb: the template parameters
 | |
|  *
 | |
|  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
 | |
|  *	   needs to register the instance.
 | |
|  */
 | |
| struct skcipher_instance *skcipher_alloc_instance_simple(
 | |
| 	struct crypto_template *tmpl, struct rtattr **tb)
 | |
| {
 | |
| 	u32 mask;
 | |
| 	struct skcipher_instance *inst;
 | |
| 	struct crypto_cipher_spawn *spawn;
 | |
| 	struct crypto_alg *cipher_alg;
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 | |
| 	if (!inst)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	spawn = skcipher_instance_ctx(inst);
 | |
| 
 | |
| 	err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
 | |
| 				 crypto_attr_alg_name(tb[1]), 0, mask);
 | |
| 	if (err)
 | |
| 		goto err_free_inst;
 | |
| 	cipher_alg = crypto_spawn_cipher_alg(spawn);
 | |
| 
 | |
| 	err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
 | |
| 				  cipher_alg);
 | |
| 	if (err)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	inst->free = skcipher_free_instance_simple;
 | |
| 
 | |
| 	/* Default algorithm properties, can be overridden */
 | |
| 	inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
 | |
| 	inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
 | |
| 	inst->alg.base.cra_priority = cipher_alg->cra_priority;
 | |
| 	inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
 | |
| 	inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
 | |
| 	inst->alg.ivsize = cipher_alg->cra_blocksize;
 | |
| 
 | |
| 	/* Use skcipher_ctx_simple by default, can be overridden */
 | |
| 	inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
 | |
| 	inst->alg.setkey = skcipher_setkey_simple;
 | |
| 	inst->alg.init = skcipher_init_tfm_simple;
 | |
| 	inst->alg.exit = skcipher_exit_tfm_simple;
 | |
| 
 | |
| 	return inst;
 | |
| 
 | |
| err_free_inst:
 | |
| 	skcipher_free_instance_simple(inst);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("Symmetric key cipher type");
 | |
| MODULE_IMPORT_NS(CRYPTO_INTERNAL);
 |