mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 aabfb57296
			
		
	
	
		aabfb57296
		
	
	
	
	
		
			
			free_pages_and_swap_cache limits release_pages to PAGEVEC_SIZE chunks.
This is not a big deal for the normal release path but it completely kills
memcg uncharge batching which reduces res_counter spin_lock contention.
Dave has noticed this with his page fault scalability test case on a large
machine when the lock was basically dominating on all CPUs:
    80.18%    80.18%  [kernel]               [k] _raw_spin_lock
                  |
                  --- _raw_spin_lock
                     |
                     |--66.59%-- res_counter_uncharge_until
                     |          res_counter_uncharge
                     |          uncharge_batch
                     |          uncharge_list
                     |          mem_cgroup_uncharge_list
                     |          release_pages
                     |          free_pages_and_swap_cache
                     |          tlb_flush_mmu_free
                     |          |
                     |          |--90.12%-- unmap_single_vma
                     |          |          unmap_vmas
                     |          |          unmap_region
                     |          |          do_munmap
                     |          |          vm_munmap
                     |          |          sys_munmap
                     |          |          system_call_fastpath
                     |          |          __GI___munmap
                     |          |
                     |           --9.88%-- tlb_flush_mmu
                     |                     tlb_finish_mmu
                     |                     unmap_region
                     |                     do_munmap
                     |                     vm_munmap
                     |                     sys_munmap
                     |                     system_call_fastpath
                     |                     __GI___munmap
In his case the load was running in the root memcg and that part has been
handled by reverting 05b8430123 ("mm: memcontrol: use root_mem_cgroup
res_counter") because this is a clear regression, but the problem remains
inside dedicated memcgs.
There is no reason to limit release_pages to PAGEVEC_SIZE batches other
than lru_lock held times.  This logic, however, can be moved inside the
function.  mem_cgroup_uncharge_list and free_hot_cold_page_list do not
hold any lock for the whole pages_to_free list so it is safe to call them
in a single run.
The release_pages() code was previously breaking the lru_lock each
PAGEVEC_SIZE pages (ie, 14 pages).  However this code has no usage of
pagevecs so switch to breaking the lock at least every SWAP_CLUSTER_MAX
(32) pages.  This means that the lock acquisition frequency is
approximately halved and the max hold times are approximately doubled.
The now unneeded batching is removed from free_pages_and_swap_cache().
Also update the grossly out-of-date release_pages documentation.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dave Hansen <dave@sr71.net>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1158 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1158 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/swap.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file contains the default values for the operation of the
 | |
|  * Linux VM subsystem. Fine-tuning documentation can be found in
 | |
|  * Documentation/sysctl/vm.txt.
 | |
|  * Started 18.12.91
 | |
|  * Swap aging added 23.2.95, Stephen Tweedie.
 | |
|  * Buffermem limits added 12.3.98, Rik van Riel.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/percpu_counter.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/pagemap.h>
 | |
| 
 | |
| /* How many pages do we try to swap or page in/out together? */
 | |
| int page_cluster;
 | |
| 
 | |
| static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
 | |
| static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
 | |
| static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
 | |
| 
 | |
| /*
 | |
|  * This path almost never happens for VM activity - pages are normally
 | |
|  * freed via pagevecs.  But it gets used by networking.
 | |
|  */
 | |
| static void __page_cache_release(struct page *page)
 | |
| {
 | |
| 	if (PageLRU(page)) {
 | |
| 		struct zone *zone = page_zone(page);
 | |
| 		struct lruvec *lruvec;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 		VM_BUG_ON_PAGE(!PageLRU(page), page);
 | |
| 		__ClearPageLRU(page);
 | |
| 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	}
 | |
| 	mem_cgroup_uncharge(page);
 | |
| }
 | |
| 
 | |
| static void __put_single_page(struct page *page)
 | |
| {
 | |
| 	__page_cache_release(page);
 | |
| 	free_hot_cold_page(page, false);
 | |
| }
 | |
| 
 | |
| static void __put_compound_page(struct page *page)
 | |
| {
 | |
| 	compound_page_dtor *dtor;
 | |
| 
 | |
| 	__page_cache_release(page);
 | |
| 	dtor = get_compound_page_dtor(page);
 | |
| 	(*dtor)(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Two special cases here: we could avoid taking compound_lock_irqsave
 | |
|  * and could skip the tail refcounting(in _mapcount).
 | |
|  *
 | |
|  * 1. Hugetlbfs page:
 | |
|  *
 | |
|  *    PageHeadHuge will remain true until the compound page
 | |
|  *    is released and enters the buddy allocator, and it could
 | |
|  *    not be split by __split_huge_page_refcount().
 | |
|  *
 | |
|  *    So if we see PageHeadHuge set, and we have the tail page pin,
 | |
|  *    then we could safely put head page.
 | |
|  *
 | |
|  * 2. Slab THP page:
 | |
|  *
 | |
|  *    PG_slab is cleared before the slab frees the head page, and
 | |
|  *    tail pin cannot be the last reference left on the head page,
 | |
|  *    because the slab code is free to reuse the compound page
 | |
|  *    after a kfree/kmem_cache_free without having to check if
 | |
|  *    there's any tail pin left.  In turn all tail pinsmust be always
 | |
|  *    released while the head is still pinned by the slab code
 | |
|  *    and so we know PG_slab will be still set too.
 | |
|  *
 | |
|  *    So if we see PageSlab set, and we have the tail page pin,
 | |
|  *    then we could safely put head page.
 | |
|  */
 | |
| static __always_inline
 | |
| void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * If @page is a THP tail, we must read the tail page
 | |
| 	 * flags after the head page flags. The
 | |
| 	 * __split_huge_page_refcount side enforces write memory barriers
 | |
| 	 * between clearing PageTail and before the head page
 | |
| 	 * can be freed and reallocated.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (likely(PageTail(page))) {
 | |
| 		/*
 | |
| 		 * __split_huge_page_refcount cannot race
 | |
| 		 * here, see the comment above this function.
 | |
| 		 */
 | |
| 		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 | |
| 		VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
 | |
| 		if (put_page_testzero(page_head)) {
 | |
| 			/*
 | |
| 			 * If this is the tail of a slab THP page,
 | |
| 			 * the tail pin must not be the last reference
 | |
| 			 * held on the page, because the PG_slab cannot
 | |
| 			 * be cleared before all tail pins (which skips
 | |
| 			 * the _mapcount tail refcounting) have been
 | |
| 			 * released.
 | |
| 			 *
 | |
| 			 * If this is the tail of a hugetlbfs page,
 | |
| 			 * the tail pin may be the last reference on
 | |
| 			 * the page instead, because PageHeadHuge will
 | |
| 			 * not go away until the compound page enters
 | |
| 			 * the buddy allocator.
 | |
| 			 */
 | |
| 			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
 | |
| 			__put_compound_page(page_head);
 | |
| 		}
 | |
| 	} else
 | |
| 		/*
 | |
| 		 * __split_huge_page_refcount run before us,
 | |
| 		 * @page was a THP tail. The split @page_head
 | |
| 		 * has been freed and reallocated as slab or
 | |
| 		 * hugetlbfs page of smaller order (only
 | |
| 		 * possible if reallocated as slab on x86).
 | |
| 		 */
 | |
| 		if (put_page_testzero(page))
 | |
| 			__put_single_page(page);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void put_refcounted_compound_page(struct page *page_head, struct page *page)
 | |
| {
 | |
| 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/*
 | |
| 		 * @page_head wasn't a dangling pointer but it may not
 | |
| 		 * be a head page anymore by the time we obtain the
 | |
| 		 * lock. That is ok as long as it can't be freed from
 | |
| 		 * under us.
 | |
| 		 */
 | |
| 		flags = compound_lock_irqsave(page_head);
 | |
| 		if (unlikely(!PageTail(page))) {
 | |
| 			/* __split_huge_page_refcount run before us */
 | |
| 			compound_unlock_irqrestore(page_head, flags);
 | |
| 			if (put_page_testzero(page_head)) {
 | |
| 				/*
 | |
| 				 * The @page_head may have been freed
 | |
| 				 * and reallocated as a compound page
 | |
| 				 * of smaller order and then freed
 | |
| 				 * again.  All we know is that it
 | |
| 				 * cannot have become: a THP page, a
 | |
| 				 * compound page of higher order, a
 | |
| 				 * tail page.  That is because we
 | |
| 				 * still hold the refcount of the
 | |
| 				 * split THP tail and page_head was
 | |
| 				 * the THP head before the split.
 | |
| 				 */
 | |
| 				if (PageHead(page_head))
 | |
| 					__put_compound_page(page_head);
 | |
| 				else
 | |
| 					__put_single_page(page_head);
 | |
| 			}
 | |
| out_put_single:
 | |
| 			if (put_page_testzero(page))
 | |
| 				__put_single_page(page);
 | |
| 			return;
 | |
| 		}
 | |
| 		VM_BUG_ON_PAGE(page_head != page->first_page, page);
 | |
| 		/*
 | |
| 		 * We can release the refcount taken by
 | |
| 		 * get_page_unless_zero() now that
 | |
| 		 * __split_huge_page_refcount() is blocked on the
 | |
| 		 * compound_lock.
 | |
| 		 */
 | |
| 		if (put_page_testzero(page_head))
 | |
| 			VM_BUG_ON_PAGE(1, page_head);
 | |
| 		/* __split_huge_page_refcount will wait now */
 | |
| 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
 | |
| 		atomic_dec(&page->_mapcount);
 | |
| 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
 | |
| 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
 | |
| 		compound_unlock_irqrestore(page_head, flags);
 | |
| 
 | |
| 		if (put_page_testzero(page_head)) {
 | |
| 			if (PageHead(page_head))
 | |
| 				__put_compound_page(page_head);
 | |
| 			else
 | |
| 				__put_single_page(page_head);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* @page_head is a dangling pointer */
 | |
| 		VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 		goto out_put_single;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void put_compound_page(struct page *page)
 | |
| {
 | |
| 	struct page *page_head;
 | |
| 
 | |
| 	/*
 | |
| 	 * We see the PageCompound set and PageTail not set, so @page maybe:
 | |
| 	 *  1. hugetlbfs head page, or
 | |
| 	 *  2. THP head page.
 | |
| 	 */
 | |
| 	if (likely(!PageTail(page))) {
 | |
| 		if (put_page_testzero(page)) {
 | |
| 			/*
 | |
| 			 * By the time all refcounts have been released
 | |
| 			 * split_huge_page cannot run anymore from under us.
 | |
| 			 */
 | |
| 			if (PageHead(page))
 | |
| 				__put_compound_page(page);
 | |
| 			else
 | |
| 				__put_single_page(page);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We see the PageCompound set and PageTail set, so @page maybe:
 | |
| 	 *  1. a tail hugetlbfs page, or
 | |
| 	 *  2. a tail THP page, or
 | |
| 	 *  3. a split THP page.
 | |
| 	 *
 | |
| 	 *  Case 3 is possible, as we may race with
 | |
| 	 *  __split_huge_page_refcount tearing down a THP page.
 | |
| 	 */
 | |
| 	page_head = compound_head_by_tail(page);
 | |
| 	if (!__compound_tail_refcounted(page_head))
 | |
| 		put_unrefcounted_compound_page(page_head, page);
 | |
| 	else
 | |
| 		put_refcounted_compound_page(page_head, page);
 | |
| }
 | |
| 
 | |
| void put_page(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		put_compound_page(page);
 | |
| 	else if (put_page_testzero(page))
 | |
| 		__put_single_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(put_page);
 | |
| 
 | |
| /*
 | |
|  * This function is exported but must not be called by anything other
 | |
|  * than get_page(). It implements the slow path of get_page().
 | |
|  */
 | |
| bool __get_page_tail(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * This takes care of get_page() if run on a tail page
 | |
| 	 * returned by one of the get_user_pages/follow_page variants.
 | |
| 	 * get_user_pages/follow_page itself doesn't need the compound
 | |
| 	 * lock because it runs __get_page_tail_foll() under the
 | |
| 	 * proper PT lock that already serializes against
 | |
| 	 * split_huge_page().
 | |
| 	 */
 | |
| 	unsigned long flags;
 | |
| 	bool got;
 | |
| 	struct page *page_head = compound_head(page);
 | |
| 
 | |
| 	/* Ref to put_compound_page() comment. */
 | |
| 	if (!__compound_tail_refcounted(page_head)) {
 | |
| 		smp_rmb();
 | |
| 		if (likely(PageTail(page))) {
 | |
| 			/*
 | |
| 			 * This is a hugetlbfs page or a slab
 | |
| 			 * page. __split_huge_page_refcount
 | |
| 			 * cannot race here.
 | |
| 			 */
 | |
| 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
 | |
| 			__get_page_tail_foll(page, true);
 | |
| 			return true;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * __split_huge_page_refcount run
 | |
| 			 * before us, "page" was a THP
 | |
| 			 * tail. The split page_head has been
 | |
| 			 * freed and reallocated as slab or
 | |
| 			 * hugetlbfs page of smaller order
 | |
| 			 * (only possible if reallocated as
 | |
| 			 * slab on x86).
 | |
| 			 */
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	got = false;
 | |
| 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
 | |
| 		/*
 | |
| 		 * page_head wasn't a dangling pointer but it
 | |
| 		 * may not be a head page anymore by the time
 | |
| 		 * we obtain the lock. That is ok as long as it
 | |
| 		 * can't be freed from under us.
 | |
| 		 */
 | |
| 		flags = compound_lock_irqsave(page_head);
 | |
| 		/* here __split_huge_page_refcount won't run anymore */
 | |
| 		if (likely(PageTail(page))) {
 | |
| 			__get_page_tail_foll(page, false);
 | |
| 			got = true;
 | |
| 		}
 | |
| 		compound_unlock_irqrestore(page_head, flags);
 | |
| 		if (unlikely(!got))
 | |
| 			put_page(page_head);
 | |
| 	}
 | |
| 	return got;
 | |
| }
 | |
| EXPORT_SYMBOL(__get_page_tail);
 | |
| 
 | |
| /**
 | |
|  * put_pages_list() - release a list of pages
 | |
|  * @pages: list of pages threaded on page->lru
 | |
|  *
 | |
|  * Release a list of pages which are strung together on page.lru.  Currently
 | |
|  * used by read_cache_pages() and related error recovery code.
 | |
|  */
 | |
| void put_pages_list(struct list_head *pages)
 | |
| {
 | |
| 	while (!list_empty(pages)) {
 | |
| 		struct page *victim;
 | |
| 
 | |
| 		victim = list_entry(pages->prev, struct page, lru);
 | |
| 		list_del(&victim->lru);
 | |
| 		page_cache_release(victim);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(put_pages_list);
 | |
| 
 | |
| /*
 | |
|  * get_kernel_pages() - pin kernel pages in memory
 | |
|  * @kiov:	An array of struct kvec structures
 | |
|  * @nr_segs:	number of segments to pin
 | |
|  * @write:	pinning for read/write, currently ignored
 | |
|  * @pages:	array that receives pointers to the pages pinned.
 | |
|  *		Should be at least nr_segs long.
 | |
|  *
 | |
|  * Returns number of pages pinned. This may be fewer than the number
 | |
|  * requested. If nr_pages is 0 or negative, returns 0. If no pages
 | |
|  * were pinned, returns -errno. Each page returned must be released
 | |
|  * with a put_page() call when it is finished with.
 | |
|  */
 | |
| int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 | |
| 		struct page **pages)
 | |
| {
 | |
| 	int seg;
 | |
| 
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 | |
| 			return seg;
 | |
| 
 | |
| 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 | |
| 		page_cache_get(pages[seg]);
 | |
| 	}
 | |
| 
 | |
| 	return seg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_kernel_pages);
 | |
| 
 | |
| /*
 | |
|  * get_kernel_page() - pin a kernel page in memory
 | |
|  * @start:	starting kernel address
 | |
|  * @write:	pinning for read/write, currently ignored
 | |
|  * @pages:	array that receives pointer to the page pinned.
 | |
|  *		Must be at least nr_segs long.
 | |
|  *
 | |
|  * Returns 1 if page is pinned. If the page was not pinned, returns
 | |
|  * -errno. The page returned must be released with a put_page() call
 | |
|  * when it is finished with.
 | |
|  */
 | |
| int get_kernel_page(unsigned long start, int write, struct page **pages)
 | |
| {
 | |
| 	const struct kvec kiov = {
 | |
| 		.iov_base = (void *)start,
 | |
| 		.iov_len = PAGE_SIZE
 | |
| 	};
 | |
| 
 | |
| 	return get_kernel_pages(&kiov, 1, write, pages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_kernel_page);
 | |
| 
 | |
| static void pagevec_lru_move_fn(struct pagevec *pvec,
 | |
| 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
 | |
| 	void *arg)
 | |
| {
 | |
| 	int i;
 | |
| 	struct zone *zone = NULL;
 | |
| 	struct lruvec *lruvec;
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	for (i = 0; i < pagevec_count(pvec); i++) {
 | |
| 		struct page *page = pvec->pages[i];
 | |
| 		struct zone *pagezone = page_zone(page);
 | |
| 
 | |
| 		if (pagezone != zone) {
 | |
| 			if (zone)
 | |
| 				spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			zone = pagezone;
 | |
| 			spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 		}
 | |
| 
 | |
| 		lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 		(*move_fn)(page, lruvec, arg);
 | |
| 	}
 | |
| 	if (zone)
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 	release_pages(pvec->pages, pvec->nr, pvec->cold);
 | |
| 	pagevec_reinit(pvec);
 | |
| }
 | |
| 
 | |
| static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
 | |
| 				 void *arg)
 | |
| {
 | |
| 	int *pgmoved = arg;
 | |
| 
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		enum lru_list lru = page_lru_base_type(page);
 | |
| 		list_move_tail(&page->lru, &lruvec->lists[lru]);
 | |
| 		(*pgmoved)++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * pagevec_move_tail() must be called with IRQ disabled.
 | |
|  * Otherwise this may cause nasty races.
 | |
|  */
 | |
| static void pagevec_move_tail(struct pagevec *pvec)
 | |
| {
 | |
| 	int pgmoved = 0;
 | |
| 
 | |
| 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
 | |
| 	__count_vm_events(PGROTATED, pgmoved);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writeback is about to end against a page which has been marked for immediate
 | |
|  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 | |
|  * inactive list.
 | |
|  */
 | |
| void rotate_reclaimable_page(struct page *page)
 | |
| {
 | |
| 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
 | |
| 	    !PageUnevictable(page) && PageLRU(page)) {
 | |
| 		struct pagevec *pvec;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		page_cache_get(page);
 | |
| 		local_irq_save(flags);
 | |
| 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_move_tail(pvec);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_page_reclaim_stat(struct lruvec *lruvec,
 | |
| 				     int file, int rotated)
 | |
| {
 | |
| 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
 | |
| 
 | |
| 	reclaim_stat->recent_scanned[file]++;
 | |
| 	if (rotated)
 | |
| 		reclaim_stat->recent_rotated[file]++;
 | |
| }
 | |
| 
 | |
| static void __activate_page(struct page *page, struct lruvec *lruvec,
 | |
| 			    void *arg)
 | |
| {
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		int file = page_is_file_cache(page);
 | |
| 		int lru = page_lru_base_type(page);
 | |
| 
 | |
| 		del_page_from_lru_list(page, lruvec, lru);
 | |
| 		SetPageActive(page);
 | |
| 		lru += LRU_ACTIVE;
 | |
| 		add_page_to_lru_list(page, lruvec, lru);
 | |
| 		trace_mm_lru_activate(page);
 | |
| 
 | |
| 		__count_vm_event(PGACTIVATE);
 | |
| 		update_page_reclaim_stat(lruvec, file, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
 | |
| 
 | |
| static void activate_page_drain(int cpu)
 | |
| {
 | |
| 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
 | |
| 
 | |
| 	if (pagevec_count(pvec))
 | |
| 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
 | |
| }
 | |
| 
 | |
| static bool need_activate_page_drain(int cpu)
 | |
| {
 | |
| 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
 | |
| }
 | |
| 
 | |
| void activate_page(struct page *page)
 | |
| {
 | |
| 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
 | |
| 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
 | |
| 
 | |
| 		page_cache_get(page);
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
 | |
| 		put_cpu_var(activate_page_pvecs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline void activate_page_drain(int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool need_activate_page_drain(int cpu)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void activate_page(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __lru_cache_activate_page(struct page *page)
 | |
| {
 | |
| 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Search backwards on the optimistic assumption that the page being
 | |
| 	 * activated has just been added to this pagevec. Note that only
 | |
| 	 * the local pagevec is examined as a !PageLRU page could be in the
 | |
| 	 * process of being released, reclaimed, migrated or on a remote
 | |
| 	 * pagevec that is currently being drained. Furthermore, marking
 | |
| 	 * a remote pagevec's page PageActive potentially hits a race where
 | |
| 	 * a page is marked PageActive just after it is added to the inactive
 | |
| 	 * list causing accounting errors and BUG_ON checks to trigger.
 | |
| 	 */
 | |
| 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
 | |
| 		struct page *pagevec_page = pvec->pages[i];
 | |
| 
 | |
| 		if (pagevec_page == page) {
 | |
| 			SetPageActive(page);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	put_cpu_var(lru_add_pvec);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a page as having seen activity.
 | |
|  *
 | |
|  * inactive,unreferenced	->	inactive,referenced
 | |
|  * inactive,referenced		->	active,unreferenced
 | |
|  * active,unreferenced		->	active,referenced
 | |
|  *
 | |
|  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 | |
|  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 | |
|  */
 | |
| void mark_page_accessed(struct page *page)
 | |
| {
 | |
| 	if (!PageActive(page) && !PageUnevictable(page) &&
 | |
| 			PageReferenced(page)) {
 | |
| 
 | |
| 		/*
 | |
| 		 * If the page is on the LRU, queue it for activation via
 | |
| 		 * activate_page_pvecs. Otherwise, assume the page is on a
 | |
| 		 * pagevec, mark it active and it'll be moved to the active
 | |
| 		 * LRU on the next drain.
 | |
| 		 */
 | |
| 		if (PageLRU(page))
 | |
| 			activate_page(page);
 | |
| 		else
 | |
| 			__lru_cache_activate_page(page);
 | |
| 		ClearPageReferenced(page);
 | |
| 		if (page_is_file_cache(page))
 | |
| 			workingset_activation(page);
 | |
| 	} else if (!PageReferenced(page)) {
 | |
| 		SetPageReferenced(page);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(mark_page_accessed);
 | |
| 
 | |
| static void __lru_cache_add(struct page *page)
 | |
| {
 | |
| 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
 | |
| 
 | |
| 	page_cache_get(page);
 | |
| 	if (!pagevec_space(pvec))
 | |
| 		__pagevec_lru_add(pvec);
 | |
| 	pagevec_add(pvec, page);
 | |
| 	put_cpu_var(lru_add_pvec);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lru_cache_add: add a page to the page lists
 | |
|  * @page: the page to add
 | |
|  */
 | |
| void lru_cache_add_anon(struct page *page)
 | |
| {
 | |
| 	if (PageActive(page))
 | |
| 		ClearPageActive(page);
 | |
| 	__lru_cache_add(page);
 | |
| }
 | |
| 
 | |
| void lru_cache_add_file(struct page *page)
 | |
| {
 | |
| 	if (PageActive(page))
 | |
| 		ClearPageActive(page);
 | |
| 	__lru_cache_add(page);
 | |
| }
 | |
| EXPORT_SYMBOL(lru_cache_add_file);
 | |
| 
 | |
| /**
 | |
|  * lru_cache_add - add a page to a page list
 | |
|  * @page: the page to be added to the LRU.
 | |
|  *
 | |
|  * Queue the page for addition to the LRU via pagevec. The decision on whether
 | |
|  * to add the page to the [in]active [file|anon] list is deferred until the
 | |
|  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
 | |
|  * have the page added to the active list using mark_page_accessed().
 | |
|  */
 | |
| void lru_cache_add(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 	__lru_cache_add(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_page_to_unevictable_list - add a page to the unevictable list
 | |
|  * @page:  the page to be added to the unevictable list
 | |
|  *
 | |
|  * Add page directly to its zone's unevictable list.  To avoid races with
 | |
|  * tasks that might be making the page evictable, through eg. munlock,
 | |
|  * munmap or exit, while it's not on the lru, we want to add the page
 | |
|  * while it's locked or otherwise "invisible" to other tasks.  This is
 | |
|  * difficult to do when using the pagevec cache, so bypass that.
 | |
|  */
 | |
| void add_page_to_unevictable_list(struct page *page)
 | |
| {
 | |
| 	struct zone *zone = page_zone(page);
 | |
| 	struct lruvec *lruvec;
 | |
| 
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 	ClearPageActive(page);
 | |
| 	SetPageUnevictable(page);
 | |
| 	SetPageLRU(page);
 | |
| 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * lru_cache_add_active_or_unevictable
 | |
|  * @page:  the page to be added to LRU
 | |
|  * @vma:   vma in which page is mapped for determining reclaimability
 | |
|  *
 | |
|  * Place @page on the active or unevictable LRU list, depending on its
 | |
|  * evictability.  Note that if the page is not evictable, it goes
 | |
|  * directly back onto it's zone's unevictable list, it does NOT use a
 | |
|  * per cpu pagevec.
 | |
|  */
 | |
| void lru_cache_add_active_or_unevictable(struct page *page,
 | |
| 					 struct vm_area_struct *vma)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 
 | |
| 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
 | |
| 		SetPageActive(page);
 | |
| 		lru_cache_add(page);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!TestSetPageMlocked(page)) {
 | |
| 		/*
 | |
| 		 * We use the irq-unsafe __mod_zone_page_stat because this
 | |
| 		 * counter is not modified from interrupt context, and the pte
 | |
| 		 * lock is held(spinlock), which implies preemption disabled.
 | |
| 		 */
 | |
| 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
 | |
| 				    hpage_nr_pages(page));
 | |
| 		count_vm_event(UNEVICTABLE_PGMLOCKED);
 | |
| 	}
 | |
| 	add_page_to_unevictable_list(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the page can not be invalidated, it is moved to the
 | |
|  * inactive list to speed up its reclaim.  It is moved to the
 | |
|  * head of the list, rather than the tail, to give the flusher
 | |
|  * threads some time to write it out, as this is much more
 | |
|  * effective than the single-page writeout from reclaim.
 | |
|  *
 | |
|  * If the page isn't page_mapped and dirty/writeback, the page
 | |
|  * could reclaim asap using PG_reclaim.
 | |
|  *
 | |
|  * 1. active, mapped page -> none
 | |
|  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
 | |
|  * 3. inactive, mapped page -> none
 | |
|  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
 | |
|  * 5. inactive, clean -> inactive, tail
 | |
|  * 6. Others -> none
 | |
|  *
 | |
|  * In 4, why it moves inactive's head, the VM expects the page would
 | |
|  * be write it out by flusher threads as this is much more effective
 | |
|  * than the single-page writeout from reclaim.
 | |
|  */
 | |
| static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
 | |
| 			      void *arg)
 | |
| {
 | |
| 	int lru, file;
 | |
| 	bool active;
 | |
| 
 | |
| 	if (!PageLRU(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (PageUnevictable(page))
 | |
| 		return;
 | |
| 
 | |
| 	/* Some processes are using the page */
 | |
| 	if (page_mapped(page))
 | |
| 		return;
 | |
| 
 | |
| 	active = PageActive(page);
 | |
| 	file = page_is_file_cache(page);
 | |
| 	lru = page_lru_base_type(page);
 | |
| 
 | |
| 	del_page_from_lru_list(page, lruvec, lru + active);
 | |
| 	ClearPageActive(page);
 | |
| 	ClearPageReferenced(page);
 | |
| 	add_page_to_lru_list(page, lruvec, lru);
 | |
| 
 | |
| 	if (PageWriteback(page) || PageDirty(page)) {
 | |
| 		/*
 | |
| 		 * PG_reclaim could be raced with end_page_writeback
 | |
| 		 * It can make readahead confusing.  But race window
 | |
| 		 * is _really_ small and  it's non-critical problem.
 | |
| 		 */
 | |
| 		SetPageReclaim(page);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The page's writeback ends up during pagevec
 | |
| 		 * We moves tha page into tail of inactive.
 | |
| 		 */
 | |
| 		list_move_tail(&page->lru, &lruvec->lists[lru]);
 | |
| 		__count_vm_event(PGROTATED);
 | |
| 	}
 | |
| 
 | |
| 	if (active)
 | |
| 		__count_vm_event(PGDEACTIVATE);
 | |
| 	update_page_reclaim_stat(lruvec, file, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain pages out of the cpu's pagevecs.
 | |
|  * Either "cpu" is the current CPU, and preemption has already been
 | |
|  * disabled; or "cpu" is being hot-unplugged, and is already dead.
 | |
|  */
 | |
| void lru_add_drain_cpu(int cpu)
 | |
| {
 | |
| 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
 | |
| 
 | |
| 	if (pagevec_count(pvec))
 | |
| 		__pagevec_lru_add(pvec);
 | |
| 
 | |
| 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
 | |
| 	if (pagevec_count(pvec)) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* No harm done if a racing interrupt already did this */
 | |
| 		local_irq_save(flags);
 | |
| 		pagevec_move_tail(pvec);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 
 | |
| 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
 | |
| 	if (pagevec_count(pvec))
 | |
| 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 | |
| 
 | |
| 	activate_page_drain(cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * deactivate_page - forcefully deactivate a page
 | |
|  * @page: page to deactivate
 | |
|  *
 | |
|  * This function hints the VM that @page is a good reclaim candidate,
 | |
|  * for example if its invalidation fails due to the page being dirty
 | |
|  * or under writeback.
 | |
|  */
 | |
| void deactivate_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * In a workload with many unevictable page such as mprotect, unevictable
 | |
| 	 * page deactivation for accelerating reclaim is pointless.
 | |
| 	 */
 | |
| 	if (PageUnevictable(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (likely(get_page_unless_zero(page))) {
 | |
| 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
 | |
| 
 | |
| 		if (!pagevec_add(pvec, page))
 | |
| 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
 | |
| 		put_cpu_var(lru_deactivate_pvecs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void lru_add_drain(void)
 | |
| {
 | |
| 	lru_add_drain_cpu(get_cpu());
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static void lru_add_drain_per_cpu(struct work_struct *dummy)
 | |
| {
 | |
| 	lru_add_drain();
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 | |
| 
 | |
| void lru_add_drain_all(void)
 | |
| {
 | |
| 	static DEFINE_MUTEX(lock);
 | |
| 	static struct cpumask has_work;
 | |
| 	int cpu;
 | |
| 
 | |
| 	mutex_lock(&lock);
 | |
| 	get_online_cpus();
 | |
| 	cpumask_clear(&has_work);
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 | |
| 
 | |
| 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
 | |
| 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
 | |
| 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
 | |
| 		    need_activate_page_drain(cpu)) {
 | |
| 			INIT_WORK(work, lru_add_drain_per_cpu);
 | |
| 			schedule_work_on(cpu, work);
 | |
| 			cpumask_set_cpu(cpu, &has_work);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(cpu, &has_work)
 | |
| 		flush_work(&per_cpu(lru_add_drain_work, cpu));
 | |
| 
 | |
| 	put_online_cpus();
 | |
| 	mutex_unlock(&lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * release_pages - batched page_cache_release()
 | |
|  * @pages: array of pages to release
 | |
|  * @nr: number of pages
 | |
|  * @cold: whether the pages are cache cold
 | |
|  *
 | |
|  * Decrement the reference count on all the pages in @pages.  If it
 | |
|  * fell to zero, remove the page from the LRU and free it.
 | |
|  */
 | |
| void release_pages(struct page **pages, int nr, bool cold)
 | |
| {
 | |
| 	int i;
 | |
| 	LIST_HEAD(pages_to_free);
 | |
| 	struct zone *zone = NULL;
 | |
| 	struct lruvec *lruvec;
 | |
| 	unsigned long uninitialized_var(flags);
 | |
| 	unsigned int uninitialized_var(lock_batch);
 | |
| 
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		struct page *page = pages[i];
 | |
| 
 | |
| 		if (unlikely(PageCompound(page))) {
 | |
| 			if (zone) {
 | |
| 				spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 				zone = NULL;
 | |
| 			}
 | |
| 			put_compound_page(page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the IRQ-safe lock-holding time does not get
 | |
| 		 * excessive with a continuous string of pages from the
 | |
| 		 * same zone. The lock is held only if zone != NULL.
 | |
| 		 */
 | |
| 		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
 | |
| 			spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 			zone = NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (!put_page_testzero(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (PageLRU(page)) {
 | |
| 			struct zone *pagezone = page_zone(page);
 | |
| 
 | |
| 			if (pagezone != zone) {
 | |
| 				if (zone)
 | |
| 					spin_unlock_irqrestore(&zone->lru_lock,
 | |
| 									flags);
 | |
| 				lock_batch = 0;
 | |
| 				zone = pagezone;
 | |
| 				spin_lock_irqsave(&zone->lru_lock, flags);
 | |
| 			}
 | |
| 
 | |
| 			lruvec = mem_cgroup_page_lruvec(page, zone);
 | |
| 			VM_BUG_ON_PAGE(!PageLRU(page), page);
 | |
| 			__ClearPageLRU(page);
 | |
| 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
 | |
| 		}
 | |
| 
 | |
| 		/* Clear Active bit in case of parallel mark_page_accessed */
 | |
| 		__ClearPageActive(page);
 | |
| 
 | |
| 		list_add(&page->lru, &pages_to_free);
 | |
| 	}
 | |
| 	if (zone)
 | |
| 		spin_unlock_irqrestore(&zone->lru_lock, flags);
 | |
| 
 | |
| 	mem_cgroup_uncharge_list(&pages_to_free);
 | |
| 	free_hot_cold_page_list(&pages_to_free, cold);
 | |
| }
 | |
| EXPORT_SYMBOL(release_pages);
 | |
| 
 | |
| /*
 | |
|  * The pages which we're about to release may be in the deferred lru-addition
 | |
|  * queues.  That would prevent them from really being freed right now.  That's
 | |
|  * OK from a correctness point of view but is inefficient - those pages may be
 | |
|  * cache-warm and we want to give them back to the page allocator ASAP.
 | |
|  *
 | |
|  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
 | |
|  * and __pagevec_lru_add_active() call release_pages() directly to avoid
 | |
|  * mutual recursion.
 | |
|  */
 | |
| void __pagevec_release(struct pagevec *pvec)
 | |
| {
 | |
| 	lru_add_drain();
 | |
| 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
 | |
| 	pagevec_reinit(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(__pagevec_release);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /* used by __split_huge_page_refcount() */
 | |
| void lru_add_page_tail(struct page *page, struct page *page_tail,
 | |
| 		       struct lruvec *lruvec, struct list_head *list)
 | |
| {
 | |
| 	const int file = 0;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
 | |
| 	VM_BUG_ON(NR_CPUS != 1 &&
 | |
| 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
 | |
| 
 | |
| 	if (!list)
 | |
| 		SetPageLRU(page_tail);
 | |
| 
 | |
| 	if (likely(PageLRU(page)))
 | |
| 		list_add_tail(&page_tail->lru, &page->lru);
 | |
| 	else if (list) {
 | |
| 		/* page reclaim is reclaiming a huge page */
 | |
| 		get_page(page_tail);
 | |
| 		list_add_tail(&page_tail->lru, list);
 | |
| 	} else {
 | |
| 		struct list_head *list_head;
 | |
| 		/*
 | |
| 		 * Head page has not yet been counted, as an hpage,
 | |
| 		 * so we must account for each subpage individually.
 | |
| 		 *
 | |
| 		 * Use the standard add function to put page_tail on the list,
 | |
| 		 * but then correct its position so they all end up in order.
 | |
| 		 */
 | |
| 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
 | |
| 		list_head = page_tail->lru.prev;
 | |
| 		list_move_tail(&page_tail->lru, list_head);
 | |
| 	}
 | |
| 
 | |
| 	if (!PageUnevictable(page))
 | |
| 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
 | |
| 				 void *arg)
 | |
| {
 | |
| 	int file = page_is_file_cache(page);
 | |
| 	int active = PageActive(page);
 | |
| 	enum lru_list lru = page_lru(page);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 
 | |
| 	SetPageLRU(page);
 | |
| 	add_page_to_lru_list(page, lruvec, lru);
 | |
| 	update_page_reclaim_stat(lruvec, file, active);
 | |
| 	trace_mm_lru_insertion(page, lru);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the passed pages to the LRU, then drop the caller's refcount
 | |
|  * on them.  Reinitialises the caller's pagevec.
 | |
|  */
 | |
| void __pagevec_lru_add(struct pagevec *pvec)
 | |
| {
 | |
| 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(__pagevec_lru_add);
 | |
| 
 | |
| /**
 | |
|  * pagevec_lookup_entries - gang pagecache lookup
 | |
|  * @pvec:	Where the resulting entries are placed
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting entry index
 | |
|  * @nr_entries:	The maximum number of entries
 | |
|  * @indices:	The cache indices corresponding to the entries in @pvec
 | |
|  *
 | |
|  * pagevec_lookup_entries() will search for and return a group of up
 | |
|  * to @nr_entries pages and shadow entries in the mapping.  All
 | |
|  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
 | |
|  * reference against actual pages in @pvec.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous entries with
 | |
|  * ascending indexes.  There may be holes in the indices due to
 | |
|  * not-present entries.
 | |
|  *
 | |
|  * pagevec_lookup_entries() returns the number of entries which were
 | |
|  * found.
 | |
|  */
 | |
| unsigned pagevec_lookup_entries(struct pagevec *pvec,
 | |
| 				struct address_space *mapping,
 | |
| 				pgoff_t start, unsigned nr_pages,
 | |
| 				pgoff_t *indices)
 | |
| {
 | |
| 	pvec->nr = find_get_entries(mapping, start, nr_pages,
 | |
| 				    pvec->pages, indices);
 | |
| 	return pagevec_count(pvec);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pagevec_remove_exceptionals - pagevec exceptionals pruning
 | |
|  * @pvec:	The pagevec to prune
 | |
|  *
 | |
|  * pagevec_lookup_entries() fills both pages and exceptional radix
 | |
|  * tree entries into the pagevec.  This function prunes all
 | |
|  * exceptionals from @pvec without leaving holes, so that it can be
 | |
|  * passed on to page-only pagevec operations.
 | |
|  */
 | |
| void pagevec_remove_exceptionals(struct pagevec *pvec)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
 | |
| 		struct page *page = pvec->pages[i];
 | |
| 		if (!radix_tree_exceptional_entry(page))
 | |
| 			pvec->pages[j++] = page;
 | |
| 	}
 | |
| 	pvec->nr = j;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pagevec_lookup - gang pagecache lookup
 | |
|  * @pvec:	Where the resulting pages are placed
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  *
 | |
|  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
 | |
|  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
 | |
|  * reference against the pages in @pvec.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous pages with ascending
 | |
|  * indexes.  There may be holes in the indices due to not-present pages.
 | |
|  *
 | |
|  * pagevec_lookup() returns the number of pages which were found.
 | |
|  */
 | |
| unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
 | |
| 		pgoff_t start, unsigned nr_pages)
 | |
| {
 | |
| 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
 | |
| 	return pagevec_count(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(pagevec_lookup);
 | |
| 
 | |
| unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
 | |
| 		pgoff_t *index, int tag, unsigned nr_pages)
 | |
| {
 | |
| 	pvec->nr = find_get_pages_tag(mapping, index, tag,
 | |
| 					nr_pages, pvec->pages);
 | |
| 	return pagevec_count(pvec);
 | |
| }
 | |
| EXPORT_SYMBOL(pagevec_lookup_tag);
 | |
| 
 | |
| /*
 | |
|  * Perform any setup for the swap system
 | |
|  */
 | |
| void __init swap_setup(void)
 | |
| {
 | |
| 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
 | |
| #ifdef CONFIG_SWAP
 | |
| 	int i;
 | |
| 
 | |
| 	if (bdi_init(swapper_spaces[0].backing_dev_info))
 | |
| 		panic("Failed to init swap bdi");
 | |
| 	for (i = 0; i < MAX_SWAPFILES; i++) {
 | |
| 		spin_lock_init(&swapper_spaces[i].tree_lock);
 | |
| 		INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Use a smaller cluster for small-memory machines */
 | |
| 	if (megs < 16)
 | |
| 		page_cluster = 2;
 | |
| 	else
 | |
| 		page_cluster = 3;
 | |
| 	/*
 | |
| 	 * Right now other parts of the system means that we
 | |
| 	 * _really_ don't want to cluster much more
 | |
| 	 */
 | |
| }
 |