mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 412c53a680
			
		
	
	
		412c53a680
		
	
	
	
	
		
			
			No users remain, so kill these off before we grow new ones. Link: http://lkml.kernel.org/r/20200110154232.4104492-3-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Deepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			909 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			909 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *  Copyright (C) 1991, 1992  Linus Torvalds
 | |
|  *
 | |
|  *  This file contains the interface functions for the various time related
 | |
|  *  system calls: time, stime, gettimeofday, settimeofday, adjtime
 | |
|  *
 | |
|  * Modification history:
 | |
|  *
 | |
|  * 1993-09-02    Philip Gladstone
 | |
|  *      Created file with time related functions from sched/core.c and adjtimex()
 | |
|  * 1993-10-08    Torsten Duwe
 | |
|  *      adjtime interface update and CMOS clock write code
 | |
|  * 1995-08-13    Torsten Duwe
 | |
|  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 | |
|  * 1999-01-16    Ulrich Windl
 | |
|  *	Introduced error checking for many cases in adjtimex().
 | |
|  *	Updated NTP code according to technical memorandum Jan '96
 | |
|  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 | |
|  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 | |
|  *	(Even though the technical memorandum forbids it)
 | |
|  * 2004-07-14	 Christoph Lameter
 | |
|  *	Added getnstimeofday to allow the posix timer functions to return
 | |
|  *	with nanosecond accuracy
 | |
|  */
 | |
| 
 | |
| #include <linux/export.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/ptrace.h>
 | |
| 
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/compat.h>
 | |
| #include <asm/unistd.h>
 | |
| 
 | |
| #include <generated/timeconst.h>
 | |
| #include "timekeeping.h"
 | |
| 
 | |
| /*
 | |
|  * The timezone where the local system is located.  Used as a default by some
 | |
|  * programs who obtain this value by using gettimeofday.
 | |
|  */
 | |
| struct timezone sys_tz;
 | |
| 
 | |
| EXPORT_SYMBOL(sys_tz);
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_TIME
 | |
| 
 | |
| /*
 | |
|  * sys_time() can be implemented in user-level using
 | |
|  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 | |
|  * why not move it into the appropriate arch directory (for those
 | |
|  * architectures that need it).
 | |
|  */
 | |
| SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
 | |
| {
 | |
| 	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
 | |
| 
 | |
| 	if (tloc) {
 | |
| 		if (put_user(i,tloc))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	force_successful_syscall_return();
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sys_stime() can be implemented in user-level using
 | |
|  * sys_settimeofday().  Is this for backwards compatibility?  If so,
 | |
|  * why not move it into the appropriate arch directory (for those
 | |
|  * architectures that need it).
 | |
|  */
 | |
| 
 | |
| SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
 | |
| {
 | |
| 	struct timespec64 tv;
 | |
| 	int err;
 | |
| 
 | |
| 	if (get_user(tv.tv_sec, tptr))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	tv.tv_nsec = 0;
 | |
| 
 | |
| 	err = security_settime64(&tv, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	do_settimeofday64(&tv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* __ARCH_WANT_SYS_TIME */
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| #ifdef __ARCH_WANT_SYS_TIME32
 | |
| 
 | |
| /* old_time32_t is a 32 bit "long" and needs to get converted. */
 | |
| SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
 | |
| {
 | |
| 	old_time32_t i;
 | |
| 
 | |
| 	i = (old_time32_t)ktime_get_real_seconds();
 | |
| 
 | |
| 	if (tloc) {
 | |
| 		if (put_user(i,tloc))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	force_successful_syscall_return();
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
 | |
| {
 | |
| 	struct timespec64 tv;
 | |
| 	int err;
 | |
| 
 | |
| 	if (get_user(tv.tv_sec, tptr))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	tv.tv_nsec = 0;
 | |
| 
 | |
| 	err = security_settime64(&tv, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	do_settimeofday64(&tv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* __ARCH_WANT_SYS_TIME32 */
 | |
| #endif
 | |
| 
 | |
| SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
 | |
| 		struct timezone __user *, tz)
 | |
| {
 | |
| 	if (likely(tv != NULL)) {
 | |
| 		struct timespec64 ts;
 | |
| 
 | |
| 		ktime_get_real_ts64(&ts);
 | |
| 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 | |
| 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	if (unlikely(tz != NULL)) {
 | |
| 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In case for some reason the CMOS clock has not already been running
 | |
|  * in UTC, but in some local time: The first time we set the timezone,
 | |
|  * we will warp the clock so that it is ticking UTC time instead of
 | |
|  * local time. Presumably, if someone is setting the timezone then we
 | |
|  * are running in an environment where the programs understand about
 | |
|  * timezones. This should be done at boot time in the /etc/rc script,
 | |
|  * as soon as possible, so that the clock can be set right. Otherwise,
 | |
|  * various programs will get confused when the clock gets warped.
 | |
|  */
 | |
| 
 | |
| int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 | |
| {
 | |
| 	static int firsttime = 1;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (tv && !timespec64_valid_settod(tv))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	error = security_settime64(tv, tz);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (tz) {
 | |
| 		/* Verify we're within the +-15 hrs range */
 | |
| 		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		sys_tz = *tz;
 | |
| 		update_vsyscall_tz();
 | |
| 		if (firsttime) {
 | |
| 			firsttime = 0;
 | |
| 			if (!tv)
 | |
| 				timekeeping_warp_clock();
 | |
| 		}
 | |
| 	}
 | |
| 	if (tv)
 | |
| 		return do_settimeofday64(tv);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
 | |
| 		struct timezone __user *, tz)
 | |
| {
 | |
| 	struct timespec64 new_ts;
 | |
| 	struct timezone new_tz;
 | |
| 
 | |
| 	if (tv) {
 | |
| 		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 | |
| 		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		new_ts.tv_nsec *= NSEC_PER_USEC;
 | |
| 	}
 | |
| 	if (tz) {
 | |
| 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
 | |
| 		       struct timezone __user *, tz)
 | |
| {
 | |
| 	if (tv) {
 | |
| 		struct timespec64 ts;
 | |
| 
 | |
| 		ktime_get_real_ts64(&ts);
 | |
| 		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 | |
| 		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 	if (tz) {
 | |
| 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
 | |
| 		       struct timezone __user *, tz)
 | |
| {
 | |
| 	struct timespec64 new_ts;
 | |
| 	struct timezone new_tz;
 | |
| 
 | |
| 	if (tv) {
 | |
| 		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 | |
| 		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		new_ts.tv_nsec *= NSEC_PER_USEC;
 | |
| 	}
 | |
| 	if (tz) {
 | |
| 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
 | |
| {
 | |
| 	struct __kernel_timex txc;		/* Local copy of parameter */
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Copy the user data space into the kernel copy
 | |
| 	 * structure. But bear in mind that the structures
 | |
| 	 * may change
 | |
| 	 */
 | |
| 	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
 | |
| 		return -EFAULT;
 | |
| 	ret = do_adjtimex(&txc);
 | |
| 	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPAT_32BIT_TIME
 | |
| int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
 | |
| {
 | |
| 	struct old_timex32 tx32;
 | |
| 
 | |
| 	memset(txc, 0, sizeof(struct __kernel_timex));
 | |
| 	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	txc->modes = tx32.modes;
 | |
| 	txc->offset = tx32.offset;
 | |
| 	txc->freq = tx32.freq;
 | |
| 	txc->maxerror = tx32.maxerror;
 | |
| 	txc->esterror = tx32.esterror;
 | |
| 	txc->status = tx32.status;
 | |
| 	txc->constant = tx32.constant;
 | |
| 	txc->precision = tx32.precision;
 | |
| 	txc->tolerance = tx32.tolerance;
 | |
| 	txc->time.tv_sec = tx32.time.tv_sec;
 | |
| 	txc->time.tv_usec = tx32.time.tv_usec;
 | |
| 	txc->tick = tx32.tick;
 | |
| 	txc->ppsfreq = tx32.ppsfreq;
 | |
| 	txc->jitter = tx32.jitter;
 | |
| 	txc->shift = tx32.shift;
 | |
| 	txc->stabil = tx32.stabil;
 | |
| 	txc->jitcnt = tx32.jitcnt;
 | |
| 	txc->calcnt = tx32.calcnt;
 | |
| 	txc->errcnt = tx32.errcnt;
 | |
| 	txc->stbcnt = tx32.stbcnt;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 | |
| {
 | |
| 	struct old_timex32 tx32;
 | |
| 
 | |
| 	memset(&tx32, 0, sizeof(struct old_timex32));
 | |
| 	tx32.modes = txc->modes;
 | |
| 	tx32.offset = txc->offset;
 | |
| 	tx32.freq = txc->freq;
 | |
| 	tx32.maxerror = txc->maxerror;
 | |
| 	tx32.esterror = txc->esterror;
 | |
| 	tx32.status = txc->status;
 | |
| 	tx32.constant = txc->constant;
 | |
| 	tx32.precision = txc->precision;
 | |
| 	tx32.tolerance = txc->tolerance;
 | |
| 	tx32.time.tv_sec = txc->time.tv_sec;
 | |
| 	tx32.time.tv_usec = txc->time.tv_usec;
 | |
| 	tx32.tick = txc->tick;
 | |
| 	tx32.ppsfreq = txc->ppsfreq;
 | |
| 	tx32.jitter = txc->jitter;
 | |
| 	tx32.shift = txc->shift;
 | |
| 	tx32.stabil = txc->stabil;
 | |
| 	tx32.jitcnt = txc->jitcnt;
 | |
| 	tx32.calcnt = txc->calcnt;
 | |
| 	tx32.errcnt = txc->errcnt;
 | |
| 	tx32.stbcnt = txc->stbcnt;
 | |
| 	tx32.tai = txc->tai;
 | |
| 	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
 | |
| {
 | |
| 	struct __kernel_timex txc;
 | |
| 	int err, ret;
 | |
| 
 | |
| 	err = get_old_timex32(&txc, utp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	ret = do_adjtimex(&txc);
 | |
| 
 | |
| 	err = put_old_timex32(utp, &txc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Convert jiffies to milliseconds and back.
 | |
|  *
 | |
|  * Avoid unnecessary multiplications/divisions in the
 | |
|  * two most common HZ cases:
 | |
|  */
 | |
| unsigned int jiffies_to_msecs(const unsigned long j)
 | |
| {
 | |
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 | |
| 	return (MSEC_PER_SEC / HZ) * j;
 | |
| #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 | |
| 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 | |
| #else
 | |
| # if BITS_PER_LONG == 32
 | |
| 	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
 | |
| 	       HZ_TO_MSEC_SHR32;
 | |
| # else
 | |
| 	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_msecs);
 | |
| 
 | |
| unsigned int jiffies_to_usecs(const unsigned long j)
 | |
| {
 | |
| 	/*
 | |
| 	 * Hz usually doesn't go much further MSEC_PER_SEC.
 | |
| 	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(HZ > USEC_PER_SEC);
 | |
| 
 | |
| #if !(USEC_PER_SEC % HZ)
 | |
| 	return (USEC_PER_SEC / HZ) * j;
 | |
| #else
 | |
| # if BITS_PER_LONG == 32
 | |
| 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 | |
| # else
 | |
| 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_usecs);
 | |
| 
 | |
| /*
 | |
|  * mktime64 - Converts date to seconds.
 | |
|  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 | |
|  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 | |
|  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 | |
|  *
 | |
|  * [For the Julian calendar (which was used in Russia before 1917,
 | |
|  * Britain & colonies before 1752, anywhere else before 1582,
 | |
|  * and is still in use by some communities) leave out the
 | |
|  * -year/100+year/400 terms, and add 10.]
 | |
|  *
 | |
|  * This algorithm was first published by Gauss (I think).
 | |
|  *
 | |
|  * A leap second can be indicated by calling this function with sec as
 | |
|  * 60 (allowable under ISO 8601).  The leap second is treated the same
 | |
|  * as the following second since they don't exist in UNIX time.
 | |
|  *
 | |
|  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 | |
|  * tomorrow - (allowable under ISO 8601) is supported.
 | |
|  */
 | |
| time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 | |
| 		const unsigned int day, const unsigned int hour,
 | |
| 		const unsigned int min, const unsigned int sec)
 | |
| {
 | |
| 	unsigned int mon = mon0, year = year0;
 | |
| 
 | |
| 	/* 1..12 -> 11,12,1..10 */
 | |
| 	if (0 >= (int) (mon -= 2)) {
 | |
| 		mon += 12;	/* Puts Feb last since it has leap day */
 | |
| 		year -= 1;
 | |
| 	}
 | |
| 
 | |
| 	return ((((time64_t)
 | |
| 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 | |
| 		  year*365 - 719499
 | |
| 	    )*24 + hour /* now have hours - midnight tomorrow handled here */
 | |
| 	  )*60 + min /* now have minutes */
 | |
| 	)*60 + sec; /* finally seconds */
 | |
| }
 | |
| EXPORT_SYMBOL(mktime64);
 | |
| 
 | |
| struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
 | |
| {
 | |
| 	struct timespec64 ts = ns_to_timespec64(nsec);
 | |
| 	struct __kernel_old_timeval tv;
 | |
| 
 | |
| 	tv.tv_sec = ts.tv_sec;
 | |
| 	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
 | |
| 
 | |
| 	return tv;
 | |
| }
 | |
| EXPORT_SYMBOL(ns_to_kernel_old_timeval);
 | |
| 
 | |
| /**
 | |
|  * set_normalized_timespec - set timespec sec and nsec parts and normalize
 | |
|  *
 | |
|  * @ts:		pointer to timespec variable to be set
 | |
|  * @sec:	seconds to set
 | |
|  * @nsec:	nanoseconds to set
 | |
|  *
 | |
|  * Set seconds and nanoseconds field of a timespec variable and
 | |
|  * normalize to the timespec storage format
 | |
|  *
 | |
|  * Note: The tv_nsec part is always in the range of
 | |
|  *	0 <= tv_nsec < NSEC_PER_SEC
 | |
|  * For negative values only the tv_sec field is negative !
 | |
|  */
 | |
| void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 | |
| {
 | |
| 	while (nsec >= NSEC_PER_SEC) {
 | |
| 		/*
 | |
| 		 * The following asm() prevents the compiler from
 | |
| 		 * optimising this loop into a modulo operation. See
 | |
| 		 * also __iter_div_u64_rem() in include/linux/time.h
 | |
| 		 */
 | |
| 		asm("" : "+rm"(nsec));
 | |
| 		nsec -= NSEC_PER_SEC;
 | |
| 		++sec;
 | |
| 	}
 | |
| 	while (nsec < 0) {
 | |
| 		asm("" : "+rm"(nsec));
 | |
| 		nsec += NSEC_PER_SEC;
 | |
| 		--sec;
 | |
| 	}
 | |
| 	ts->tv_sec = sec;
 | |
| 	ts->tv_nsec = nsec;
 | |
| }
 | |
| EXPORT_SYMBOL(set_normalized_timespec64);
 | |
| 
 | |
| /**
 | |
|  * ns_to_timespec64 - Convert nanoseconds to timespec64
 | |
|  * @nsec:       the nanoseconds value to be converted
 | |
|  *
 | |
|  * Returns the timespec64 representation of the nsec parameter.
 | |
|  */
 | |
| struct timespec64 ns_to_timespec64(const s64 nsec)
 | |
| {
 | |
| 	struct timespec64 ts = { 0, 0 };
 | |
| 	s32 rem;
 | |
| 
 | |
| 	if (likely(nsec > 0)) {
 | |
| 		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 | |
| 		ts.tv_nsec = rem;
 | |
| 	} else if (nsec < 0) {
 | |
| 		/*
 | |
| 		 * With negative times, tv_sec points to the earlier
 | |
| 		 * second, and tv_nsec counts the nanoseconds since
 | |
| 		 * then, so tv_nsec is always a positive number.
 | |
| 		 */
 | |
| 		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
 | |
| 		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
 | |
| 	}
 | |
| 
 | |
| 	return ts;
 | |
| }
 | |
| EXPORT_SYMBOL(ns_to_timespec64);
 | |
| 
 | |
| /**
 | |
|  * msecs_to_jiffies: - convert milliseconds to jiffies
 | |
|  * @m:	time in milliseconds
 | |
|  *
 | |
|  * conversion is done as follows:
 | |
|  *
 | |
|  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 | |
|  *
 | |
|  * - 'too large' values [that would result in larger than
 | |
|  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 | |
|  *
 | |
|  * - all other values are converted to jiffies by either multiplying
 | |
|  *   the input value by a factor or dividing it with a factor and
 | |
|  *   handling any 32-bit overflows.
 | |
|  *   for the details see __msecs_to_jiffies()
 | |
|  *
 | |
|  * msecs_to_jiffies() checks for the passed in value being a constant
 | |
|  * via __builtin_constant_p() allowing gcc to eliminate most of the
 | |
|  * code, __msecs_to_jiffies() is called if the value passed does not
 | |
|  * allow constant folding and the actual conversion must be done at
 | |
|  * runtime.
 | |
|  * the _msecs_to_jiffies helpers are the HZ dependent conversion
 | |
|  * routines found in include/linux/jiffies.h
 | |
|  */
 | |
| unsigned long __msecs_to_jiffies(const unsigned int m)
 | |
| {
 | |
| 	/*
 | |
| 	 * Negative value, means infinite timeout:
 | |
| 	 */
 | |
| 	if ((int)m < 0)
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| 	return _msecs_to_jiffies(m);
 | |
| }
 | |
| EXPORT_SYMBOL(__msecs_to_jiffies);
 | |
| 
 | |
| unsigned long __usecs_to_jiffies(const unsigned int u)
 | |
| {
 | |
| 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 | |
| 		return MAX_JIFFY_OFFSET;
 | |
| 	return _usecs_to_jiffies(u);
 | |
| }
 | |
| EXPORT_SYMBOL(__usecs_to_jiffies);
 | |
| 
 | |
| /*
 | |
|  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 | |
|  * that a remainder subtract here would not do the right thing as the
 | |
|  * resolution values don't fall on second boundries.  I.e. the line:
 | |
|  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 | |
|  * Note that due to the small error in the multiplier here, this
 | |
|  * rounding is incorrect for sufficiently large values of tv_nsec, but
 | |
|  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 | |
|  * OK.
 | |
|  *
 | |
|  * Rather, we just shift the bits off the right.
 | |
|  *
 | |
|  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 | |
|  * value to a scaled second value.
 | |
|  */
 | |
| 
 | |
| unsigned long
 | |
| timespec64_to_jiffies(const struct timespec64 *value)
 | |
| {
 | |
| 	u64 sec = value->tv_sec;
 | |
| 	long nsec = value->tv_nsec + TICK_NSEC - 1;
 | |
| 
 | |
| 	if (sec >= MAX_SEC_IN_JIFFIES){
 | |
| 		sec = MAX_SEC_IN_JIFFIES;
 | |
| 		nsec = 0;
 | |
| 	}
 | |
| 	return ((sec * SEC_CONVERSION) +
 | |
| 		(((u64)nsec * NSEC_CONVERSION) >>
 | |
| 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(timespec64_to_jiffies);
 | |
| 
 | |
| void
 | |
| jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 | |
| {
 | |
| 	/*
 | |
| 	 * Convert jiffies to nanoseconds and separate with
 | |
| 	 * one divide.
 | |
| 	 */
 | |
| 	u32 rem;
 | |
| 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 | |
| 				    NSEC_PER_SEC, &rem);
 | |
| 	value->tv_nsec = rem;
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_timespec64);
 | |
| 
 | |
| /*
 | |
|  * Convert jiffies/jiffies_64 to clock_t and back.
 | |
|  */
 | |
| clock_t jiffies_to_clock_t(unsigned long x)
 | |
| {
 | |
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | |
| # if HZ < USER_HZ
 | |
| 	return x * (USER_HZ / HZ);
 | |
| # else
 | |
| 	return x / (HZ / USER_HZ);
 | |
| # endif
 | |
| #else
 | |
| 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_to_clock_t);
 | |
| 
 | |
| unsigned long clock_t_to_jiffies(unsigned long x)
 | |
| {
 | |
| #if (HZ % USER_HZ)==0
 | |
| 	if (x >= ~0UL / (HZ / USER_HZ))
 | |
| 		return ~0UL;
 | |
| 	return x * (HZ / USER_HZ);
 | |
| #else
 | |
| 	/* Don't worry about loss of precision here .. */
 | |
| 	if (x >= ~0UL / HZ * USER_HZ)
 | |
| 		return ~0UL;
 | |
| 
 | |
| 	/* .. but do try to contain it here */
 | |
| 	return div_u64((u64)x * HZ, USER_HZ);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(clock_t_to_jiffies);
 | |
| 
 | |
| u64 jiffies_64_to_clock_t(u64 x)
 | |
| {
 | |
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | |
| # if HZ < USER_HZ
 | |
| 	x = div_u64(x * USER_HZ, HZ);
 | |
| # elif HZ > USER_HZ
 | |
| 	x = div_u64(x, HZ / USER_HZ);
 | |
| # else
 | |
| 	/* Nothing to do */
 | |
| # endif
 | |
| #else
 | |
| 	/*
 | |
| 	 * There are better ways that don't overflow early,
 | |
| 	 * but even this doesn't overflow in hundreds of years
 | |
| 	 * in 64 bits, so..
 | |
| 	 */
 | |
| 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 | |
| #endif
 | |
| 	return x;
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies_64_to_clock_t);
 | |
| 
 | |
| u64 nsec_to_clock_t(u64 x)
 | |
| {
 | |
| #if (NSEC_PER_SEC % USER_HZ) == 0
 | |
| 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 | |
| #elif (USER_HZ % 512) == 0
 | |
| 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 | |
| #else
 | |
| 	/*
 | |
|          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 | |
|          * overflow after 64.99 years.
 | |
|          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 | |
|          */
 | |
| 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| u64 jiffies64_to_nsecs(u64 j)
 | |
| {
 | |
| #if !(NSEC_PER_SEC % HZ)
 | |
| 	return (NSEC_PER_SEC / HZ) * j;
 | |
| # else
 | |
| 	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies64_to_nsecs);
 | |
| 
 | |
| u64 jiffies64_to_msecs(const u64 j)
 | |
| {
 | |
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 | |
| 	return (MSEC_PER_SEC / HZ) * j;
 | |
| #else
 | |
| 	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(jiffies64_to_msecs);
 | |
| 
 | |
| /**
 | |
|  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 | |
|  *
 | |
|  * @n:	nsecs in u64
 | |
|  *
 | |
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | |
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | |
|  * for scheduler, not for use in device drivers to calculate timeout value.
 | |
|  *
 | |
|  * note:
 | |
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | |
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | |
|  */
 | |
| u64 nsecs_to_jiffies64(u64 n)
 | |
| {
 | |
| #if (NSEC_PER_SEC % HZ) == 0
 | |
| 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 | |
| 	return div_u64(n, NSEC_PER_SEC / HZ);
 | |
| #elif (HZ % 512) == 0
 | |
| 	/* overflow after 292 years if HZ = 1024 */
 | |
| 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 | |
| #else
 | |
| 	/*
 | |
| 	 * Generic case - optimized for cases where HZ is a multiple of 3.
 | |
| 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 | |
| 	 */
 | |
| 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(nsecs_to_jiffies64);
 | |
| 
 | |
| /**
 | |
|  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 | |
|  *
 | |
|  * @n:	nsecs in u64
 | |
|  *
 | |
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | |
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | |
|  * for scheduler, not for use in device drivers to calculate timeout value.
 | |
|  *
 | |
|  * note:
 | |
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | |
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | |
|  */
 | |
| unsigned long nsecs_to_jiffies(u64 n)
 | |
| {
 | |
| 	return (unsigned long)nsecs_to_jiffies64(n);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 | |
| 
 | |
| /*
 | |
|  * Add two timespec64 values and do a safety check for overflow.
 | |
|  * It's assumed that both values are valid (>= 0).
 | |
|  * And, each timespec64 is in normalized form.
 | |
|  */
 | |
| struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 | |
| 				const struct timespec64 rhs)
 | |
| {
 | |
| 	struct timespec64 res;
 | |
| 
 | |
| 	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 | |
| 			lhs.tv_nsec + rhs.tv_nsec);
 | |
| 
 | |
| 	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 | |
| 		res.tv_sec = TIME64_MAX;
 | |
| 		res.tv_nsec = 0;
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| int get_timespec64(struct timespec64 *ts,
 | |
| 		   const struct __kernel_timespec __user *uts)
 | |
| {
 | |
| 	struct __kernel_timespec kts;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = copy_from_user(&kts, uts, sizeof(kts));
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ts->tv_sec = kts.tv_sec;
 | |
| 
 | |
| 	/* Zero out the padding in compat mode */
 | |
| 	if (in_compat_syscall())
 | |
| 		kts.tv_nsec &= 0xFFFFFFFFUL;
 | |
| 
 | |
| 	/* In 32-bit mode, this drops the padding */
 | |
| 	ts->tv_nsec = kts.tv_nsec;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_timespec64);
 | |
| 
 | |
| int put_timespec64(const struct timespec64 *ts,
 | |
| 		   struct __kernel_timespec __user *uts)
 | |
| {
 | |
| 	struct __kernel_timespec kts = {
 | |
| 		.tv_sec = ts->tv_sec,
 | |
| 		.tv_nsec = ts->tv_nsec
 | |
| 	};
 | |
| 
 | |
| 	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_timespec64);
 | |
| 
 | |
| static int __get_old_timespec32(struct timespec64 *ts64,
 | |
| 				   const struct old_timespec32 __user *cts)
 | |
| {
 | |
| 	struct old_timespec32 ts;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = copy_from_user(&ts, cts, sizeof(ts));
 | |
| 	if (ret)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ts64->tv_sec = ts.tv_sec;
 | |
| 	ts64->tv_nsec = ts.tv_nsec;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __put_old_timespec32(const struct timespec64 *ts64,
 | |
| 				   struct old_timespec32 __user *cts)
 | |
| {
 | |
| 	struct old_timespec32 ts = {
 | |
| 		.tv_sec = ts64->tv_sec,
 | |
| 		.tv_nsec = ts64->tv_nsec
 | |
| 	};
 | |
| 	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
 | |
| {
 | |
| 	if (COMPAT_USE_64BIT_TIME)
 | |
| 		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
 | |
| 	else
 | |
| 		return __get_old_timespec32(ts, uts);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_old_timespec32);
 | |
| 
 | |
| int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
 | |
| {
 | |
| 	if (COMPAT_USE_64BIT_TIME)
 | |
| 		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
 | |
| 	else
 | |
| 		return __put_old_timespec32(ts, uts);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_old_timespec32);
 | |
| 
 | |
| int get_itimerspec64(struct itimerspec64 *it,
 | |
| 			const struct __kernel_itimerspec __user *uit)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = get_timespec64(&it->it_interval, &uit->it_interval);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = get_timespec64(&it->it_value, &uit->it_value);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_itimerspec64);
 | |
| 
 | |
| int put_itimerspec64(const struct itimerspec64 *it,
 | |
| 			struct __kernel_itimerspec __user *uit)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = put_timespec64(&it->it_interval, &uit->it_interval);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = put_timespec64(&it->it_value, &uit->it_value);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_itimerspec64);
 | |
| 
 | |
| int get_old_itimerspec32(struct itimerspec64 *its,
 | |
| 			const struct old_itimerspec32 __user *uits)
 | |
| {
 | |
| 
 | |
| 	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
 | |
| 	    __get_old_timespec32(&its->it_value, &uits->it_value))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(get_old_itimerspec32);
 | |
| 
 | |
| int put_old_itimerspec32(const struct itimerspec64 *its,
 | |
| 			struct old_itimerspec32 __user *uits)
 | |
| {
 | |
| 	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
 | |
| 	    __put_old_timespec32(&its->it_value, &uits->it_value))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(put_old_itimerspec32);
 |