mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 32b9a52f88
			
		
	
	
		32b9a52f88
		
	
	
	
	
		
			
			kvm->arch.nested_mmus is allocated with kvrealloc(), hence free it with
kvfree() instead of kfree().
Fixes: 4f128f8e1a ("KVM: arm64: nv: Support multiple nested Stage-2 mmu structures")
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240723142204.758796-1-dakr@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
		
	
			
		
			
				
	
	
		
			1202 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1202 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2017 - Columbia University and Linaro Ltd.
 | |
|  * Author: Jintack Lim <jintack.lim@linaro.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/kvm_host.h>
 | |
| 
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| #include <asm/kvm_nested.h>
 | |
| #include <asm/sysreg.h>
 | |
| 
 | |
| #include "sys_regs.h"
 | |
| 
 | |
| /* Protection against the sysreg repainting madness... */
 | |
| #define NV_FTR(r, f)		ID_AA64##r##_EL1_##f
 | |
| 
 | |
| /*
 | |
|  * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
 | |
|  * memory usage and potential number of different sets of S2 PTs in
 | |
|  * the guests. Running out of S2 MMUs only affects performance (we
 | |
|  * will invalidate them more often).
 | |
|  */
 | |
| #define S2_MMU_PER_VCPU		2
 | |
| 
 | |
| void kvm_init_nested(struct kvm *kvm)
 | |
| {
 | |
| 	kvm->arch.nested_mmus = NULL;
 | |
| 	kvm->arch.nested_mmus_size = 0;
 | |
| }
 | |
| 
 | |
| static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
 | |
| {
 | |
| 	/*
 | |
| 	 * We only initialise the IPA range on the canonical MMU, which
 | |
| 	 * defines the contract between KVM and userspace on where the
 | |
| 	 * "hardware" is in the IPA space. This affects the validity of MMIO
 | |
| 	 * exits forwarded to userspace, for example.
 | |
| 	 *
 | |
| 	 * For nested S2s, we use the PARange as exposed to the guest, as it
 | |
| 	 * is allowed to use it at will to expose whatever memory map it
 | |
| 	 * wants to its own guests as it would be on real HW.
 | |
| 	 */
 | |
| 	return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct kvm_s2_mmu *tmp;
 | |
| 	int num_mmus, ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's treat memory allocation failures as benign: If we fail to
 | |
| 	 * allocate anything, return an error and keep the allocated array
 | |
| 	 * alive. Userspace may try to recover by intializing the vcpu
 | |
| 	 * again, and there is no reason to affect the whole VM for this.
 | |
| 	 */
 | |
| 	num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
 | |
| 	tmp = kvrealloc(kvm->arch.nested_mmus,
 | |
| 			size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size),
 | |
| 			size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
 | |
| 			GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 | |
| 	if (!tmp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we went through a realocation, adjust the MMU back-pointers in
 | |
| 	 * the previously initialised kvm_pgtable structures.
 | |
| 	 */
 | |
| 	if (kvm->arch.nested_mmus != tmp)
 | |
| 		for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
 | |
| 			tmp[i].pgt->mmu = &tmp[i];
 | |
| 
 | |
| 	for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
 | |
| 		ret = init_nested_s2_mmu(kvm, &tmp[i]);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
 | |
| 			kvm_free_stage2_pgd(&tmp[i]);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	kvm->arch.nested_mmus_size = num_mmus;
 | |
| 	kvm->arch.nested_mmus = tmp;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct s2_walk_info {
 | |
| 	int	     (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
 | |
| 	void	     *data;
 | |
| 	u64	     baddr;
 | |
| 	unsigned int max_oa_bits;
 | |
| 	unsigned int pgshift;
 | |
| 	unsigned int sl;
 | |
| 	unsigned int t0sz;
 | |
| 	bool	     be;
 | |
| };
 | |
| 
 | |
| static unsigned int ps_to_output_size(unsigned int ps)
 | |
| {
 | |
| 	switch (ps) {
 | |
| 	case 0: return 32;
 | |
| 	case 1: return 36;
 | |
| 	case 2: return 40;
 | |
| 	case 3: return 42;
 | |
| 	case 4: return 44;
 | |
| 	case 5:
 | |
| 	default:
 | |
| 		return 48;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 compute_fsc(int level, u32 fsc)
 | |
| {
 | |
| 	return fsc | (level & 0x3);
 | |
| }
 | |
| 
 | |
| static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
 | |
| {
 | |
| 	u32 esr;
 | |
| 
 | |
| 	esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
 | |
| 	esr |= compute_fsc(level, fsc);
 | |
| 	return esr;
 | |
| }
 | |
| 
 | |
| static int get_ia_size(struct s2_walk_info *wi)
 | |
| {
 | |
| 	return 64 - wi->t0sz;
 | |
| }
 | |
| 
 | |
| static int check_base_s2_limits(struct s2_walk_info *wi,
 | |
| 				int level, int input_size, int stride)
 | |
| {
 | |
| 	int start_size, ia_size;
 | |
| 
 | |
| 	ia_size = get_ia_size(wi);
 | |
| 
 | |
| 	/* Check translation limits */
 | |
| 	switch (BIT(wi->pgshift)) {
 | |
| 	case SZ_64K:
 | |
| 		if (level == 0 || (level == 1 && ia_size <= 42))
 | |
| 			return -EFAULT;
 | |
| 		break;
 | |
| 	case SZ_16K:
 | |
| 		if (level == 0 || (level == 1 && ia_size <= 40))
 | |
| 			return -EFAULT;
 | |
| 		break;
 | |
| 	case SZ_4K:
 | |
| 		if (level < 0 || (level == 0 && ia_size <= 42))
 | |
| 			return -EFAULT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Check input size limits */
 | |
| 	if (input_size > ia_size)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Check number of entries in starting level table */
 | |
| 	start_size = input_size - ((3 - level) * stride + wi->pgshift);
 | |
| 	if (start_size < 1 || start_size > stride + 4)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Check if output is within boundaries */
 | |
| static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
 | |
| {
 | |
| 	unsigned int output_size = wi->max_oa_bits;
 | |
| 
 | |
| 	if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is essentially a C-version of the pseudo code from the ARM ARM
 | |
|  * AArch64.TranslationTableWalk  function.  I strongly recommend looking at
 | |
|  * that pseudocode in trying to understand this.
 | |
|  *
 | |
|  * Must be called with the kvm->srcu read lock held
 | |
|  */
 | |
| static int walk_nested_s2_pgd(phys_addr_t ipa,
 | |
| 			      struct s2_walk_info *wi, struct kvm_s2_trans *out)
 | |
| {
 | |
| 	int first_block_level, level, stride, input_size, base_lower_bound;
 | |
| 	phys_addr_t base_addr;
 | |
| 	unsigned int addr_top, addr_bottom;
 | |
| 	u64 desc;  /* page table entry */
 | |
| 	int ret;
 | |
| 	phys_addr_t paddr;
 | |
| 
 | |
| 	switch (BIT(wi->pgshift)) {
 | |
| 	default:
 | |
| 	case SZ_64K:
 | |
| 	case SZ_16K:
 | |
| 		level = 3 - wi->sl;
 | |
| 		first_block_level = 2;
 | |
| 		break;
 | |
| 	case SZ_4K:
 | |
| 		level = 2 - wi->sl;
 | |
| 		first_block_level = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	stride = wi->pgshift - 3;
 | |
| 	input_size = get_ia_size(wi);
 | |
| 	if (input_size > 48 || input_size < 25)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = check_base_s2_limits(wi, level, input_size, stride);
 | |
| 	if (WARN_ON(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	base_lower_bound = 3 + input_size - ((3 - level) * stride +
 | |
| 			   wi->pgshift);
 | |
| 	base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
 | |
| 
 | |
| 	if (check_output_size(wi, base_addr)) {
 | |
| 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	addr_top = input_size - 1;
 | |
| 
 | |
| 	while (1) {
 | |
| 		phys_addr_t index;
 | |
| 
 | |
| 		addr_bottom = (3 - level) * stride + wi->pgshift;
 | |
| 		index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
 | |
| 			>> (addr_bottom - 3);
 | |
| 
 | |
| 		paddr = base_addr | index;
 | |
| 		ret = wi->read_desc(paddr, &desc, wi->data);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Handle reversedescriptors if endianness differs between the
 | |
| 		 * host and the guest hypervisor.
 | |
| 		 */
 | |
| 		if (wi->be)
 | |
| 			desc = be64_to_cpu((__force __be64)desc);
 | |
| 		else
 | |
| 			desc = le64_to_cpu((__force __le64)desc);
 | |
| 
 | |
| 		/* Check for valid descriptor at this point */
 | |
| 		if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
 | |
| 			out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
 | |
| 			out->upper_attr = desc;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/* We're at the final level or block translation level */
 | |
| 		if ((desc & 3) == 1 || level == 3)
 | |
| 			break;
 | |
| 
 | |
| 		if (check_output_size(wi, desc)) {
 | |
| 			out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
 | |
| 			out->upper_attr = desc;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		base_addr = desc & GENMASK_ULL(47, wi->pgshift);
 | |
| 
 | |
| 		level += 1;
 | |
| 		addr_top = addr_bottom - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (level < first_block_level) {
 | |
| 		out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
 | |
| 		out->upper_attr = desc;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't use the contiguous bit in the stage-2 ptes, so skip check
 | |
| 	 * for misprogramming of the contiguous bit.
 | |
| 	 */
 | |
| 
 | |
| 	if (check_output_size(wi, desc)) {
 | |
| 		out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
 | |
| 		out->upper_attr = desc;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!(desc & BIT(10))) {
 | |
| 		out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
 | |
| 		out->upper_attr = desc;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and return the result */
 | |
| 	paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
 | |
| 		(ipa & GENMASK_ULL(addr_bottom - 1, 0));
 | |
| 	out->output = paddr;
 | |
| 	out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
 | |
| 	out->readable = desc & (0b01 << 6);
 | |
| 	out->writable = desc & (0b10 << 6);
 | |
| 	out->level = level;
 | |
| 	out->upper_attr = desc & GENMASK_ULL(63, 52);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = data;
 | |
| 
 | |
| 	return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
 | |
| }
 | |
| 
 | |
| static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
 | |
| {
 | |
| 	wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
 | |
| 
 | |
| 	switch (vtcr & VTCR_EL2_TG0_MASK) {
 | |
| 	case VTCR_EL2_TG0_4K:
 | |
| 		wi->pgshift = 12;	 break;
 | |
| 	case VTCR_EL2_TG0_16K:
 | |
| 		wi->pgshift = 14;	 break;
 | |
| 	case VTCR_EL2_TG0_64K:
 | |
| 	default:	    /* IMPDEF: treat any other value as 64k */
 | |
| 		wi->pgshift = 16;	 break;
 | |
| 	}
 | |
| 
 | |
| 	wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
 | |
| 	/* Global limit for now, should eventually be per-VM */
 | |
| 	wi->max_oa_bits = min(get_kvm_ipa_limit(),
 | |
| 			      ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
 | |
| }
 | |
| 
 | |
| int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
 | |
| 		       struct kvm_s2_trans *result)
 | |
| {
 | |
| 	u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
 | |
| 	struct s2_walk_info wi;
 | |
| 	int ret;
 | |
| 
 | |
| 	result->esr = 0;
 | |
| 
 | |
| 	if (!vcpu_has_nv(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	wi.read_desc = read_guest_s2_desc;
 | |
| 	wi.data = vcpu;
 | |
| 	wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
 | |
| 
 | |
| 	vtcr_to_walk_info(vtcr, &wi);
 | |
| 
 | |
| 	wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
 | |
| 
 | |
| 	ret = walk_nested_s2_pgd(gipa, &wi, result);
 | |
| 	if (ret)
 | |
| 		result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned int ttl_to_size(u8 ttl)
 | |
| {
 | |
| 	int level = ttl & 3;
 | |
| 	int gran = (ttl >> 2) & 3;
 | |
| 	unsigned int max_size = 0;
 | |
| 
 | |
| 	switch (gran) {
 | |
| 	case TLBI_TTL_TG_4K:
 | |
| 		switch (level) {
 | |
| 		case 0:
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			max_size = SZ_1G;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			max_size = SZ_2M;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			max_size = SZ_4K;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case TLBI_TTL_TG_16K:
 | |
| 		switch (level) {
 | |
| 		case 0:
 | |
| 		case 1:
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			max_size = SZ_32M;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			max_size = SZ_16K;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case TLBI_TTL_TG_64K:
 | |
| 		switch (level) {
 | |
| 		case 0:
 | |
| 		case 1:
 | |
| 			/* No 52bit IPA support */
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			max_size = SZ_512M;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			max_size = SZ_64K;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:			/* No size information */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return max_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the equivalent of the TTL field by parsing the shadow PT.  The
 | |
|  * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
 | |
|  * retrieved from first entry carrying the level as a tag.
 | |
|  */
 | |
| static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
 | |
| {
 | |
| 	u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
 | |
| 	kvm_pte_t pte;
 | |
| 	u8 ttl, level;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
 | |
| 
 | |
| 	switch (vtcr & VTCR_EL2_TG0_MASK) {
 | |
| 	case VTCR_EL2_TG0_4K:
 | |
| 		ttl = (TLBI_TTL_TG_4K << 2);
 | |
| 		break;
 | |
| 	case VTCR_EL2_TG0_16K:
 | |
| 		ttl = (TLBI_TTL_TG_16K << 2);
 | |
| 		break;
 | |
| 	case VTCR_EL2_TG0_64K:
 | |
| 	default:	    /* IMPDEF: treat any other value as 64k */
 | |
| 		ttl = (TLBI_TTL_TG_64K << 2);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	tmp = addr;
 | |
| 
 | |
| again:
 | |
| 	/* Iteratively compute the block sizes for a particular granule size */
 | |
| 	switch (vtcr & VTCR_EL2_TG0_MASK) {
 | |
| 	case VTCR_EL2_TG0_4K:
 | |
| 		if	(sz < SZ_4K)	sz = SZ_4K;
 | |
| 		else if (sz < SZ_2M)	sz = SZ_2M;
 | |
| 		else if (sz < SZ_1G)	sz = SZ_1G;
 | |
| 		else			sz = 0;
 | |
| 		break;
 | |
| 	case VTCR_EL2_TG0_16K:
 | |
| 		if	(sz < SZ_16K)	sz = SZ_16K;
 | |
| 		else if (sz < SZ_32M)	sz = SZ_32M;
 | |
| 		else			sz = 0;
 | |
| 		break;
 | |
| 	case VTCR_EL2_TG0_64K:
 | |
| 	default:	    /* IMPDEF: treat any other value as 64k */
 | |
| 		if	(sz < SZ_64K)	sz = SZ_64K;
 | |
| 		else if (sz < SZ_512M)	sz = SZ_512M;
 | |
| 		else			sz = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (sz == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	tmp &= ~(sz - 1);
 | |
| 	if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
 | |
| 		goto again;
 | |
| 	if (!(pte & PTE_VALID))
 | |
| 		goto again;
 | |
| 	level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
 | |
| 	if (!level)
 | |
| 		goto again;
 | |
| 
 | |
| 	ttl |= level;
 | |
| 
 | |
| 	/*
 | |
| 	 * We now have found some level information in the shadow S2. Check
 | |
| 	 * that the resulting range is actually including the original IPA.
 | |
| 	 */
 | |
| 	sz = ttl_to_size(ttl);
 | |
| 	if (addr < (tmp + sz))
 | |
| 		return ttl;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
 | |
| {
 | |
| 	struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
 | |
| 	unsigned long max_size;
 | |
| 	u8 ttl;
 | |
| 
 | |
| 	ttl = FIELD_GET(TLBI_TTL_MASK, val);
 | |
| 
 | |
| 	if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
 | |
| 		/* No TTL, check the shadow S2 for a hint */
 | |
| 		u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
 | |
| 		ttl = get_guest_mapping_ttl(mmu, addr);
 | |
| 	}
 | |
| 
 | |
| 	max_size = ttl_to_size(ttl);
 | |
| 
 | |
| 	if (!max_size) {
 | |
| 		/* Compute the maximum extent of the invalidation */
 | |
| 		switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
 | |
| 		case VTCR_EL2_TG0_4K:
 | |
| 			max_size = SZ_1G;
 | |
| 			break;
 | |
| 		case VTCR_EL2_TG0_16K:
 | |
| 			max_size = SZ_32M;
 | |
| 			break;
 | |
| 		case VTCR_EL2_TG0_64K:
 | |
| 		default:    /* IMPDEF: treat any other value as 64k */
 | |
| 			/*
 | |
| 			 * No, we do not support 52bit IPA in nested yet. Once
 | |
| 			 * we do, this should be 4TB.
 | |
| 			 */
 | |
| 			max_size = SZ_512M;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(!max_size);
 | |
| 	return max_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We can have multiple *different* MMU contexts with the same VMID:
 | |
|  *
 | |
|  * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
 | |
|  *
 | |
|  * - Multiple vcpus using private S2s (huh huh...), hence differing by the
 | |
|  *   VBBTR_EL2.BADDR address
 | |
|  *
 | |
|  * - A combination of the above...
 | |
|  *
 | |
|  * We can always identify which MMU context to pick at run-time.  However,
 | |
|  * TLB invalidation involving a VMID must take action on all the TLBs using
 | |
|  * this particular VMID. This translates into applying the same invalidation
 | |
|  * operation to all the contexts that are using this VMID. Moar phun!
 | |
|  */
 | |
| void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
 | |
| 				const union tlbi_info *info,
 | |
| 				void (*tlbi_callback)(struct kvm_s2_mmu *,
 | |
| 						      const union tlbi_info *))
 | |
| {
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (!kvm_s2_mmu_valid(mmu))
 | |
| 			continue;
 | |
| 
 | |
| 		if (vmid == get_vmid(mmu->tlb_vttbr))
 | |
| 			tlbi_callback(mmu, info);
 | |
| 	}
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	bool nested_stage2_enabled;
 | |
| 	u64 vttbr, vtcr, hcr;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->mmu_lock);
 | |
| 
 | |
| 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
 | |
| 	vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
 | |
| 	hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
 | |
| 
 | |
| 	nested_stage2_enabled = hcr & HCR_VM;
 | |
| 
 | |
| 	/* Don't consider the CnP bit for the vttbr match */
 | |
| 	vttbr &= ~VTTBR_CNP_BIT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Two possibilities when looking up a S2 MMU context:
 | |
| 	 *
 | |
| 	 * - either S2 is enabled in the guest, and we need a context that is
 | |
| 	 *   S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
 | |
| 	 *   which makes it safe from a TLB conflict perspective (a broken
 | |
| 	 *   guest won't be able to generate them),
 | |
| 	 *
 | |
| 	 * - or S2 is disabled, and we need a context that is S2-disabled
 | |
| 	 *   and matches the VMID only, as all TLBs are tagged by VMID even
 | |
| 	 *   if S2 translation is disabled.
 | |
| 	 */
 | |
| 	for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (!kvm_s2_mmu_valid(mmu))
 | |
| 			continue;
 | |
| 
 | |
| 		if (nested_stage2_enabled &&
 | |
| 		    mmu->nested_stage2_enabled &&
 | |
| 		    vttbr == mmu->tlb_vttbr &&
 | |
| 		    vtcr == mmu->tlb_vtcr)
 | |
| 			return mmu;
 | |
| 
 | |
| 		if (!nested_stage2_enabled &&
 | |
| 		    !mmu->nested_stage2_enabled &&
 | |
| 		    get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
 | |
| 			return mmu;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	struct kvm_s2_mmu *s2_mmu;
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	s2_mmu = lookup_s2_mmu(vcpu);
 | |
| 	if (s2_mmu)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we don't always search from the same point, or we
 | |
| 	 * will always reuse a potentially active context, leaving
 | |
| 	 * free contexts unused.
 | |
| 	 */
 | |
| 	for (i = kvm->arch.nested_mmus_next;
 | |
| 	     i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
 | |
| 	     i++) {
 | |
| 		s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
 | |
| 
 | |
| 		if (atomic_read(&s2_mmu->refcnt) == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
 | |
| 
 | |
| 	/* Set the scene for the next search */
 | |
| 	kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
 | |
| 
 | |
| 	/* Clear the old state */
 | |
| 	if (kvm_s2_mmu_valid(s2_mmu))
 | |
| 		kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
 | |
| 
 | |
| 	/*
 | |
| 	 * The virtual VMID (modulo CnP) will be used as a key when matching
 | |
| 	 * an existing kvm_s2_mmu.
 | |
| 	 *
 | |
| 	 * We cache VTCR at allocation time, once and for all. It'd be great
 | |
| 	 * if the guest didn't screw that one up, as this is not very
 | |
| 	 * forgiving...
 | |
| 	 */
 | |
| 	s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
 | |
| 	s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
 | |
| 	s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
 | |
| 
 | |
| out:
 | |
| 	atomic_inc(&s2_mmu->refcnt);
 | |
| 	return s2_mmu;
 | |
| }
 | |
| 
 | |
| void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
 | |
| {
 | |
| 	/* CnP being set denotes an invalid entry */
 | |
| 	mmu->tlb_vttbr = VTTBR_CNP_BIT;
 | |
| 	mmu->nested_stage2_enabled = false;
 | |
| 	atomic_set(&mmu->refcnt, 0);
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_hyp_ctxt(vcpu)) {
 | |
| 		vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
 | |
| 	} else {
 | |
| 		write_lock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
 | |
| 		write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
 | |
| 		atomic_dec(&vcpu->arch.hw_mmu->refcnt);
 | |
| 		vcpu->arch.hw_mmu = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if permission fault is handled by injecting it to the next
 | |
|  * level hypervisor.
 | |
|  */
 | |
| int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
 | |
| {
 | |
| 	bool forward_fault = false;
 | |
| 
 | |
| 	trans->esr = 0;
 | |
| 
 | |
| 	if (!kvm_vcpu_trap_is_permission_fault(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (kvm_vcpu_trap_is_iabt(vcpu)) {
 | |
| 		forward_fault = !kvm_s2_trans_executable(trans);
 | |
| 	} else {
 | |
| 		bool write_fault = kvm_is_write_fault(vcpu);
 | |
| 
 | |
| 		forward_fault = ((write_fault && !trans->writable) ||
 | |
| 				 (!write_fault && !trans->readable));
 | |
| 	}
 | |
| 
 | |
| 	if (forward_fault)
 | |
| 		trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
 | |
| 
 | |
| 	return forward_fault;
 | |
| }
 | |
| 
 | |
| int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
 | |
| {
 | |
| 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
 | |
| 	vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
 | |
| 
 | |
| 	return kvm_inject_nested_sync(vcpu, esr_el2);
 | |
| }
 | |
| 
 | |
| void kvm_nested_s2_wp(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (kvm_s2_mmu_valid(mmu))
 | |
| 			kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_nested_s2_unmap(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (kvm_s2_mmu_valid(mmu))
 | |
| 			kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_nested_s2_flush(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (kvm_s2_mmu_valid(mmu))
 | |
| 			kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_all(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
 | |
| 		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
 | |
| 
 | |
| 		if (!WARN_ON(atomic_read(&mmu->refcnt)))
 | |
| 			kvm_free_stage2_pgd(mmu);
 | |
| 	}
 | |
| 	kvfree(kvm->arch.nested_mmus);
 | |
| 	kvm->arch.nested_mmus = NULL;
 | |
| 	kvm->arch.nested_mmus_size = 0;
 | |
| 	kvm_uninit_stage2_mmu(kvm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Our emulated CPU doesn't support all the possible features. For the
 | |
|  * sake of simplicity (and probably mental sanity), wipe out a number
 | |
|  * of feature bits we don't intend to support for the time being.
 | |
|  * This list should get updated as new features get added to the NV
 | |
|  * support, and new extension to the architecture.
 | |
|  */
 | |
| static void limit_nv_id_regs(struct kvm *kvm)
 | |
| {
 | |
| 	u64 val, tmp;
 | |
| 
 | |
| 	/* Support everything but TME */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1);
 | |
| 	val &= ~NV_FTR(ISAR0, TME);
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val);
 | |
| 
 | |
| 	/* Support everything but Spec Invalidation and LS64 */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1);
 | |
| 	val &= ~(NV_FTR(ISAR1, LS64)	|
 | |
| 		 NV_FTR(ISAR1, SPECRES));
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val);
 | |
| 
 | |
| 	/* No AMU, MPAM, S-EL2, or RAS */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1);
 | |
| 	val &= ~(GENMASK_ULL(55, 52)	|
 | |
| 		 NV_FTR(PFR0, AMU)	|
 | |
| 		 NV_FTR(PFR0, MPAM)	|
 | |
| 		 NV_FTR(PFR0, SEL2)	|
 | |
| 		 NV_FTR(PFR0, RAS)	|
 | |
| 		 NV_FTR(PFR0, EL3)	|
 | |
| 		 NV_FTR(PFR0, EL2)	|
 | |
| 		 NV_FTR(PFR0, EL1));
 | |
| 	/* 64bit EL1/EL2/EL3 only */
 | |
| 	val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001);
 | |
| 	val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001);
 | |
| 	val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001);
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val);
 | |
| 
 | |
| 	/* Only support BTI, SSBS, CSV2_frac */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1);
 | |
| 	val &= (NV_FTR(PFR1, BT)	|
 | |
| 		NV_FTR(PFR1, SSBS)	|
 | |
| 		NV_FTR(PFR1, CSV2_frac));
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val);
 | |
| 
 | |
| 	/* Hide ECV, ExS, Secure Memory */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1);
 | |
| 	val &= ~(NV_FTR(MMFR0, ECV)		|
 | |
| 		 NV_FTR(MMFR0, EXS)		|
 | |
| 		 NV_FTR(MMFR0, TGRAN4_2)	|
 | |
| 		 NV_FTR(MMFR0, TGRAN16_2)	|
 | |
| 		 NV_FTR(MMFR0, TGRAN64_2)	|
 | |
| 		 NV_FTR(MMFR0, SNSMEM));
 | |
| 
 | |
| 	/* Disallow unsupported S2 page sizes */
 | |
| 	switch (PAGE_SIZE) {
 | |
| 	case SZ_64K:
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001);
 | |
| 		fallthrough;
 | |
| 	case SZ_16K:
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001);
 | |
| 		fallthrough;
 | |
| 	case SZ_4K:
 | |
| 		/* Support everything */
 | |
| 		break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Since we can't support a guest S2 page size smaller than
 | |
| 	 * the host's own page size (due to KVM only populating its
 | |
| 	 * own S2 using the kernel's page size), advertise the
 | |
| 	 * limitation using FEAT_GTG.
 | |
| 	 */
 | |
| 	switch (PAGE_SIZE) {
 | |
| 	case SZ_4K:
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010);
 | |
| 		fallthrough;
 | |
| 	case SZ_16K:
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010);
 | |
| 		fallthrough;
 | |
| 	case SZ_64K:
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* Cap PARange to 48bits */
 | |
| 	tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val);
 | |
| 	if (tmp > 0b0101) {
 | |
| 		val &= ~NV_FTR(MMFR0, PARANGE);
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101);
 | |
| 	}
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val);
 | |
| 
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1);
 | |
| 	val &= (NV_FTR(MMFR1, HCX)	|
 | |
| 		NV_FTR(MMFR1, PAN)	|
 | |
| 		NV_FTR(MMFR1, LO)	|
 | |
| 		NV_FTR(MMFR1, HPDS)	|
 | |
| 		NV_FTR(MMFR1, VH)	|
 | |
| 		NV_FTR(MMFR1, VMIDBits));
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val);
 | |
| 
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1);
 | |
| 	val &= ~(NV_FTR(MMFR2, BBM)	|
 | |
| 		 NV_FTR(MMFR2, TTL)	|
 | |
| 		 GENMASK_ULL(47, 44)	|
 | |
| 		 NV_FTR(MMFR2, ST)	|
 | |
| 		 NV_FTR(MMFR2, CCIDX)	|
 | |
| 		 NV_FTR(MMFR2, VARange));
 | |
| 
 | |
| 	/* Force TTL support */
 | |
| 	val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001);
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val);
 | |
| 
 | |
| 	val = 0;
 | |
| 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
 | |
| 		val |= FIELD_PREP(NV_FTR(MMFR4, E2H0),
 | |
| 				  ID_AA64MMFR4_EL1_E2H0_NI_NV1);
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val);
 | |
| 
 | |
| 	/* Only limited support for PMU, Debug, BPs and WPs */
 | |
| 	val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
 | |
| 	val &= (NV_FTR(DFR0, PMUVer)	|
 | |
| 		NV_FTR(DFR0, WRPs)	|
 | |
| 		NV_FTR(DFR0, BRPs)	|
 | |
| 		NV_FTR(DFR0, DebugVer));
 | |
| 
 | |
| 	/* Cap Debug to ARMv8.1 */
 | |
| 	tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val);
 | |
| 	if (tmp > 0b0111) {
 | |
| 		val &= ~NV_FTR(DFR0, DebugVer);
 | |
| 		val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111);
 | |
| 	}
 | |
| 	kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val);
 | |
| }
 | |
| 
 | |
| u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr)
 | |
| {
 | |
| 	u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr);
 | |
| 	struct kvm_sysreg_masks *masks;
 | |
| 
 | |
| 	masks = vcpu->kvm->arch.sysreg_masks;
 | |
| 
 | |
| 	if (masks) {
 | |
| 		sr -= __VNCR_START__;
 | |
| 
 | |
| 		v &= ~masks->mask[sr].res0;
 | |
| 		v |= masks->mask[sr].res1;
 | |
| 	}
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
 | |
| {
 | |
| 	int i = sr - __VNCR_START__;
 | |
| 
 | |
| 	kvm->arch.sysreg_masks->mask[i].res0 = res0;
 | |
| 	kvm->arch.sysreg_masks->mask[i].res1 = res1;
 | |
| }
 | |
| 
 | |
| int kvm_init_nv_sysregs(struct kvm *kvm)
 | |
| {
 | |
| 	u64 res0, res1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.config_lock);
 | |
| 
 | |
| 	if (kvm->arch.sysreg_masks)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
 | |
| 					 GFP_KERNEL_ACCOUNT);
 | |
| 	if (!kvm->arch.sysreg_masks) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	limit_nv_id_regs(kvm);
 | |
| 
 | |
| 	/* VTTBR_EL2 */
 | |
| 	res0 = res1 = 0;
 | |
| 	if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
 | |
| 		res0 |= GENMASK(63, 56);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
 | |
| 		res0 |= VTTBR_CNP_BIT;
 | |
| 	set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
 | |
| 
 | |
| 	/* VTCR_EL2 */
 | |
| 	res0 = GENMASK(63, 32) | GENMASK(30, 20);
 | |
| 	res1 = BIT(31);
 | |
| 	set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
 | |
| 
 | |
| 	/* VMPIDR_EL2 */
 | |
| 	res0 = GENMASK(63, 40) | GENMASK(30, 24);
 | |
| 	res1 = BIT(31);
 | |
| 	set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
 | |
| 
 | |
| 	/* HCR_EL2 */
 | |
| 	res0 = BIT(48);
 | |
| 	res1 = HCR_RW;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP))
 | |
| 		res0 |= GENMASK(63, 59);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2))
 | |
| 		res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS))
 | |
| 		res0 |= (HCR_TTLBIS | HCR_TTLBOS);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
 | |
| 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
 | |
| 		res0 |= HCR_ENSCXT;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP))
 | |
| 		res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
 | |
| 		res0 |= HCR_AMVOFFEN;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1))
 | |
| 		res0 |= HCR_FIEN;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP))
 | |
| 		res0 |= HCR_FWB;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2))
 | |
| 		res0 |= HCR_NV2;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP))
 | |
| 		res0 |= (HCR_AT | HCR_NV1 | HCR_NV);
 | |
| 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
 | |
| 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
 | |
| 		res0 |= (HCR_API | HCR_APK);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP))
 | |
| 		res0 |= BIT(39);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
 | |
| 		res0 |= (HCR_TEA | HCR_TERR);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
 | |
| 		res0 |= HCR_TLOR;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP))
 | |
| 		res1 |= HCR_E2H;
 | |
| 	set_sysreg_masks(kvm, HCR_EL2, res0, res1);
 | |
| 
 | |
| 	/* HCRX_EL2 */
 | |
| 	res0 = HCRX_EL2_RES0;
 | |
| 	res1 = HCRX_EL2_RES1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP))
 | |
| 		res0 |= HCRX_EL2_PACMEn;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP))
 | |
| 		res0 |= HCRX_EL2_EnFPM;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
 | |
| 		res0 |= HCRX_EL2_GCSEn;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP))
 | |
| 		res0 |= HCRX_EL2_EnIDCP128;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC))
 | |
| 		res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP))
 | |
| 		res0 |= HCRX_EL2_TMEA;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP))
 | |
| 		res0 |= HCRX_EL2_D128En;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
 | |
| 		res0 |= HCRX_EL2_PTTWI;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP))
 | |
| 		res0 |= HCRX_EL2_SCTLR2En;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
 | |
| 		res0 |= HCRX_EL2_TCR2En;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
 | |
| 		res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP))
 | |
| 		res0 |= HCRX_EL2_CMOW;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP))
 | |
| 		res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) ||
 | |
| 	    !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS))
 | |
| 		res0 |= HCRX_EL2_SMPME;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
 | |
| 		res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V))
 | |
| 		res0 |= HCRX_EL2_EnASR;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64))
 | |
| 		res0 |= HCRX_EL2_EnALS;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
 | |
| 		res0 |= HCRX_EL2_EnAS0;
 | |
| 	set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
 | |
| 
 | |
| 	/* HFG[RW]TR_EL2 */
 | |
| 	res0 = res1 = 0;
 | |
| 	if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) &&
 | |
| 	      __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
 | |
| 		res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey |
 | |
| 			 HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey |
 | |
| 			 HFGxTR_EL2_APIBKey);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 |
 | |
| 			 HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 |
 | |
| 			 HFGxTR_EL2_LORSA_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) &&
 | |
| 	    !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2))
 | |
| 		res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP))
 | |
| 		res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 |
 | |
| 			 HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 |
 | |
| 			 HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 |
 | |
| 			 HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 |
 | |
| 			 HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA))
 | |
| 		res0 |= HFGxTR_EL2_nACCDATA_EL1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP))
 | |
| 		res0 |= HFGxTR_EL2_nRCWMASK_EL1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP))
 | |
| 		res0 |= HFGxTR_EL2_nS2POR_EL1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP))
 | |
| 		res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1);
 | |
| 	set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1);
 | |
| 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1);
 | |
| 
 | |
| 	/* HDFG[RW]TR_EL2 */
 | |
| 	res0 = res1 = 0;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
 | |
| 		res0 |= HDFGRTR_EL2_OSDLR_EL1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
 | |
| 		res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 |
 | |
| 			 HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 |
 | |
| 			 HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN |
 | |
| 			 HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 |
 | |
| 			 HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 |
 | |
| 			 HDFGRTR_EL2_PMCEIDn_EL0);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP))
 | |
| 		res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 |
 | |
| 			 HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 |
 | |
| 			 HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 |
 | |
| 			 HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 |
 | |
| 			 HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 |
 | |
| 			 HDFGRTR_EL2_PMBIDR_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
 | |
| 		res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS |
 | |
| 			 HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM |
 | |
| 			 HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID |
 | |
| 			 HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR |
 | |
| 			 HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR |
 | |
| 			 HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR |
 | |
| 			 HDFGRTR_EL2_TRCVICTLR);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP))
 | |
| 		res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 |
 | |
| 			 HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 |
 | |
| 			 HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 |
 | |
| 			 HDFGRTR_EL2_TRBTRG_EL1);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
 | |
| 		res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL |
 | |
| 			 HDFGRTR_EL2_nBRBDATA);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2))
 | |
| 		res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1;
 | |
| 	set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1);
 | |
| 
 | |
| 	/* Reuse the bits from the read-side and add the write-specific stuff */
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP))
 | |
| 		res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP))
 | |
| 		res0 |= HDFGWTR_EL2_TRCOSLAR;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
 | |
| 		res0 |= HDFGWTR_EL2_TRFCR_EL1;
 | |
| 	set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1);
 | |
| 
 | |
| 	/* HFGITR_EL2 */
 | |
| 	res0 = HFGITR_EL2_RES0;
 | |
| 	res1 = HFGITR_EL2_RES1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2))
 | |
| 		res0 |= HFGITR_EL2_DCCVADP;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
 | |
| 		res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
 | |
| 		res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
 | |
| 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS |
 | |
| 			 HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS |
 | |
| 			 HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS |
 | |
| 			 HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
 | |
| 		res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 |
 | |
| 			 HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 |
 | |
| 			 HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS |
 | |
| 			 HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS |
 | |
| 			 HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS |
 | |
| 			 HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP))
 | |
| 		res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX |
 | |
| 			 HFGITR_EL2_CPPRCTX);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP))
 | |
| 		res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP))
 | |
| 		res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 |
 | |
| 			 HFGITR_EL2_nGCSEPP);
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX))
 | |
| 		res0 |= HFGITR_EL2_COSPRCTX;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
 | |
| 		res0 |= HFGITR_EL2_ATS1E1A;
 | |
| 	set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
 | |
| 
 | |
| 	/* HAFGRTR_EL2 - not a lot to see here */
 | |
| 	res0 = HAFGRTR_EL2_RES0;
 | |
| 	res1 = HAFGRTR_EL2_RES1;
 | |
| 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1))
 | |
| 		res0 |= ~(res0 | res1);
 | |
| 	set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
 | |
| out:
 | |
| 	mutex_unlock(&kvm->arch.config_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |