mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-04-13 09:59:31 +00:00

this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
1819 lines
52 KiB
C
1819 lines
52 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
#ifndef __ASM_PGTABLE_H
|
|
#define __ASM_PGTABLE_H
|
|
|
|
#include <asm/bug.h>
|
|
#include <asm/proc-fns.h>
|
|
|
|
#include <asm/memory.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/pgtable-hwdef.h>
|
|
#include <asm/pgtable-prot.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
/*
|
|
* VMALLOC range.
|
|
*
|
|
* VMALLOC_START: beginning of the kernel vmalloc space
|
|
* VMALLOC_END: extends to the available space below vmemmap
|
|
*/
|
|
#define VMALLOC_START (MODULES_END)
|
|
#if VA_BITS == VA_BITS_MIN
|
|
#define VMALLOC_END (VMEMMAP_START - SZ_8M)
|
|
#else
|
|
#define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
|
|
#define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
|
|
#endif
|
|
|
|
#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <asm/cmpxchg.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/por.h>
|
|
#include <linux/mmdebug.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/page_table_check.h>
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
|
|
|
|
/* Set stride and tlb_level in flush_*_tlb_range */
|
|
#define flush_pmd_tlb_range(vma, addr, end) \
|
|
__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
|
|
#define flush_pud_tlb_range(vma, addr, end) \
|
|
__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/*
|
|
* Outside of a few very special situations (e.g. hibernation), we always
|
|
* use broadcast TLB invalidation instructions, therefore a spurious page
|
|
* fault on one CPU which has been handled concurrently by another CPU
|
|
* does not need to perform additional invalidation.
|
|
*/
|
|
#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
|
|
|
|
/*
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
|
* for zero-mapped memory areas etc..
|
|
*/
|
|
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
|
|
#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
|
|
|
|
/*
|
|
* Macros to convert between a physical address and its placement in a
|
|
* page table entry, taking care of 52-bit addresses.
|
|
*/
|
|
#ifdef CONFIG_ARM64_PA_BITS_52
|
|
static inline phys_addr_t __pte_to_phys(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~PTE_MAYBE_SHARED;
|
|
return (pte_val(pte) & PTE_ADDR_LOW) |
|
|
((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
|
|
}
|
|
static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
|
|
{
|
|
return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
|
|
}
|
|
#else
|
|
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW)
|
|
#define __phys_to_pte_val(phys) (phys)
|
|
#endif
|
|
|
|
#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
|
|
#define pfn_pte(pfn,prot) \
|
|
__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
|
|
|
#define pte_none(pte) (!pte_val(pte))
|
|
#define __pte_clear(mm, addr, ptep) \
|
|
__set_pte(ptep, __pte(0))
|
|
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
|
|
|
|
/*
|
|
* The following only work if pte_present(). Undefined behaviour otherwise.
|
|
*/
|
|
#define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
|
|
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
|
|
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
|
|
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
|
|
#define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
|
|
#define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
|
|
#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
|
|
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
|
|
#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
|
|
#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
|
|
PTE_ATTRINDX(MT_NORMAL_TAGGED))
|
|
|
|
#define pte_cont_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
|
|
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
|
|
})
|
|
|
|
#define pmd_cont_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
|
|
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
|
|
})
|
|
|
|
#define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
|
|
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
|
|
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
|
|
|
|
#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
|
|
#define pte_present_invalid(pte) \
|
|
((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
|
|
/*
|
|
* Execute-only user mappings do not have the PTE_USER bit set. All valid
|
|
* kernel mappings have the PTE_UXN bit set.
|
|
*/
|
|
#define pte_valid_not_user(pte) \
|
|
((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
|
|
/*
|
|
* Returns true if the pte is valid and has the contiguous bit set.
|
|
*/
|
|
#define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
|
|
/*
|
|
* Could the pte be present in the TLB? We must check mm_tlb_flush_pending
|
|
* so that we don't erroneously return false for pages that have been
|
|
* remapped as PROT_NONE but are yet to be flushed from the TLB.
|
|
* Note that we can't make any assumptions based on the state of the access
|
|
* flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
|
|
* TLB.
|
|
*/
|
|
#define pte_accessible(mm, pte) \
|
|
(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
|
|
|
|
static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
|
|
{
|
|
u64 por;
|
|
|
|
if (!system_supports_poe())
|
|
return true;
|
|
|
|
por = read_sysreg_s(SYS_POR_EL0);
|
|
|
|
if (write)
|
|
return por_elx_allows_write(por, pkey);
|
|
|
|
if (execute)
|
|
return por_elx_allows_exec(por, pkey);
|
|
|
|
return por_elx_allows_read(por, pkey);
|
|
}
|
|
|
|
/*
|
|
* p??_access_permitted() is true for valid user mappings (PTE_USER
|
|
* bit set, subject to the write permission check). For execute-only
|
|
* mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
|
|
* not set) must return false. PROT_NONE mappings do not have the
|
|
* PTE_VALID bit set.
|
|
*/
|
|
#define pte_access_permitted_no_overlay(pte, write) \
|
|
(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
|
|
#define pte_access_permitted(pte, write) \
|
|
(pte_access_permitted_no_overlay(pte, write) && \
|
|
por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
|
|
#define pmd_access_permitted(pmd, write) \
|
|
(pte_access_permitted(pmd_pte(pmd), (write)))
|
|
#define pud_access_permitted(pud, write) \
|
|
(pte_access_permitted(pud_pte(pud), (write)))
|
|
|
|
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
|
|
{
|
|
pte_val(pte) &= ~pgprot_val(prot);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
|
|
{
|
|
pte_val(pte) |= pgprot_val(prot);
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
|
|
{
|
|
pmd_val(pmd) &= ~pgprot_val(prot);
|
|
return pmd;
|
|
}
|
|
|
|
static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
|
|
{
|
|
pmd_val(pmd) |= pgprot_val(prot);
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t pte_mkwrite_novma(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
|
|
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkclean(pte_t pte)
|
|
{
|
|
pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
|
|
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
|
|
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkdirty(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
|
|
|
|
if (pte_write(pte))
|
|
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
|
|
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_wrprotect(pte_t pte)
|
|
{
|
|
/*
|
|
* If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
|
|
* clear), set the PTE_DIRTY bit.
|
|
*/
|
|
if (pte_hw_dirty(pte))
|
|
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
|
|
|
|
pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
|
|
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkold(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(PTE_AF));
|
|
}
|
|
|
|
static inline pte_t pte_mkyoung(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_AF));
|
|
}
|
|
|
|
static inline pte_t pte_mkspecial(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
|
|
}
|
|
|
|
static inline pte_t pte_mkcont(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(PTE_CONT));
|
|
return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
|
|
}
|
|
|
|
static inline pte_t pte_mknoncont(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(PTE_CONT));
|
|
}
|
|
|
|
static inline pte_t pte_mkpresent(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_VALID));
|
|
}
|
|
|
|
static inline pte_t pte_mkinvalid(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
|
|
pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t pmd_mkcont(pmd_t pmd)
|
|
{
|
|
return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
|
|
}
|
|
|
|
static inline pte_t pte_mkdevmap(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
|
|
static inline int pte_uffd_wp(pte_t pte)
|
|
{
|
|
return !!(pte_val(pte) & PTE_UFFD_WP);
|
|
}
|
|
|
|
static inline pte_t pte_mkuffd_wp(pte_t pte)
|
|
{
|
|
return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
|
|
}
|
|
|
|
static inline pte_t pte_clear_uffd_wp(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
|
|
|
|
static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
|
|
{
|
|
WRITE_ONCE(*ptep, pte);
|
|
}
|
|
|
|
static inline void __set_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
__set_pte_nosync(ptep, pte);
|
|
|
|
/*
|
|
* Only if the new pte is valid and kernel, otherwise TLB maintenance
|
|
* or update_mmu_cache() have the necessary barriers.
|
|
*/
|
|
if (pte_valid_not_user(pte)) {
|
|
dsb(ishst);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static inline pte_t __ptep_get(pte_t *ptep)
|
|
{
|
|
return READ_ONCE(*ptep);
|
|
}
|
|
|
|
extern void __sync_icache_dcache(pte_t pteval);
|
|
bool pgattr_change_is_safe(u64 old, u64 new);
|
|
|
|
/*
|
|
* PTE bits configuration in the presence of hardware Dirty Bit Management
|
|
* (PTE_WRITE == PTE_DBM):
|
|
*
|
|
* Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
|
|
* 0 0 | 1 0 0
|
|
* 0 1 | 1 1 0
|
|
* 1 0 | 1 0 1
|
|
* 1 1 | 0 1 x
|
|
*
|
|
* When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
|
|
* the page fault mechanism. Checking the dirty status of a pte becomes:
|
|
*
|
|
* PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
|
|
*/
|
|
|
|
static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
|
|
pte_t pte)
|
|
{
|
|
pte_t old_pte;
|
|
|
|
if (!IS_ENABLED(CONFIG_DEBUG_VM))
|
|
return;
|
|
|
|
old_pte = __ptep_get(ptep);
|
|
|
|
if (!pte_valid(old_pte) || !pte_valid(pte))
|
|
return;
|
|
if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
|
|
return;
|
|
|
|
/*
|
|
* Check for potential race with hardware updates of the pte
|
|
* (__ptep_set_access_flags safely changes valid ptes without going
|
|
* through an invalid entry).
|
|
*/
|
|
VM_WARN_ONCE(!pte_young(pte),
|
|
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
|
|
__func__, pte_val(old_pte), pte_val(pte));
|
|
VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
|
|
"%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
|
|
__func__, pte_val(old_pte), pte_val(pte));
|
|
VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
|
|
"%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
|
|
__func__, pte_val(old_pte), pte_val(pte));
|
|
}
|
|
|
|
static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
|
|
{
|
|
if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
|
|
__sync_icache_dcache(pte);
|
|
|
|
/*
|
|
* If the PTE would provide user space access to the tags associated
|
|
* with it then ensure that the MTE tags are synchronised. Although
|
|
* pte_access_permitted_no_overlay() returns false for exec only
|
|
* mappings, they don't expose tags (instruction fetches don't check
|
|
* tags).
|
|
*/
|
|
if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
|
|
!pte_special(pte) && pte_tagged(pte))
|
|
mte_sync_tags(pte, nr_pages);
|
|
}
|
|
|
|
/*
|
|
* Select all bits except the pfn
|
|
*/
|
|
#define pte_pgprot pte_pgprot
|
|
static inline pgprot_t pte_pgprot(pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
|
|
}
|
|
|
|
#define pte_advance_pfn pte_advance_pfn
|
|
static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
|
|
{
|
|
return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
|
|
}
|
|
|
|
static inline void __set_ptes(struct mm_struct *mm,
|
|
unsigned long __always_unused addr,
|
|
pte_t *ptep, pte_t pte, unsigned int nr)
|
|
{
|
|
page_table_check_ptes_set(mm, ptep, pte, nr);
|
|
__sync_cache_and_tags(pte, nr);
|
|
|
|
for (;;) {
|
|
__check_safe_pte_update(mm, ptep, pte);
|
|
__set_pte(ptep, pte);
|
|
if (--nr == 0)
|
|
break;
|
|
ptep++;
|
|
pte = pte_advance_pfn(pte, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Huge pte definitions.
|
|
*/
|
|
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
|
|
|
|
/*
|
|
* Hugetlb definitions.
|
|
*/
|
|
#define HUGE_MAX_HSTATE 4
|
|
#define HPAGE_SHIFT PMD_SHIFT
|
|
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
|
|
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
|
|
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
|
|
|
|
static inline pte_t pgd_pte(pgd_t pgd)
|
|
{
|
|
return __pte(pgd_val(pgd));
|
|
}
|
|
|
|
static inline pte_t p4d_pte(p4d_t p4d)
|
|
{
|
|
return __pte(p4d_val(p4d));
|
|
}
|
|
|
|
static inline pte_t pud_pte(pud_t pud)
|
|
{
|
|
return __pte(pud_val(pud));
|
|
}
|
|
|
|
static inline pud_t pte_pud(pte_t pte)
|
|
{
|
|
return __pud(pte_val(pte));
|
|
}
|
|
|
|
static inline pmd_t pud_pmd(pud_t pud)
|
|
{
|
|
return __pmd(pud_val(pud));
|
|
}
|
|
|
|
static inline pte_t pmd_pte(pmd_t pmd)
|
|
{
|
|
return __pte(pmd_val(pmd));
|
|
}
|
|
|
|
static inline pmd_t pte_pmd(pte_t pte)
|
|
{
|
|
return __pmd(pte_val(pte));
|
|
}
|
|
|
|
static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
|
|
{
|
|
return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
|
|
}
|
|
|
|
static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
|
|
{
|
|
return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
|
|
}
|
|
|
|
static inline pte_t pte_swp_mkexclusive(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
|
|
}
|
|
|
|
static inline int pte_swp_exclusive(pte_t pte)
|
|
{
|
|
return pte_val(pte) & PTE_SWP_EXCLUSIVE;
|
|
}
|
|
|
|
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
|
|
static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
|
|
}
|
|
|
|
static inline int pte_swp_uffd_wp(pte_t pte)
|
|
{
|
|
return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
|
|
}
|
|
|
|
static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/*
|
|
* See the comment in include/linux/pgtable.h
|
|
*/
|
|
static inline int pte_protnone(pte_t pte)
|
|
{
|
|
/*
|
|
* pte_present_invalid() tells us that the pte is invalid from HW
|
|
* perspective but present from SW perspective, so the fields are to be
|
|
* interpretted as per the HW layout. The second 2 checks are the unique
|
|
* encoding that we use for PROT_NONE. It is insufficient to only use
|
|
* the first check because we share the same encoding scheme with pmds
|
|
* which support pmd_mkinvalid(), so can be present-invalid without
|
|
* being PROT_NONE.
|
|
*/
|
|
return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
|
|
}
|
|
|
|
static inline int pmd_protnone(pmd_t pmd)
|
|
{
|
|
return pte_protnone(pmd_pte(pmd));
|
|
}
|
|
#endif
|
|
|
|
#define pmd_present(pmd) pte_present(pmd_pte(pmd))
|
|
|
|
/*
|
|
* THP definitions.
|
|
*/
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
|
|
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
|
|
#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
|
|
#define pmd_user(pmd) pte_user(pmd_pte(pmd))
|
|
#define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
|
|
#define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
|
|
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
|
|
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
|
|
#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
|
|
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
|
|
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
|
|
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
|
|
#define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
|
|
#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
|
|
#define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
|
|
#define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
|
|
#define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
|
|
#define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
|
|
#define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
|
|
#define pmd_swp_clear_uffd_wp(pmd) \
|
|
pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
|
|
#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
|
|
|
|
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
|
|
|
|
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
|
|
#endif
|
|
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
|
|
{
|
|
return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
|
|
#define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
|
|
static inline pmd_t pmd_mkspecial(pmd_t pmd)
|
|
{
|
|
return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
|
|
}
|
|
#endif
|
|
|
|
#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
|
|
#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
|
|
#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
|
|
#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
|
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
|
|
|
|
#define pud_young(pud) pte_young(pud_pte(pud))
|
|
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
|
|
#define pud_write(pud) pte_write(pud_pte(pud))
|
|
|
|
#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
|
|
|
|
#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
|
|
#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
|
|
#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
|
|
#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
|
|
|
#ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
|
|
#define pud_special(pte) pte_special(pud_pte(pud))
|
|
#define pud_mkspecial(pte) pte_pud(pte_mkspecial(pud_pte(pud)))
|
|
#endif
|
|
|
|
#define pmd_pgprot pmd_pgprot
|
|
static inline pgprot_t pmd_pgprot(pmd_t pmd)
|
|
{
|
|
unsigned long pfn = pmd_pfn(pmd);
|
|
|
|
return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
|
|
}
|
|
|
|
#define pud_pgprot pud_pgprot
|
|
static inline pgprot_t pud_pgprot(pud_t pud)
|
|
{
|
|
unsigned long pfn = pud_pfn(pud);
|
|
|
|
return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
|
|
}
|
|
|
|
static inline void __set_pte_at(struct mm_struct *mm,
|
|
unsigned long __always_unused addr,
|
|
pte_t *ptep, pte_t pte, unsigned int nr)
|
|
{
|
|
__sync_cache_and_tags(pte, nr);
|
|
__check_safe_pte_update(mm, ptep, pte);
|
|
__set_pte(ptep, pte);
|
|
}
|
|
|
|
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
page_table_check_pmd_set(mm, pmdp, pmd);
|
|
return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
|
|
PMD_SIZE >> PAGE_SHIFT);
|
|
}
|
|
|
|
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
|
|
pud_t *pudp, pud_t pud)
|
|
{
|
|
page_table_check_pud_set(mm, pudp, pud);
|
|
return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
|
|
PUD_SIZE >> PAGE_SHIFT);
|
|
}
|
|
|
|
#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
|
|
#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
|
|
|
|
#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
|
|
#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
|
|
|
|
#define __pgprot_modify(prot,mask,bits) \
|
|
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
|
|
|
|
#define pgprot_nx(prot) \
|
|
__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
|
|
|
|
/*
|
|
* Mark the prot value as uncacheable and unbufferable.
|
|
*/
|
|
#define pgprot_noncached(prot) \
|
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
|
|
#define pgprot_writecombine(prot) \
|
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
|
|
#define pgprot_device(prot) \
|
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
|
|
#define pgprot_tagged(prot) \
|
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
|
|
#define pgprot_mhp pgprot_tagged
|
|
/*
|
|
* DMA allocations for non-coherent devices use what the Arm architecture calls
|
|
* "Normal non-cacheable" memory, which permits speculation, unaligned accesses
|
|
* and merging of writes. This is different from "Device-nGnR[nE]" memory which
|
|
* is intended for MMIO and thus forbids speculation, preserves access size,
|
|
* requires strict alignment and can also force write responses to come from the
|
|
* endpoint.
|
|
*/
|
|
#define pgprot_dmacoherent(prot) \
|
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
|
|
PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
|
|
|
|
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
|
struct file;
|
|
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot);
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
|
|
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
|
|
PMD_TYPE_TABLE)
|
|
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
|
|
PMD_TYPE_SECT)
|
|
#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
|
|
#define pmd_bad(pmd) (!pmd_table(pmd))
|
|
|
|
#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
|
|
#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
|
|
|
|
#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
|
|
static inline bool pud_sect(pud_t pud) { return false; }
|
|
static inline bool pud_table(pud_t pud) { return true; }
|
|
#else
|
|
#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
|
|
PUD_TYPE_SECT)
|
|
#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
|
|
PUD_TYPE_TABLE)
|
|
#endif
|
|
|
|
extern pgd_t init_pg_dir[];
|
|
extern pgd_t init_pg_end[];
|
|
extern pgd_t swapper_pg_dir[];
|
|
extern pgd_t idmap_pg_dir[];
|
|
extern pgd_t tramp_pg_dir[];
|
|
extern pgd_t reserved_pg_dir[];
|
|
|
|
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
|
|
|
|
static inline bool in_swapper_pgdir(void *addr)
|
|
{
|
|
return ((unsigned long)addr & PAGE_MASK) ==
|
|
((unsigned long)swapper_pg_dir & PAGE_MASK);
|
|
}
|
|
|
|
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
if (in_swapper_pgdir(pmdp)) {
|
|
set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
|
|
return;
|
|
}
|
|
#endif /* __PAGETABLE_PMD_FOLDED */
|
|
|
|
WRITE_ONCE(*pmdp, pmd);
|
|
|
|
if (pmd_valid(pmd)) {
|
|
dsb(ishst);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
set_pmd(pmdp, __pmd(0));
|
|
}
|
|
|
|
static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
|
|
{
|
|
return __pmd_to_phys(pmd);
|
|
}
|
|
|
|
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
|
{
|
|
return (unsigned long)__va(pmd_page_paddr(pmd));
|
|
}
|
|
|
|
/* Find an entry in the third-level page table. */
|
|
#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
|
|
|
|
#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
|
|
#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
|
|
#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
|
|
|
|
#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
|
|
|
|
/* use ONLY for statically allocated translation tables */
|
|
#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
|
|
#define pmd_ERROR(e) \
|
|
pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
|
|
|
|
#define pud_none(pud) (!pud_val(pud))
|
|
#define pud_bad(pud) (!pud_table(pud))
|
|
#define pud_present(pud) pte_present(pud_pte(pud))
|
|
#ifndef __PAGETABLE_PMD_FOLDED
|
|
#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
|
|
#else
|
|
#define pud_leaf(pud) false
|
|
#endif
|
|
#define pud_valid(pud) pte_valid(pud_pte(pud))
|
|
#define pud_user(pud) pte_user(pud_pte(pud))
|
|
#define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
|
|
|
|
static inline bool pgtable_l4_enabled(void);
|
|
|
|
static inline void set_pud(pud_t *pudp, pud_t pud)
|
|
{
|
|
if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
|
|
set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
|
|
return;
|
|
}
|
|
|
|
WRITE_ONCE(*pudp, pud);
|
|
|
|
if (pud_valid(pud)) {
|
|
dsb(ishst);
|
|
isb();
|
|
}
|
|
}
|
|
|
|
static inline void pud_clear(pud_t *pudp)
|
|
{
|
|
set_pud(pudp, __pud(0));
|
|
}
|
|
|
|
static inline phys_addr_t pud_page_paddr(pud_t pud)
|
|
{
|
|
return __pud_to_phys(pud);
|
|
}
|
|
|
|
static inline pmd_t *pud_pgtable(pud_t pud)
|
|
{
|
|
return (pmd_t *)__va(pud_page_paddr(pud));
|
|
}
|
|
|
|
/* Find an entry in the second-level page table. */
|
|
#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
|
|
|
|
#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
|
|
#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
|
|
#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
|
|
|
|
#define pud_page(pud) phys_to_page(__pud_to_phys(pud))
|
|
|
|
/* use ONLY for statically allocated translation tables */
|
|
#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
|
|
|
|
#else
|
|
|
|
#define pud_valid(pud) false
|
|
#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
|
|
#define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
|
|
|
|
/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
|
|
#define pmd_set_fixmap(addr) NULL
|
|
#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
|
|
#define pmd_clear_fixmap()
|
|
|
|
#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
|
|
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 3
|
|
|
|
static __always_inline bool pgtable_l4_enabled(void)
|
|
{
|
|
if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
|
|
return true;
|
|
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
|
|
return vabits_actual == VA_BITS;
|
|
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
|
|
}
|
|
|
|
static inline bool mm_pud_folded(const struct mm_struct *mm)
|
|
{
|
|
return !pgtable_l4_enabled();
|
|
}
|
|
#define mm_pud_folded mm_pud_folded
|
|
|
|
#define pud_ERROR(e) \
|
|
pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
|
|
|
|
#define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
|
|
#define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
|
|
#define p4d_present(p4d) (!p4d_none(p4d))
|
|
|
|
static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
|
|
{
|
|
if (in_swapper_pgdir(p4dp)) {
|
|
set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
|
|
return;
|
|
}
|
|
|
|
WRITE_ONCE(*p4dp, p4d);
|
|
dsb(ishst);
|
|
isb();
|
|
}
|
|
|
|
static inline void p4d_clear(p4d_t *p4dp)
|
|
{
|
|
if (pgtable_l4_enabled())
|
|
set_p4d(p4dp, __p4d(0));
|
|
}
|
|
|
|
static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
|
|
{
|
|
return __p4d_to_phys(p4d);
|
|
}
|
|
|
|
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
|
|
|
|
static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
|
|
{
|
|
return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
|
|
}
|
|
|
|
static inline pud_t *p4d_pgtable(p4d_t p4d)
|
|
{
|
|
return (pud_t *)__va(p4d_page_paddr(p4d));
|
|
}
|
|
|
|
static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
|
|
{
|
|
BUG_ON(!pgtable_l4_enabled());
|
|
|
|
return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
|
|
}
|
|
|
|
static inline
|
|
pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
|
|
{
|
|
if (!pgtable_l4_enabled())
|
|
return p4d_to_folded_pud(p4dp, addr);
|
|
return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
|
|
}
|
|
#define pud_offset_lockless pud_offset_lockless
|
|
|
|
static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
|
|
{
|
|
return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
|
|
}
|
|
#define pud_offset pud_offset
|
|
|
|
static inline pud_t *pud_set_fixmap(unsigned long addr)
|
|
{
|
|
if (!pgtable_l4_enabled())
|
|
return NULL;
|
|
return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
|
|
}
|
|
|
|
static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
|
|
{
|
|
if (!pgtable_l4_enabled())
|
|
return p4d_to_folded_pud(p4dp, addr);
|
|
return pud_set_fixmap(pud_offset_phys(p4dp, addr));
|
|
}
|
|
|
|
static inline void pud_clear_fixmap(void)
|
|
{
|
|
if (pgtable_l4_enabled())
|
|
clear_fixmap(FIX_PUD);
|
|
}
|
|
|
|
/* use ONLY for statically allocated translation tables */
|
|
static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
|
|
{
|
|
if (!pgtable_l4_enabled())
|
|
return p4d_to_folded_pud(p4dp, addr);
|
|
return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
|
|
}
|
|
|
|
#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
|
|
|
|
#else
|
|
|
|
static inline bool pgtable_l4_enabled(void) { return false; }
|
|
|
|
#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
|
|
|
|
/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
|
|
#define pud_set_fixmap(addr) NULL
|
|
#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
|
|
#define pud_clear_fixmap()
|
|
|
|
#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
|
|
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 4
|
|
|
|
static __always_inline bool pgtable_l5_enabled(void)
|
|
{
|
|
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
|
|
return vabits_actual == VA_BITS;
|
|
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
|
|
}
|
|
|
|
static inline bool mm_p4d_folded(const struct mm_struct *mm)
|
|
{
|
|
return !pgtable_l5_enabled();
|
|
}
|
|
#define mm_p4d_folded mm_p4d_folded
|
|
|
|
#define p4d_ERROR(e) \
|
|
pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
|
|
|
|
#define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
|
|
#define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
|
|
#define pgd_present(pgd) (!pgd_none(pgd))
|
|
|
|
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
|
|
{
|
|
if (in_swapper_pgdir(pgdp)) {
|
|
set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
|
|
return;
|
|
}
|
|
|
|
WRITE_ONCE(*pgdp, pgd);
|
|
dsb(ishst);
|
|
isb();
|
|
}
|
|
|
|
static inline void pgd_clear(pgd_t *pgdp)
|
|
{
|
|
if (pgtable_l5_enabled())
|
|
set_pgd(pgdp, __pgd(0));
|
|
}
|
|
|
|
static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
|
|
{
|
|
return __pgd_to_phys(pgd);
|
|
}
|
|
|
|
#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
|
|
|
|
static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
|
|
{
|
|
return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
|
|
}
|
|
|
|
static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
|
|
{
|
|
BUG_ON(!pgtable_l5_enabled());
|
|
|
|
return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
|
|
}
|
|
|
|
static inline
|
|
p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
|
|
{
|
|
if (!pgtable_l5_enabled())
|
|
return pgd_to_folded_p4d(pgdp, addr);
|
|
return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
|
|
}
|
|
#define p4d_offset_lockless p4d_offset_lockless
|
|
|
|
static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
|
|
{
|
|
return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
|
|
}
|
|
|
|
static inline p4d_t *p4d_set_fixmap(unsigned long addr)
|
|
{
|
|
if (!pgtable_l5_enabled())
|
|
return NULL;
|
|
return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
|
|
}
|
|
|
|
static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
|
|
{
|
|
if (!pgtable_l5_enabled())
|
|
return pgd_to_folded_p4d(pgdp, addr);
|
|
return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
|
|
}
|
|
|
|
static inline void p4d_clear_fixmap(void)
|
|
{
|
|
if (pgtable_l5_enabled())
|
|
clear_fixmap(FIX_P4D);
|
|
}
|
|
|
|
/* use ONLY for statically allocated translation tables */
|
|
static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
|
|
{
|
|
if (!pgtable_l5_enabled())
|
|
return pgd_to_folded_p4d(pgdp, addr);
|
|
return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
|
|
}
|
|
|
|
#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
|
|
|
|
#else
|
|
|
|
static inline bool pgtable_l5_enabled(void) { return false; }
|
|
|
|
#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
|
|
|
|
/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
|
|
#define p4d_set_fixmap(addr) NULL
|
|
#define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
|
|
#define p4d_clear_fixmap()
|
|
|
|
#define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
|
|
|
|
static inline
|
|
p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
|
|
{
|
|
/*
|
|
* With runtime folding of the pud, pud_offset_lockless() passes
|
|
* the 'pgd_t *' we return here to p4d_to_folded_pud(), which
|
|
* will offset the pointer assuming that it points into
|
|
* a page-table page. However, the fast GUP path passes us a
|
|
* pgd_t allocated on the stack and so we must use the original
|
|
* pointer in 'pgdp' to construct the p4d pointer instead of
|
|
* using the generic p4d_offset_lockless() implementation.
|
|
*
|
|
* Note: reusing the original pointer means that we may
|
|
* dereference the same (live) page-table entry multiple times.
|
|
* This is safe because it is still only loaded once in the
|
|
* context of each level and the CPU guarantees same-address
|
|
* read-after-read ordering.
|
|
*/
|
|
return p4d_offset(pgdp, addr);
|
|
}
|
|
#define p4d_offset_lockless p4d_offset_lockless_folded
|
|
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
|
|
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
|
|
#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
|
|
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
/*
|
|
* Normal and Normal-Tagged are two different memory types and indices
|
|
* in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
|
|
*/
|
|
const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
|
|
PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
|
|
PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
|
|
|
|
/* preserve the hardware dirty information */
|
|
if (pte_hw_dirty(pte))
|
|
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
|
|
|
|
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
|
|
/*
|
|
* If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
|
|
* dirtiness again.
|
|
*/
|
|
if (pte_sw_dirty(pte))
|
|
pte = pte_mkdirty(pte);
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
|
|
}
|
|
|
|
extern int __ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
|
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
|
|
pmd_pte(entry), dirty);
|
|
}
|
|
|
|
static inline int pud_devmap(pud_t pud)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int pgd_devmap(pgd_t pgd)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PAGE_TABLE_CHECK
|
|
static inline bool pte_user_accessible_page(pte_t pte)
|
|
{
|
|
return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
|
|
}
|
|
|
|
static inline bool pmd_user_accessible_page(pmd_t pmd)
|
|
{
|
|
return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
|
|
}
|
|
|
|
static inline bool pud_user_accessible_page(pud_t pud)
|
|
{
|
|
return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Atomic pte/pmd modifications.
|
|
*/
|
|
static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t old_pte, pte;
|
|
|
|
pte = __ptep_get(ptep);
|
|
do {
|
|
old_pte = pte;
|
|
pte = pte_mkold(pte);
|
|
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
|
|
pte_val(old_pte), pte_val(pte));
|
|
} while (pte_val(pte) != pte_val(old_pte));
|
|
|
|
return pte_young(pte);
|
|
}
|
|
|
|
static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
int young = __ptep_test_and_clear_young(vma, address, ptep);
|
|
|
|
if (young) {
|
|
/*
|
|
* We can elide the trailing DSB here since the worst that can
|
|
* happen is that a CPU continues to use the young entry in its
|
|
* TLB and we mistakenly reclaim the associated page. The
|
|
* window for such an event is bounded by the next
|
|
* context-switch, which provides a DSB to complete the TLB
|
|
* invalidation.
|
|
*/
|
|
flush_tlb_page_nosync(vma, address);
|
|
}
|
|
|
|
return young;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
|
|
|
|
page_table_check_pte_clear(mm, pte);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned int nr, int full)
|
|
{
|
|
for (;;) {
|
|
__ptep_get_and_clear(mm, addr, ptep);
|
|
if (--nr == 0)
|
|
break;
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, int full)
|
|
{
|
|
pte_t pte, tmp_pte;
|
|
|
|
pte = __ptep_get_and_clear(mm, addr, ptep);
|
|
while (--nr) {
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
|
|
if (pte_dirty(tmp_pte))
|
|
pte = pte_mkdirty(pte);
|
|
if (pte_young(tmp_pte))
|
|
pte = pte_mkyoung(pte);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
|
|
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
|
|
|
|
page_table_check_pmd_clear(mm, pmd);
|
|
|
|
return pmd;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t pte)
|
|
{
|
|
pte_t old_pte;
|
|
|
|
do {
|
|
old_pte = pte;
|
|
pte = pte_wrprotect(pte);
|
|
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
|
|
pte_val(old_pte), pte_val(pte));
|
|
} while (pte_val(pte) != pte_val(old_pte));
|
|
}
|
|
|
|
/*
|
|
* __ptep_set_wrprotect - mark read-only while trasferring potential hardware
|
|
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
|
|
*/
|
|
static inline void __ptep_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
|
|
}
|
|
|
|
static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
|
|
pte_t *ptep, unsigned int nr)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
|
|
__ptep_set_wrprotect(mm, address, ptep);
|
|
}
|
|
|
|
static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t pte, cydp_t flags)
|
|
{
|
|
pte_t old_pte;
|
|
|
|
do {
|
|
old_pte = pte;
|
|
|
|
if (flags & CYDP_CLEAR_YOUNG)
|
|
pte = pte_mkold(pte);
|
|
if (flags & CYDP_CLEAR_DIRTY)
|
|
pte = pte_mkclean(pte);
|
|
|
|
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
|
|
pte_val(old_pte), pte_val(pte));
|
|
} while (pte_val(pte) != pte_val(old_pte));
|
|
}
|
|
|
|
static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, cydp_t flags)
|
|
{
|
|
pte_t pte;
|
|
|
|
for (;;) {
|
|
pte = __ptep_get(ptep);
|
|
|
|
if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
|
|
__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
|
|
else
|
|
__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
|
|
|
|
if (--nr == 0)
|
|
break;
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
|
|
}
|
|
|
|
#define pmdp_establish pmdp_establish
|
|
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
|
|
return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Encode and decode a swap entry:
|
|
* bits 0-1: present (must be zero)
|
|
* bits 2: remember PG_anon_exclusive
|
|
* bit 3: remember uffd-wp state
|
|
* bits 6-10: swap type
|
|
* bit 11: PTE_PRESENT_INVALID (must be zero)
|
|
* bits 12-61: swap offset
|
|
*/
|
|
#define __SWP_TYPE_SHIFT 6
|
|
#define __SWP_TYPE_BITS 5
|
|
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
|
|
#define __SWP_OFFSET_SHIFT 12
|
|
#define __SWP_OFFSET_BITS 50
|
|
#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
|
|
|
|
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
|
|
#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
|
|
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
|
|
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
|
|
#define __swp_entry_to_pmd(swp) __pmd((swp).val)
|
|
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
|
|
|
|
/*
|
|
* Ensure that there are not more swap files than can be encoded in the kernel
|
|
* PTEs.
|
|
*/
|
|
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
|
|
|
|
#ifdef CONFIG_ARM64_MTE
|
|
|
|
#define __HAVE_ARCH_PREPARE_TO_SWAP
|
|
extern int arch_prepare_to_swap(struct folio *folio);
|
|
|
|
#define __HAVE_ARCH_SWAP_INVALIDATE
|
|
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
|
|
{
|
|
if (system_supports_mte())
|
|
mte_invalidate_tags(type, offset);
|
|
}
|
|
|
|
static inline void arch_swap_invalidate_area(int type)
|
|
{
|
|
if (system_supports_mte())
|
|
mte_invalidate_tags_area(type);
|
|
}
|
|
|
|
#define __HAVE_ARCH_SWAP_RESTORE
|
|
extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
|
|
|
|
#endif /* CONFIG_ARM64_MTE */
|
|
|
|
/*
|
|
* On AArch64, the cache coherency is handled via the __set_ptes() function.
|
|
*/
|
|
static inline void update_mmu_cache_range(struct vm_fault *vmf,
|
|
struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
|
|
unsigned int nr)
|
|
{
|
|
/*
|
|
* We don't do anything here, so there's a very small chance of
|
|
* us retaking a user fault which we just fixed up. The alternative
|
|
* is doing a dsb(ishst), but that penalises the fastpath.
|
|
*/
|
|
}
|
|
|
|
#define update_mmu_cache(vma, addr, ptep) \
|
|
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
|
|
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
|
|
|
|
#ifdef CONFIG_ARM64_PA_BITS_52
|
|
#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
|
|
#else
|
|
#define phys_to_ttbr(addr) (addr)
|
|
#endif
|
|
|
|
/*
|
|
* On arm64 without hardware Access Flag, copying from user will fail because
|
|
* the pte is old and cannot be marked young. So we always end up with zeroed
|
|
* page after fork() + CoW for pfn mappings. We don't always have a
|
|
* hardware-managed access flag on arm64.
|
|
*/
|
|
#define arch_has_hw_pte_young cpu_has_hw_af
|
|
|
|
/*
|
|
* Experimentally, it's cheap to set the access flag in hardware and we
|
|
* benefit from prefaulting mappings as 'old' to start with.
|
|
*/
|
|
#define arch_wants_old_prefaulted_pte cpu_has_hw_af
|
|
|
|
static inline bool pud_sect_supported(void)
|
|
{
|
|
return PAGE_SIZE == SZ_4K;
|
|
}
|
|
|
|
|
|
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
#define ptep_modify_prot_start ptep_modify_prot_start
|
|
extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep);
|
|
|
|
#define ptep_modify_prot_commit ptep_modify_prot_commit
|
|
extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t old_pte, pte_t new_pte);
|
|
|
|
#ifdef CONFIG_ARM64_CONTPTE
|
|
|
|
/*
|
|
* The contpte APIs are used to transparently manage the contiguous bit in ptes
|
|
* where it is possible and makes sense to do so. The PTE_CONT bit is considered
|
|
* a private implementation detail of the public ptep API (see below).
|
|
*/
|
|
extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte);
|
|
extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte);
|
|
extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
|
|
extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
|
|
extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte, unsigned int nr);
|
|
extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned int nr, int full);
|
|
extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, int full);
|
|
extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep);
|
|
extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep);
|
|
extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned int nr);
|
|
extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t entry, int dirty);
|
|
extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, cydp_t flags);
|
|
|
|
static __always_inline void contpte_try_fold(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep, pte_t pte)
|
|
{
|
|
/*
|
|
* Only bother trying if both the virtual and physical addresses are
|
|
* aligned and correspond to the last entry in a contig range. The core
|
|
* code mostly modifies ranges from low to high, so this is the likely
|
|
* the last modification in the contig range, so a good time to fold.
|
|
* We can't fold special mappings, because there is no associated folio.
|
|
*/
|
|
|
|
const unsigned long contmask = CONT_PTES - 1;
|
|
bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
|
|
|
|
if (unlikely(valign)) {
|
|
bool palign = (pte_pfn(pte) & contmask) == contmask;
|
|
|
|
if (unlikely(palign &&
|
|
pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
|
|
__contpte_try_fold(mm, addr, ptep, pte);
|
|
}
|
|
}
|
|
|
|
static __always_inline void contpte_try_unfold(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep, pte_t pte)
|
|
{
|
|
if (unlikely(pte_valid_cont(pte)))
|
|
__contpte_try_unfold(mm, addr, ptep, pte);
|
|
}
|
|
|
|
#define pte_batch_hint pte_batch_hint
|
|
static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
|
|
{
|
|
if (!pte_valid_cont(pte))
|
|
return 1;
|
|
|
|
return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
|
|
}
|
|
|
|
/*
|
|
* The below functions constitute the public API that arm64 presents to the
|
|
* core-mm to manipulate PTE entries within their page tables (or at least this
|
|
* is the subset of the API that arm64 needs to implement). These public
|
|
* versions will automatically and transparently apply the contiguous bit where
|
|
* it makes sense to do so. Therefore any users that are contig-aware (e.g.
|
|
* hugetlb, kernel mapper) should NOT use these APIs, but instead use the
|
|
* private versions, which are prefixed with double underscore. All of these
|
|
* APIs except for ptep_get_lockless() are expected to be called with the PTL
|
|
* held. Although the contiguous bit is considered private to the
|
|
* implementation, it is deliberately allowed to leak through the getters (e.g.
|
|
* ptep_get()), back to core code. This is required so that pte_leaf_size() can
|
|
* provide an accurate size for perf_get_pgtable_size(). But this leakage means
|
|
* its possible a pte will be passed to a setter with the contiguous bit set, so
|
|
* we explicitly clear the contiguous bit in those cases to prevent accidentally
|
|
* setting it in the pgtable.
|
|
*/
|
|
|
|
#define ptep_get ptep_get
|
|
static inline pte_t ptep_get(pte_t *ptep)
|
|
{
|
|
pte_t pte = __ptep_get(ptep);
|
|
|
|
if (likely(!pte_valid_cont(pte)))
|
|
return pte;
|
|
|
|
return contpte_ptep_get(ptep, pte);
|
|
}
|
|
|
|
#define ptep_get_lockless ptep_get_lockless
|
|
static inline pte_t ptep_get_lockless(pte_t *ptep)
|
|
{
|
|
pte_t pte = __ptep_get(ptep);
|
|
|
|
if (likely(!pte_valid_cont(pte)))
|
|
return pte;
|
|
|
|
return contpte_ptep_get_lockless(ptep);
|
|
}
|
|
|
|
static inline void set_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
/*
|
|
* We don't have the mm or vaddr so cannot unfold contig entries (since
|
|
* it requires tlb maintenance). set_pte() is not used in core code, so
|
|
* this should never even be called. Regardless do our best to service
|
|
* any call and emit a warning if there is any attempt to set a pte on
|
|
* top of an existing contig range.
|
|
*/
|
|
pte_t orig_pte = __ptep_get(ptep);
|
|
|
|
WARN_ON_ONCE(pte_valid_cont(orig_pte));
|
|
__set_pte(ptep, pte_mknoncont(pte));
|
|
}
|
|
|
|
#define set_ptes set_ptes
|
|
static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte, unsigned int nr)
|
|
{
|
|
pte = pte_mknoncont(pte);
|
|
|
|
if (likely(nr == 1)) {
|
|
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
|
|
__set_ptes(mm, addr, ptep, pte, 1);
|
|
contpte_try_fold(mm, addr, ptep, pte);
|
|
} else {
|
|
contpte_set_ptes(mm, addr, ptep, pte, nr);
|
|
}
|
|
}
|
|
|
|
static inline void pte_clear(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
|
|
__pte_clear(mm, addr, ptep);
|
|
}
|
|
|
|
#define clear_full_ptes clear_full_ptes
|
|
static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned int nr, int full)
|
|
{
|
|
if (likely(nr == 1)) {
|
|
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
|
|
__clear_full_ptes(mm, addr, ptep, nr, full);
|
|
} else {
|
|
contpte_clear_full_ptes(mm, addr, ptep, nr, full);
|
|
}
|
|
}
|
|
|
|
#define get_and_clear_full_ptes get_and_clear_full_ptes
|
|
static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, int full)
|
|
{
|
|
pte_t pte;
|
|
|
|
if (likely(nr == 1)) {
|
|
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
|
|
pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
|
|
} else {
|
|
pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
|
|
return __ptep_get_and_clear(mm, addr, ptep);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t orig_pte = __ptep_get(ptep);
|
|
|
|
if (likely(!pte_valid_cont(orig_pte)))
|
|
return __ptep_test_and_clear_young(vma, addr, ptep);
|
|
|
|
return contpte_ptep_test_and_clear_young(vma, addr, ptep);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t orig_pte = __ptep_get(ptep);
|
|
|
|
if (likely(!pte_valid_cont(orig_pte)))
|
|
return __ptep_clear_flush_young(vma, addr, ptep);
|
|
|
|
return contpte_ptep_clear_flush_young(vma, addr, ptep);
|
|
}
|
|
|
|
#define wrprotect_ptes wrprotect_ptes
|
|
static __always_inline void wrprotect_ptes(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep, unsigned int nr)
|
|
{
|
|
if (likely(nr == 1)) {
|
|
/*
|
|
* Optimization: wrprotect_ptes() can only be called for present
|
|
* ptes so we only need to check contig bit as condition for
|
|
* unfold, and we can remove the contig bit from the pte we read
|
|
* to avoid re-reading. This speeds up fork() which is sensitive
|
|
* for order-0 folios. Equivalent to contpte_try_unfold().
|
|
*/
|
|
pte_t orig_pte = __ptep_get(ptep);
|
|
|
|
if (unlikely(pte_cont(orig_pte))) {
|
|
__contpte_try_unfold(mm, addr, ptep, orig_pte);
|
|
orig_pte = pte_mknoncont(orig_pte);
|
|
}
|
|
___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
|
|
} else {
|
|
contpte_wrprotect_ptes(mm, addr, ptep, nr);
|
|
}
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
wrprotect_ptes(mm, addr, ptep, 1);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pte_t orig_pte = __ptep_get(ptep);
|
|
|
|
entry = pte_mknoncont(entry);
|
|
|
|
if (likely(!pte_valid_cont(orig_pte)))
|
|
return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
|
|
|
|
return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
|
|
}
|
|
|
|
#define clear_young_dirty_ptes clear_young_dirty_ptes
|
|
static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
unsigned int nr, cydp_t flags)
|
|
{
|
|
if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
|
|
__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
|
|
else
|
|
contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
|
|
}
|
|
|
|
#else /* CONFIG_ARM64_CONTPTE */
|
|
|
|
#define ptep_get __ptep_get
|
|
#define set_pte __set_pte
|
|
#define set_ptes __set_ptes
|
|
#define pte_clear __pte_clear
|
|
#define clear_full_ptes __clear_full_ptes
|
|
#define get_and_clear_full_ptes __get_and_clear_full_ptes
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
#define ptep_get_and_clear __ptep_get_and_clear
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
#define ptep_test_and_clear_young __ptep_test_and_clear_young
|
|
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
#define ptep_clear_flush_young __ptep_clear_flush_young
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
#define ptep_set_wrprotect __ptep_set_wrprotect
|
|
#define wrprotect_ptes __wrprotect_ptes
|
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
#define ptep_set_access_flags __ptep_set_access_flags
|
|
#define clear_young_dirty_ptes __clear_young_dirty_ptes
|
|
|
|
#endif /* CONFIG_ARM64_CONTPTE */
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* __ASM_PGTABLE_H */
|