mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 bffc7dece9
			
		
	
	
		bffc7dece9
		
	
	
	
	
		
			
			Change them to have the edac_ prefix. No functionality change. Signed-off-by: Borislav Petkov <bp@suse.de>
		
			
				
	
	
		
			1254 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1254 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * edac_mc kernel module
 | |
|  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
 | |
|  * This file may be distributed under the terms of the
 | |
|  * GNU General Public License.
 | |
|  *
 | |
|  * Written by Thayne Harbaugh
 | |
|  * Based on work by Dan Hollis <goemon at anime dot net> and others.
 | |
|  *	http://www.anime.net/~goemon/linux-ecc/
 | |
|  *
 | |
|  * Modified by Dave Peterson and Doug Thompson
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/edac.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/page.h>
 | |
| #include "edac_mc.h"
 | |
| #include "edac_module.h"
 | |
| #include <ras/ras_event.h>
 | |
| 
 | |
| #ifdef CONFIG_EDAC_ATOMIC_SCRUB
 | |
| #include <asm/edac.h>
 | |
| #else
 | |
| #define edac_atomic_scrub(va, size) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| int edac_op_state = EDAC_OPSTATE_INVAL;
 | |
| EXPORT_SYMBOL_GPL(edac_op_state);
 | |
| 
 | |
| static int edac_report = EDAC_REPORTING_ENABLED;
 | |
| 
 | |
| /* lock to memory controller's control array */
 | |
| static DEFINE_MUTEX(mem_ctls_mutex);
 | |
| static LIST_HEAD(mc_devices);
 | |
| 
 | |
| /*
 | |
|  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
 | |
|  *	apei/ghes and i7core_edac to be used at the same time.
 | |
|  */
 | |
| static void const *edac_mc_owner;
 | |
| 
 | |
| static struct bus_type mc_bus[EDAC_MAX_MCS];
 | |
| 
 | |
| int edac_get_report_status(void)
 | |
| {
 | |
| 	return edac_report;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_get_report_status);
 | |
| 
 | |
| void edac_set_report_status(int new)
 | |
| {
 | |
| 	if (new == EDAC_REPORTING_ENABLED ||
 | |
| 	    new == EDAC_REPORTING_DISABLED ||
 | |
| 	    new == EDAC_REPORTING_FORCE)
 | |
| 		edac_report = new;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_set_report_status);
 | |
| 
 | |
| static int edac_report_set(const char *str, const struct kernel_param *kp)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!strncmp(str, "on", 2))
 | |
| 		edac_report = EDAC_REPORTING_ENABLED;
 | |
| 	else if (!strncmp(str, "off", 3))
 | |
| 		edac_report = EDAC_REPORTING_DISABLED;
 | |
| 	else if (!strncmp(str, "force", 5))
 | |
| 		edac_report = EDAC_REPORTING_FORCE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int edac_report_get(char *buffer, const struct kernel_param *kp)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (edac_report) {
 | |
| 	case EDAC_REPORTING_ENABLED:
 | |
| 		ret = sprintf(buffer, "on");
 | |
| 		break;
 | |
| 	case EDAC_REPORTING_DISABLED:
 | |
| 		ret = sprintf(buffer, "off");
 | |
| 		break;
 | |
| 	case EDAC_REPORTING_FORCE:
 | |
| 		ret = sprintf(buffer, "force");
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct kernel_param_ops edac_report_ops = {
 | |
| 	.set = edac_report_set,
 | |
| 	.get = edac_report_get,
 | |
| };
 | |
| 
 | |
| module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
 | |
| 
 | |
| unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
 | |
| 			         unsigned len)
 | |
| {
 | |
| 	struct mem_ctl_info *mci = dimm->mci;
 | |
| 	int i, n, count = 0;
 | |
| 	char *p = buf;
 | |
| 
 | |
| 	for (i = 0; i < mci->n_layers; i++) {
 | |
| 		n = snprintf(p, len, "%s %d ",
 | |
| 			      edac_layer_name[mci->layers[i].type],
 | |
| 			      dimm->location[i]);
 | |
| 		p += n;
 | |
| 		len -= n;
 | |
| 		count += n;
 | |
| 		if (!len)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_EDAC_DEBUG
 | |
| 
 | |
| static void edac_mc_dump_channel(struct rank_info *chan)
 | |
| {
 | |
| 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
 | |
| 	edac_dbg(4, "    channel = %p\n", chan);
 | |
| 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
 | |
| 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
 | |
| }
 | |
| 
 | |
| static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
 | |
| {
 | |
| 	char location[80];
 | |
| 
 | |
| 	edac_dimm_info_location(dimm, location, sizeof(location));
 | |
| 
 | |
| 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
 | |
| 		 dimm->mci->csbased ? "rank" : "dimm",
 | |
| 		 number, location, dimm->csrow, dimm->cschannel);
 | |
| 	edac_dbg(4, "  dimm = %p\n", dimm);
 | |
| 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
 | |
| 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 | |
| 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
 | |
| 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 | |
| }
 | |
| 
 | |
| static void edac_mc_dump_csrow(struct csrow_info *csrow)
 | |
| {
 | |
| 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 | |
| 	edac_dbg(4, "  csrow = %p\n", csrow);
 | |
| 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 | |
| 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 | |
| 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 | |
| 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 | |
| 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 | |
| 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 | |
| }
 | |
| 
 | |
| static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	edac_dbg(3, "\tmci = %p\n", mci);
 | |
| 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 | |
| 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 | |
| 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 | |
| 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 | |
| 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 | |
| 		 mci->nr_csrows, mci->csrows);
 | |
| 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 | |
| 		 mci->tot_dimms, mci->dimms);
 | |
| 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
 | |
| 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 | |
| 		 mci->mod_name, mci->ctl_name);
 | |
| 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 | |
| }
 | |
| 
 | |
| #endif				/* CONFIG_EDAC_DEBUG */
 | |
| 
 | |
| const char * const edac_mem_types[] = {
 | |
| 	[MEM_EMPTY]	= "Empty csrow",
 | |
| 	[MEM_RESERVED]	= "Reserved csrow type",
 | |
| 	[MEM_UNKNOWN]	= "Unknown csrow type",
 | |
| 	[MEM_FPM]	= "Fast page mode RAM",
 | |
| 	[MEM_EDO]	= "Extended data out RAM",
 | |
| 	[MEM_BEDO]	= "Burst Extended data out RAM",
 | |
| 	[MEM_SDR]	= "Single data rate SDRAM",
 | |
| 	[MEM_RDR]	= "Registered single data rate SDRAM",
 | |
| 	[MEM_DDR]	= "Double data rate SDRAM",
 | |
| 	[MEM_RDDR]	= "Registered Double data rate SDRAM",
 | |
| 	[MEM_RMBS]	= "Rambus DRAM",
 | |
| 	[MEM_DDR2]	= "Unbuffered DDR2 RAM",
 | |
| 	[MEM_FB_DDR2]	= "Fully buffered DDR2",
 | |
| 	[MEM_RDDR2]	= "Registered DDR2 RAM",
 | |
| 	[MEM_XDR]	= "Rambus XDR",
 | |
| 	[MEM_DDR3]	= "Unbuffered DDR3 RAM",
 | |
| 	[MEM_RDDR3]	= "Registered DDR3 RAM",
 | |
| 	[MEM_LRDDR3]	= "Load-Reduced DDR3 RAM",
 | |
| 	[MEM_DDR4]	= "Unbuffered DDR4 RAM",
 | |
| 	[MEM_RDDR4]	= "Registered DDR4 RAM",
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(edac_mem_types);
 | |
| 
 | |
| /**
 | |
|  * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 | |
|  * @p:		pointer to a pointer with the memory offset to be used. At
 | |
|  *		return, this will be incremented to point to the next offset
 | |
|  * @size:	Size of the data structure to be reserved
 | |
|  * @n_elems:	Number of elements that should be reserved
 | |
|  *
 | |
|  * If 'size' is a constant, the compiler will optimize this whole function
 | |
|  * down to either a no-op or the addition of a constant to the value of '*p'.
 | |
|  *
 | |
|  * The 'p' pointer is absolutely needed to keep the proper advancing
 | |
|  * further in memory to the proper offsets when allocating the struct along
 | |
|  * with its embedded structs, as edac_device_alloc_ctl_info() does it
 | |
|  * above, for example.
 | |
|  *
 | |
|  * At return, the pointer 'p' will be incremented to be used on a next call
 | |
|  * to this function.
 | |
|  */
 | |
| void *edac_align_ptr(void **p, unsigned size, int n_elems)
 | |
| {
 | |
| 	unsigned align, r;
 | |
| 	void *ptr = *p;
 | |
| 
 | |
| 	*p += size * n_elems;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
 | |
| 	 * 'size'.  Adjust 'p' so that its alignment is at least as
 | |
| 	 * stringent as what the compiler would provide for X and return
 | |
| 	 * the aligned result.
 | |
| 	 * Here we assume that the alignment of a "long long" is the most
 | |
| 	 * stringent alignment that the compiler will ever provide by default.
 | |
| 	 * As far as I know, this is a reasonable assumption.
 | |
| 	 */
 | |
| 	if (size > sizeof(long))
 | |
| 		align = sizeof(long long);
 | |
| 	else if (size > sizeof(int))
 | |
| 		align = sizeof(long);
 | |
| 	else if (size > sizeof(short))
 | |
| 		align = sizeof(int);
 | |
| 	else if (size > sizeof(char))
 | |
| 		align = sizeof(short);
 | |
| 	else
 | |
| 		return (char *)ptr;
 | |
| 
 | |
| 	r = (unsigned long)p % align;
 | |
| 
 | |
| 	if (r == 0)
 | |
| 		return (char *)ptr;
 | |
| 
 | |
| 	*p += align - r;
 | |
| 
 | |
| 	return (void *)(((unsigned long)ptr) + align - r);
 | |
| }
 | |
| 
 | |
| static void _edac_mc_free(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	int i, chn, row;
 | |
| 	struct csrow_info *csr;
 | |
| 	const unsigned int tot_dimms = mci->tot_dimms;
 | |
| 	const unsigned int tot_channels = mci->num_cschannel;
 | |
| 	const unsigned int tot_csrows = mci->nr_csrows;
 | |
| 
 | |
| 	if (mci->dimms) {
 | |
| 		for (i = 0; i < tot_dimms; i++)
 | |
| 			kfree(mci->dimms[i]);
 | |
| 		kfree(mci->dimms);
 | |
| 	}
 | |
| 	if (mci->csrows) {
 | |
| 		for (row = 0; row < tot_csrows; row++) {
 | |
| 			csr = mci->csrows[row];
 | |
| 			if (csr) {
 | |
| 				if (csr->channels) {
 | |
| 					for (chn = 0; chn < tot_channels; chn++)
 | |
| 						kfree(csr->channels[chn]);
 | |
| 					kfree(csr->channels);
 | |
| 				}
 | |
| 				kfree(csr);
 | |
| 			}
 | |
| 		}
 | |
| 		kfree(mci->csrows);
 | |
| 	}
 | |
| 	kfree(mci);
 | |
| }
 | |
| 
 | |
| struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 | |
| 				   unsigned n_layers,
 | |
| 				   struct edac_mc_layer *layers,
 | |
| 				   unsigned sz_pvt)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct edac_mc_layer *layer;
 | |
| 	struct csrow_info *csr;
 | |
| 	struct rank_info *chan;
 | |
| 	struct dimm_info *dimm;
 | |
| 	u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 | |
| 	unsigned pos[EDAC_MAX_LAYERS];
 | |
| 	unsigned size, tot_dimms = 1, count = 1;
 | |
| 	unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 | |
| 	void *pvt, *p, *ptr = NULL;
 | |
| 	int i, j, row, chn, n, len, off;
 | |
| 	bool per_rank = false;
 | |
| 
 | |
| 	BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 | |
| 	/*
 | |
| 	 * Calculate the total amount of dimms and csrows/cschannels while
 | |
| 	 * in the old API emulation mode
 | |
| 	 */
 | |
| 	for (i = 0; i < n_layers; i++) {
 | |
| 		tot_dimms *= layers[i].size;
 | |
| 		if (layers[i].is_virt_csrow)
 | |
| 			tot_csrows *= layers[i].size;
 | |
| 		else
 | |
| 			tot_channels *= layers[i].size;
 | |
| 
 | |
| 		if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 | |
| 			per_rank = true;
 | |
| 	}
 | |
| 
 | |
| 	/* Figure out the offsets of the various items from the start of an mc
 | |
| 	 * structure.  We want the alignment of each item to be at least as
 | |
| 	 * stringent as what the compiler would provide if we could simply
 | |
| 	 * hardcode everything into a single struct.
 | |
| 	 */
 | |
| 	mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 | |
| 	layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 | |
| 	for (i = 0; i < n_layers; i++) {
 | |
| 		count *= layers[i].size;
 | |
| 		edac_dbg(4, "errcount layer %d size %d\n", i, count);
 | |
| 		ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 | |
| 		ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 | |
| 		tot_errcount += 2 * count;
 | |
| 	}
 | |
| 
 | |
| 	edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 | |
| 	pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 | |
| 	size = ((unsigned long)pvt) + sz_pvt;
 | |
| 
 | |
| 	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 | |
| 		 size,
 | |
| 		 tot_dimms,
 | |
| 		 per_rank ? "ranks" : "dimms",
 | |
| 		 tot_csrows * tot_channels);
 | |
| 
 | |
| 	mci = kzalloc(size, GFP_KERNEL);
 | |
| 	if (mci == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Adjust pointers so they point within the memory we just allocated
 | |
| 	 * rather than an imaginary chunk of memory located at address 0.
 | |
| 	 */
 | |
| 	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 | |
| 	for (i = 0; i < n_layers; i++) {
 | |
| 		mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 | |
| 		mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 | |
| 	}
 | |
| 	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 | |
| 
 | |
| 	/* setup index and various internal pointers */
 | |
| 	mci->mc_idx = mc_num;
 | |
| 	mci->tot_dimms = tot_dimms;
 | |
| 	mci->pvt_info = pvt;
 | |
| 	mci->n_layers = n_layers;
 | |
| 	mci->layers = layer;
 | |
| 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 | |
| 	mci->nr_csrows = tot_csrows;
 | |
| 	mci->num_cschannel = tot_channels;
 | |
| 	mci->csbased = per_rank;
 | |
| 
 | |
| 	/*
 | |
| 	 * Alocate and fill the csrow/channels structs
 | |
| 	 */
 | |
| 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 | |
| 	if (!mci->csrows)
 | |
| 		goto error;
 | |
| 	for (row = 0; row < tot_csrows; row++) {
 | |
| 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 | |
| 		if (!csr)
 | |
| 			goto error;
 | |
| 		mci->csrows[row] = csr;
 | |
| 		csr->csrow_idx = row;
 | |
| 		csr->mci = mci;
 | |
| 		csr->nr_channels = tot_channels;
 | |
| 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 | |
| 					GFP_KERNEL);
 | |
| 		if (!csr->channels)
 | |
| 			goto error;
 | |
| 
 | |
| 		for (chn = 0; chn < tot_channels; chn++) {
 | |
| 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 | |
| 			if (!chan)
 | |
| 				goto error;
 | |
| 			csr->channels[chn] = chan;
 | |
| 			chan->chan_idx = chn;
 | |
| 			chan->csrow = csr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate and fill the dimm structs
 | |
| 	 */
 | |
| 	mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 | |
| 	if (!mci->dimms)
 | |
| 		goto error;
 | |
| 
 | |
| 	memset(&pos, 0, sizeof(pos));
 | |
| 	row = 0;
 | |
| 	chn = 0;
 | |
| 	for (i = 0; i < tot_dimms; i++) {
 | |
| 		chan = mci->csrows[row]->channels[chn];
 | |
| 		off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 | |
| 		if (off < 0 || off >= tot_dimms) {
 | |
| 			edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 | |
| 		if (!dimm)
 | |
| 			goto error;
 | |
| 		mci->dimms[off] = dimm;
 | |
| 		dimm->mci = mci;
 | |
| 
 | |
| 		/*
 | |
| 		 * Copy DIMM location and initialize it.
 | |
| 		 */
 | |
| 		len = sizeof(dimm->label);
 | |
| 		p = dimm->label;
 | |
| 		n = snprintf(p, len, "mc#%u", mc_num);
 | |
| 		p += n;
 | |
| 		len -= n;
 | |
| 		for (j = 0; j < n_layers; j++) {
 | |
| 			n = snprintf(p, len, "%s#%u",
 | |
| 				     edac_layer_name[layers[j].type],
 | |
| 				     pos[j]);
 | |
| 			p += n;
 | |
| 			len -= n;
 | |
| 			dimm->location[j] = pos[j];
 | |
| 
 | |
| 			if (len <= 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Link it to the csrows old API data */
 | |
| 		chan->dimm = dimm;
 | |
| 		dimm->csrow = row;
 | |
| 		dimm->cschannel = chn;
 | |
| 
 | |
| 		/* Increment csrow location */
 | |
| 		if (layers[0].is_virt_csrow) {
 | |
| 			chn++;
 | |
| 			if (chn == tot_channels) {
 | |
| 				chn = 0;
 | |
| 				row++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			row++;
 | |
| 			if (row == tot_csrows) {
 | |
| 				row = 0;
 | |
| 				chn++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Increment dimm location */
 | |
| 		for (j = n_layers - 1; j >= 0; j--) {
 | |
| 			pos[j]++;
 | |
| 			if (pos[j] < layers[j].size)
 | |
| 				break;
 | |
| 			pos[j] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mci->op_state = OP_ALLOC;
 | |
| 
 | |
| 	return mci;
 | |
| 
 | |
| error:
 | |
| 	_edac_mc_free(mci);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_alloc);
 | |
| 
 | |
| void edac_mc_free(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	edac_dbg(1, "\n");
 | |
| 
 | |
| 	/* If we're not yet registered with sysfs free only what was allocated
 | |
| 	 * in edac_mc_alloc().
 | |
| 	 */
 | |
| 	if (!device_is_registered(&mci->dev)) {
 | |
| 		_edac_mc_free(mci);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* the mci instance is freed here, when the sysfs object is dropped */
 | |
| 	edac_unregister_sysfs(mci);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_free);
 | |
| 
 | |
| bool edac_has_mcs(void)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	ret = list_empty(&mc_devices);
 | |
| 
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 
 | |
| 	return !ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_has_mcs);
 | |
| 
 | |
| /* Caller must hold mem_ctls_mutex */
 | |
| static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct list_head *item;
 | |
| 
 | |
| 	edac_dbg(3, "\n");
 | |
| 
 | |
| 	list_for_each(item, &mc_devices) {
 | |
| 		mci = list_entry(item, struct mem_ctl_info, link);
 | |
| 
 | |
| 		if (mci->pdev == dev)
 | |
| 			return mci;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_mci_by_dev
 | |
|  *
 | |
|  *	scan list of controllers looking for the one that manages
 | |
|  *	the 'dev' device
 | |
|  * @dev: pointer to a struct device related with the MCI
 | |
|  */
 | |
| struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 | |
| {
 | |
| 	struct mem_ctl_info *ret;
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 	ret = __find_mci_by_dev(dev);
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(find_mci_by_dev);
 | |
| 
 | |
| /*
 | |
|  * edac_mc_workq_function
 | |
|  *	performs the operation scheduled by a workq request
 | |
|  */
 | |
| static void edac_mc_workq_function(struct work_struct *work_req)
 | |
| {
 | |
| 	struct delayed_work *d_work = to_delayed_work(work_req);
 | |
| 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	if (mci->op_state != OP_RUNNING_POLL) {
 | |
| 		mutex_unlock(&mem_ctls_mutex);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (edac_op_state == EDAC_OPSTATE_POLL)
 | |
| 		mci->edac_check(mci);
 | |
| 
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 
 | |
| 	/* Queue ourselves again. */
 | |
| 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * edac_mc_reset_delay_period(unsigned long value)
 | |
|  *
 | |
|  *	user space has updated our poll period value, need to
 | |
|  *	reset our workq delays
 | |
|  */
 | |
| void edac_mc_reset_delay_period(unsigned long value)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 	struct list_head *item;
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	list_for_each(item, &mc_devices) {
 | |
| 		mci = list_entry(item, struct mem_ctl_info, link);
 | |
| 
 | |
| 		if (mci->op_state == OP_RUNNING_POLL)
 | |
| 			edac_mod_work(&mci->work, value);
 | |
| 	}
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Return 0 on success, 1 on failure.
 | |
|  * Before calling this function, caller must
 | |
|  * assign a unique value to mci->mc_idx.
 | |
|  *
 | |
|  *	locking model:
 | |
|  *
 | |
|  *		called with the mem_ctls_mutex lock held
 | |
|  */
 | |
| static int add_mc_to_global_list(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	struct list_head *item, *insert_before;
 | |
| 	struct mem_ctl_info *p;
 | |
| 
 | |
| 	insert_before = &mc_devices;
 | |
| 
 | |
| 	p = __find_mci_by_dev(mci->pdev);
 | |
| 	if (unlikely(p != NULL))
 | |
| 		goto fail0;
 | |
| 
 | |
| 	list_for_each(item, &mc_devices) {
 | |
| 		p = list_entry(item, struct mem_ctl_info, link);
 | |
| 
 | |
| 		if (p->mc_idx >= mci->mc_idx) {
 | |
| 			if (unlikely(p->mc_idx == mci->mc_idx))
 | |
| 				goto fail1;
 | |
| 
 | |
| 			insert_before = item;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail_rcu(&mci->link, insert_before);
 | |
| 	return 0;
 | |
| 
 | |
| fail0:
 | |
| 	edac_printk(KERN_WARNING, EDAC_MC,
 | |
| 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 | |
| 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 | |
| 	return 1;
 | |
| 
 | |
| fail1:
 | |
| 	edac_printk(KERN_WARNING, EDAC_MC,
 | |
| 		"bug in low-level driver: attempt to assign\n"
 | |
| 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int del_mc_from_global_list(struct mem_ctl_info *mci)
 | |
| {
 | |
| 	list_del_rcu(&mci->link);
 | |
| 
 | |
| 	/* these are for safe removal of devices from global list while
 | |
| 	 * NMI handlers may be traversing list
 | |
| 	 */
 | |
| 	synchronize_rcu();
 | |
| 	INIT_LIST_HEAD(&mci->link);
 | |
| 
 | |
| 	return list_empty(&mc_devices);
 | |
| }
 | |
| 
 | |
| struct mem_ctl_info *edac_mc_find(int idx)
 | |
| {
 | |
| 	struct mem_ctl_info *mci = NULL;
 | |
| 	struct list_head *item;
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	list_for_each(item, &mc_devices) {
 | |
| 		mci = list_entry(item, struct mem_ctl_info, link);
 | |
| 
 | |
| 		if (mci->mc_idx >= idx) {
 | |
| 			if (mci->mc_idx == idx) {
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 	return mci;
 | |
| }
 | |
| EXPORT_SYMBOL(edac_mc_find);
 | |
| 
 | |
| 
 | |
| /* FIXME - should a warning be printed if no error detection? correction? */
 | |
| int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 | |
| 			       const struct attribute_group **groups)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	if (mci->mc_idx >= EDAC_MAX_MCS) {
 | |
| 		pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_EDAC_DEBUG
 | |
| 	if (edac_debug_level >= 3)
 | |
| 		edac_mc_dump_mci(mci);
 | |
| 
 | |
| 	if (edac_debug_level >= 4) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < mci->nr_csrows; i++) {
 | |
| 			struct csrow_info *csrow = mci->csrows[i];
 | |
| 			u32 nr_pages = 0;
 | |
| 			int j;
 | |
| 
 | |
| 			for (j = 0; j < csrow->nr_channels; j++)
 | |
| 				nr_pages += csrow->channels[j]->dimm->nr_pages;
 | |
| 			if (!nr_pages)
 | |
| 				continue;
 | |
| 			edac_mc_dump_csrow(csrow);
 | |
| 			for (j = 0; j < csrow->nr_channels; j++)
 | |
| 				if (csrow->channels[j]->dimm->nr_pages)
 | |
| 					edac_mc_dump_channel(csrow->channels[j]);
 | |
| 		}
 | |
| 		for (i = 0; i < mci->tot_dimms; i++)
 | |
| 			if (mci->dimms[i]->nr_pages)
 | |
| 				edac_mc_dump_dimm(mci->dimms[i], i);
 | |
| 	}
 | |
| #endif
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 | |
| 		ret = -EPERM;
 | |
| 		goto fail0;
 | |
| 	}
 | |
| 
 | |
| 	if (add_mc_to_global_list(mci))
 | |
| 		goto fail0;
 | |
| 
 | |
| 	/* set load time so that error rate can be tracked */
 | |
| 	mci->start_time = jiffies;
 | |
| 
 | |
| 	mci->bus = &mc_bus[mci->mc_idx];
 | |
| 
 | |
| 	if (edac_create_sysfs_mci_device(mci, groups)) {
 | |
| 		edac_mc_printk(mci, KERN_WARNING,
 | |
| 			"failed to create sysfs device\n");
 | |
| 		goto fail1;
 | |
| 	}
 | |
| 
 | |
| 	if (mci->edac_check) {
 | |
| 		mci->op_state = OP_RUNNING_POLL;
 | |
| 
 | |
| 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 | |
| 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 | |
| 
 | |
| 	} else {
 | |
| 		mci->op_state = OP_RUNNING_INTERRUPT;
 | |
| 	}
 | |
| 
 | |
| 	/* Report action taken */
 | |
| 	edac_mc_printk(mci, KERN_INFO,
 | |
| 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
 | |
| 		mci->mod_name, mci->ctl_name, mci->dev_name,
 | |
| 		edac_op_state_to_string(mci->op_state));
 | |
| 
 | |
| 	edac_mc_owner = mci->mod_name;
 | |
| 
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 	return 0;
 | |
| 
 | |
| fail1:
 | |
| 	del_mc_from_global_list(mci);
 | |
| 
 | |
| fail0:
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 | |
| 
 | |
| struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 | |
| {
 | |
| 	struct mem_ctl_info *mci;
 | |
| 
 | |
| 	edac_dbg(0, "\n");
 | |
| 
 | |
| 	mutex_lock(&mem_ctls_mutex);
 | |
| 
 | |
| 	/* find the requested mci struct in the global list */
 | |
| 	mci = __find_mci_by_dev(dev);
 | |
| 	if (mci == NULL) {
 | |
| 		mutex_unlock(&mem_ctls_mutex);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* mark MCI offline: */
 | |
| 	mci->op_state = OP_OFFLINE;
 | |
| 
 | |
| 	if (del_mc_from_global_list(mci))
 | |
| 		edac_mc_owner = NULL;
 | |
| 
 | |
| 	mutex_unlock(&mem_ctls_mutex);
 | |
| 
 | |
| 	if (mci->edac_check)
 | |
| 		edac_stop_work(&mci->work);
 | |
| 
 | |
| 	/* remove from sysfs */
 | |
| 	edac_remove_sysfs_mci_device(mci);
 | |
| 
 | |
| 	edac_printk(KERN_INFO, EDAC_MC,
 | |
| 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 | |
| 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 | |
| 
 | |
| 	return mci;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 | |
| 
 | |
| static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 | |
| 				u32 size)
 | |
| {
 | |
| 	struct page *pg;
 | |
| 	void *virt_addr;
 | |
| 	unsigned long flags = 0;
 | |
| 
 | |
| 	edac_dbg(3, "\n");
 | |
| 
 | |
| 	/* ECC error page was not in our memory. Ignore it. */
 | |
| 	if (!pfn_valid(page))
 | |
| 		return;
 | |
| 
 | |
| 	/* Find the actual page structure then map it and fix */
 | |
| 	pg = pfn_to_page(page);
 | |
| 
 | |
| 	if (PageHighMem(pg))
 | |
| 		local_irq_save(flags);
 | |
| 
 | |
| 	virt_addr = kmap_atomic(pg);
 | |
| 
 | |
| 	/* Perform architecture specific atomic scrub operation */
 | |
| 	edac_atomic_scrub(virt_addr + offset, size);
 | |
| 
 | |
| 	/* Unmap and complete */
 | |
| 	kunmap_atomic(virt_addr);
 | |
| 
 | |
| 	if (PageHighMem(pg))
 | |
| 		local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /* FIXME - should return -1 */
 | |
| int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 | |
| {
 | |
| 	struct csrow_info **csrows = mci->csrows;
 | |
| 	int row, i, j, n;
 | |
| 
 | |
| 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 | |
| 	row = -1;
 | |
| 
 | |
| 	for (i = 0; i < mci->nr_csrows; i++) {
 | |
| 		struct csrow_info *csrow = csrows[i];
 | |
| 		n = 0;
 | |
| 		for (j = 0; j < csrow->nr_channels; j++) {
 | |
| 			struct dimm_info *dimm = csrow->channels[j]->dimm;
 | |
| 			n += dimm->nr_pages;
 | |
| 		}
 | |
| 		if (n == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 | |
| 			 mci->mc_idx,
 | |
| 			 csrow->first_page, page, csrow->last_page,
 | |
| 			 csrow->page_mask);
 | |
| 
 | |
| 		if ((page >= csrow->first_page) &&
 | |
| 		    (page <= csrow->last_page) &&
 | |
| 		    ((page & csrow->page_mask) ==
 | |
| 		     (csrow->first_page & csrow->page_mask))) {
 | |
| 			row = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (row == -1)
 | |
| 		edac_mc_printk(mci, KERN_ERR,
 | |
| 			"could not look up page error address %lx\n",
 | |
| 			(unsigned long)page);
 | |
| 
 | |
| 	return row;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 | |
| 
 | |
| const char *edac_layer_name[] = {
 | |
| 	[EDAC_MC_LAYER_BRANCH] = "branch",
 | |
| 	[EDAC_MC_LAYER_CHANNEL] = "channel",
 | |
| 	[EDAC_MC_LAYER_SLOT] = "slot",
 | |
| 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 | |
| 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(edac_layer_name);
 | |
| 
 | |
| static void edac_inc_ce_error(struct mem_ctl_info *mci,
 | |
| 			      bool enable_per_layer_report,
 | |
| 			      const int pos[EDAC_MAX_LAYERS],
 | |
| 			      const u16 count)
 | |
| {
 | |
| 	int i, index = 0;
 | |
| 
 | |
| 	mci->ce_mc += count;
 | |
| 
 | |
| 	if (!enable_per_layer_report) {
 | |
| 		mci->ce_noinfo_count += count;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < mci->n_layers; i++) {
 | |
| 		if (pos[i] < 0)
 | |
| 			break;
 | |
| 		index += pos[i];
 | |
| 		mci->ce_per_layer[i][index] += count;
 | |
| 
 | |
| 		if (i < mci->n_layers - 1)
 | |
| 			index *= mci->layers[i + 1].size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edac_inc_ue_error(struct mem_ctl_info *mci,
 | |
| 				    bool enable_per_layer_report,
 | |
| 				    const int pos[EDAC_MAX_LAYERS],
 | |
| 				    const u16 count)
 | |
| {
 | |
| 	int i, index = 0;
 | |
| 
 | |
| 	mci->ue_mc += count;
 | |
| 
 | |
| 	if (!enable_per_layer_report) {
 | |
| 		mci->ue_noinfo_count += count;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < mci->n_layers; i++) {
 | |
| 		if (pos[i] < 0)
 | |
| 			break;
 | |
| 		index += pos[i];
 | |
| 		mci->ue_per_layer[i][index] += count;
 | |
| 
 | |
| 		if (i < mci->n_layers - 1)
 | |
| 			index *= mci->layers[i + 1].size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edac_ce_error(struct mem_ctl_info *mci,
 | |
| 			  const u16 error_count,
 | |
| 			  const int pos[EDAC_MAX_LAYERS],
 | |
| 			  const char *msg,
 | |
| 			  const char *location,
 | |
| 			  const char *label,
 | |
| 			  const char *detail,
 | |
| 			  const char *other_detail,
 | |
| 			  const bool enable_per_layer_report,
 | |
| 			  const unsigned long page_frame_number,
 | |
| 			  const unsigned long offset_in_page,
 | |
| 			  long grain)
 | |
| {
 | |
| 	unsigned long remapped_page;
 | |
| 	char *msg_aux = "";
 | |
| 
 | |
| 	if (*msg)
 | |
| 		msg_aux = " ";
 | |
| 
 | |
| 	if (edac_mc_get_log_ce()) {
 | |
| 		if (other_detail && *other_detail)
 | |
| 			edac_mc_printk(mci, KERN_WARNING,
 | |
| 				       "%d CE %s%son %s (%s %s - %s)\n",
 | |
| 				       error_count, msg, msg_aux, label,
 | |
| 				       location, detail, other_detail);
 | |
| 		else
 | |
| 			edac_mc_printk(mci, KERN_WARNING,
 | |
| 				       "%d CE %s%son %s (%s %s)\n",
 | |
| 				       error_count, msg, msg_aux, label,
 | |
| 				       location, detail);
 | |
| 	}
 | |
| 	edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
 | |
| 
 | |
| 	if (mci->scrub_mode == SCRUB_SW_SRC) {
 | |
| 		/*
 | |
| 			* Some memory controllers (called MCs below) can remap
 | |
| 			* memory so that it is still available at a different
 | |
| 			* address when PCI devices map into memory.
 | |
| 			* MC's that can't do this, lose the memory where PCI
 | |
| 			* devices are mapped. This mapping is MC-dependent
 | |
| 			* and so we call back into the MC driver for it to
 | |
| 			* map the MC page to a physical (CPU) page which can
 | |
| 			* then be mapped to a virtual page - which can then
 | |
| 			* be scrubbed.
 | |
| 			*/
 | |
| 		remapped_page = mci->ctl_page_to_phys ?
 | |
| 			mci->ctl_page_to_phys(mci, page_frame_number) :
 | |
| 			page_frame_number;
 | |
| 
 | |
| 		edac_mc_scrub_block(remapped_page,
 | |
| 					offset_in_page, grain);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edac_ue_error(struct mem_ctl_info *mci,
 | |
| 			  const u16 error_count,
 | |
| 			  const int pos[EDAC_MAX_LAYERS],
 | |
| 			  const char *msg,
 | |
| 			  const char *location,
 | |
| 			  const char *label,
 | |
| 			  const char *detail,
 | |
| 			  const char *other_detail,
 | |
| 			  const bool enable_per_layer_report)
 | |
| {
 | |
| 	char *msg_aux = "";
 | |
| 
 | |
| 	if (*msg)
 | |
| 		msg_aux = " ";
 | |
| 
 | |
| 	if (edac_mc_get_log_ue()) {
 | |
| 		if (other_detail && *other_detail)
 | |
| 			edac_mc_printk(mci, KERN_WARNING,
 | |
| 				       "%d UE %s%son %s (%s %s - %s)\n",
 | |
| 				       error_count, msg, msg_aux, label,
 | |
| 				       location, detail, other_detail);
 | |
| 		else
 | |
| 			edac_mc_printk(mci, KERN_WARNING,
 | |
| 				       "%d UE %s%son %s (%s %s)\n",
 | |
| 				       error_count, msg, msg_aux, label,
 | |
| 				       location, detail);
 | |
| 	}
 | |
| 
 | |
| 	if (edac_mc_get_panic_on_ue()) {
 | |
| 		if (other_detail && *other_detail)
 | |
| 			panic("UE %s%son %s (%s%s - %s)\n",
 | |
| 			      msg, msg_aux, label, location, detail, other_detail);
 | |
| 		else
 | |
| 			panic("UE %s%son %s (%s%s)\n",
 | |
| 			      msg, msg_aux, label, location, detail);
 | |
| 	}
 | |
| 
 | |
| 	edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
 | |
| }
 | |
| 
 | |
| void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
 | |
| 			      struct mem_ctl_info *mci,
 | |
| 			      struct edac_raw_error_desc *e)
 | |
| {
 | |
| 	char detail[80];
 | |
| 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
 | |
| 
 | |
| 	/* Memory type dependent details about the error */
 | |
| 	if (type == HW_EVENT_ERR_CORRECTED) {
 | |
| 		snprintf(detail, sizeof(detail),
 | |
| 			"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
 | |
| 			e->page_frame_number, e->offset_in_page,
 | |
| 			e->grain, e->syndrome);
 | |
| 		edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
 | |
| 			      detail, e->other_detail, e->enable_per_layer_report,
 | |
| 			      e->page_frame_number, e->offset_in_page, e->grain);
 | |
| 	} else {
 | |
| 		snprintf(detail, sizeof(detail),
 | |
| 			"page:0x%lx offset:0x%lx grain:%ld",
 | |
| 			e->page_frame_number, e->offset_in_page, e->grain);
 | |
| 
 | |
| 		edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
 | |
| 			      detail, e->other_detail, e->enable_per_layer_report);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
 | |
| 
 | |
| void edac_mc_handle_error(const enum hw_event_mc_err_type type,
 | |
| 			  struct mem_ctl_info *mci,
 | |
| 			  const u16 error_count,
 | |
| 			  const unsigned long page_frame_number,
 | |
| 			  const unsigned long offset_in_page,
 | |
| 			  const unsigned long syndrome,
 | |
| 			  const int top_layer,
 | |
| 			  const int mid_layer,
 | |
| 			  const int low_layer,
 | |
| 			  const char *msg,
 | |
| 			  const char *other_detail)
 | |
| {
 | |
| 	char *p;
 | |
| 	int row = -1, chan = -1;
 | |
| 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
 | |
| 	int i, n_labels = 0;
 | |
| 	u8 grain_bits;
 | |
| 	struct edac_raw_error_desc *e = &mci->error_desc;
 | |
| 
 | |
| 	edac_dbg(3, "MC%d\n", mci->mc_idx);
 | |
| 
 | |
| 	/* Fills the error report buffer */
 | |
| 	memset(e, 0, sizeof (*e));
 | |
| 	e->error_count = error_count;
 | |
| 	e->top_layer = top_layer;
 | |
| 	e->mid_layer = mid_layer;
 | |
| 	e->low_layer = low_layer;
 | |
| 	e->page_frame_number = page_frame_number;
 | |
| 	e->offset_in_page = offset_in_page;
 | |
| 	e->syndrome = syndrome;
 | |
| 	e->msg = msg;
 | |
| 	e->other_detail = other_detail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the event report is consistent and if the memory
 | |
| 	 * location is known. If it is known, enable_per_layer_report will be
 | |
| 	 * true, the DIMM(s) label info will be filled and the per-layer
 | |
| 	 * error counters will be incremented.
 | |
| 	 */
 | |
| 	for (i = 0; i < mci->n_layers; i++) {
 | |
| 		if (pos[i] >= (int)mci->layers[i].size) {
 | |
| 
 | |
| 			edac_mc_printk(mci, KERN_ERR,
 | |
| 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
 | |
| 				       edac_layer_name[mci->layers[i].type],
 | |
| 				       pos[i], mci->layers[i].size);
 | |
| 			/*
 | |
| 			 * Instead of just returning it, let's use what's
 | |
| 			 * known about the error. The increment routines and
 | |
| 			 * the DIMM filter logic will do the right thing by
 | |
| 			 * pointing the likely damaged DIMMs.
 | |
| 			 */
 | |
| 			pos[i] = -1;
 | |
| 		}
 | |
| 		if (pos[i] >= 0)
 | |
| 			e->enable_per_layer_report = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the dimm label/grain that applies to the match criteria.
 | |
| 	 * As the error algorithm may not be able to point to just one memory
 | |
| 	 * stick, the logic here will get all possible labels that could
 | |
| 	 * pottentially be affected by the error.
 | |
| 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
 | |
| 	 * to have only the MC channel and the MC dimm (also called "branch")
 | |
| 	 * but the channel is not known, as the memory is arranged in pairs,
 | |
| 	 * where each memory belongs to a separate channel within the same
 | |
| 	 * branch.
 | |
| 	 */
 | |
| 	p = e->label;
 | |
| 	*p = '\0';
 | |
| 
 | |
| 	for (i = 0; i < mci->tot_dimms; i++) {
 | |
| 		struct dimm_info *dimm = mci->dimms[i];
 | |
| 
 | |
| 		if (top_layer >= 0 && top_layer != dimm->location[0])
 | |
| 			continue;
 | |
| 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
 | |
| 			continue;
 | |
| 		if (low_layer >= 0 && low_layer != dimm->location[2])
 | |
| 			continue;
 | |
| 
 | |
| 		/* get the max grain, over the error match range */
 | |
| 		if (dimm->grain > e->grain)
 | |
| 			e->grain = dimm->grain;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the error is memory-controller wide, there's no need to
 | |
| 		 * seek for the affected DIMMs because the whole
 | |
| 		 * channel/memory controller/...  may be affected.
 | |
| 		 * Also, don't show errors for empty DIMM slots.
 | |
| 		 */
 | |
| 		if (e->enable_per_layer_report && dimm->nr_pages) {
 | |
| 			if (n_labels >= EDAC_MAX_LABELS) {
 | |
| 				e->enable_per_layer_report = false;
 | |
| 				break;
 | |
| 			}
 | |
| 			n_labels++;
 | |
| 			if (p != e->label) {
 | |
| 				strcpy(p, OTHER_LABEL);
 | |
| 				p += strlen(OTHER_LABEL);
 | |
| 			}
 | |
| 			strcpy(p, dimm->label);
 | |
| 			p += strlen(p);
 | |
| 			*p = '\0';
 | |
| 
 | |
| 			/*
 | |
| 			 * get csrow/channel of the DIMM, in order to allow
 | |
| 			 * incrementing the compat API counters
 | |
| 			 */
 | |
| 			edac_dbg(4, "%s csrows map: (%d,%d)\n",
 | |
| 				 mci->csbased ? "rank" : "dimm",
 | |
| 				 dimm->csrow, dimm->cschannel);
 | |
| 			if (row == -1)
 | |
| 				row = dimm->csrow;
 | |
| 			else if (row >= 0 && row != dimm->csrow)
 | |
| 				row = -2;
 | |
| 
 | |
| 			if (chan == -1)
 | |
| 				chan = dimm->cschannel;
 | |
| 			else if (chan >= 0 && chan != dimm->cschannel)
 | |
| 				chan = -2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!e->enable_per_layer_report) {
 | |
| 		strcpy(e->label, "any memory");
 | |
| 	} else {
 | |
| 		edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
 | |
| 		if (p == e->label)
 | |
| 			strcpy(e->label, "unknown memory");
 | |
| 		if (type == HW_EVENT_ERR_CORRECTED) {
 | |
| 			if (row >= 0) {
 | |
| 				mci->csrows[row]->ce_count += error_count;
 | |
| 				if (chan >= 0)
 | |
| 					mci->csrows[row]->channels[chan]->ce_count += error_count;
 | |
| 			}
 | |
| 		} else
 | |
| 			if (row >= 0)
 | |
| 				mci->csrows[row]->ue_count += error_count;
 | |
| 	}
 | |
| 
 | |
| 	/* Fill the RAM location data */
 | |
| 	p = e->location;
 | |
| 
 | |
| 	for (i = 0; i < mci->n_layers; i++) {
 | |
| 		if (pos[i] < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		p += sprintf(p, "%s:%d ",
 | |
| 			     edac_layer_name[mci->layers[i].type],
 | |
| 			     pos[i]);
 | |
| 	}
 | |
| 	if (p > e->location)
 | |
| 		*(p - 1) = '\0';
 | |
| 
 | |
| 	/* Report the error via the trace interface */
 | |
| 	grain_bits = fls_long(e->grain) + 1;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_RAS))
 | |
| 		trace_mc_event(type, e->msg, e->label, e->error_count,
 | |
| 			       mci->mc_idx, e->top_layer, e->mid_layer,
 | |
| 			       e->low_layer,
 | |
| 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
 | |
| 			       grain_bits, e->syndrome, e->other_detail);
 | |
| 
 | |
| 	edac_raw_mc_handle_error(type, mci, e);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(edac_mc_handle_error);
 |