linux/arch/x86/kernel/cpu/sgx/main.c
Jarkko Sakkinen 51ab30eb2a x86/sgx: Replace section->init_laundry_list with sgx_dirty_page_list
During normal runtime, the "ksgxd" daemon behaves like a version of
kswapd just for SGX. But, before it starts acting like kswapd, its first
job is to initialize enclave memory.

Currently, the SGX boot code places each enclave page on a
epc_section->init_laundry_list. Once it starts up, the ksgxd code walks
over that list and populates the actual SGX page allocator.

However, the per-section structures are going away to make way for the
SGX NUMA allocator. There's also little need to have a per-section
structure; the enclave pages are all treated identically, and they can
be placed on the correct allocator list from metadata stored in the
enclave page (struct sgx_epc_page) itself.

Modify sgx_sanitize_section() to take a single page list instead of
taking a section and deriving the list from there.

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20210317235332.362001-1-jarkko.sakkinen@intel.com
2021-03-18 16:17:26 +01:00

733 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2016-20 Intel Corporation. */
#include <linux/freezer.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#include <linux/pagemap.h>
#include <linux/ratelimit.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include "driver.h"
#include "encl.h"
#include "encls.h"
struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
static int sgx_nr_epc_sections;
static struct task_struct *ksgxd_tsk;
static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
/*
* These variables are part of the state of the reclaimer, and must be accessed
* with sgx_reclaimer_lock acquired.
*/
static LIST_HEAD(sgx_active_page_list);
static DEFINE_SPINLOCK(sgx_reclaimer_lock);
static LIST_HEAD(sgx_dirty_page_list);
/*
* Reset post-kexec EPC pages to the uninitialized state. The pages are removed
* from the input list, and made available for the page allocator. SECS pages
* prepending their children in the input list are left intact.
*/
static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
{
struct sgx_epc_page *page;
LIST_HEAD(dirty);
int ret;
/* dirty_page_list is thread-local, no need for a lock: */
while (!list_empty(dirty_page_list)) {
if (kthread_should_stop())
return;
page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
ret = __eremove(sgx_get_epc_virt_addr(page));
if (!ret) {
/*
* page is now sanitized. Make it available via the SGX
* page allocator:
*/
list_del(&page->list);
sgx_free_epc_page(page);
} else {
/* The page is not yet clean - move to the dirty list. */
list_move_tail(&page->list, &dirty);
}
cond_resched();
}
list_splice(&dirty, dirty_page_list);
}
static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
{
struct sgx_encl_page *page = epc_page->owner;
struct sgx_encl *encl = page->encl;
struct sgx_encl_mm *encl_mm;
bool ret = true;
int idx;
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
mmap_read_lock(encl_mm->mm);
ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
mmap_read_unlock(encl_mm->mm);
mmput_async(encl_mm->mm);
if (!ret)
break;
}
srcu_read_unlock(&encl->srcu, idx);
if (!ret)
return false;
return true;
}
static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
{
struct sgx_encl_page *page = epc_page->owner;
unsigned long addr = page->desc & PAGE_MASK;
struct sgx_encl *encl = page->encl;
unsigned long mm_list_version;
struct sgx_encl_mm *encl_mm;
struct vm_area_struct *vma;
int idx, ret;
do {
mm_list_version = encl->mm_list_version;
/* Pairs with smp_rmb() in sgx_encl_mm_add(). */
smp_rmb();
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
mmap_read_lock(encl_mm->mm);
ret = sgx_encl_find(encl_mm->mm, addr, &vma);
if (!ret && encl == vma->vm_private_data)
zap_vma_ptes(vma, addr, PAGE_SIZE);
mmap_read_unlock(encl_mm->mm);
mmput_async(encl_mm->mm);
}
srcu_read_unlock(&encl->srcu, idx);
} while (unlikely(encl->mm_list_version != mm_list_version));
mutex_lock(&encl->lock);
ret = __eblock(sgx_get_epc_virt_addr(epc_page));
if (encls_failed(ret))
ENCLS_WARN(ret, "EBLOCK");
mutex_unlock(&encl->lock);
}
static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
struct sgx_backing *backing)
{
struct sgx_pageinfo pginfo;
int ret;
pginfo.addr = 0;
pginfo.secs = 0;
pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
backing->pcmd_offset;
ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
backing->pcmd_offset));
kunmap_atomic((void *)(unsigned long)pginfo.contents);
return ret;
}
static void sgx_ipi_cb(void *info)
{
}
static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
{
cpumask_t *cpumask = &encl->cpumask;
struct sgx_encl_mm *encl_mm;
int idx;
/*
* Can race with sgx_encl_mm_add(), but ETRACK has already been
* executed, which means that the CPUs running in the new mm will enter
* into the enclave with a fresh epoch.
*/
cpumask_clear(cpumask);
idx = srcu_read_lock(&encl->srcu);
list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
if (!mmget_not_zero(encl_mm->mm))
continue;
cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
mmput_async(encl_mm->mm);
}
srcu_read_unlock(&encl->srcu, idx);
return cpumask;
}
/*
* Swap page to the regular memory transformed to the blocked state by using
* EBLOCK, which means that it can no loger be referenced (no new TLB entries).
*
* The first trial just tries to write the page assuming that some other thread
* has reset the count for threads inside the enlave by using ETRACK, and
* previous thread count has been zeroed out. The second trial calls ETRACK
* before EWB. If that fails we kick all the HW threads out, and then do EWB,
* which should be guaranteed the succeed.
*/
static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
struct sgx_backing *backing)
{
struct sgx_encl_page *encl_page = epc_page->owner;
struct sgx_encl *encl = encl_page->encl;
struct sgx_va_page *va_page;
unsigned int va_offset;
void *va_slot;
int ret;
encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
list);
va_offset = sgx_alloc_va_slot(va_page);
va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
if (sgx_va_page_full(va_page))
list_move_tail(&va_page->list, &encl->va_pages);
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
if (ret == SGX_NOT_TRACKED) {
ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
if (ret) {
if (encls_failed(ret))
ENCLS_WARN(ret, "ETRACK");
}
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
if (ret == SGX_NOT_TRACKED) {
/*
* Slow path, send IPIs to kick cpus out of the
* enclave. Note, it's imperative that the cpu
* mask is generated *after* ETRACK, else we'll
* miss cpus that entered the enclave between
* generating the mask and incrementing epoch.
*/
on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
sgx_ipi_cb, NULL, 1);
ret = __sgx_encl_ewb(epc_page, va_slot, backing);
}
}
if (ret) {
if (encls_failed(ret))
ENCLS_WARN(ret, "EWB");
sgx_free_va_slot(va_page, va_offset);
} else {
encl_page->desc |= va_offset;
encl_page->va_page = va_page;
}
}
static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
struct sgx_backing *backing)
{
struct sgx_encl_page *encl_page = epc_page->owner;
struct sgx_encl *encl = encl_page->encl;
struct sgx_backing secs_backing;
int ret;
mutex_lock(&encl->lock);
sgx_encl_ewb(epc_page, backing);
encl_page->epc_page = NULL;
encl->secs_child_cnt--;
if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
&secs_backing);
if (ret)
goto out;
sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
sgx_free_epc_page(encl->secs.epc_page);
encl->secs.epc_page = NULL;
sgx_encl_put_backing(&secs_backing, true);
}
out:
mutex_unlock(&encl->lock);
}
/*
* Take a fixed number of pages from the head of the active page pool and
* reclaim them to the enclave's private shmem files. Skip the pages, which have
* been accessed since the last scan. Move those pages to the tail of active
* page pool so that the pages get scanned in LRU like fashion.
*
* Batch process a chunk of pages (at the moment 16) in order to degrade amount
* of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
* among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
* + EWB) but not sufficiently. Reclaiming one page at a time would also be
* problematic as it would increase the lock contention too much, which would
* halt forward progress.
*/
static void sgx_reclaim_pages(void)
{
struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
struct sgx_backing backing[SGX_NR_TO_SCAN];
struct sgx_epc_section *section;
struct sgx_encl_page *encl_page;
struct sgx_epc_page *epc_page;
pgoff_t page_index;
int cnt = 0;
int ret;
int i;
spin_lock(&sgx_reclaimer_lock);
for (i = 0; i < SGX_NR_TO_SCAN; i++) {
if (list_empty(&sgx_active_page_list))
break;
epc_page = list_first_entry(&sgx_active_page_list,
struct sgx_epc_page, list);
list_del_init(&epc_page->list);
encl_page = epc_page->owner;
if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
chunk[cnt++] = epc_page;
else
/* The owner is freeing the page. No need to add the
* page back to the list of reclaimable pages.
*/
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
}
spin_unlock(&sgx_reclaimer_lock);
for (i = 0; i < cnt; i++) {
epc_page = chunk[i];
encl_page = epc_page->owner;
if (!sgx_reclaimer_age(epc_page))
goto skip;
page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
if (ret)
goto skip;
mutex_lock(&encl_page->encl->lock);
encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
mutex_unlock(&encl_page->encl->lock);
continue;
skip:
spin_lock(&sgx_reclaimer_lock);
list_add_tail(&epc_page->list, &sgx_active_page_list);
spin_unlock(&sgx_reclaimer_lock);
kref_put(&encl_page->encl->refcount, sgx_encl_release);
chunk[i] = NULL;
}
for (i = 0; i < cnt; i++) {
epc_page = chunk[i];
if (epc_page)
sgx_reclaimer_block(epc_page);
}
for (i = 0; i < cnt; i++) {
epc_page = chunk[i];
if (!epc_page)
continue;
encl_page = epc_page->owner;
sgx_reclaimer_write(epc_page, &backing[i]);
sgx_encl_put_backing(&backing[i], true);
kref_put(&encl_page->encl->refcount, sgx_encl_release);
epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
section = &sgx_epc_sections[epc_page->section];
spin_lock(&section->lock);
list_add_tail(&epc_page->list, &section->page_list);
section->free_cnt++;
spin_unlock(&section->lock);
}
}
static unsigned long sgx_nr_free_pages(void)
{
unsigned long cnt = 0;
int i;
for (i = 0; i < sgx_nr_epc_sections; i++)
cnt += sgx_epc_sections[i].free_cnt;
return cnt;
}
static bool sgx_should_reclaim(unsigned long watermark)
{
return sgx_nr_free_pages() < watermark &&
!list_empty(&sgx_active_page_list);
}
static int ksgxd(void *p)
{
set_freezable();
/*
* Sanitize pages in order to recover from kexec(). The 2nd pass is
* required for SECS pages, whose child pages blocked EREMOVE.
*/
__sgx_sanitize_pages(&sgx_dirty_page_list);
__sgx_sanitize_pages(&sgx_dirty_page_list);
/* sanity check: */
WARN_ON(!list_empty(&sgx_dirty_page_list));
while (!kthread_should_stop()) {
if (try_to_freeze())
continue;
wait_event_freezable(ksgxd_waitq,
kthread_should_stop() ||
sgx_should_reclaim(SGX_NR_HIGH_PAGES));
if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
sgx_reclaim_pages();
cond_resched();
}
return 0;
}
static bool __init sgx_page_reclaimer_init(void)
{
struct task_struct *tsk;
tsk = kthread_run(ksgxd, NULL, "ksgxd");
if (IS_ERR(tsk))
return false;
ksgxd_tsk = tsk;
return true;
}
static struct sgx_epc_page *__sgx_alloc_epc_page_from_section(struct sgx_epc_section *section)
{
struct sgx_epc_page *page;
spin_lock(&section->lock);
if (list_empty(&section->page_list)) {
spin_unlock(&section->lock);
return NULL;
}
page = list_first_entry(&section->page_list, struct sgx_epc_page, list);
list_del_init(&page->list);
section->free_cnt--;
spin_unlock(&section->lock);
return page;
}
/**
* __sgx_alloc_epc_page() - Allocate an EPC page
*
* Iterate through EPC sections and borrow a free EPC page to the caller. When a
* page is no longer needed it must be released with sgx_free_epc_page().
*
* Return:
* an EPC page,
* -errno on error
*/
struct sgx_epc_page *__sgx_alloc_epc_page(void)
{
struct sgx_epc_section *section;
struct sgx_epc_page *page;
int i;
for (i = 0; i < sgx_nr_epc_sections; i++) {
section = &sgx_epc_sections[i];
page = __sgx_alloc_epc_page_from_section(section);
if (page)
return page;
}
return ERR_PTR(-ENOMEM);
}
/**
* sgx_mark_page_reclaimable() - Mark a page as reclaimable
* @page: EPC page
*
* Mark a page as reclaimable and add it to the active page list. Pages
* are automatically removed from the active list when freed.
*/
void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
{
spin_lock(&sgx_reclaimer_lock);
page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
list_add_tail(&page->list, &sgx_active_page_list);
spin_unlock(&sgx_reclaimer_lock);
}
/**
* sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
* @page: EPC page
*
* Clear the reclaimable flag and remove the page from the active page list.
*
* Return:
* 0 on success,
* -EBUSY if the page is in the process of being reclaimed
*/
int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
{
spin_lock(&sgx_reclaimer_lock);
if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
/* The page is being reclaimed. */
if (list_empty(&page->list)) {
spin_unlock(&sgx_reclaimer_lock);
return -EBUSY;
}
list_del(&page->list);
page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
}
spin_unlock(&sgx_reclaimer_lock);
return 0;
}
/**
* sgx_alloc_epc_page() - Allocate an EPC page
* @owner: the owner of the EPC page
* @reclaim: reclaim pages if necessary
*
* Iterate through EPC sections and borrow a free EPC page to the caller. When a
* page is no longer needed it must be released with sgx_free_epc_page(). If
* @reclaim is set to true, directly reclaim pages when we are out of pages. No
* mm's can be locked when @reclaim is set to true.
*
* Finally, wake up ksgxd when the number of pages goes below the watermark
* before returning back to the caller.
*
* Return:
* an EPC page,
* -errno on error
*/
struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
{
struct sgx_epc_page *page;
for ( ; ; ) {
page = __sgx_alloc_epc_page();
if (!IS_ERR(page)) {
page->owner = owner;
break;
}
if (list_empty(&sgx_active_page_list))
return ERR_PTR(-ENOMEM);
if (!reclaim) {
page = ERR_PTR(-EBUSY);
break;
}
if (signal_pending(current)) {
page = ERR_PTR(-ERESTARTSYS);
break;
}
sgx_reclaim_pages();
cond_resched();
}
if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
wake_up(&ksgxd_waitq);
return page;
}
/**
* sgx_free_epc_page() - Free an EPC page
* @page: an EPC page
*
* Call EREMOVE for an EPC page and insert it back to the list of free pages.
*/
void sgx_free_epc_page(struct sgx_epc_page *page)
{
struct sgx_epc_section *section = &sgx_epc_sections[page->section];
int ret;
WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
ret = __eremove(sgx_get_epc_virt_addr(page));
if (WARN_ONCE(ret, "EREMOVE returned %d (0x%x)", ret, ret))
return;
spin_lock(&section->lock);
list_add_tail(&page->list, &section->page_list);
section->free_cnt++;
spin_unlock(&section->lock);
}
static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
unsigned long index,
struct sgx_epc_section *section)
{
unsigned long nr_pages = size >> PAGE_SHIFT;
unsigned long i;
section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
if (!section->virt_addr)
return false;
section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
if (!section->pages) {
memunmap(section->virt_addr);
return false;
}
section->phys_addr = phys_addr;
spin_lock_init(&section->lock);
INIT_LIST_HEAD(&section->page_list);
for (i = 0; i < nr_pages; i++) {
section->pages[i].section = index;
section->pages[i].flags = 0;
section->pages[i].owner = NULL;
list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
}
section->free_cnt = nr_pages;
return true;
}
/**
* A section metric is concatenated in a way that @low bits 12-31 define the
* bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
* metric.
*/
static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
{
return (low & GENMASK_ULL(31, 12)) +
((high & GENMASK_ULL(19, 0)) << 32);
}
static bool __init sgx_page_cache_init(void)
{
u32 eax, ebx, ecx, edx, type;
u64 pa, size;
int i;
for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
type = eax & SGX_CPUID_EPC_MASK;
if (type == SGX_CPUID_EPC_INVALID)
break;
if (type != SGX_CPUID_EPC_SECTION) {
pr_err_once("Unknown EPC section type: %u\n", type);
break;
}
pa = sgx_calc_section_metric(eax, ebx);
size = sgx_calc_section_metric(ecx, edx);
pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
pr_err("No free memory for an EPC section\n");
break;
}
sgx_nr_epc_sections++;
}
if (!sgx_nr_epc_sections) {
pr_err("There are zero EPC sections.\n");
return false;
}
return true;
}
static int __init sgx_init(void)
{
int ret;
int i;
if (!cpu_feature_enabled(X86_FEATURE_SGX))
return -ENODEV;
if (!sgx_page_cache_init())
return -ENOMEM;
if (!sgx_page_reclaimer_init()) {
ret = -ENOMEM;
goto err_page_cache;
}
ret = sgx_drv_init();
if (ret)
goto err_kthread;
return 0;
err_kthread:
kthread_stop(ksgxd_tsk);
err_page_cache:
for (i = 0; i < sgx_nr_epc_sections; i++) {
vfree(sgx_epc_sections[i].pages);
memunmap(sgx_epc_sections[i].virt_addr);
}
return ret;
}
device_initcall(sgx_init);