mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-09-18 22:14:16 +00:00 
			
		
		
		
	 e5b8d92189
			
		
	
	
		e5b8d92189
		
	
	
	
	
		
			
			The hardware tag-based KASAN for compatibility with the other modes stores the tag associated to a page in page->flags. Due to this the kernel faults on access when it allocates a page with an initial tag and the user changes the tags. Reset the tag associated by the kernel to a page in all the meaningful places to prevent kernel faults on access. Note: An alternative to this approach could be to modify page_to_virt(). This though could end up being racy, in fact if a CPU checks the PG_mte_tagged bit and decides that the page is not tagged but another CPU maps the same with PROT_MTE and becomes tagged the subsequent kernel access would fail. Link: https://lkml.kernel.org/r/9073d4e973747a6f78d5bdd7ebe17f290d087096.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			729 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			729 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*:
 | |
|  * Hibernate support specific for ARM64
 | |
|  *
 | |
|  * Derived from work on ARM hibernation support by:
 | |
|  *
 | |
|  * Ubuntu project, hibernation support for mach-dove
 | |
|  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
 | |
|  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
 | |
|  *  https://lkml.org/lkml/2010/6/18/4
 | |
|  *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
 | |
|  *  https://patchwork.kernel.org/patch/96442/
 | |
|  *
 | |
|  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 | |
|  */
 | |
| #define pr_fmt(x) "hibernate: " x
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/utsname.h>
 | |
| 
 | |
| #include <asm/barrier.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/daifflags.h>
 | |
| #include <asm/irqflags.h>
 | |
| #include <asm/kexec.h>
 | |
| #include <asm/memory.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/mte.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable-hwdef.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/suspend.h>
 | |
| #include <asm/sysreg.h>
 | |
| #include <asm/virt.h>
 | |
| 
 | |
| /*
 | |
|  * Hibernate core relies on this value being 0 on resume, and marks it
 | |
|  * __nosavedata assuming it will keep the resume kernel's '0' value. This
 | |
|  * doesn't happen with either KASLR.
 | |
|  *
 | |
|  * defined as "__visible int in_suspend __nosavedata" in
 | |
|  * kernel/power/hibernate.c
 | |
|  */
 | |
| extern int in_suspend;
 | |
| 
 | |
| /* Do we need to reset el2? */
 | |
| #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
 | |
| 
 | |
| /* temporary el2 vectors in the __hibernate_exit_text section. */
 | |
| extern char hibernate_el2_vectors[];
 | |
| 
 | |
| /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
 | |
| extern char __hyp_stub_vectors[];
 | |
| 
 | |
| /*
 | |
|  * The logical cpu number we should resume on, initialised to a non-cpu
 | |
|  * number.
 | |
|  */
 | |
| static int sleep_cpu = -EINVAL;
 | |
| 
 | |
| /*
 | |
|  * Values that may not change over hibernate/resume. We put the build number
 | |
|  * and date in here so that we guarantee not to resume with a different
 | |
|  * kernel.
 | |
|  */
 | |
| struct arch_hibernate_hdr_invariants {
 | |
| 	char		uts_version[__NEW_UTS_LEN + 1];
 | |
| };
 | |
| 
 | |
| /* These values need to be know across a hibernate/restore. */
 | |
| static struct arch_hibernate_hdr {
 | |
| 	struct arch_hibernate_hdr_invariants invariants;
 | |
| 
 | |
| 	/* These are needed to find the relocated kernel if built with kaslr */
 | |
| 	phys_addr_t	ttbr1_el1;
 | |
| 	void		(*reenter_kernel)(void);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to know where the __hyp_stub_vectors are after restore to
 | |
| 	 * re-configure el2.
 | |
| 	 */
 | |
| 	phys_addr_t	__hyp_stub_vectors;
 | |
| 
 | |
| 	u64		sleep_cpu_mpidr;
 | |
| } resume_hdr;
 | |
| 
 | |
| static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
 | |
| {
 | |
| 	memset(i, 0, sizeof(*i));
 | |
| 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
 | |
| }
 | |
| 
 | |
| int pfn_is_nosave(unsigned long pfn)
 | |
| {
 | |
| 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
 | |
| 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
 | |
| 
 | |
| 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
 | |
| 		crash_is_nosave(pfn);
 | |
| }
 | |
| 
 | |
| void notrace save_processor_state(void)
 | |
| {
 | |
| 	WARN_ON(num_online_cpus() != 1);
 | |
| }
 | |
| 
 | |
| void notrace restore_processor_state(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| int arch_hibernation_header_save(void *addr, unsigned int max_size)
 | |
| {
 | |
| 	struct arch_hibernate_hdr *hdr = addr;
 | |
| 
 | |
| 	if (max_size < sizeof(*hdr))
 | |
| 		return -EOVERFLOW;
 | |
| 
 | |
| 	arch_hdr_invariants(&hdr->invariants);
 | |
| 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
 | |
| 	hdr->reenter_kernel	= _cpu_resume;
 | |
| 
 | |
| 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
 | |
| 	if (el2_reset_needed())
 | |
| 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
 | |
| 	else
 | |
| 		hdr->__hyp_stub_vectors = 0;
 | |
| 
 | |
| 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
 | |
| 	if (sleep_cpu < 0) {
 | |
| 		pr_err("Failing to hibernate on an unknown CPU.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
 | |
| 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
 | |
| 		hdr->sleep_cpu_mpidr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(arch_hibernation_header_save);
 | |
| 
 | |
| int arch_hibernation_header_restore(void *addr)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct arch_hibernate_hdr_invariants invariants;
 | |
| 	struct arch_hibernate_hdr *hdr = addr;
 | |
| 
 | |
| 	arch_hdr_invariants(&invariants);
 | |
| 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
 | |
| 		pr_crit("Hibernate image not generated by this kernel!\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
 | |
| 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
 | |
| 		hdr->sleep_cpu_mpidr);
 | |
| 	if (sleep_cpu < 0) {
 | |
| 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
 | |
| 		sleep_cpu = -EINVAL;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = bringup_hibernate_cpu(sleep_cpu);
 | |
| 	if (ret) {
 | |
| 		sleep_cpu = -EINVAL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	resume_hdr = *hdr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(arch_hibernation_header_restore);
 | |
| 
 | |
| static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
 | |
| 		       unsigned long dst_addr,
 | |
| 		       pgprot_t pgprot)
 | |
| {
 | |
| 	pgd_t *pgdp;
 | |
| 	p4d_t *p4dp;
 | |
| 	pud_t *pudp;
 | |
| 	pmd_t *pmdp;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
 | |
| 	if (pgd_none(READ_ONCE(*pgdp))) {
 | |
| 		pudp = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!pudp)
 | |
| 			return -ENOMEM;
 | |
| 		pgd_populate(&init_mm, pgdp, pudp);
 | |
| 	}
 | |
| 
 | |
| 	p4dp = p4d_offset(pgdp, dst_addr);
 | |
| 	if (p4d_none(READ_ONCE(*p4dp))) {
 | |
| 		pudp = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!pudp)
 | |
| 			return -ENOMEM;
 | |
| 		p4d_populate(&init_mm, p4dp, pudp);
 | |
| 	}
 | |
| 
 | |
| 	pudp = pud_offset(p4dp, dst_addr);
 | |
| 	if (pud_none(READ_ONCE(*pudp))) {
 | |
| 		pmdp = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!pmdp)
 | |
| 			return -ENOMEM;
 | |
| 		pud_populate(&init_mm, pudp, pmdp);
 | |
| 	}
 | |
| 
 | |
| 	pmdp = pmd_offset(pudp, dst_addr);
 | |
| 	if (pmd_none(READ_ONCE(*pmdp))) {
 | |
| 		ptep = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!ptep)
 | |
| 			return -ENOMEM;
 | |
| 		pmd_populate_kernel(&init_mm, pmdp, ptep);
 | |
| 	}
 | |
| 
 | |
| 	ptep = pte_offset_kernel(pmdp, dst_addr);
 | |
| 	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copies length bytes, starting at src_start into an new page,
 | |
|  * perform cache maintenance, then maps it at the specified address low
 | |
|  * address as executable.
 | |
|  *
 | |
|  * This is used by hibernate to copy the code it needs to execute when
 | |
|  * overwriting the kernel text. This function generates a new set of page
 | |
|  * tables, which it loads into ttbr0.
 | |
|  *
 | |
|  * Length is provided as we probably only want 4K of data, even on a 64K
 | |
|  * page system.
 | |
|  */
 | |
| static int create_safe_exec_page(void *src_start, size_t length,
 | |
| 				 unsigned long dst_addr,
 | |
| 				 phys_addr_t *phys_dst_addr)
 | |
| {
 | |
| 	void *page = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 	pgd_t *trans_pgd;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memcpy(page, src_start, length);
 | |
| 	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
 | |
| 
 | |
| 	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 	if (!trans_pgd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
 | |
| 				PAGE_KERNEL_EXEC);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Load our new page tables. A strict BBM approach requires that we
 | |
| 	 * ensure that TLBs are free of any entries that may overlap with the
 | |
| 	 * global mappings we are about to install.
 | |
| 	 *
 | |
| 	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
 | |
| 	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
 | |
| 	 * runtime services), while for a userspace-driven test_resume cycle it
 | |
| 	 * points to userspace page tables (and we must point it at a zero page
 | |
| 	 * ourselves). Elsewhere we only (un)install the idmap with preemption
 | |
| 	 * disabled, so T0SZ should be as required regardless.
 | |
| 	 */
 | |
| 	cpu_set_reserved_ttbr0();
 | |
| 	local_flush_tlb_all();
 | |
| 	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
 | |
| 	isb();
 | |
| 
 | |
| 	*phys_dst_addr = virt_to_phys(page);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
 | |
| 
 | |
| #ifdef CONFIG_ARM64_MTE
 | |
| 
 | |
| static DEFINE_XARRAY(mte_pages);
 | |
| 
 | |
| static int save_tags(struct page *page, unsigned long pfn)
 | |
| {
 | |
| 	void *tag_storage, *ret;
 | |
| 
 | |
| 	tag_storage = mte_allocate_tag_storage();
 | |
| 	if (!tag_storage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mte_save_page_tags(page_address(page), tag_storage);
 | |
| 
 | |
| 	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
 | |
| 	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
 | |
| 		mte_free_tag_storage(tag_storage);
 | |
| 		return xa_err(ret);
 | |
| 	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
 | |
| 		mte_free_tag_storage(ret);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void swsusp_mte_free_storage(void)
 | |
| {
 | |
| 	XA_STATE(xa_state, &mte_pages, 0);
 | |
| 	void *tags;
 | |
| 
 | |
| 	xa_lock(&mte_pages);
 | |
| 	xas_for_each(&xa_state, tags, ULONG_MAX) {
 | |
| 		mte_free_tag_storage(tags);
 | |
| 	}
 | |
| 	xa_unlock(&mte_pages);
 | |
| 
 | |
| 	xa_destroy(&mte_pages);
 | |
| }
 | |
| 
 | |
| static int swsusp_mte_save_tags(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	int ret = 0;
 | |
| 	int n = 0;
 | |
| 
 | |
| 	if (!system_supports_mte())
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
 | |
| 			struct page *page = pfn_to_online_page(pfn);
 | |
| 
 | |
| 			if (!page)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!test_bit(PG_mte_tagged, &page->flags))
 | |
| 				continue;
 | |
| 
 | |
| 			ret = save_tags(page, pfn);
 | |
| 			if (ret) {
 | |
| 				swsusp_mte_free_storage();
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			n++;
 | |
| 		}
 | |
| 	}
 | |
| 	pr_info("Saved %d MTE pages\n", n);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void swsusp_mte_restore_tags(void)
 | |
| {
 | |
| 	XA_STATE(xa_state, &mte_pages, 0);
 | |
| 	int n = 0;
 | |
| 	void *tags;
 | |
| 
 | |
| 	xa_lock(&mte_pages);
 | |
| 	xas_for_each(&xa_state, tags, ULONG_MAX) {
 | |
| 		unsigned long pfn = xa_state.xa_index;
 | |
| 		struct page *page = pfn_to_online_page(pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * It is not required to invoke page_kasan_tag_reset(page)
 | |
| 		 * at this point since the tags stored in page->flags are
 | |
| 		 * already restored.
 | |
| 		 */
 | |
| 		mte_restore_page_tags(page_address(page), tags);
 | |
| 
 | |
| 		mte_free_tag_storage(tags);
 | |
| 		n++;
 | |
| 	}
 | |
| 	xa_unlock(&mte_pages);
 | |
| 
 | |
| 	pr_info("Restored %d MTE pages\n", n);
 | |
| 
 | |
| 	xa_destroy(&mte_pages);
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_ARM64_MTE */
 | |
| 
 | |
| static int swsusp_mte_save_tags(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void swsusp_mte_restore_tags(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_ARM64_MTE */
 | |
| 
 | |
| int swsusp_arch_suspend(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 	struct sleep_stack_data state;
 | |
| 
 | |
| 	if (cpus_are_stuck_in_kernel()) {
 | |
| 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	flags = local_daif_save();
 | |
| 
 | |
| 	if (__cpu_suspend_enter(&state)) {
 | |
| 		/* make the crash dump kernel image visible/saveable */
 | |
| 		crash_prepare_suspend();
 | |
| 
 | |
| 		ret = swsusp_mte_save_tags();
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		sleep_cpu = smp_processor_id();
 | |
| 		ret = swsusp_save();
 | |
| 	} else {
 | |
| 		/* Clean kernel core startup/idle code to PoC*/
 | |
| 		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
 | |
| 		dcache_clean_range(__idmap_text_start, __idmap_text_end);
 | |
| 
 | |
| 		/* Clean kvm setup code to PoC? */
 | |
| 		if (el2_reset_needed()) {
 | |
| 			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
 | |
| 			dcache_clean_range(__hyp_text_start, __hyp_text_end);
 | |
| 		}
 | |
| 
 | |
| 		swsusp_mte_restore_tags();
 | |
| 
 | |
| 		/* make the crash dump kernel image protected again */
 | |
| 		crash_post_resume();
 | |
| 
 | |
| 		/*
 | |
| 		 * Tell the hibernation core that we've just restored
 | |
| 		 * the memory
 | |
| 		 */
 | |
| 		in_suspend = 0;
 | |
| 
 | |
| 		sleep_cpu = -EINVAL;
 | |
| 		__cpu_suspend_exit();
 | |
| 
 | |
| 		/*
 | |
| 		 * Just in case the boot kernel did turn the SSBD
 | |
| 		 * mitigation off behind our back, let's set the state
 | |
| 		 * to what we expect it to be.
 | |
| 		 */
 | |
| 		spectre_v4_enable_mitigation(NULL);
 | |
| 	}
 | |
| 
 | |
| 	local_daif_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
 | |
| {
 | |
| 	pte_t pte = READ_ONCE(*src_ptep);
 | |
| 
 | |
| 	if (pte_valid(pte)) {
 | |
| 		/*
 | |
| 		 * Resume will overwrite areas that may be marked
 | |
| 		 * read only (code, rodata). Clear the RDONLY bit from
 | |
| 		 * the temporary mappings we use during restore.
 | |
| 		 */
 | |
| 		set_pte(dst_ptep, pte_mkwrite(pte));
 | |
| 	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
 | |
| 		/*
 | |
| 		 * debug_pagealloc will removed the PTE_VALID bit if
 | |
| 		 * the page isn't in use by the resume kernel. It may have
 | |
| 		 * been in use by the original kernel, in which case we need
 | |
| 		 * to put it back in our copy to do the restore.
 | |
| 		 *
 | |
| 		 * Before marking this entry valid, check the pfn should
 | |
| 		 * be mapped.
 | |
| 		 */
 | |
| 		BUG_ON(!pfn_valid(pte_pfn(pte)));
 | |
| 
 | |
| 		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
 | |
| 		    unsigned long end)
 | |
| {
 | |
| 	pte_t *src_ptep;
 | |
| 	pte_t *dst_ptep;
 | |
| 	unsigned long addr = start;
 | |
| 
 | |
| 	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
 | |
| 	if (!dst_ptep)
 | |
| 		return -ENOMEM;
 | |
| 	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
 | |
| 	dst_ptep = pte_offset_kernel(dst_pmdp, start);
 | |
| 
 | |
| 	src_ptep = pte_offset_kernel(src_pmdp, start);
 | |
| 	do {
 | |
| 		_copy_pte(dst_ptep, src_ptep, addr);
 | |
| 	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
 | |
| 		    unsigned long end)
 | |
| {
 | |
| 	pmd_t *src_pmdp;
 | |
| 	pmd_t *dst_pmdp;
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = start;
 | |
| 
 | |
| 	if (pud_none(READ_ONCE(*dst_pudp))) {
 | |
| 		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!dst_pmdp)
 | |
| 			return -ENOMEM;
 | |
| 		pud_populate(&init_mm, dst_pudp, dst_pmdp);
 | |
| 	}
 | |
| 	dst_pmdp = pmd_offset(dst_pudp, start);
 | |
| 
 | |
| 	src_pmdp = pmd_offset(src_pudp, start);
 | |
| 	do {
 | |
| 		pmd_t pmd = READ_ONCE(*src_pmdp);
 | |
| 
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none(pmd))
 | |
| 			continue;
 | |
| 		if (pmd_table(pmd)) {
 | |
| 			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
 | |
| 				return -ENOMEM;
 | |
| 		} else {
 | |
| 			set_pmd(dst_pmdp,
 | |
| 				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
 | |
| 		}
 | |
| 	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
 | |
| 		    unsigned long end)
 | |
| {
 | |
| 	pud_t *dst_pudp;
 | |
| 	pud_t *src_pudp;
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = start;
 | |
| 
 | |
| 	if (p4d_none(READ_ONCE(*dst_p4dp))) {
 | |
| 		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
 | |
| 		if (!dst_pudp)
 | |
| 			return -ENOMEM;
 | |
| 		p4d_populate(&init_mm, dst_p4dp, dst_pudp);
 | |
| 	}
 | |
| 	dst_pudp = pud_offset(dst_p4dp, start);
 | |
| 
 | |
| 	src_pudp = pud_offset(src_p4dp, start);
 | |
| 	do {
 | |
| 		pud_t pud = READ_ONCE(*src_pudp);
 | |
| 
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none(pud))
 | |
| 			continue;
 | |
| 		if (pud_table(pud)) {
 | |
| 			if (copy_pmd(dst_pudp, src_pudp, addr, next))
 | |
| 				return -ENOMEM;
 | |
| 		} else {
 | |
| 			set_pud(dst_pudp,
 | |
| 				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
 | |
| 		}
 | |
| 	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
 | |
| 		    unsigned long end)
 | |
| {
 | |
| 	p4d_t *dst_p4dp;
 | |
| 	p4d_t *src_p4dp;
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = start;
 | |
| 
 | |
| 	dst_p4dp = p4d_offset(dst_pgdp, start);
 | |
| 	src_p4dp = p4d_offset(src_pgdp, start);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (p4d_none(READ_ONCE(*src_p4dp)))
 | |
| 			continue;
 | |
| 		if (copy_pud(dst_p4dp, src_p4dp, addr, next))
 | |
| 			return -ENOMEM;
 | |
| 	} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
 | |
| 			    unsigned long end)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = start;
 | |
| 	pgd_t *src_pgdp = pgd_offset_k(start);
 | |
| 
 | |
| 	dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none(READ_ONCE(*src_pgdp)))
 | |
| 			continue;
 | |
| 		if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
 | |
| 			return -ENOMEM;
 | |
| 	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
 | |
| 			  unsigned long end)
 | |
| {
 | |
| 	int rc;
 | |
| 	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
 | |
| 
 | |
| 	if (!trans_pgd) {
 | |
| 		pr_err("Failed to allocate memory for temporary page tables.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	rc = copy_page_tables(trans_pgd, start, end);
 | |
| 	if (!rc)
 | |
| 		*dst_pgdp = trans_pgd;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
 | |
|  *
 | |
|  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
 | |
|  * we don't need to free it here.
 | |
|  */
 | |
| int swsusp_arch_resume(void)
 | |
| {
 | |
| 	int rc;
 | |
| 	void *zero_page;
 | |
| 	size_t exit_size;
 | |
| 	pgd_t *tmp_pg_dir;
 | |
| 	phys_addr_t phys_hibernate_exit;
 | |
| 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
 | |
| 					  void *, phys_addr_t, phys_addr_t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restoring the memory image will overwrite the ttbr1 page tables.
 | |
| 	 * Create a second copy of just the linear map, and use this when
 | |
| 	 * restoring.
 | |
| 	 */
 | |
| 	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a zero page that is zero before & after resume in order to
 | |
| 	 * to break before make on the ttbr1 page tables.
 | |
| 	 */
 | |
| 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
 | |
| 	if (!zero_page) {
 | |
| 		pr_err("Failed to allocate zero page.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Locate the exit code in the bottom-but-one page, so that *NULL
 | |
| 	 * still has disastrous affects.
 | |
| 	 */
 | |
| 	hibernate_exit = (void *)PAGE_SIZE;
 | |
| 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
 | |
| 	/*
 | |
| 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
 | |
| 	 * a new set of ttbr0 page tables and load them.
 | |
| 	 */
 | |
| 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
 | |
| 				   (unsigned long)hibernate_exit,
 | |
| 				   &phys_hibernate_exit);
 | |
| 	if (rc) {
 | |
| 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The hibernate exit text contains a set of el2 vectors, that will
 | |
| 	 * be executed at el2 with the mmu off in order to reload hyp-stub.
 | |
| 	 */
 | |
| 	__flush_dcache_area(hibernate_exit, exit_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * KASLR will cause the el2 vectors to be in a different location in
 | |
| 	 * the resumed kernel. Load hibernate's temporary copy into el2.
 | |
| 	 *
 | |
| 	 * We can skip this step if we booted at EL1, or are running with VHE.
 | |
| 	 */
 | |
| 	if (el2_reset_needed()) {
 | |
| 		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
 | |
| 		el2_vectors += hibernate_el2_vectors -
 | |
| 			       __hibernate_exit_text_start;     /* offset */
 | |
| 
 | |
| 		__hyp_set_vectors(el2_vectors);
 | |
| 	}
 | |
| 
 | |
| 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
 | |
| 		       resume_hdr.reenter_kernel, restore_pblist,
 | |
| 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int hibernate_resume_nonboot_cpu_disable(void)
 | |
| {
 | |
| 	if (sleep_cpu < 0) {
 | |
| 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return freeze_secondary_cpus(sleep_cpu);
 | |
| }
 |