mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 6354467245
			
		
	
	
		6354467245
		
			
		
	
	
	
	
		
			
			This allows to wait only when it's requested. It speeds up creation of hardlinks. Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
		
			
				
	
	
		
			5213 lines
		
	
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5213 lines
		
	
	
	
		
			122 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  *
 | |
|  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include "debug.h"
 | |
| #include "ntfs.h"
 | |
| #include "ntfs_fs.h"
 | |
| 
 | |
| /*
 | |
|  * LOG FILE structs
 | |
|  */
 | |
| 
 | |
| // clang-format off
 | |
| 
 | |
| #define MaxLogFileSize     0x100000000ull
 | |
| #define DefaultLogPageSize 4096
 | |
| #define MinLogRecordPages  0x30
 | |
| 
 | |
| struct RESTART_HDR {
 | |
| 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
 | |
| 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
 | |
| 	__le32 page_size;     // 0x14: Log page size used for this log file.
 | |
| 	__le16 ra_off;        // 0x18:
 | |
| 	__le16 minor_ver;     // 0x1A:
 | |
| 	__le16 major_ver;     // 0x1C:
 | |
| 	__le16 fixups[];
 | |
| };
 | |
| 
 | |
| #define LFS_NO_CLIENT 0xffff
 | |
| #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
 | |
| 
 | |
| struct CLIENT_REC {
 | |
| 	__le64 oldest_lsn;
 | |
| 	__le64 restart_lsn; // 0x08:
 | |
| 	__le16 prev_client; // 0x10:
 | |
| 	__le16 next_client; // 0x12:
 | |
| 	__le16 seq_num;     // 0x14:
 | |
| 	u8 align[6];        // 0x16:
 | |
| 	__le32 name_bytes;  // 0x1C: In bytes.
 | |
| 	__le16 name[32];    // 0x20: Name of client.
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct CLIENT_REC) == 0x60);
 | |
| 
 | |
| /* Two copies of these will exist at the beginning of the log file */
 | |
| struct RESTART_AREA {
 | |
| 	__le64 current_lsn;    // 0x00: Current logical end of log file.
 | |
| 	__le16 log_clients;    // 0x08: Maximum number of clients.
 | |
| 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
 | |
| 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
 | |
| 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
 | |
| 	__le16 ra_len;         // 0x14:
 | |
| 	__le16 client_off;     // 0x16:
 | |
| 	__le64 l_size;         // 0x18: Usable log file size.
 | |
| 	__le32 last_lsn_data_len; // 0x20:
 | |
| 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
 | |
| 	__le16 data_off;       // 0x26: Log page data length.
 | |
| 	__le32 open_log_count; // 0x28:
 | |
| 	__le32 align[5];       // 0x2C:
 | |
| 	struct CLIENT_REC clients[]; // 0x40:
 | |
| };
 | |
| 
 | |
| struct LOG_REC_HDR {
 | |
| 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
 | |
| 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
 | |
| 	__le16 redo_off;     // 0x04:  Offset to Redo record.
 | |
| 	__le16 redo_len;     // 0x06:  Redo length.
 | |
| 	__le16 undo_off;     // 0x08:  Offset to Undo record.
 | |
| 	__le16 undo_len;     // 0x0A:  Undo length.
 | |
| 	__le16 target_attr;  // 0x0C:
 | |
| 	__le16 lcns_follow;  // 0x0E:
 | |
| 	__le16 record_off;   // 0x10:
 | |
| 	__le16 attr_off;     // 0x12:
 | |
| 	__le16 cluster_off;  // 0x14:
 | |
| 	__le16 reserved;     // 0x16:
 | |
| 	__le64 target_vcn;   // 0x18:
 | |
| 	__le64 page_lcns[];  // 0x20:
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
 | |
| 
 | |
| #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
 | |
| #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
 | |
| 
 | |
| struct RESTART_TABLE {
 | |
| 	__le16 size;       // 0x00: In bytes
 | |
| 	__le16 used;       // 0x02: Entries
 | |
| 	__le16 total;      // 0x04: Entries
 | |
| 	__le16 res[3];     // 0x06:
 | |
| 	__le32 free_goal;  // 0x0C:
 | |
| 	__le32 first_free; // 0x10:
 | |
| 	__le32 last_free;  // 0x14:
 | |
| 
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct RESTART_TABLE) == 0x18);
 | |
| 
 | |
| struct ATTR_NAME_ENTRY {
 | |
| 	__le16 off; // Offset in the Open attribute Table.
 | |
| 	__le16 name_bytes;
 | |
| 	__le16 name[];
 | |
| };
 | |
| 
 | |
| struct OPEN_ATTR_ENRTY {
 | |
| 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 | |
| 	__le32 bytes_per_index; // 0x04:
 | |
| 	enum ATTR_TYPE type;    // 0x08:
 | |
| 	u8 is_dirty_pages;      // 0x0C:
 | |
| 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
 | |
| 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
 | |
| 	u8 res;
 | |
| 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
 | |
| 	__le64 open_record_lsn; // 0x18:
 | |
| 	void *ptr;              // 0x20:
 | |
| };
 | |
| 
 | |
| /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
 | |
| struct OPEN_ATTR_ENRTY_32 {
 | |
| 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 | |
| 	__le32 ptr;             // 0x04:
 | |
| 	struct MFT_REF ref;     // 0x08:
 | |
| 	__le64 open_record_lsn; // 0x10:
 | |
| 	u8 is_dirty_pages;      // 0x18:
 | |
| 	u8 is_attr_name;        // 0x19:
 | |
| 	u8 res1[2];
 | |
| 	enum ATTR_TYPE type;    // 0x1C:
 | |
| 	u8 name_len;            // 0x20: In wchar
 | |
| 	u8 res2[3];
 | |
| 	__le32 AttributeName;   // 0x24:
 | |
| 	__le32 bytes_per_index; // 0x28:
 | |
| };
 | |
| 
 | |
| #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
 | |
| // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
 | |
| static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
 | |
| 
 | |
| /*
 | |
|  * One entry exists in the Dirty Pages Table for each page which is dirty at
 | |
|  * the time the Restart Area is written.
 | |
|  */
 | |
| struct DIR_PAGE_ENTRY {
 | |
| 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 | |
| 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
 | |
| 	__le32 transfer_len; // 0x08:
 | |
| 	__le32 lcns_follow;  // 0x0C:
 | |
| 	__le64 vcn;          // 0x10: Vcn of dirty page
 | |
| 	__le64 oldest_lsn;   // 0x18:
 | |
| 	__le64 page_lcns[];  // 0x20:
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
 | |
| 
 | |
| /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
 | |
| struct DIR_PAGE_ENTRY_32 {
 | |
| 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
 | |
| 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
 | |
| 	__le32 transfer_len;	// 0x08:
 | |
| 	__le32 lcns_follow;	// 0x0C:
 | |
| 	__le32 reserved;	// 0x10:
 | |
| 	__le32 vcn_low;		// 0x14: Vcn of dirty page
 | |
| 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
 | |
| 	__le32 oldest_lsn_low;	// 0x1C:
 | |
| 	__le32 oldest_lsn_hi;	// 0x1C:
 | |
| 	__le32 page_lcns_low;	// 0x24:
 | |
| 	__le32 page_lcns_hi;	// 0x24:
 | |
| };
 | |
| 
 | |
| static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
 | |
| static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
 | |
| 
 | |
| enum transact_state {
 | |
| 	TransactionUninitialized = 0,
 | |
| 	TransactionActive,
 | |
| 	TransactionPrepared,
 | |
| 	TransactionCommitted
 | |
| };
 | |
| 
 | |
| struct TRANSACTION_ENTRY {
 | |
| 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
 | |
| 	u8 transact_state;    // 0x04:
 | |
| 	u8 reserved[3];       // 0x05:
 | |
| 	__le64 first_lsn;     // 0x08:
 | |
| 	__le64 prev_lsn;      // 0x10:
 | |
| 	__le64 undo_next_lsn; // 0x18:
 | |
| 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
 | |
| 	__le32 undo_len;      // 0x24: Total undo size
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
 | |
| 
 | |
| struct NTFS_RESTART {
 | |
| 	__le32 major_ver;             // 0x00:
 | |
| 	__le32 minor_ver;             // 0x04:
 | |
| 	__le64 check_point_start;     // 0x08:
 | |
| 	__le64 open_attr_table_lsn;   // 0x10:
 | |
| 	__le64 attr_names_lsn;        // 0x18:
 | |
| 	__le64 dirty_pages_table_lsn; // 0x20:
 | |
| 	__le64 transact_table_lsn;    // 0x28:
 | |
| 	__le32 open_attr_len;         // 0x30: In bytes
 | |
| 	__le32 attr_names_len;        // 0x34: In bytes
 | |
| 	__le32 dirty_pages_len;       // 0x38: In bytes
 | |
| 	__le32 transact_table_len;    // 0x3C: In bytes
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct NTFS_RESTART) == 0x40);
 | |
| 
 | |
| struct NEW_ATTRIBUTE_SIZES {
 | |
| 	__le64 alloc_size;
 | |
| 	__le64 valid_size;
 | |
| 	__le64 data_size;
 | |
| 	__le64 total_size;
 | |
| };
 | |
| 
 | |
| struct BITMAP_RANGE {
 | |
| 	__le32 bitmap_off;
 | |
| 	__le32 bits;
 | |
| };
 | |
| 
 | |
| struct LCN_RANGE {
 | |
| 	__le64 lcn;
 | |
| 	__le64 len;
 | |
| };
 | |
| 
 | |
| /* The following type defines the different log record types. */
 | |
| #define LfsClientRecord  cpu_to_le32(1)
 | |
| #define LfsClientRestart cpu_to_le32(2)
 | |
| 
 | |
| /* This is used to uniquely identify a client for a particular log file. */
 | |
| struct CLIENT_ID {
 | |
| 	__le16 seq_num;
 | |
| 	__le16 client_idx;
 | |
| };
 | |
| 
 | |
| /* This is the header that begins every Log Record in the log file. */
 | |
| struct LFS_RECORD_HDR {
 | |
| 	__le64 this_lsn;		// 0x00:
 | |
| 	__le64 client_prev_lsn;		// 0x08:
 | |
| 	__le64 client_undo_next_lsn;	// 0x10:
 | |
| 	__le32 client_data_len;		// 0x18:
 | |
| 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
 | |
| 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
 | |
| 	__le32 transact_id;		// 0x24:
 | |
| 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
 | |
| 	u8 align[6];			// 0x2A:
 | |
| };
 | |
| 
 | |
| #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
 | |
| 
 | |
| static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
 | |
| 
 | |
| struct LFS_RECORD {
 | |
| 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
 | |
| 	u8 align[6];		// 0x02:
 | |
| 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
 | |
| };
 | |
| 
 | |
| static_assert(sizeof(struct LFS_RECORD) == 0x10);
 | |
| 
 | |
| struct RECORD_PAGE_HDR {
 | |
| 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
 | |
| 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
 | |
| 	__le16 page_count;		// 0x14:
 | |
| 	__le16 page_pos;		// 0x16:
 | |
| 	struct LFS_RECORD record_hdr;	// 0x18:
 | |
| 	__le16 fixups[10];		// 0x28:
 | |
| 	__le32 file_off;		// 0x3c: Used when major version >= 2
 | |
| };
 | |
| 
 | |
| // clang-format on
 | |
| 
 | |
| // Page contains the end of a log record.
 | |
| #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
 | |
| 
 | |
| static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
 | |
| {
 | |
| 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
 | |
| }
 | |
| 
 | |
| static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
 | |
| 
 | |
| /*
 | |
|  * END of NTFS LOG structures
 | |
|  */
 | |
| 
 | |
| /* Define some tuning parameters to keep the restart tables a reasonable size. */
 | |
| #define INITIAL_NUMBER_TRANSACTIONS 5
 | |
| 
 | |
| enum NTFS_LOG_OPERATION {
 | |
| 
 | |
| 	Noop = 0x00,
 | |
| 	CompensationLogRecord = 0x01,
 | |
| 	InitializeFileRecordSegment = 0x02,
 | |
| 	DeallocateFileRecordSegment = 0x03,
 | |
| 	WriteEndOfFileRecordSegment = 0x04,
 | |
| 	CreateAttribute = 0x05,
 | |
| 	DeleteAttribute = 0x06,
 | |
| 	UpdateResidentValue = 0x07,
 | |
| 	UpdateNonresidentValue = 0x08,
 | |
| 	UpdateMappingPairs = 0x09,
 | |
| 	DeleteDirtyClusters = 0x0A,
 | |
| 	SetNewAttributeSizes = 0x0B,
 | |
| 	AddIndexEntryRoot = 0x0C,
 | |
| 	DeleteIndexEntryRoot = 0x0D,
 | |
| 	AddIndexEntryAllocation = 0x0E,
 | |
| 	DeleteIndexEntryAllocation = 0x0F,
 | |
| 	WriteEndOfIndexBuffer = 0x10,
 | |
| 	SetIndexEntryVcnRoot = 0x11,
 | |
| 	SetIndexEntryVcnAllocation = 0x12,
 | |
| 	UpdateFileNameRoot = 0x13,
 | |
| 	UpdateFileNameAllocation = 0x14,
 | |
| 	SetBitsInNonresidentBitMap = 0x15,
 | |
| 	ClearBitsInNonresidentBitMap = 0x16,
 | |
| 	HotFix = 0x17,
 | |
| 	EndTopLevelAction = 0x18,
 | |
| 	PrepareTransaction = 0x19,
 | |
| 	CommitTransaction = 0x1A,
 | |
| 	ForgetTransaction = 0x1B,
 | |
| 	OpenNonresidentAttribute = 0x1C,
 | |
| 	OpenAttributeTableDump = 0x1D,
 | |
| 	AttributeNamesDump = 0x1E,
 | |
| 	DirtyPageTableDump = 0x1F,
 | |
| 	TransactionTableDump = 0x20,
 | |
| 	UpdateRecordDataRoot = 0x21,
 | |
| 	UpdateRecordDataAllocation = 0x22,
 | |
| 
 | |
| 	UpdateRelativeDataInIndex =
 | |
| 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
 | |
| 	UpdateRelativeDataInIndex2 = 0x24,
 | |
| 	ZeroEndOfFileRecord = 0x25,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Array for log records which require a target attribute.
 | |
|  * A true indicates that the corresponding restart operation
 | |
|  * requires a target attribute.
 | |
|  */
 | |
| static const u8 AttributeRequired[] = {
 | |
| 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
 | |
| };
 | |
| 
 | |
| static inline bool is_target_required(u16 op)
 | |
| {
 | |
| 	bool ret = op <= UpdateRecordDataAllocation &&
 | |
| 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
 | |
| {
 | |
| 	switch (op) {
 | |
| 	case Noop:
 | |
| 	case DeleteDirtyClusters:
 | |
| 	case HotFix:
 | |
| 	case EndTopLevelAction:
 | |
| 	case PrepareTransaction:
 | |
| 	case CommitTransaction:
 | |
| 	case ForgetTransaction:
 | |
| 	case CompensationLogRecord:
 | |
| 	case OpenNonresidentAttribute:
 | |
| 	case OpenAttributeTableDump:
 | |
| 	case AttributeNamesDump:
 | |
| 	case DirtyPageTableDump:
 | |
| 	case TransactionTableDump:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
 | |
| 
 | |
| /* Bytes per restart table. */
 | |
| static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
 | |
| {
 | |
| 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
 | |
| 	       sizeof(struct RESTART_TABLE);
 | |
| }
 | |
| 
 | |
| /* Log record length. */
 | |
| static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
 | |
| {
 | |
| 	u16 t16 = le16_to_cpu(lr->lcns_follow);
 | |
| 
 | |
| 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
 | |
| }
 | |
| 
 | |
| struct lcb {
 | |
| 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
 | |
| 	struct LOG_REC_HDR *log_rec;
 | |
| 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
 | |
| 	struct CLIENT_ID client;
 | |
| 	bool alloc; // If true the we should deallocate 'log_rec'.
 | |
| };
 | |
| 
 | |
| static void lcb_put(struct lcb *lcb)
 | |
| {
 | |
| 	if (lcb->alloc)
 | |
| 		kfree(lcb->log_rec);
 | |
| 	kfree(lcb->lrh);
 | |
| 	kfree(lcb);
 | |
| }
 | |
| 
 | |
| /* Find the oldest lsn from active clients. */
 | |
| static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
 | |
| 				     __le16 next_client, u64 *oldest_lsn)
 | |
| {
 | |
| 	while (next_client != LFS_NO_CLIENT_LE) {
 | |
| 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
 | |
| 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
 | |
| 
 | |
| 		/* Ignore this block if it's oldest lsn is 0. */
 | |
| 		if (lsn && lsn < *oldest_lsn)
 | |
| 			*oldest_lsn = lsn;
 | |
| 
 | |
| 		next_client = cr->next_client;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline bool is_rst_page_hdr_valid(u32 file_off,
 | |
| 					 const struct RESTART_HDR *rhdr)
 | |
| {
 | |
| 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
 | |
| 	u32 page_size = le32_to_cpu(rhdr->page_size);
 | |
| 	u32 end_usa;
 | |
| 	u16 ro;
 | |
| 
 | |
| 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
 | |
| 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Check that if the file offset isn't 0, it is the system page size. */
 | |
| 	if (file_off && file_off != sys_page)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Check support version 1.1+. */
 | |
| 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
 | |
| 		return false;
 | |
| 
 | |
| 	if (le16_to_cpu(rhdr->major_ver) > 2)
 | |
| 		return false;
 | |
| 
 | |
| 	ro = le16_to_cpu(rhdr->ra_off);
 | |
| 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
 | |
| 		return false;
 | |
| 
 | |
| 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
 | |
| 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
 | |
| 
 | |
| 	if (ro < end_usa)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
 | |
| {
 | |
| 	const struct RESTART_AREA *ra;
 | |
| 	u16 cl, fl, ul;
 | |
| 	u32 off, l_size, file_dat_bits, file_size_round;
 | |
| 	u16 ro = le16_to_cpu(rhdr->ra_off);
 | |
| 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
 | |
| 
 | |
| 	if (ro + offsetof(struct RESTART_AREA, l_size) >
 | |
| 	    SECTOR_SIZE - sizeof(short))
 | |
| 		return false;
 | |
| 
 | |
| 	ra = Add2Ptr(rhdr, ro);
 | |
| 	cl = le16_to_cpu(ra->log_clients);
 | |
| 
 | |
| 	if (cl > 1)
 | |
| 		return false;
 | |
| 
 | |
| 	off = le16_to_cpu(ra->client_off);
 | |
| 
 | |
| 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
 | |
| 		return false;
 | |
| 
 | |
| 	off += cl * sizeof(struct CLIENT_REC);
 | |
| 
 | |
| 	if (off > sys_page)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the restart length field and whether the entire
 | |
| 	 * restart area is contained that length.
 | |
| 	 */
 | |
| 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
 | |
| 	    off > le16_to_cpu(ra->ra_len)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * As a final check make sure that the use list and the free list
 | |
| 	 * are either empty or point to a valid client.
 | |
| 	 */
 | |
| 	fl = le16_to_cpu(ra->client_idx[0]);
 | |
| 	ul = le16_to_cpu(ra->client_idx[1]);
 | |
| 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
 | |
| 	    (ul != LFS_NO_CLIENT && ul >= cl))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Make sure the sequence number bits match the log file size. */
 | |
| 	l_size = le64_to_cpu(ra->l_size);
 | |
| 
 | |
| 	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
 | |
| 	file_size_round = 1u << (file_dat_bits + 3);
 | |
| 	if (file_size_round != l_size &&
 | |
| 	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* The log page data offset and record header length must be quad-aligned. */
 | |
| 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
 | |
| 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
 | |
| 					bool usa_error)
 | |
| {
 | |
| 	u16 ro = le16_to_cpu(rhdr->ra_off);
 | |
| 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
 | |
| 	u16 ra_len = le16_to_cpu(ra->ra_len);
 | |
| 	const struct CLIENT_REC *ca;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Find the start of the client array. */
 | |
| 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
 | |
| 
 | |
| 	/*
 | |
| 	 * Start with the free list.
 | |
| 	 * Check that all the clients are valid and that there isn't a cycle.
 | |
| 	 * Do the in-use list on the second pass.
 | |
| 	 */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
 | |
| 		bool first_client = true;
 | |
| 		u16 clients = le16_to_cpu(ra->log_clients);
 | |
| 
 | |
| 		while (client_idx != LFS_NO_CLIENT) {
 | |
| 			const struct CLIENT_REC *cr;
 | |
| 
 | |
| 			if (!clients ||
 | |
| 			    client_idx >= le16_to_cpu(ra->log_clients))
 | |
| 				return false;
 | |
| 
 | |
| 			clients -= 1;
 | |
| 			cr = ca + client_idx;
 | |
| 
 | |
| 			client_idx = le16_to_cpu(cr->next_client);
 | |
| 
 | |
| 			if (first_client) {
 | |
| 				first_client = false;
 | |
| 				if (cr->prev_client != LFS_NO_CLIENT_LE)
 | |
| 					return false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove_client
 | |
|  *
 | |
|  * Remove a client record from a client record list an restart area.
 | |
|  */
 | |
| static inline void remove_client(struct CLIENT_REC *ca,
 | |
| 				 const struct CLIENT_REC *cr, __le16 *head)
 | |
| {
 | |
| 	if (cr->prev_client == LFS_NO_CLIENT_LE)
 | |
| 		*head = cr->next_client;
 | |
| 	else
 | |
| 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
 | |
| 
 | |
| 	if (cr->next_client != LFS_NO_CLIENT_LE)
 | |
| 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add_client - Add a client record to the start of a list.
 | |
|  */
 | |
| static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
 | |
| {
 | |
| 	struct CLIENT_REC *cr = ca + index;
 | |
| 
 | |
| 	cr->prev_client = LFS_NO_CLIENT_LE;
 | |
| 	cr->next_client = *head;
 | |
| 
 | |
| 	if (*head != LFS_NO_CLIENT_LE)
 | |
| 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
 | |
| 
 | |
| 	*head = cpu_to_le16(index);
 | |
| }
 | |
| 
 | |
| static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
 | |
| {
 | |
| 	__le32 *e;
 | |
| 	u32 bprt;
 | |
| 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
 | |
| 
 | |
| 	if (!c) {
 | |
| 		if (!t || !t->total)
 | |
| 			return NULL;
 | |
| 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
 | |
| 	} else {
 | |
| 		e = Add2Ptr(c, rsize);
 | |
| 	}
 | |
| 
 | |
| 	/* Loop until we hit the first one allocated, or the end of the list. */
 | |
| 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
 | |
| 	     e = Add2Ptr(e, rsize)) {
 | |
| 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
 | |
| 			return e;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_dp - Search for a @vcn in Dirty Page Table.
 | |
|  */
 | |
| static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
 | |
| 					     u32 target_attr, u64 vcn)
 | |
| {
 | |
| 	__le32 ta = cpu_to_le32(target_attr);
 | |
| 	struct DIR_PAGE_ENTRY *dp = NULL;
 | |
| 
 | |
| 	while ((dp = enum_rstbl(dptbl, dp))) {
 | |
| 		u64 dp_vcn = le64_to_cpu(dp->vcn);
 | |
| 
 | |
| 		if (dp->target_attr == ta && vcn >= dp_vcn &&
 | |
| 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
 | |
| 			return dp;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
 | |
| {
 | |
| 	if (use_default)
 | |
| 		page_size = DefaultLogPageSize;
 | |
| 
 | |
| 	/* Round the file size down to a system page boundary. */
 | |
| 	*l_size &= ~(page_size - 1);
 | |
| 
 | |
| 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
 | |
| 	if (*l_size < (MinLogRecordPages + 2) * page_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	return page_size;
 | |
| }
 | |
| 
 | |
| static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
 | |
| 			  u32 bytes_per_attr_entry)
 | |
| {
 | |
| 	u16 t16;
 | |
| 
 | |
| 	if (bytes < sizeof(struct LOG_REC_HDR))
 | |
| 		return false;
 | |
| 	if (!tr)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((tr - sizeof(struct RESTART_TABLE)) %
 | |
| 	    sizeof(struct TRANSACTION_ENTRY))
 | |
| 		return false;
 | |
| 
 | |
| 	if (le16_to_cpu(lr->redo_off) & 7)
 | |
| 		return false;
 | |
| 
 | |
| 	if (le16_to_cpu(lr->undo_off) & 7)
 | |
| 		return false;
 | |
| 
 | |
| 	if (lr->target_attr)
 | |
| 		goto check_lcns;
 | |
| 
 | |
| 	if (is_target_required(le16_to_cpu(lr->redo_op)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_target_required(le16_to_cpu(lr->undo_op)))
 | |
| 		return false;
 | |
| 
 | |
| check_lcns:
 | |
| 	if (!lr->lcns_follow)
 | |
| 		goto check_length;
 | |
| 
 | |
| 	t16 = le16_to_cpu(lr->target_attr);
 | |
| 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
 | |
| 		return false;
 | |
| 
 | |
| check_length:
 | |
| 	if (bytes < lrh_length(lr))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
 | |
| {
 | |
| 	u32 ts;
 | |
| 	u32 i, off;
 | |
| 	u16 rsize = le16_to_cpu(rt->size);
 | |
| 	u16 ne = le16_to_cpu(rt->used);
 | |
| 	u32 ff = le32_to_cpu(rt->first_free);
 | |
| 	u32 lf = le32_to_cpu(rt->last_free);
 | |
| 
 | |
| 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
 | |
| 
 | |
| 	if (!rsize || rsize > bytes ||
 | |
| 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
 | |
| 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
 | |
| 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
 | |
| 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify each entry is either allocated or points
 | |
| 	 * to a valid offset the table.
 | |
| 	 */
 | |
| 	for (i = 0; i < ne; i++) {
 | |
| 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
 | |
| 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
 | |
| 
 | |
| 		if (off != RESTART_ENTRY_ALLOCATED && off &&
 | |
| 		    (off < sizeof(struct RESTART_TABLE) ||
 | |
| 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk through the list headed by the first entry to make
 | |
| 	 * sure none of the entries are currently being used.
 | |
| 	 */
 | |
| 	for (off = ff; off;) {
 | |
| 		if (off == RESTART_ENTRY_ALLOCATED)
 | |
| 			return false;
 | |
| 
 | |
| 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
 | |
|  */
 | |
| static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
 | |
| {
 | |
| 	__le32 *e;
 | |
| 	u32 lf = le32_to_cpu(rt->last_free);
 | |
| 	__le32 off_le = cpu_to_le32(off);
 | |
| 
 | |
| 	e = Add2Ptr(rt, off);
 | |
| 
 | |
| 	if (off < le32_to_cpu(rt->free_goal)) {
 | |
| 		*e = rt->first_free;
 | |
| 		rt->first_free = off_le;
 | |
| 		if (!lf)
 | |
| 			rt->last_free = off_le;
 | |
| 	} else {
 | |
| 		if (lf)
 | |
| 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
 | |
| 		else
 | |
| 			rt->first_free = off_le;
 | |
| 
 | |
| 		rt->last_free = off_le;
 | |
| 		*e = 0;
 | |
| 	}
 | |
| 
 | |
| 	le16_sub_cpu(&rt->total, 1);
 | |
| }
 | |
| 
 | |
| static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
 | |
| {
 | |
| 	__le32 *e, *last_free;
 | |
| 	u32 off;
 | |
| 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
 | |
| 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
 | |
| 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
 | |
| 
 | |
| 	if (!t)
 | |
| 		return NULL;
 | |
| 
 | |
| 	t->size = cpu_to_le16(esize);
 | |
| 	t->used = cpu_to_le16(used);
 | |
| 	t->free_goal = cpu_to_le32(~0u);
 | |
| 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
 | |
| 	t->last_free = cpu_to_le32(lf);
 | |
| 
 | |
| 	e = (__le32 *)(t + 1);
 | |
| 	last_free = Add2Ptr(t, lf);
 | |
| 
 | |
| 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
 | |
| 	     e = Add2Ptr(e, esize), off += esize) {
 | |
| 		*e = cpu_to_le32(off);
 | |
| 	}
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
 | |
| 						  u32 add, u32 free_goal)
 | |
| {
 | |
| 	u16 esize = le16_to_cpu(tbl->size);
 | |
| 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
 | |
| 	u32 used = le16_to_cpu(tbl->used);
 | |
| 	struct RESTART_TABLE *rt;
 | |
| 
 | |
| 	rt = init_rsttbl(esize, used + add);
 | |
| 	if (!rt)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcpy(rt + 1, tbl + 1, esize * used);
 | |
| 
 | |
| 	rt->free_goal = free_goal == ~0u
 | |
| 				? cpu_to_le32(~0u)
 | |
| 				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
 | |
| 					      free_goal * esize);
 | |
| 
 | |
| 	if (tbl->first_free) {
 | |
| 		rt->first_free = tbl->first_free;
 | |
| 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
 | |
| 	} else {
 | |
| 		rt->first_free = osize;
 | |
| 	}
 | |
| 
 | |
| 	rt->total = tbl->total;
 | |
| 
 | |
| 	kfree(tbl);
 | |
| 	return rt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_rsttbl_idx
 | |
|  *
 | |
|  * Allocate an index from within a previously initialized Restart Table.
 | |
|  */
 | |
| static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
 | |
| {
 | |
| 	u32 off;
 | |
| 	__le32 *e;
 | |
| 	struct RESTART_TABLE *t = *tbl;
 | |
| 
 | |
| 	if (!t->first_free) {
 | |
| 		*tbl = t = extend_rsttbl(t, 16, ~0u);
 | |
| 		if (!t)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	off = le32_to_cpu(t->first_free);
 | |
| 
 | |
| 	/* Dequeue this entry and zero it. */
 | |
| 	e = Add2Ptr(t, off);
 | |
| 
 | |
| 	t->first_free = *e;
 | |
| 
 | |
| 	memset(e, 0, le16_to_cpu(t->size));
 | |
| 
 | |
| 	*e = RESTART_ENTRY_ALLOCATED_LE;
 | |
| 
 | |
| 	/* If list is going empty, then we fix the last_free as well. */
 | |
| 	if (!t->first_free)
 | |
| 		t->last_free = 0;
 | |
| 
 | |
| 	le16_add_cpu(&t->total, 1);
 | |
| 
 | |
| 	return Add2Ptr(t, off);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_rsttbl_from_idx
 | |
|  *
 | |
|  * Allocate a specific index from within a previously initialized Restart Table.
 | |
|  */
 | |
| static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
 | |
| {
 | |
| 	u32 off;
 | |
| 	__le32 *e;
 | |
| 	struct RESTART_TABLE *rt = *tbl;
 | |
| 	u32 bytes = bytes_per_rt(rt);
 | |
| 	u16 esize = le16_to_cpu(rt->size);
 | |
| 
 | |
| 	/* If the entry is not the table, we will have to extend the table. */
 | |
| 	if (vbo >= bytes) {
 | |
| 		/*
 | |
| 		 * Extend the size by computing the number of entries between
 | |
| 		 * the existing size and the desired index and adding 1 to that.
 | |
| 		 */
 | |
| 		u32 bytes2idx = vbo - bytes;
 | |
| 
 | |
| 		/*
 | |
| 		 * There should always be an integral number of entries
 | |
| 		 * being added. Now extend the table.
 | |
| 		 */
 | |
| 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
 | |
| 		if (!rt)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* See if the entry is already allocated, and just return if it is. */
 | |
| 	e = Add2Ptr(rt, vbo);
 | |
| 
 | |
| 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
 | |
| 		return e;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk through the table, looking for the entry we're
 | |
| 	 * interested and the previous entry.
 | |
| 	 */
 | |
| 	off = le32_to_cpu(rt->first_free);
 | |
| 	e = Add2Ptr(rt, off);
 | |
| 
 | |
| 	if (off == vbo) {
 | |
| 		/* this is a match */
 | |
| 		rt->first_free = *e;
 | |
| 		goto skip_looking;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to walk through the list looking for the predecessor
 | |
| 	 * of our entry.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		/* Remember the entry just found */
 | |
| 		u32 last_off = off;
 | |
| 		__le32 *last_e = e;
 | |
| 
 | |
| 		/* Should never run of entries. */
 | |
| 
 | |
| 		/* Lookup up the next entry the list. */
 | |
| 		off = le32_to_cpu(*last_e);
 | |
| 		e = Add2Ptr(rt, off);
 | |
| 
 | |
| 		/* If this is our match we are done. */
 | |
| 		if (off == vbo) {
 | |
| 			*last_e = *e;
 | |
| 
 | |
| 			/*
 | |
| 			 * If this was the last entry, we update that
 | |
| 			 * table as well.
 | |
| 			 */
 | |
| 			if (le32_to_cpu(rt->last_free) == off)
 | |
| 				rt->last_free = cpu_to_le32(last_off);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| skip_looking:
 | |
| 	/* If the list is now empty, we fix the last_free as well. */
 | |
| 	if (!rt->first_free)
 | |
| 		rt->last_free = 0;
 | |
| 
 | |
| 	/* Zero this entry. */
 | |
| 	memset(e, 0, esize);
 | |
| 	*e = RESTART_ENTRY_ALLOCATED_LE;
 | |
| 
 | |
| 	le16_add_cpu(&rt->total, 1);
 | |
| 
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
 | |
| 
 | |
| #define NTFSLOG_WRAPPED 0x00000001
 | |
| #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
 | |
| #define NTFSLOG_NO_LAST_LSN 0x00000004
 | |
| #define NTFSLOG_REUSE_TAIL 0x00000010
 | |
| #define NTFSLOG_NO_OLDEST_LSN 0x00000020
 | |
| 
 | |
| /* Helper struct to work with NTFS $LogFile. */
 | |
| struct ntfs_log {
 | |
| 	struct ntfs_inode *ni;
 | |
| 
 | |
| 	u32 l_size;
 | |
| 	u32 sys_page_size;
 | |
| 	u32 sys_page_mask;
 | |
| 	u32 page_size;
 | |
| 	u32 page_mask; // page_size - 1
 | |
| 	u8 page_bits;
 | |
| 	struct RECORD_PAGE_HDR *one_page_buf;
 | |
| 
 | |
| 	struct RESTART_TABLE *open_attr_tbl;
 | |
| 	u32 transaction_id;
 | |
| 	u32 clst_per_page;
 | |
| 
 | |
| 	u32 first_page;
 | |
| 	u32 next_page;
 | |
| 	u32 ra_off;
 | |
| 	u32 data_off;
 | |
| 	u32 restart_size;
 | |
| 	u32 data_size;
 | |
| 	u16 record_header_len;
 | |
| 	u64 seq_num;
 | |
| 	u32 seq_num_bits;
 | |
| 	u32 file_data_bits;
 | |
| 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
 | |
| 
 | |
| 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
 | |
| 	u32 ra_size; /* The usable size of the restart area. */
 | |
| 
 | |
| 	/*
 | |
| 	 * If true, then the in-memory restart area is to be written
 | |
| 	 * to the first position on the disk.
 | |
| 	 */
 | |
| 	bool init_ra;
 | |
| 	bool set_dirty; /* True if we need to set dirty flag. */
 | |
| 
 | |
| 	u64 oldest_lsn;
 | |
| 
 | |
| 	u32 oldest_lsn_off;
 | |
| 	u64 last_lsn;
 | |
| 
 | |
| 	u32 total_avail;
 | |
| 	u32 total_avail_pages;
 | |
| 	u32 total_undo_commit;
 | |
| 	u32 max_current_avail;
 | |
| 	u32 current_avail;
 | |
| 	u32 reserved;
 | |
| 
 | |
| 	short major_ver;
 | |
| 	short minor_ver;
 | |
| 
 | |
| 	u32 l_flags; /* See NTFSLOG_XXX */
 | |
| 	u32 current_openlog_count; /* On-disk value for open_log_count. */
 | |
| 
 | |
| 	struct CLIENT_ID client_id;
 | |
| 	u32 client_undo_commit;
 | |
| };
 | |
| 
 | |
| static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
 | |
| {
 | |
| 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
 | |
| 
 | |
| 	return vbo;
 | |
| }
 | |
| 
 | |
| /* Compute the offset in the log file of the next log page. */
 | |
| static inline u32 next_page_off(struct ntfs_log *log, u32 off)
 | |
| {
 | |
| 	off = (off & ~log->sys_page_mask) + log->page_size;
 | |
| 	return off >= log->l_size ? log->first_page : off;
 | |
| }
 | |
| 
 | |
| static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
 | |
| {
 | |
| 	return (((u32)lsn) << 3) & log->page_mask;
 | |
| }
 | |
| 
 | |
| static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
 | |
| {
 | |
| 	return (off >> 3) + (Seq << log->file_data_bits);
 | |
| }
 | |
| 
 | |
| static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
 | |
| {
 | |
| 	return lsn >= log->oldest_lsn &&
 | |
| 	       lsn <= le64_to_cpu(log->ra->current_lsn);
 | |
| }
 | |
| 
 | |
| static inline u32 hdr_file_off(struct ntfs_log *log,
 | |
| 			       struct RECORD_PAGE_HDR *hdr)
 | |
| {
 | |
| 	if (log->major_ver < 2)
 | |
| 		return le64_to_cpu(hdr->rhdr.lsn);
 | |
| 
 | |
| 	return le32_to_cpu(hdr->file_off);
 | |
| }
 | |
| 
 | |
| static inline u64 base_lsn(struct ntfs_log *log,
 | |
| 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
 | |
| {
 | |
| 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
 | |
| 	u64 ret = (((h_lsn >> log->file_data_bits) +
 | |
| 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
 | |
| 		   << log->file_data_bits) +
 | |
| 		  ((((is_log_record_end(hdr) &&
 | |
| 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
 | |
| 			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
 | |
| 			     : log->page_size) +
 | |
| 		    lsn) >>
 | |
| 		   3);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool verify_client_lsn(struct ntfs_log *log,
 | |
| 				     const struct CLIENT_REC *client, u64 lsn)
 | |
| {
 | |
| 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
 | |
| 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
 | |
| }
 | |
| 
 | |
| struct restart_info {
 | |
| 	u64 last_lsn;
 | |
| 	struct RESTART_HDR *r_page;
 | |
| 	u32 vbo;
 | |
| 	bool chkdsk_was_run;
 | |
| 	bool valid_page;
 | |
| 	bool initialized;
 | |
| 	bool restart;
 | |
| };
 | |
| 
 | |
| static int read_log_page(struct ntfs_log *log, u32 vbo,
 | |
| 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	u32 page_idx = vbo >> log->page_bits;
 | |
| 	u32 page_off = vbo & log->page_mask;
 | |
| 	u32 bytes = log->page_size - page_off;
 | |
| 	void *to_free = NULL;
 | |
| 	u32 page_vbo = page_idx << log->page_bits;
 | |
| 	struct RECORD_PAGE_HDR *page_buf;
 | |
| 	struct ntfs_inode *ni = log->ni;
 | |
| 	bool bBAAD;
 | |
| 
 | |
| 	if (vbo >= log->l_size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!*buffer) {
 | |
| 		to_free = kmalloc(bytes, GFP_NOFS);
 | |
| 		if (!to_free)
 | |
| 			return -ENOMEM;
 | |
| 		*buffer = to_free;
 | |
| 	}
 | |
| 
 | |
| 	page_buf = page_off ? log->one_page_buf : *buffer;
 | |
| 
 | |
| 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
 | |
| 			       log->page_size, NULL);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
 | |
| 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
 | |
| 
 | |
| 	if (page_buf != *buffer)
 | |
| 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
 | |
| 
 | |
| 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
 | |
| 
 | |
| 	if (usa_error)
 | |
| 		*usa_error = bBAAD;
 | |
| 	/* Check that the update sequence array for this page is valid */
 | |
| 	/* If we don't allow errors, raise an error status */
 | |
| 	else if (bBAAD)
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| out:
 | |
| 	if (err && to_free) {
 | |
| 		kfree(to_free);
 | |
| 		*buffer = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log_read_rst
 | |
|  *
 | |
|  * It walks through 512 blocks of the file looking for a valid
 | |
|  * restart page header. It will stop the first time we find a
 | |
|  * valid page header.
 | |
|  */
 | |
| static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
 | |
| 			struct restart_info *info)
 | |
| {
 | |
| 	u32 skip, vbo;
 | |
| 	struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
 | |
| 
 | |
| 	if (!r_page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset(info, 0, sizeof(struct restart_info));
 | |
| 
 | |
| 	/* Determine which restart area we are looking for. */
 | |
| 	if (first) {
 | |
| 		vbo = 0;
 | |
| 		skip = 512;
 | |
| 	} else {
 | |
| 		vbo = 512;
 | |
| 		skip = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Loop continuously until we succeed. */
 | |
| 	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
 | |
| 		bool usa_error;
 | |
| 		u32 sys_page_size;
 | |
| 		bool brst, bchk;
 | |
| 		struct RESTART_AREA *ra;
 | |
| 
 | |
| 		/* Read a page header at the current offset. */
 | |
| 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
 | |
| 				  &usa_error)) {
 | |
| 			/* Ignore any errors. */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Exit if the signature is a log record page. */
 | |
| 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
 | |
| 			info->initialized = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
 | |
| 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
 | |
| 
 | |
| 		if (!bchk && !brst) {
 | |
| 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
 | |
| 				/*
 | |
| 				 * Remember if the signature does not
 | |
| 				 * indicate uninitialized file.
 | |
| 				 */
 | |
| 				info->initialized = true;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ra = NULL;
 | |
| 		info->valid_page = false;
 | |
| 		info->initialized = true;
 | |
| 		info->vbo = vbo;
 | |
| 
 | |
| 		/* Let's check the restart area if this is a valid page. */
 | |
| 		if (!is_rst_page_hdr_valid(vbo, r_page))
 | |
| 			goto check_result;
 | |
| 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
 | |
| 
 | |
| 		if (!is_rst_area_valid(r_page))
 | |
| 			goto check_result;
 | |
| 
 | |
| 		/*
 | |
| 		 * We have a valid restart page header and restart area.
 | |
| 		 * If chkdsk was run or we have no clients then we have
 | |
| 		 * no more checking to do.
 | |
| 		 */
 | |
| 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
 | |
| 			info->valid_page = true;
 | |
| 			goto check_result;
 | |
| 		}
 | |
| 
 | |
| 		/* Read the entire restart area. */
 | |
| 		sys_page_size = le32_to_cpu(r_page->sys_page_size);
 | |
| 		if (DefaultLogPageSize != sys_page_size) {
 | |
| 			kfree(r_page);
 | |
| 			r_page = kzalloc(sys_page_size, GFP_NOFS);
 | |
| 			if (!r_page)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			if (read_log_page(log, vbo,
 | |
| 					  (struct RECORD_PAGE_HDR **)&r_page,
 | |
| 					  &usa_error)) {
 | |
| 				/* Ignore any errors. */
 | |
| 				kfree(r_page);
 | |
| 				r_page = NULL;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (is_client_area_valid(r_page, usa_error)) {
 | |
| 			info->valid_page = true;
 | |
| 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
 | |
| 		}
 | |
| 
 | |
| check_result:
 | |
| 		/*
 | |
| 		 * If chkdsk was run then update the caller's
 | |
| 		 * values and return.
 | |
| 		 */
 | |
| 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
 | |
| 			info->chkdsk_was_run = true;
 | |
| 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
 | |
| 			info->restart = true;
 | |
| 			info->r_page = r_page;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a valid page then copy the values
 | |
| 		 * we need from it.
 | |
| 		 */
 | |
| 		if (info->valid_page) {
 | |
| 			info->last_lsn = le64_to_cpu(ra->current_lsn);
 | |
| 			info->restart = true;
 | |
| 			info->r_page = r_page;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(r_page);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ilog_init_pg_hdr - Init @log from restart page header.
 | |
|  */
 | |
| static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
 | |
| 			    u32 page_size, u16 major_ver, u16 minor_ver)
 | |
| {
 | |
| 	log->sys_page_size = sys_page_size;
 | |
| 	log->sys_page_mask = sys_page_size - 1;
 | |
| 	log->page_size = page_size;
 | |
| 	log->page_mask = page_size - 1;
 | |
| 	log->page_bits = blksize_bits(page_size);
 | |
| 
 | |
| 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
 | |
| 	if (!log->clst_per_page)
 | |
| 		log->clst_per_page = 1;
 | |
| 
 | |
| 	log->first_page = major_ver >= 2
 | |
| 				  ? 0x22 * page_size
 | |
| 				  : ((sys_page_size << 1) + (page_size << 1));
 | |
| 	log->major_ver = major_ver;
 | |
| 	log->minor_ver = minor_ver;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log_create - Init @log in cases when we don't have a restart area to use.
 | |
|  */
 | |
| static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
 | |
| 		       u32 open_log_count, bool wrapped, bool use_multi_page)
 | |
| {
 | |
| 	log->l_size = l_size;
 | |
| 	/* All file offsets must be quadword aligned. */
 | |
| 	log->file_data_bits = blksize_bits(l_size) - 3;
 | |
| 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
 | |
| 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
 | |
| 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
 | |
| 	log->next_page = log->first_page;
 | |
| 	log->oldest_lsn = log->seq_num << log->file_data_bits;
 | |
| 	log->oldest_lsn_off = 0;
 | |
| 	log->last_lsn = log->oldest_lsn;
 | |
| 
 | |
| 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
 | |
| 
 | |
| 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
 | |
| 	if (wrapped)
 | |
| 		log->l_flags |= NTFSLOG_WRAPPED;
 | |
| 
 | |
| 	if (use_multi_page)
 | |
| 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
 | |
| 
 | |
| 	/* Compute the log page values. */
 | |
| 	log->data_off = ALIGN(
 | |
| 		offsetof(struct RECORD_PAGE_HDR, fixups) +
 | |
| 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
 | |
| 		8);
 | |
| 	log->data_size = log->page_size - log->data_off;
 | |
| 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
 | |
| 
 | |
| 	/* Remember the different page sizes for reservation. */
 | |
| 	log->reserved = log->data_size - log->record_header_len;
 | |
| 
 | |
| 	/* Compute the restart page values. */
 | |
| 	log->ra_off = ALIGN(
 | |
| 		offsetof(struct RESTART_HDR, fixups) +
 | |
| 			sizeof(short) *
 | |
| 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
 | |
| 		8);
 | |
| 	log->restart_size = log->sys_page_size - log->ra_off;
 | |
| 	log->ra_size = struct_size(log->ra, clients, 1);
 | |
| 	log->current_openlog_count = open_log_count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The total available log file space is the number of
 | |
| 	 * log file pages times the space available on each page.
 | |
| 	 */
 | |
| 	log->total_avail_pages = log->l_size - log->first_page;
 | |
| 	log->total_avail = log->total_avail_pages >> log->page_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We assume that we can't use the end of the page less than
 | |
| 	 * the file record size.
 | |
| 	 * Then we won't need to reserve more than the caller asks for.
 | |
| 	 */
 | |
| 	log->max_current_avail = log->total_avail * log->reserved;
 | |
| 	log->total_avail = log->total_avail * log->data_size;
 | |
| 	log->current_avail = log->max_current_avail;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log_create_ra - Fill a restart area from the values stored in @log.
 | |
|  */
 | |
| static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
 | |
| {
 | |
| 	struct CLIENT_REC *cr;
 | |
| 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
 | |
| 
 | |
| 	if (!ra)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ra->current_lsn = cpu_to_le64(log->last_lsn);
 | |
| 	ra->log_clients = cpu_to_le16(1);
 | |
| 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
 | |
| 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
 | |
| 		ra->flags = RESTART_SINGLE_PAGE_IO;
 | |
| 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
 | |
| 	ra->ra_len = cpu_to_le16(log->ra_size);
 | |
| 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
 | |
| 	ra->l_size = cpu_to_le64(log->l_size);
 | |
| 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
 | |
| 	ra->data_off = cpu_to_le16(log->data_off);
 | |
| 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
 | |
| 
 | |
| 	cr = ra->clients;
 | |
| 
 | |
| 	cr->prev_client = LFS_NO_CLIENT_LE;
 | |
| 	cr->next_client = LFS_NO_CLIENT_LE;
 | |
| 
 | |
| 	return ra;
 | |
| }
 | |
| 
 | |
| static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
 | |
| {
 | |
| 	u32 base_vbo = lsn << 3;
 | |
| 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
 | |
| 	u32 page_off = base_vbo & log->page_mask;
 | |
| 	u32 tail = log->page_size - page_off;
 | |
| 
 | |
| 	page_off -= 1;
 | |
| 
 | |
| 	/* Add the length of the header. */
 | |
| 	data_len += log->record_header_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this lsn is contained this log page we are done.
 | |
| 	 * Otherwise we need to walk through several log pages.
 | |
| 	 */
 | |
| 	if (data_len > tail) {
 | |
| 		data_len -= tail;
 | |
| 		tail = log->data_size;
 | |
| 		page_off = log->data_off - 1;
 | |
| 
 | |
| 		for (;;) {
 | |
| 			final_log_off = next_page_off(log, final_log_off);
 | |
| 
 | |
| 			/*
 | |
| 			 * We are done if the remaining bytes
 | |
| 			 * fit on this page.
 | |
| 			 */
 | |
| 			if (data_len <= tail)
 | |
| 				break;
 | |
| 			data_len -= tail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We add the remaining bytes to our starting position on this page
 | |
| 	 * and then add that value to the file offset of this log page.
 | |
| 	 */
 | |
| 	return final_log_off + data_len + page_off;
 | |
| }
 | |
| 
 | |
| static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
 | |
| 			u64 *lsn)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
 | |
| 	u32 vbo = lsn_to_vbo(log, this_lsn);
 | |
| 	u32 end =
 | |
| 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
 | |
| 	u32 hdr_off = end & ~log->sys_page_mask;
 | |
| 	u64 seq = this_lsn >> log->file_data_bits;
 | |
| 	struct RECORD_PAGE_HDR *page = NULL;
 | |
| 
 | |
| 	/* Remember if we wrapped. */
 | |
| 	if (end <= vbo)
 | |
| 		seq += 1;
 | |
| 
 | |
| 	/* Log page header for this page. */
 | |
| 	err = read_log_page(log, hdr_off, &page, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the lsn we were given was not the last lsn on this page,
 | |
| 	 * then the starting offset for the next lsn is on a quad word
 | |
| 	 * boundary following the last file offset for the current lsn.
 | |
| 	 * Otherwise the file offset is the start of the data on the next page.
 | |
| 	 */
 | |
| 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
 | |
| 		/* If we wrapped, we need to increment the sequence number. */
 | |
| 		hdr_off = next_page_off(log, hdr_off);
 | |
| 		if (hdr_off == log->first_page)
 | |
| 			seq += 1;
 | |
| 
 | |
| 		vbo = hdr_off + log->data_off;
 | |
| 	} else {
 | |
| 		vbo = ALIGN(end, 8);
 | |
| 	}
 | |
| 
 | |
| 	/* Compute the lsn based on the file offset and the sequence count. */
 | |
| 	*lsn = vbo_to_lsn(log, vbo, seq);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this lsn is within the legal range for the file, we return true.
 | |
| 	 * Otherwise false indicates that there are no more lsn's.
 | |
| 	 */
 | |
| 	if (!is_lsn_in_file(log, *lsn))
 | |
| 		*lsn = 0;
 | |
| 
 | |
| 	kfree(page);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * current_log_avail - Calculate the number of bytes available for log records.
 | |
|  */
 | |
| static u32 current_log_avail(struct ntfs_log *log)
 | |
| {
 | |
| 	u32 oldest_off, next_free_off, free_bytes;
 | |
| 
 | |
| 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
 | |
| 		/* The entire file is available. */
 | |
| 		return log->max_current_avail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a last lsn the restart area then we know that we will
 | |
| 	 * have to compute the free range.
 | |
| 	 * If there is no oldest lsn then start at the first page of the file.
 | |
| 	 */
 | |
| 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
 | |
| 			     ? log->first_page
 | |
| 			     : (log->oldest_lsn_off & ~log->sys_page_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * We will use the next log page offset to compute the next free page.
 | |
| 	 * If we are going to reuse this page go to the next page.
 | |
| 	 * If we are at the first page then use the end of the file.
 | |
| 	 */
 | |
| 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
 | |
| 				? log->next_page + log->page_size
 | |
| 				: log->next_page == log->first_page
 | |
| 					  ? log->l_size
 | |
| 					  : log->next_page;
 | |
| 
 | |
| 	/* If the two offsets are the same then there is no available space. */
 | |
| 	if (oldest_off == next_free_off)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * If the free offset follows the oldest offset then subtract
 | |
| 	 * this range from the total available pages.
 | |
| 	 */
 | |
| 	free_bytes =
 | |
| 		oldest_off < next_free_off
 | |
| 			? log->total_avail_pages - (next_free_off - oldest_off)
 | |
| 			: oldest_off - next_free_off;
 | |
| 
 | |
| 	free_bytes >>= log->page_bits;
 | |
| 	return free_bytes * log->reserved;
 | |
| }
 | |
| 
 | |
| static bool check_subseq_log_page(struct ntfs_log *log,
 | |
| 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
 | |
| 				  u64 seq)
 | |
| {
 | |
| 	u64 lsn_seq;
 | |
| 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
 | |
| 	u64 lsn = le64_to_cpu(rhdr->lsn);
 | |
| 
 | |
| 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the last lsn on the page occurs was written after the page
 | |
| 	 * that caused the original error then we have a fatal error.
 | |
| 	 */
 | |
| 	lsn_seq = lsn >> log->file_data_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the sequence number for the lsn the page is equal or greater
 | |
| 	 * than lsn we expect, then this is a subsequent write.
 | |
| 	 */
 | |
| 	return lsn_seq >= seq ||
 | |
| 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
 | |
| 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * last_log_lsn
 | |
|  *
 | |
|  * Walks through the log pages for a file, searching for the
 | |
|  * last log page written to the file.
 | |
|  */
 | |
| static int last_log_lsn(struct ntfs_log *log)
 | |
| {
 | |
| 	int err;
 | |
| 	bool usa_error = false;
 | |
| 	bool replace_page = false;
 | |
| 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
 | |
| 	bool wrapped_file, wrapped;
 | |
| 
 | |
| 	u32 page_cnt = 1, page_pos = 1;
 | |
| 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
 | |
| 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
 | |
| 	u32 first_file_off = 0, second_file_off = 0;
 | |
| 	u32 part_io_count = 0;
 | |
| 	u32 tails = 0;
 | |
| 	u32 this_off, curpage_off, nextpage_off, remain_pages;
 | |
| 
 | |
| 	u64 expected_seq, seq_base = 0, lsn_base = 0;
 | |
| 	u64 best_lsn, best_lsn1, best_lsn2;
 | |
| 	u64 lsn_cur, lsn1, lsn2;
 | |
| 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
 | |
| 
 | |
| 	u16 cur_pos, best_page_pos;
 | |
| 
 | |
| 	struct RECORD_PAGE_HDR *page = NULL;
 | |
| 	struct RECORD_PAGE_HDR *tst_page = NULL;
 | |
| 	struct RECORD_PAGE_HDR *first_tail = NULL;
 | |
| 	struct RECORD_PAGE_HDR *second_tail = NULL;
 | |
| 	struct RECORD_PAGE_HDR *tail_page = NULL;
 | |
| 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
 | |
| 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
 | |
| 	struct RECORD_PAGE_HDR *page_bufs = NULL;
 | |
| 	struct RECORD_PAGE_HDR *best_page;
 | |
| 
 | |
| 	if (log->major_ver >= 2) {
 | |
| 		final_off = 0x02 * log->page_size;
 | |
| 		second_off = 0x12 * log->page_size;
 | |
| 
 | |
| 		// 0x10 == 0x12 - 0x2
 | |
| 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
 | |
| 		if (!page_bufs)
 | |
| 			return -ENOMEM;
 | |
| 	} else {
 | |
| 		second_off = log->first_page - log->page_size;
 | |
| 		final_off = second_off - log->page_size;
 | |
| 	}
 | |
| 
 | |
| next_tail:
 | |
| 	/* Read second tail page (at pos 3/0x12000). */
 | |
| 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
 | |
| 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
 | |
| 		kfree(second_tail);
 | |
| 		second_tail = NULL;
 | |
| 		second_file_off = 0;
 | |
| 		lsn2 = 0;
 | |
| 	} else {
 | |
| 		second_file_off = hdr_file_off(log, second_tail);
 | |
| 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
 | |
| 	}
 | |
| 
 | |
| 	/* Read first tail page (at pos 2/0x2000). */
 | |
| 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
 | |
| 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
 | |
| 		kfree(first_tail);
 | |
| 		first_tail = NULL;
 | |
| 		first_file_off = 0;
 | |
| 		lsn1 = 0;
 | |
| 	} else {
 | |
| 		first_file_off = hdr_file_off(log, first_tail);
 | |
| 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
 | |
| 	}
 | |
| 
 | |
| 	if (log->major_ver < 2) {
 | |
| 		int best_page;
 | |
| 
 | |
| 		first_tail_prev = first_tail;
 | |
| 		final_off_prev = first_file_off;
 | |
| 		second_tail_prev = second_tail;
 | |
| 		second_off_prev = second_file_off;
 | |
| 		tails = 1;
 | |
| 
 | |
| 		if (!first_tail && !second_tail)
 | |
| 			goto tail_read;
 | |
| 
 | |
| 		if (first_tail && second_tail)
 | |
| 			best_page = lsn1 < lsn2 ? 1 : 0;
 | |
| 		else if (first_tail)
 | |
| 			best_page = 0;
 | |
| 		else
 | |
| 			best_page = 1;
 | |
| 
 | |
| 		page_off = best_page ? second_file_off : first_file_off;
 | |
| 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
 | |
| 		goto tail_read;
 | |
| 	}
 | |
| 
 | |
| 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
 | |
| 	best_lsn2 =
 | |
| 		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
 | |
| 
 | |
| 	if (first_tail && second_tail) {
 | |
| 		if (best_lsn1 > best_lsn2) {
 | |
| 			best_lsn = best_lsn1;
 | |
| 			best_page = first_tail;
 | |
| 			this_off = first_file_off;
 | |
| 		} else {
 | |
| 			best_lsn = best_lsn2;
 | |
| 			best_page = second_tail;
 | |
| 			this_off = second_file_off;
 | |
| 		}
 | |
| 	} else if (first_tail) {
 | |
| 		best_lsn = best_lsn1;
 | |
| 		best_page = first_tail;
 | |
| 		this_off = first_file_off;
 | |
| 	} else if (second_tail) {
 | |
| 		best_lsn = best_lsn2;
 | |
| 		best_page = second_tail;
 | |
| 		this_off = second_file_off;
 | |
| 	} else {
 | |
| 		goto tail_read;
 | |
| 	}
 | |
| 
 | |
| 	best_page_pos = le16_to_cpu(best_page->page_pos);
 | |
| 
 | |
| 	if (!tails) {
 | |
| 		if (best_page_pos == page_pos) {
 | |
| 			seq_base = best_lsn >> log->file_data_bits;
 | |
| 			saved_off = page_off = le32_to_cpu(best_page->file_off);
 | |
| 			lsn_base = best_lsn;
 | |
| 
 | |
| 			memmove(page_bufs, best_page, log->page_size);
 | |
| 
 | |
| 			page_cnt = le16_to_cpu(best_page->page_count);
 | |
| 			if (page_cnt > 1)
 | |
| 				page_pos += 1;
 | |
| 
 | |
| 			tails = 1;
 | |
| 		}
 | |
| 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
 | |
| 		   saved_off + log->page_size == this_off &&
 | |
| 		   lsn_base < best_lsn &&
 | |
| 		   (page_pos != page_cnt || best_page_pos == page_pos ||
 | |
| 		    best_page_pos == 1) &&
 | |
| 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
 | |
| 		u16 bppc = le16_to_cpu(best_page->page_count);
 | |
| 
 | |
| 		saved_off += log->page_size;
 | |
| 		lsn_base = best_lsn;
 | |
| 
 | |
| 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
 | |
| 			log->page_size);
 | |
| 
 | |
| 		tails += 1;
 | |
| 
 | |
| 		if (best_page_pos != bppc) {
 | |
| 			page_cnt = bppc;
 | |
| 			page_pos = best_page_pos;
 | |
| 
 | |
| 			if (page_cnt > 1)
 | |
| 				page_pos += 1;
 | |
| 		} else {
 | |
| 			page_pos = page_cnt = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		kfree(first_tail);
 | |
| 		kfree(second_tail);
 | |
| 		goto tail_read;
 | |
| 	}
 | |
| 
 | |
| 	kfree(first_tail_prev);
 | |
| 	first_tail_prev = first_tail;
 | |
| 	final_off_prev = first_file_off;
 | |
| 	first_tail = NULL;
 | |
| 
 | |
| 	kfree(second_tail_prev);
 | |
| 	second_tail_prev = second_tail;
 | |
| 	second_off_prev = second_file_off;
 | |
| 	second_tail = NULL;
 | |
| 
 | |
| 	final_off += log->page_size;
 | |
| 	second_off += log->page_size;
 | |
| 
 | |
| 	if (tails < 0x10)
 | |
| 		goto next_tail;
 | |
| tail_read:
 | |
| 	first_tail = first_tail_prev;
 | |
| 	final_off = final_off_prev;
 | |
| 
 | |
| 	second_tail = second_tail_prev;
 | |
| 	second_off = second_off_prev;
 | |
| 
 | |
| 	page_cnt = page_pos = 1;
 | |
| 
 | |
| 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
 | |
| 					       : log->next_page;
 | |
| 
 | |
| 	wrapped_file =
 | |
| 		curpage_off == log->first_page &&
 | |
| 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
 | |
| 
 | |
| 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
 | |
| 
 | |
| 	nextpage_off = curpage_off;
 | |
| 
 | |
| next_page:
 | |
| 	tail_page = NULL;
 | |
| 	/* Read the next log page. */
 | |
| 	err = read_log_page(log, curpage_off, &page, &usa_error);
 | |
| 
 | |
| 	/* Compute the next log page offset the file. */
 | |
| 	nextpage_off = next_page_off(log, curpage_off);
 | |
| 	wrapped = nextpage_off == log->first_page;
 | |
| 
 | |
| 	if (tails > 1) {
 | |
| 		struct RECORD_PAGE_HDR *cur_page =
 | |
| 			Add2Ptr(page_bufs, curpage_off - page_off);
 | |
| 
 | |
| 		if (curpage_off == saved_off) {
 | |
| 			tail_page = cur_page;
 | |
| 			goto use_tail_page;
 | |
| 		}
 | |
| 
 | |
| 		if (page_off > curpage_off || curpage_off >= saved_off)
 | |
| 			goto use_tail_page;
 | |
| 
 | |
| 		if (page_off1)
 | |
| 			goto use_cur_page;
 | |
| 
 | |
| 		if (!err && !usa_error &&
 | |
| 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
 | |
| 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
 | |
| 		    cur_page->record_hdr.next_record_off ==
 | |
| 			    page->record_hdr.next_record_off &&
 | |
| 		    ((page_pos == page_cnt &&
 | |
| 		      le16_to_cpu(page->page_pos) == 1) ||
 | |
| 		     (page_pos != page_cnt &&
 | |
| 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
 | |
| 		      le16_to_cpu(page->page_count) == page_cnt))) {
 | |
| 			cur_page = NULL;
 | |
| 			goto use_tail_page;
 | |
| 		}
 | |
| 
 | |
| 		page_off1 = page_off;
 | |
| 
 | |
| use_cur_page:
 | |
| 
 | |
| 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
 | |
| 
 | |
| 		if (last_ok_lsn !=
 | |
| 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
 | |
| 		    ((lsn_cur >> log->file_data_bits) +
 | |
| 		     ((curpage_off <
 | |
| 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
 | |
| 			      ? 1
 | |
| 			      : 0)) != expected_seq) {
 | |
| 			goto check_tail;
 | |
| 		}
 | |
| 
 | |
| 		if (!is_log_record_end(cur_page)) {
 | |
| 			tail_page = NULL;
 | |
| 			last_ok_lsn = lsn_cur;
 | |
| 			goto next_page_1;
 | |
| 		}
 | |
| 
 | |
| 		log->seq_num = expected_seq;
 | |
| 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
 | |
| 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
 | |
| 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
 | |
| 
 | |
| 		if (log->record_header_len <=
 | |
| 		    log->page_size -
 | |
| 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
 | |
| 			log->l_flags |= NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = curpage_off;
 | |
| 		} else {
 | |
| 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = nextpage_off;
 | |
| 		}
 | |
| 
 | |
| 		if (wrapped_file)
 | |
| 			log->l_flags |= NTFSLOG_WRAPPED;
 | |
| 
 | |
| 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
 | |
| 		goto next_page_1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are at the expected first page of a transfer check to see
 | |
| 	 * if either tail copy is at this offset.
 | |
| 	 * If this page is the last page of a transfer, check if we wrote
 | |
| 	 * a subsequent tail copy.
 | |
| 	 */
 | |
| 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
 | |
| 		/*
 | |
| 		 * Check if the offset matches either the first or second
 | |
| 		 * tail copy. It is possible it will match both.
 | |
| 		 */
 | |
| 		if (curpage_off == final_off)
 | |
| 			tail_page = first_tail;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we already matched on the first page then
 | |
| 		 * check the ending lsn's.
 | |
| 		 */
 | |
| 		if (curpage_off == second_off) {
 | |
| 			if (!tail_page ||
 | |
| 			    (second_tail &&
 | |
| 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
 | |
| 				     le64_to_cpu(first_tail->record_hdr
 | |
| 							 .last_end_lsn))) {
 | |
| 				tail_page = second_tail;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| use_tail_page:
 | |
| 	if (tail_page) {
 | |
| 		/* We have a candidate for a tail copy. */
 | |
| 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
 | |
| 
 | |
| 		if (last_ok_lsn < lsn_cur) {
 | |
| 			/*
 | |
| 			 * If the sequence number is not expected,
 | |
| 			 * then don't use the tail copy.
 | |
| 			 */
 | |
| 			if (expected_seq != (lsn_cur >> log->file_data_bits))
 | |
| 				tail_page = NULL;
 | |
| 		} else if (last_ok_lsn > lsn_cur) {
 | |
| 			/*
 | |
| 			 * If the last lsn is greater than the one on
 | |
| 			 * this page then forget this tail.
 | |
| 			 */
 | |
| 			tail_page = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *If we have an error on the current page,
 | |
| 	 * we will break of this loop.
 | |
| 	 */
 | |
| 	if (err || usa_error)
 | |
| 		goto check_tail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Done if the last lsn on this page doesn't match the previous known
 | |
| 	 * last lsn or the sequence number is not expected.
 | |
| 	 */
 | |
| 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
 | |
| 	if (last_ok_lsn != lsn_cur &&
 | |
| 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
 | |
| 		goto check_tail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the page position and page count values are correct.
 | |
| 	 * If this is the first page of a transfer the position must be 1
 | |
| 	 * and the count will be unknown.
 | |
| 	 */
 | |
| 	if (page_cnt == page_pos) {
 | |
| 		if (page->page_pos != cpu_to_le16(1) &&
 | |
| 		    (!reuse_page || page->page_pos != page->page_count)) {
 | |
| 			/*
 | |
| 			 * If the current page is the first page we are
 | |
| 			 * looking at and we are reusing this page then
 | |
| 			 * it can be either the first or last page of a
 | |
| 			 * transfer. Otherwise it can only be the first.
 | |
| 			 */
 | |
| 			goto check_tail;
 | |
| 		}
 | |
| 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
 | |
| 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
 | |
| 		/*
 | |
| 		 * The page position better be 1 more than the last page
 | |
| 		 * position and the page count better match.
 | |
| 		 */
 | |
| 		goto check_tail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a valid page the file and may have a valid page
 | |
| 	 * the tail copy area.
 | |
| 	 * If the tail page was written after the page the file then
 | |
| 	 * break of the loop.
 | |
| 	 */
 | |
| 	if (tail_page &&
 | |
| 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
 | |
| 		/* Remember if we will replace the page. */
 | |
| 		replace_page = true;
 | |
| 		goto check_tail;
 | |
| 	}
 | |
| 
 | |
| 	tail_page = NULL;
 | |
| 
 | |
| 	if (is_log_record_end(page)) {
 | |
| 		/*
 | |
| 		 * Since we have read this page we know the sequence number
 | |
| 		 * is the same as our expected value.
 | |
| 		 */
 | |
| 		log->seq_num = expected_seq;
 | |
| 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
 | |
| 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
 | |
| 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is room on this page for another header then
 | |
| 		 * remember we want to reuse the page.
 | |
| 		 */
 | |
| 		if (log->record_header_len <=
 | |
| 		    log->page_size -
 | |
| 			    le16_to_cpu(page->record_hdr.next_record_off)) {
 | |
| 			log->l_flags |= NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = curpage_off;
 | |
| 		} else {
 | |
| 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = nextpage_off;
 | |
| 		}
 | |
| 
 | |
| 		/* Remember if we wrapped the log file. */
 | |
| 		if (wrapped_file)
 | |
| 			log->l_flags |= NTFSLOG_WRAPPED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Remember the last page count and position.
 | |
| 	 * Also remember the last known lsn.
 | |
| 	 */
 | |
| 	page_cnt = le16_to_cpu(page->page_count);
 | |
| 	page_pos = le16_to_cpu(page->page_pos);
 | |
| 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
 | |
| 
 | |
| next_page_1:
 | |
| 
 | |
| 	if (wrapped) {
 | |
| 		expected_seq += 1;
 | |
| 		wrapped_file = 1;
 | |
| 	}
 | |
| 
 | |
| 	curpage_off = nextpage_off;
 | |
| 	kfree(page);
 | |
| 	page = NULL;
 | |
| 	reuse_page = 0;
 | |
| 	goto next_page;
 | |
| 
 | |
| check_tail:
 | |
| 	if (tail_page) {
 | |
| 		log->seq_num = expected_seq;
 | |
| 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
 | |
| 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
 | |
| 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
 | |
| 
 | |
| 		if (log->page_size -
 | |
| 			    le16_to_cpu(
 | |
| 				    tail_page->record_hdr.next_record_off) >=
 | |
| 		    log->record_header_len) {
 | |
| 			log->l_flags |= NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = curpage_off;
 | |
| 		} else {
 | |
| 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
 | |
| 			log->next_page = nextpage_off;
 | |
| 		}
 | |
| 
 | |
| 		if (wrapped)
 | |
| 			log->l_flags |= NTFSLOG_WRAPPED;
 | |
| 	}
 | |
| 
 | |
| 	/* Remember that the partial IO will start at the next page. */
 | |
| 	second_off = nextpage_off;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the next page is the first page of the file then update
 | |
| 	 * the sequence number for log records which begon the next page.
 | |
| 	 */
 | |
| 	if (wrapped)
 | |
| 		expected_seq += 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a tail copy or are performing single page I/O we can
 | |
| 	 * immediately look at the next page.
 | |
| 	 */
 | |
| 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
 | |
| 		page_cnt = 2;
 | |
| 		page_pos = 1;
 | |
| 		goto check_valid;
 | |
| 	}
 | |
| 
 | |
| 	if (page_pos != page_cnt)
 | |
| 		goto check_valid;
 | |
| 	/*
 | |
| 	 * If the next page causes us to wrap to the beginning of the log
 | |
| 	 * file then we know which page to check next.
 | |
| 	 */
 | |
| 	if (wrapped) {
 | |
| 		page_cnt = 2;
 | |
| 		page_pos = 1;
 | |
| 		goto check_valid;
 | |
| 	}
 | |
| 
 | |
| 	cur_pos = 2;
 | |
| 
 | |
| next_test_page:
 | |
| 	kfree(tst_page);
 | |
| 	tst_page = NULL;
 | |
| 
 | |
| 	/* Walk through the file, reading log pages. */
 | |
| 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get a USA error then assume that we correctly found
 | |
| 	 * the end of the original transfer.
 | |
| 	 */
 | |
| 	if (usa_error)
 | |
| 		goto file_is_valid;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were able to read the page, we examine it to see if it
 | |
| 	 * is the same or different Io block.
 | |
| 	 */
 | |
| 	if (err)
 | |
| 		goto next_test_page_1;
 | |
| 
 | |
| 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
 | |
| 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
 | |
| 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
 | |
| 		page_pos = le16_to_cpu(tst_page->page_pos);
 | |
| 		goto check_valid;
 | |
| 	} else {
 | |
| 		goto file_is_valid;
 | |
| 	}
 | |
| 
 | |
| next_test_page_1:
 | |
| 
 | |
| 	nextpage_off = next_page_off(log, curpage_off);
 | |
| 	wrapped = nextpage_off == log->first_page;
 | |
| 
 | |
| 	if (wrapped) {
 | |
| 		expected_seq += 1;
 | |
| 		page_cnt = 2;
 | |
| 		page_pos = 1;
 | |
| 	}
 | |
| 
 | |
| 	cur_pos += 1;
 | |
| 	part_io_count += 1;
 | |
| 	if (!wrapped)
 | |
| 		goto next_test_page;
 | |
| 
 | |
| check_valid:
 | |
| 	/* Skip over the remaining pages this transfer. */
 | |
| 	remain_pages = page_cnt - page_pos - 1;
 | |
| 	part_io_count += remain_pages;
 | |
| 
 | |
| 	while (remain_pages--) {
 | |
| 		nextpage_off = next_page_off(log, curpage_off);
 | |
| 		wrapped = nextpage_off == log->first_page;
 | |
| 
 | |
| 		if (wrapped)
 | |
| 			expected_seq += 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Call our routine to check this log page. */
 | |
| 	kfree(tst_page);
 | |
| 	tst_page = NULL;
 | |
| 
 | |
| 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
 | |
| 	if (!err && !usa_error &&
 | |
| 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| file_is_valid:
 | |
| 
 | |
| 	/* We have a valid file. */
 | |
| 	if (page_off1 || tail_page) {
 | |
| 		struct RECORD_PAGE_HDR *tmp_page;
 | |
| 
 | |
| 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
 | |
| 			err = -EROFS;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (page_off1) {
 | |
| 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
 | |
| 			tails -= (page_off1 - page_off) / log->page_size;
 | |
| 			if (!tail_page)
 | |
| 				tails -= 1;
 | |
| 		} else {
 | |
| 			tmp_page = tail_page;
 | |
| 			tails = 1;
 | |
| 		}
 | |
| 
 | |
| 		while (tails--) {
 | |
| 			u64 off = hdr_file_off(log, tmp_page);
 | |
| 
 | |
| 			if (!page) {
 | |
| 				page = kmalloc(log->page_size, GFP_NOFS);
 | |
| 				if (!page)
 | |
| 					return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Correct page and copy the data from this page
 | |
| 			 * into it and flush it to disk.
 | |
| 			 */
 | |
| 			memcpy(page, tmp_page, log->page_size);
 | |
| 
 | |
| 			/* Fill last flushed lsn value flush the page. */
 | |
| 			if (log->major_ver < 2)
 | |
| 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
 | |
| 			else
 | |
| 				page->file_off = 0;
 | |
| 
 | |
| 			page->page_pos = page->page_count = cpu_to_le16(1);
 | |
| 
 | |
| 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
 | |
| 
 | |
| 			err = ntfs_sb_write_run(log->ni->mi.sbi,
 | |
| 						&log->ni->file.run, off, page,
 | |
| 						log->page_size, 0);
 | |
| 
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 
 | |
| 			if (part_io_count && second_off == off) {
 | |
| 				second_off += log->page_size;
 | |
| 				part_io_count -= 1;
 | |
| 			}
 | |
| 
 | |
| 			tmp_page = Add2Ptr(tmp_page, log->page_size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (part_io_count) {
 | |
| 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
 | |
| 			err = -EROFS;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(second_tail);
 | |
| 	kfree(first_tail);
 | |
| 	kfree(page);
 | |
| 	kfree(tst_page);
 | |
| 	kfree(page_bufs);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read_log_rec_buf - Copy a log record from the file to a buffer.
 | |
|  *
 | |
|  * The log record may span several log pages and may even wrap the file.
 | |
|  */
 | |
| static int read_log_rec_buf(struct ntfs_log *log,
 | |
| 			    const struct LFS_RECORD_HDR *rh, void *buffer)
 | |
| {
 | |
| 	int err;
 | |
| 	struct RECORD_PAGE_HDR *ph = NULL;
 | |
| 	u64 lsn = le64_to_cpu(rh->this_lsn);
 | |
| 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
 | |
| 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
 | |
| 	u32 data_len = le32_to_cpu(rh->client_data_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * While there are more bytes to transfer,
 | |
| 	 * we continue to attempt to perform the read.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		bool usa_error;
 | |
| 		u32 tail = log->page_size - off;
 | |
| 
 | |
| 		if (tail >= data_len)
 | |
| 			tail = data_len;
 | |
| 
 | |
| 		data_len -= tail;
 | |
| 
 | |
| 		err = read_log_page(log, vbo, &ph, &usa_error);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * The last lsn on this page better be greater or equal
 | |
| 		 * to the lsn we are copying.
 | |
| 		 */
 | |
| 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(buffer, Add2Ptr(ph, off), tail);
 | |
| 
 | |
| 		/* If there are no more bytes to transfer, we exit the loop. */
 | |
| 		if (!data_len) {
 | |
| 			if (!is_log_record_end(ph) ||
 | |
| 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
 | |
| 				err = -EINVAL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
 | |
| 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		vbo = next_page_off(log, vbo);
 | |
| 		off = log->data_off;
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust our pointer the user's buffer to transfer
 | |
| 		 * the next block to.
 | |
| 		 */
 | |
| 		buffer = Add2Ptr(buffer, tail);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(ph);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
 | |
| 			 u64 *lsn)
 | |
| {
 | |
| 	int err;
 | |
| 	struct LFS_RECORD_HDR *rh = NULL;
 | |
| 	const struct CLIENT_REC *cr =
 | |
| 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
 | |
| 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
 | |
| 	u32 len;
 | |
| 	struct NTFS_RESTART *rst;
 | |
| 
 | |
| 	*lsn = 0;
 | |
| 	*rst_ = NULL;
 | |
| 
 | |
| 	/* If the client doesn't have a restart area, go ahead and exit now. */
 | |
| 	if (!lsnc)
 | |
| 		return 0;
 | |
| 
 | |
| 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
 | |
| 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	rst = NULL;
 | |
| 	lsnr = le64_to_cpu(rh->this_lsn);
 | |
| 
 | |
| 	if (lsnc != lsnr) {
 | |
| 		/* If the lsn values don't match, then the disk is corrupt. */
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	*lsn = lsnr;
 | |
| 	len = le32_to_cpu(rh->client_data_len);
 | |
| 
 | |
| 	if (!len) {
 | |
| 		err = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (len < sizeof(struct NTFS_RESTART)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rst = kmalloc(len, GFP_NOFS);
 | |
| 	if (!rst) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the data into the 'rst' buffer. */
 | |
| 	err = read_log_rec_buf(log, rh, rst);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	*rst_ = rst;
 | |
| 	rst = NULL;
 | |
| 
 | |
| out:
 | |
| 	kfree(rh);
 | |
| 	kfree(rst);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
 | |
| {
 | |
| 	int err;
 | |
| 	struct LFS_RECORD_HDR *rh = lcb->lrh;
 | |
| 	u32 rec_len, len;
 | |
| 
 | |
| 	/* Read the record header for this lsn. */
 | |
| 	if (!rh) {
 | |
| 		err = read_log_page(log, lsn_to_vbo(log, lsn),
 | |
| 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
 | |
| 
 | |
| 		lcb->lrh = rh;
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the lsn the log record doesn't match the desired
 | |
| 	 * lsn then the disk is corrupt.
 | |
| 	 */
 | |
| 	if (lsn != le64_to_cpu(rh->this_lsn))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	len = le32_to_cpu(rh->client_data_len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that the length field isn't greater than the total
 | |
| 	 * available space the log file.
 | |
| 	 */
 | |
| 	rec_len = len + log->record_header_len;
 | |
| 	if (rec_len >= log->total_avail)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the entire log record is on this log page,
 | |
| 	 * put a pointer to the log record the context block.
 | |
| 	 */
 | |
| 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
 | |
| 		void *lr = kmalloc(len, GFP_NOFS);
 | |
| 
 | |
| 		if (!lr)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		lcb->log_rec = lr;
 | |
| 		lcb->alloc = true;
 | |
| 
 | |
| 		/* Copy the data into the buffer returned. */
 | |
| 		err = read_log_rec_buf(log, rh, lr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} else {
 | |
| 		/* If beyond the end of the current page -> an error. */
 | |
| 		u32 page_off = lsn_to_page_off(log, lsn);
 | |
| 
 | |
| 		if (page_off + len + log->record_header_len > log->page_size)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
 | |
| 		lcb->alloc = false;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * read_log_rec_lcb - Init the query operation.
 | |
|  */
 | |
| static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
 | |
| 			    struct lcb **lcb_)
 | |
| {
 | |
| 	int err;
 | |
| 	const struct CLIENT_REC *cr;
 | |
| 	struct lcb *lcb;
 | |
| 
 | |
| 	switch (ctx_mode) {
 | |
| 	case lcb_ctx_undo_next:
 | |
| 	case lcb_ctx_prev:
 | |
| 	case lcb_ctx_next:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check that the given lsn is the legal range for this client. */
 | |
| 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
 | |
| 
 | |
| 	if (!verify_client_lsn(log, cr, lsn))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
 | |
| 	if (!lcb)
 | |
| 		return -ENOMEM;
 | |
| 	lcb->client = log->client_id;
 | |
| 	lcb->ctx_mode = ctx_mode;
 | |
| 
 | |
| 	/* Find the log record indicated by the given lsn. */
 | |
| 	err = find_log_rec(log, lsn, lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	*lcb_ = lcb;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	lcb_put(lcb);
 | |
| 	*lcb_ = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_client_next_lsn
 | |
|  *
 | |
|  * Attempt to find the next lsn to return to a client based on the context mode.
 | |
|  */
 | |
| static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
 | |
| {
 | |
| 	int err;
 | |
| 	u64 next_lsn;
 | |
| 	struct LFS_RECORD_HDR *hdr;
 | |
| 
 | |
| 	hdr = lcb->lrh;
 | |
| 	*lsn = 0;
 | |
| 
 | |
| 	if (lcb_ctx_next != lcb->ctx_mode)
 | |
| 		goto check_undo_next;
 | |
| 
 | |
| 	/* Loop as long as another lsn can be found. */
 | |
| 	for (;;) {
 | |
| 		u64 current_lsn;
 | |
| 
 | |
| 		err = next_log_lsn(log, hdr, ¤t_lsn);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!current_lsn)
 | |
| 			break;
 | |
| 
 | |
| 		if (hdr != lcb->lrh)
 | |
| 			kfree(hdr);
 | |
| 
 | |
| 		hdr = NULL;
 | |
| 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
 | |
| 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (memcmp(&hdr->client, &lcb->client,
 | |
| 			   sizeof(struct CLIENT_ID))) {
 | |
| 			/*err = -EINVAL; */
 | |
| 		} else if (LfsClientRecord == hdr->record_type) {
 | |
| 			kfree(lcb->lrh);
 | |
| 			lcb->lrh = hdr;
 | |
| 			*lsn = current_lsn;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (hdr != lcb->lrh)
 | |
| 		kfree(hdr);
 | |
| 	return err;
 | |
| 
 | |
| check_undo_next:
 | |
| 	if (lcb_ctx_undo_next == lcb->ctx_mode)
 | |
| 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
 | |
| 	else if (lcb_ctx_prev == lcb->ctx_mode)
 | |
| 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!next_lsn)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!verify_client_lsn(
 | |
| 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
 | |
| 		    next_lsn))
 | |
| 		return 0;
 | |
| 
 | |
| 	hdr = NULL;
 | |
| 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
 | |
| 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	kfree(lcb->lrh);
 | |
| 	lcb->lrh = hdr;
 | |
| 
 | |
| 	*lsn = next_lsn;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = find_client_next_lsn(log, lcb, lsn);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!*lsn)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (lcb->alloc)
 | |
| 		kfree(lcb->log_rec);
 | |
| 
 | |
| 	lcb->log_rec = NULL;
 | |
| 	lcb->alloc = false;
 | |
| 	kfree(lcb->lrh);
 | |
| 	lcb->lrh = NULL;
 | |
| 
 | |
| 	return find_log_rec(log, *lsn, lcb);
 | |
| }
 | |
| 
 | |
| static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
 | |
| {
 | |
| 	__le16 mask;
 | |
| 	u32 min_de, de_off, used, total;
 | |
| 	const struct NTFS_DE *e;
 | |
| 
 | |
| 	if (hdr_has_subnode(hdr)) {
 | |
| 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
 | |
| 		mask = NTFS_IE_HAS_SUBNODES;
 | |
| 	} else {
 | |
| 		min_de = sizeof(struct NTFS_DE);
 | |
| 		mask = 0;
 | |
| 	}
 | |
| 
 | |
| 	de_off = le32_to_cpu(hdr->de_off);
 | |
| 	used = le32_to_cpu(hdr->used);
 | |
| 	total = le32_to_cpu(hdr->total);
 | |
| 
 | |
| 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
 | |
| 	    de_off + min_de > used || used > total) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	e = Add2Ptr(hdr, de_off);
 | |
| 	for (;;) {
 | |
| 		u16 esize = le16_to_cpu(e->size);
 | |
| 		struct NTFS_DE *next = Add2Ptr(e, esize);
 | |
| 
 | |
| 		if (esize < min_de || PtrOffset(hdr, next) > used ||
 | |
| 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (de_is_last(e))
 | |
| 			break;
 | |
| 
 | |
| 		e = next;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
 | |
| {
 | |
| 	u16 fo;
 | |
| 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
 | |
| 
 | |
| 	if (r->sign != NTFS_INDX_SIGNATURE)
 | |
| 		return false;
 | |
| 
 | |
| 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
 | |
| 
 | |
| 	if (le16_to_cpu(r->fix_off) > fo)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
 | |
| 		return false;
 | |
| 
 | |
| 	return check_index_header(&ib->ihdr,
 | |
| 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
 | |
| }
 | |
| 
 | |
| static inline bool check_index_root(const struct ATTRIB *attr,
 | |
| 				    struct ntfs_sb_info *sbi)
 | |
| {
 | |
| 	bool ret;
 | |
| 	const struct INDEX_ROOT *root = resident_data(attr);
 | |
| 	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
 | |
| 				? sbi->cluster_bits
 | |
| 				: SECTOR_SHIFT;
 | |
| 	u8 block_clst = root->index_block_clst;
 | |
| 
 | |
| 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
 | |
| 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
 | |
| 	    (root->type == ATTR_NAME &&
 | |
| 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
 | |
| 	    (le32_to_cpu(root->index_block_size) !=
 | |
| 	     (block_clst << index_bits)) ||
 | |
| 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
 | |
| 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
 | |
| 	     block_clst != 0x40 && block_clst != 0x80)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	ret = check_index_header(&root->ihdr,
 | |
| 				 le32_to_cpu(attr->res.data_size) -
 | |
| 					 offsetof(struct INDEX_ROOT, ihdr));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool check_attr(const struct MFT_REC *rec,
 | |
| 			      const struct ATTRIB *attr,
 | |
| 			      struct ntfs_sb_info *sbi)
 | |
| {
 | |
| 	u32 asize = le32_to_cpu(attr->size);
 | |
| 	u32 rsize = 0;
 | |
| 	u64 dsize, svcn, evcn;
 | |
| 	u16 run_off;
 | |
| 
 | |
| 	/* Check the fixed part of the attribute record header. */
 | |
| 	if (asize >= sbi->record_size ||
 | |
| 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
 | |
| 	    (attr->name_len &&
 | |
| 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
 | |
| 		     asize)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the attribute fields. */
 | |
| 	switch (attr->non_res) {
 | |
| 	case 0:
 | |
| 		rsize = le32_to_cpu(attr->res.data_size);
 | |
| 		if (rsize >= asize ||
 | |
| 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		dsize = le64_to_cpu(attr->nres.data_size);
 | |
| 		svcn = le64_to_cpu(attr->nres.svcn);
 | |
| 		evcn = le64_to_cpu(attr->nres.evcn);
 | |
| 		run_off = le16_to_cpu(attr->nres.run_off);
 | |
| 
 | |
| 		if (svcn > evcn + 1 || run_off >= asize ||
 | |
| 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
 | |
| 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
 | |
| 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		return true;
 | |
| 
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	switch (attr->type) {
 | |
| 	case ATTR_NAME:
 | |
| 		if (fname_full_size(Add2Ptr(
 | |
| 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case ATTR_ROOT:
 | |
| 		return check_index_root(attr, sbi);
 | |
| 
 | |
| 	case ATTR_STD:
 | |
| 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
 | |
| 		    rsize != sizeof(struct ATTR_STD_INFO)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case ATTR_LIST:
 | |
| 	case ATTR_ID:
 | |
| 	case ATTR_SECURE:
 | |
| 	case ATTR_LABEL:
 | |
| 	case ATTR_VOL_INFO:
 | |
| 	case ATTR_DATA:
 | |
| 	case ATTR_ALLOC:
 | |
| 	case ATTR_BITMAP:
 | |
| 	case ATTR_REPARSE:
 | |
| 	case ATTR_EA_INFO:
 | |
| 	case ATTR_EA:
 | |
| 	case ATTR_PROPERTYSET:
 | |
| 	case ATTR_LOGGED_UTILITY_STREAM:
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline bool check_file_record(const struct MFT_REC *rec,
 | |
| 				     const struct MFT_REC *rec2,
 | |
| 				     struct ntfs_sb_info *sbi)
 | |
| {
 | |
| 	const struct ATTRIB *attr;
 | |
| 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
 | |
| 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
 | |
| 	u16 ao = le16_to_cpu(rec->attr_off);
 | |
| 	u32 rs = sbi->record_size;
 | |
| 
 | |
| 	/* Check the file record header for consistency. */
 | |
| 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
 | |
| 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
 | |
| 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
 | |
| 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
 | |
| 	    le32_to_cpu(rec->total) != rs) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Loop to check all of the attributes. */
 | |
| 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
 | |
| 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
 | |
| 		if (check_attr(rec, attr, sbi))
 | |
| 			continue;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
 | |
| 			    const u64 *rlsn)
 | |
| {
 | |
| 	u64 lsn;
 | |
| 
 | |
| 	if (!rlsn)
 | |
| 		return true;
 | |
| 
 | |
| 	lsn = le64_to_cpu(hdr->lsn);
 | |
| 
 | |
| 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
 | |
| 		return false;
 | |
| 
 | |
| 	if (*rlsn > lsn)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool check_if_attr(const struct MFT_REC *rec,
 | |
| 				 const struct LOG_REC_HDR *lrh)
 | |
| {
 | |
| 	u16 ro = le16_to_cpu(lrh->record_off);
 | |
| 	u16 o = le16_to_cpu(rec->attr_off);
 | |
| 	const struct ATTRIB *attr = Add2Ptr(rec, o);
 | |
| 
 | |
| 	while (o < ro) {
 | |
| 		u32 asize;
 | |
| 
 | |
| 		if (attr->type == ATTR_END)
 | |
| 			break;
 | |
| 
 | |
| 		asize = le32_to_cpu(attr->size);
 | |
| 		if (!asize)
 | |
| 			break;
 | |
| 
 | |
| 		o += asize;
 | |
| 		attr = Add2Ptr(attr, asize);
 | |
| 	}
 | |
| 
 | |
| 	return o == ro;
 | |
| }
 | |
| 
 | |
| static inline bool check_if_index_root(const struct MFT_REC *rec,
 | |
| 				       const struct LOG_REC_HDR *lrh)
 | |
| {
 | |
| 	u16 ro = le16_to_cpu(lrh->record_off);
 | |
| 	u16 o = le16_to_cpu(rec->attr_off);
 | |
| 	const struct ATTRIB *attr = Add2Ptr(rec, o);
 | |
| 
 | |
| 	while (o < ro) {
 | |
| 		u32 asize;
 | |
| 
 | |
| 		if (attr->type == ATTR_END)
 | |
| 			break;
 | |
| 
 | |
| 		asize = le32_to_cpu(attr->size);
 | |
| 		if (!asize)
 | |
| 			break;
 | |
| 
 | |
| 		o += asize;
 | |
| 		attr = Add2Ptr(attr, asize);
 | |
| 	}
 | |
| 
 | |
| 	return o == ro && attr->type == ATTR_ROOT;
 | |
| }
 | |
| 
 | |
| static inline bool check_if_root_index(const struct ATTRIB *attr,
 | |
| 				       const struct INDEX_HDR *hdr,
 | |
| 				       const struct LOG_REC_HDR *lrh)
 | |
| {
 | |
| 	u16 ao = le16_to_cpu(lrh->attr_off);
 | |
| 	u32 de_off = le32_to_cpu(hdr->de_off);
 | |
| 	u32 o = PtrOffset(attr, hdr) + de_off;
 | |
| 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
 | |
| 	u32 asize = le32_to_cpu(attr->size);
 | |
| 
 | |
| 	while (o < ao) {
 | |
| 		u16 esize;
 | |
| 
 | |
| 		if (o >= asize)
 | |
| 			break;
 | |
| 
 | |
| 		esize = le16_to_cpu(e->size);
 | |
| 		if (!esize)
 | |
| 			break;
 | |
| 
 | |
| 		o += esize;
 | |
| 		e = Add2Ptr(e, esize);
 | |
| 	}
 | |
| 
 | |
| 	return o == ao;
 | |
| }
 | |
| 
 | |
| static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
 | |
| 					u32 attr_off)
 | |
| {
 | |
| 	u32 de_off = le32_to_cpu(hdr->de_off);
 | |
| 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
 | |
| 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
 | |
| 	u32 used = le32_to_cpu(hdr->used);
 | |
| 
 | |
| 	while (o < attr_off) {
 | |
| 		u16 esize;
 | |
| 
 | |
| 		if (de_off >= used)
 | |
| 			break;
 | |
| 
 | |
| 		esize = le16_to_cpu(e->size);
 | |
| 		if (!esize)
 | |
| 			break;
 | |
| 
 | |
| 		o += esize;
 | |
| 		de_off += esize;
 | |
| 		e = Add2Ptr(e, esize);
 | |
| 	}
 | |
| 
 | |
| 	return o == attr_off;
 | |
| }
 | |
| 
 | |
| static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
 | |
| 				    u32 nsize)
 | |
| {
 | |
| 	u32 asize = le32_to_cpu(attr->size);
 | |
| 	int dsize = nsize - asize;
 | |
| 	u8 *next = Add2Ptr(attr, asize);
 | |
| 	u32 used = le32_to_cpu(rec->used);
 | |
| 
 | |
| 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
 | |
| 
 | |
| 	rec->used = cpu_to_le32(used + dsize);
 | |
| 	attr->size = cpu_to_le32(nsize);
 | |
| }
 | |
| 
 | |
| struct OpenAttr {
 | |
| 	struct ATTRIB *attr;
 | |
| 	struct runs_tree *run1;
 | |
| 	struct runs_tree run0;
 | |
| 	struct ntfs_inode *ni;
 | |
| 	// CLST rno;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * cmp_type_and_name
 | |
|  *
 | |
|  * Return: 0 if 'attr' has the same type and name.
 | |
|  */
 | |
| static inline int cmp_type_and_name(const struct ATTRIB *a1,
 | |
| 				    const struct ATTRIB *a2)
 | |
| {
 | |
| 	return a1->type != a2->type || a1->name_len != a2->name_len ||
 | |
| 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
 | |
| 				       a1->name_len * sizeof(short)));
 | |
| }
 | |
| 
 | |
| static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
 | |
| 					 const struct ATTRIB *attr, CLST rno)
 | |
| {
 | |
| 	struct OPEN_ATTR_ENRTY *oe = NULL;
 | |
| 
 | |
| 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
 | |
| 		struct OpenAttr *op_attr;
 | |
| 
 | |
| 		if (ino_get(&oe->ref) != rno)
 | |
| 			continue;
 | |
| 
 | |
| 		op_attr = (struct OpenAttr *)oe->ptr;
 | |
| 		if (!cmp_type_and_name(op_attr->attr, attr))
 | |
| 			return op_attr;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
 | |
| 					     enum ATTR_TYPE type, u64 size,
 | |
| 					     const u16 *name, size_t name_len,
 | |
| 					     __le16 flags)
 | |
| {
 | |
| 	struct ATTRIB *attr;
 | |
| 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
 | |
| 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
 | |
| 	u32 asize = name_size +
 | |
| 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
 | |
| 
 | |
| 	attr = kzalloc(asize, GFP_NOFS);
 | |
| 	if (!attr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	attr->type = type;
 | |
| 	attr->size = cpu_to_le32(asize);
 | |
| 	attr->flags = flags;
 | |
| 	attr->non_res = 1;
 | |
| 	attr->name_len = name_len;
 | |
| 
 | |
| 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
 | |
| 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
 | |
| 	attr->nres.data_size = cpu_to_le64(size);
 | |
| 	attr->nres.valid_size = attr->nres.data_size;
 | |
| 	if (is_ext) {
 | |
| 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
 | |
| 		if (is_attr_compressed(attr))
 | |
| 			attr->nres.c_unit = COMPRESSION_UNIT;
 | |
| 
 | |
| 		attr->nres.run_off =
 | |
| 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
 | |
| 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
 | |
| 		       name_len * sizeof(short));
 | |
| 	} else {
 | |
| 		attr->name_off = SIZEOF_NONRESIDENT_LE;
 | |
| 		attr->nres.run_off =
 | |
| 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
 | |
| 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
 | |
| 		       name_len * sizeof(short));
 | |
| 	}
 | |
| 
 | |
| 	return attr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do_action - Common routine for the Redo and Undo Passes.
 | |
|  * @rlsn: If it is NULL then undo.
 | |
|  */
 | |
| static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
 | |
| 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
 | |
| 		     u32 dlen, u32 rec_len, const u64 *rlsn)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
 | |
| 	struct inode *inode = NULL, *inode_parent;
 | |
| 	struct mft_inode *mi = NULL, *mi2_child = NULL;
 | |
| 	CLST rno = 0, rno_base = 0;
 | |
| 	struct INDEX_BUFFER *ib = NULL;
 | |
| 	struct MFT_REC *rec = NULL;
 | |
| 	struct ATTRIB *attr = NULL, *attr2;
 | |
| 	struct INDEX_HDR *hdr;
 | |
| 	struct INDEX_ROOT *root;
 | |
| 	struct NTFS_DE *e, *e1, *e2;
 | |
| 	struct NEW_ATTRIBUTE_SIZES *new_sz;
 | |
| 	struct ATTR_FILE_NAME *fname;
 | |
| 	struct OpenAttr *oa, *oa2;
 | |
| 	u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
 | |
| 	u16 id, id2;
 | |
| 	u32 record_size = sbi->record_size;
 | |
| 	u64 t64;
 | |
| 	u16 roff = le16_to_cpu(lrh->record_off);
 | |
| 	u16 aoff = le16_to_cpu(lrh->attr_off);
 | |
| 	u64 lco = 0;
 | |
| 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
 | |
| 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
 | |
| 	u64 vbo = cbo + tvo;
 | |
| 	void *buffer_le = NULL;
 | |
| 	u32 bytes = 0;
 | |
| 	bool a_dirty = false;
 | |
| 	u16 data_off;
 | |
| 
 | |
| 	oa = oe->ptr;
 | |
| 
 | |
| 	/* Big switch to prepare. */
 | |
| 	switch (op) {
 | |
| 	/* ============================================================
 | |
| 	 * Process MFT records, as described by the current log record.
 | |
| 	 * ============================================================
 | |
| 	 */
 | |
| 	case InitializeFileRecordSegment:
 | |
| 	case DeallocateFileRecordSegment:
 | |
| 	case WriteEndOfFileRecordSegment:
 | |
| 	case CreateAttribute:
 | |
| 	case DeleteAttribute:
 | |
| 	case UpdateResidentValue:
 | |
| 	case UpdateMappingPairs:
 | |
| 	case SetNewAttributeSizes:
 | |
| 	case AddIndexEntryRoot:
 | |
| 	case DeleteIndexEntryRoot:
 | |
| 	case SetIndexEntryVcnRoot:
 | |
| 	case UpdateFileNameRoot:
 | |
| 	case UpdateRecordDataRoot:
 | |
| 	case ZeroEndOfFileRecord:
 | |
| 		rno = vbo >> sbi->record_bits;
 | |
| 		inode = ilookup(sbi->sb, rno);
 | |
| 		if (inode) {
 | |
| 			mi = &ntfs_i(inode)->mi;
 | |
| 		} else if (op == InitializeFileRecordSegment) {
 | |
| 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
 | |
| 			if (!mi)
 | |
| 				return -ENOMEM;
 | |
| 			err = mi_format_new(mi, sbi, rno, 0, false);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		} else {
 | |
| 			/* Read from disk. */
 | |
| 			err = mi_get(sbi, rno, &mi);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		rec = mi->mrec;
 | |
| 
 | |
| 		if (op == DeallocateFileRecordSegment)
 | |
| 			goto skip_load_parent;
 | |
| 
 | |
| 		if (InitializeFileRecordSegment != op) {
 | |
| 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
 | |
| 				goto dirty_vol;
 | |
| 			if (!check_lsn(&rec->rhdr, rlsn))
 | |
| 				goto out;
 | |
| 			if (!check_file_record(rec, NULL, sbi))
 | |
| 				goto dirty_vol;
 | |
| 			attr = Add2Ptr(rec, roff);
 | |
| 		}
 | |
| 
 | |
| 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
 | |
| 			rno_base = rno;
 | |
| 			goto skip_load_parent;
 | |
| 		}
 | |
| 
 | |
| 		rno_base = ino_get(&rec->parent_ref);
 | |
| 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
 | |
| 		if (IS_ERR(inode_parent))
 | |
| 			goto skip_load_parent;
 | |
| 
 | |
| 		if (is_bad_inode(inode_parent)) {
 | |
| 			iput(inode_parent);
 | |
| 			goto skip_load_parent;
 | |
| 		}
 | |
| 
 | |
| 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
 | |
| 			iput(inode_parent);
 | |
| 		} else {
 | |
| 			if (mi2_child->mrec != mi->mrec)
 | |
| 				memcpy(mi2_child->mrec, mi->mrec,
 | |
| 				       sbi->record_size);
 | |
| 
 | |
| 			if (inode)
 | |
| 				iput(inode);
 | |
| 			else if (mi)
 | |
| 				mi_put(mi);
 | |
| 
 | |
| 			inode = inode_parent;
 | |
| 			mi = mi2_child;
 | |
| 			rec = mi2_child->mrec;
 | |
| 			attr = Add2Ptr(rec, roff);
 | |
| 		}
 | |
| 
 | |
| skip_load_parent:
 | |
| 		inode_parent = NULL;
 | |
| 		break;
 | |
| 
 | |
| 	/*
 | |
| 	 * Process attributes, as described by the current log record.
 | |
| 	 */
 | |
| 	case UpdateNonresidentValue:
 | |
| 	case AddIndexEntryAllocation:
 | |
| 	case DeleteIndexEntryAllocation:
 | |
| 	case WriteEndOfIndexBuffer:
 | |
| 	case SetIndexEntryVcnAllocation:
 | |
| 	case UpdateFileNameAllocation:
 | |
| 	case SetBitsInNonresidentBitMap:
 | |
| 	case ClearBitsInNonresidentBitMap:
 | |
| 	case UpdateRecordDataAllocation:
 | |
| 		attr = oa->attr;
 | |
| 		bytes = UpdateNonresidentValue == op ? dlen : 0;
 | |
| 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
 | |
| 
 | |
| 		if (attr->type == ATTR_ALLOC) {
 | |
| 			t32 = le32_to_cpu(oe->bytes_per_index);
 | |
| 			if (bytes < t32)
 | |
| 				bytes = t32;
 | |
| 		}
 | |
| 
 | |
| 		if (!bytes)
 | |
| 			bytes = lco - cbo;
 | |
| 
 | |
| 		bytes += roff;
 | |
| 		if (attr->type == ATTR_ALLOC)
 | |
| 			bytes = (bytes + 511) & ~511; // align
 | |
| 
 | |
| 		buffer_le = kmalloc(bytes, GFP_NOFS);
 | |
| 		if (!buffer_le)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
 | |
| 				       NULL);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
 | |
| 			ntfs_fix_post_read(buffer_le, bytes, false);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	/* Big switch to do operation. */
 | |
| 	switch (op) {
 | |
| 	case InitializeFileRecordSegment:
 | |
| 		if (roff + dlen > record_size)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		memcpy(Add2Ptr(rec, roff), data, dlen);
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case DeallocateFileRecordSegment:
 | |
| 		clear_rec_inuse(rec);
 | |
| 		le16_add_cpu(&rec->seq, 1);
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case WriteEndOfFileRecordSegment:
 | |
| 		attr2 = (struct ATTRIB *)data;
 | |
| 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		memmove(attr, attr2, dlen);
 | |
| 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case CreateAttribute:
 | |
| 		attr2 = (struct ATTRIB *)data;
 | |
| 		asize = le32_to_cpu(attr2->size);
 | |
| 		used = le32_to_cpu(rec->used);
 | |
| 
 | |
| 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
 | |
| 		    !IS_ALIGNED(asize, 8) ||
 | |
| 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
 | |
| 		    dlen > record_size - used) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		memmove(Add2Ptr(attr, asize), attr, used - roff);
 | |
| 		memcpy(attr, attr2, asize);
 | |
| 
 | |
| 		rec->used = cpu_to_le32(used + asize);
 | |
| 		id = le16_to_cpu(rec->next_attr_id);
 | |
| 		id2 = le16_to_cpu(attr2->id);
 | |
| 		if (id <= id2)
 | |
| 			rec->next_attr_id = cpu_to_le16(id2 + 1);
 | |
| 		if (is_attr_indexed(attr))
 | |
| 			le16_add_cpu(&rec->hard_links, 1);
 | |
| 
 | |
| 		oa2 = find_loaded_attr(log, attr, rno_base);
 | |
| 		if (oa2) {
 | |
| 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
 | |
| 					   GFP_NOFS);
 | |
| 			if (p2) {
 | |
| 				// run_close(oa2->run1);
 | |
| 				kfree(oa2->attr);
 | |
| 				oa2->attr = p2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case DeleteAttribute:
 | |
| 		asize = le32_to_cpu(attr->size);
 | |
| 		used = le32_to_cpu(rec->used);
 | |
| 
 | |
| 		if (!check_if_attr(rec, lrh))
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		rec->used = cpu_to_le32(used - asize);
 | |
| 		if (is_attr_indexed(attr))
 | |
| 			le16_add_cpu(&rec->hard_links, -1);
 | |
| 
 | |
| 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateResidentValue:
 | |
| 		nsize = aoff + dlen;
 | |
| 
 | |
| 		if (!check_if_attr(rec, lrh))
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		asize = le32_to_cpu(attr->size);
 | |
| 		used = le32_to_cpu(rec->used);
 | |
| 
 | |
| 		if (lrh->redo_len == lrh->undo_len) {
 | |
| 			if (nsize > asize)
 | |
| 				goto dirty_vol;
 | |
| 			goto move_data;
 | |
| 		}
 | |
| 
 | |
| 		if (nsize > asize && nsize - asize > record_size - used)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		nsize = ALIGN(nsize, 8);
 | |
| 		data_off = le16_to_cpu(attr->res.data_off);
 | |
| 
 | |
| 		if (nsize < asize) {
 | |
| 			memmove(Add2Ptr(attr, aoff), data, dlen);
 | |
| 			data = NULL; // To skip below memmove().
 | |
| 		}
 | |
| 
 | |
| 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
 | |
| 			used - le16_to_cpu(lrh->record_off) - asize);
 | |
| 
 | |
| 		rec->used = cpu_to_le32(used + nsize - asize);
 | |
| 		attr->size = cpu_to_le32(nsize);
 | |
| 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
 | |
| 
 | |
| move_data:
 | |
| 		if (data)
 | |
| 			memmove(Add2Ptr(attr, aoff), data, dlen);
 | |
| 
 | |
| 		oa2 = find_loaded_attr(log, attr, rno_base);
 | |
| 		if (oa2) {
 | |
| 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
 | |
| 					   GFP_NOFS);
 | |
| 			if (p2) {
 | |
| 				// run_close(&oa2->run0);
 | |
| 				oa2->run1 = &oa2->run0;
 | |
| 				kfree(oa2->attr);
 | |
| 				oa2->attr = p2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateMappingPairs:
 | |
| 		nsize = aoff + dlen;
 | |
| 		asize = le32_to_cpu(attr->size);
 | |
| 		used = le32_to_cpu(rec->used);
 | |
| 
 | |
| 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
 | |
| 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
 | |
| 		    (nsize > asize && nsize - asize > record_size - used)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		nsize = ALIGN(nsize, 8);
 | |
| 
 | |
| 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
 | |
| 			used - le16_to_cpu(lrh->record_off) - asize);
 | |
| 		rec->used = cpu_to_le32(used + nsize - asize);
 | |
| 		attr->size = cpu_to_le32(nsize);
 | |
| 		memmove(Add2Ptr(attr, aoff), data, dlen);
 | |
| 
 | |
| 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
 | |
| 					attr_run(attr), &t64)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		attr->nres.evcn = cpu_to_le64(t64);
 | |
| 		oa2 = find_loaded_attr(log, attr, rno_base);
 | |
| 		if (oa2 && oa2->attr->non_res)
 | |
| 			oa2->attr->nres.evcn = attr->nres.evcn;
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case SetNewAttributeSizes:
 | |
| 		new_sz = data;
 | |
| 		if (!check_if_attr(rec, lrh) || !attr->non_res)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		attr->nres.alloc_size = new_sz->alloc_size;
 | |
| 		attr->nres.data_size = new_sz->data_size;
 | |
| 		attr->nres.valid_size = new_sz->valid_size;
 | |
| 
 | |
| 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
 | |
| 			attr->nres.total_size = new_sz->total_size;
 | |
| 
 | |
| 		oa2 = find_loaded_attr(log, attr, rno_base);
 | |
| 		if (oa2) {
 | |
| 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
 | |
| 					   GFP_NOFS);
 | |
| 			if (p2) {
 | |
| 				kfree(oa2->attr);
 | |
| 				oa2->attr = p2;
 | |
| 			}
 | |
| 		}
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case AddIndexEntryRoot:
 | |
| 		e = (struct NTFS_DE *)data;
 | |
| 		esize = le16_to_cpu(e->size);
 | |
| 		root = resident_data(attr);
 | |
| 		hdr = &root->ihdr;
 | |
| 		used = le32_to_cpu(hdr->used);
 | |
| 
 | |
| 		if (!check_if_index_root(rec, lrh) ||
 | |
| 		    !check_if_root_index(attr, hdr, lrh) ||
 | |
| 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
 | |
| 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
 | |
| 
 | |
| 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
 | |
| 
 | |
| 		memmove(Add2Ptr(e1, esize), e1,
 | |
| 			PtrOffset(e1, Add2Ptr(hdr, used)));
 | |
| 		memmove(e1, e, esize);
 | |
| 
 | |
| 		le32_add_cpu(&attr->res.data_size, esize);
 | |
| 		hdr->used = cpu_to_le32(used + esize);
 | |
| 		le32_add_cpu(&hdr->total, esize);
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case DeleteIndexEntryRoot:
 | |
| 		root = resident_data(attr);
 | |
| 		hdr = &root->ihdr;
 | |
| 		used = le32_to_cpu(hdr->used);
 | |
| 
 | |
| 		if (!check_if_index_root(rec, lrh) ||
 | |
| 		    !check_if_root_index(attr, hdr, lrh)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
 | |
| 		esize = le16_to_cpu(e1->size);
 | |
| 		e2 = Add2Ptr(e1, esize);
 | |
| 
 | |
| 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
 | |
| 
 | |
| 		le32_sub_cpu(&attr->res.data_size, esize);
 | |
| 		hdr->used = cpu_to_le32(used - esize);
 | |
| 		le32_sub_cpu(&hdr->total, esize);
 | |
| 
 | |
| 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case SetIndexEntryVcnRoot:
 | |
| 		root = resident_data(attr);
 | |
| 		hdr = &root->ihdr;
 | |
| 
 | |
| 		if (!check_if_index_root(rec, lrh) ||
 | |
| 		    !check_if_root_index(attr, hdr, lrh)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
 | |
| 
 | |
| 		de_set_vbn_le(e, *(__le64 *)data);
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateFileNameRoot:
 | |
| 		root = resident_data(attr);
 | |
| 		hdr = &root->ihdr;
 | |
| 
 | |
| 		if (!check_if_index_root(rec, lrh) ||
 | |
| 		    !check_if_root_index(attr, hdr, lrh)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
 | |
| 		fname = (struct ATTR_FILE_NAME *)(e + 1);
 | |
| 		memmove(&fname->dup, data, sizeof(fname->dup)); //
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateRecordDataRoot:
 | |
| 		root = resident_data(attr);
 | |
| 		hdr = &root->ihdr;
 | |
| 
 | |
| 		if (!check_if_index_root(rec, lrh) ||
 | |
| 		    !check_if_root_index(attr, hdr, lrh)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
 | |
| 
 | |
| 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
 | |
| 
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case ZeroEndOfFileRecord:
 | |
| 		if (roff + dlen > record_size)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		memset(attr, 0, dlen);
 | |
| 		mi->dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateNonresidentValue:
 | |
| 		if (lco < cbo + roff + dlen)
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 		if (attr->type == ATTR_ALLOC)
 | |
| 			ntfs_fix_pre_write(buffer_le, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case AddIndexEntryAllocation:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = data;
 | |
| 		esize = le16_to_cpu(e->size);
 | |
| 		e1 = Add2Ptr(ib, aoff);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 
 | |
| 		used = le32_to_cpu(hdr->used);
 | |
| 
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff) ||
 | |
| 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
 | |
| 		    used + esize > le32_to_cpu(hdr->total)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		memmove(Add2Ptr(e1, esize), e1,
 | |
| 			PtrOffset(e1, Add2Ptr(hdr, used)));
 | |
| 		memcpy(e1, e, esize);
 | |
| 
 | |
| 		hdr->used = cpu_to_le32(used + esize);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case DeleteIndexEntryAllocation:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = Add2Ptr(ib, aoff);
 | |
| 		esize = le16_to_cpu(e->size);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		e1 = Add2Ptr(e, esize);
 | |
| 		nsize = esize;
 | |
| 		used = le32_to_cpu(hdr->used);
 | |
| 
 | |
| 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
 | |
| 
 | |
| 		hdr->used = cpu_to_le32(used - nsize);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case WriteEndOfIndexBuffer:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = Add2Ptr(ib, aoff);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff) ||
 | |
| 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
 | |
| 					  le32_to_cpu(hdr->total)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
 | |
| 		memmove(e, data, dlen);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case SetIndexEntryVcnAllocation:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = Add2Ptr(ib, aoff);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		de_set_vbn_le(e, *(__le64 *)data);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateFileNameAllocation:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = Add2Ptr(ib, aoff);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		fname = (struct ATTR_FILE_NAME *)(e + 1);
 | |
| 		memmove(&fname->dup, data, sizeof(fname->dup));
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	case SetBitsInNonresidentBitMap:
 | |
| 		bmp_off =
 | |
| 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
 | |
| 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
 | |
| 
 | |
| 		if (cbo + (bmp_off + 7) / 8 > lco ||
 | |
| 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		__bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
 | |
| 		a_dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case ClearBitsInNonresidentBitMap:
 | |
| 		bmp_off =
 | |
| 			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
 | |
| 		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
 | |
| 
 | |
| 		if (cbo + (bmp_off + 7) / 8 > lco ||
 | |
| 		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		__bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
 | |
| 		a_dirty = true;
 | |
| 		break;
 | |
| 
 | |
| 	case UpdateRecordDataAllocation:
 | |
| 		ib = Add2Ptr(buffer_le, roff);
 | |
| 		hdr = &ib->ihdr;
 | |
| 		e = Add2Ptr(ib, aoff);
 | |
| 
 | |
| 		if (is_baad(&ib->rhdr))
 | |
| 			goto dirty_vol;
 | |
| 
 | |
| 		if (!check_lsn(&ib->rhdr, rlsn))
 | |
| 			goto out;
 | |
| 		if (!check_index_buffer(ib, bytes) ||
 | |
| 		    !check_if_alloc_index(hdr, aoff)) {
 | |
| 			goto dirty_vol;
 | |
| 		}
 | |
| 
 | |
| 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
 | |
| 
 | |
| 		a_dirty = true;
 | |
| 		ntfs_fix_pre_write(&ib->rhdr, bytes);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	if (rlsn) {
 | |
| 		__le64 t64 = cpu_to_le64(*rlsn);
 | |
| 
 | |
| 		if (rec)
 | |
| 			rec->rhdr.lsn = t64;
 | |
| 		if (ib)
 | |
| 			ib->rhdr.lsn = t64;
 | |
| 	}
 | |
| 
 | |
| 	if (mi && mi->dirty) {
 | |
| 		err = mi_write(mi, 0);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (a_dirty) {
 | |
| 		attr = oa->attr;
 | |
| 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 
 | |
| 	if (inode)
 | |
| 		iput(inode);
 | |
| 	else if (mi != mi2_child)
 | |
| 		mi_put(mi);
 | |
| 
 | |
| 	kfree(buffer_le);
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| dirty_vol:
 | |
| 	log->set_dirty = true;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * log_replay - Replays log and empties it.
 | |
|  *
 | |
|  * This function is called during mount operation.
 | |
|  * It replays log and empties it.
 | |
|  * Initialized is set false if logfile contains '-1'.
 | |
|  */
 | |
| int log_replay(struct ntfs_inode *ni, bool *initialized)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ntfs_sb_info *sbi = ni->mi.sbi;
 | |
| 	struct ntfs_log *log;
 | |
| 
 | |
| 	struct restart_info rst_info, rst_info2;
 | |
| 	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
 | |
| 	struct ATTR_NAME_ENTRY *attr_names = NULL;
 | |
| 	struct ATTR_NAME_ENTRY *ane;
 | |
| 	struct RESTART_TABLE *dptbl = NULL;
 | |
| 	struct RESTART_TABLE *trtbl = NULL;
 | |
| 	const struct RESTART_TABLE *rt;
 | |
| 	struct RESTART_TABLE *oatbl = NULL;
 | |
| 	struct inode *inode;
 | |
| 	struct OpenAttr *oa;
 | |
| 	struct ntfs_inode *ni_oe;
 | |
| 	struct ATTRIB *attr = NULL;
 | |
| 	u64 size, vcn, undo_next_lsn;
 | |
| 	CLST rno, lcn, lcn0, len0, clen;
 | |
| 	void *data;
 | |
| 	struct NTFS_RESTART *rst = NULL;
 | |
| 	struct lcb *lcb = NULL;
 | |
| 	struct OPEN_ATTR_ENRTY *oe;
 | |
| 	struct TRANSACTION_ENTRY *tr;
 | |
| 	struct DIR_PAGE_ENTRY *dp;
 | |
| 	u32 i, bytes_per_attr_entry;
 | |
| 	u32 l_size = ni->vfs_inode.i_size;
 | |
| 	u32 orig_file_size = l_size;
 | |
| 	u32 page_size, vbo, tail, off, dlen;
 | |
| 	u32 saved_len, rec_len, transact_id;
 | |
| 	bool use_second_page;
 | |
| 	struct RESTART_AREA *ra2, *ra = NULL;
 | |
| 	struct CLIENT_REC *ca, *cr;
 | |
| 	__le16 client;
 | |
| 	struct RESTART_HDR *rh;
 | |
| 	const struct LFS_RECORD_HDR *frh;
 | |
| 	const struct LOG_REC_HDR *lrh;
 | |
| 	bool is_mapped;
 | |
| 	bool is_ro = sb_rdonly(sbi->sb);
 | |
| 	u64 t64;
 | |
| 	u16 t16;
 | |
| 	u32 t32;
 | |
| 
 | |
| 	/* Get the size of page. NOTE: To replay we can use default page. */
 | |
| #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
 | |
| 	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
 | |
| #else
 | |
| 	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
 | |
| #endif
 | |
| 	if (!page_size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
 | |
| 	if (!log)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	log->ni = ni;
 | |
| 	log->l_size = l_size;
 | |
| 	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
 | |
| 
 | |
| 	if (!log->one_page_buf) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	log->page_size = page_size;
 | |
| 	log->page_mask = page_size - 1;
 | |
| 	log->page_bits = blksize_bits(page_size);
 | |
| 
 | |
| 	/* Look for a restart area on the disk. */
 | |
| 	err = log_read_rst(log, l_size, true, &rst_info);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* remember 'initialized' */
 | |
| 	*initialized = rst_info.initialized;
 | |
| 
 | |
| 	if (!rst_info.restart) {
 | |
| 		if (rst_info.initialized) {
 | |
| 			/* No restart area but the file is not initialized. */
 | |
| 			err = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
 | |
| 		log_create(log, l_size, 0, get_random_int(), false, false);
 | |
| 
 | |
| 		log->ra = ra;
 | |
| 
 | |
| 		ra = log_create_ra(log);
 | |
| 		if (!ra) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		log->ra = ra;
 | |
| 		log->init_ra = true;
 | |
| 
 | |
| 		goto process_log;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the restart offset above wasn't zero then we won't
 | |
| 	 * look for a second restart.
 | |
| 	 */
 | |
| 	if (rst_info.vbo)
 | |
| 		goto check_restart_area;
 | |
| 
 | |
| 	err = log_read_rst(log, l_size, false, &rst_info2);
 | |
| 
 | |
| 	/* Determine which restart area to use. */
 | |
| 	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
 | |
| 		goto use_first_page;
 | |
| 
 | |
| 	use_second_page = true;
 | |
| 
 | |
| 	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
 | |
| 		struct RECORD_PAGE_HDR *sp = NULL;
 | |
| 		bool usa_error;
 | |
| 
 | |
| 		if (!read_log_page(log, page_size, &sp, &usa_error) &&
 | |
| 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
 | |
| 			use_second_page = false;
 | |
| 		}
 | |
| 		kfree(sp);
 | |
| 	}
 | |
| 
 | |
| 	if (use_second_page) {
 | |
| 		kfree(rst_info.r_page);
 | |
| 		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
 | |
| 		rst_info2.r_page = NULL;
 | |
| 	}
 | |
| 
 | |
| use_first_page:
 | |
| 	kfree(rst_info2.r_page);
 | |
| 
 | |
| check_restart_area:
 | |
| 	/*
 | |
| 	 * If the restart area is at offset 0, we want
 | |
| 	 * to write the second restart area first.
 | |
| 	 */
 | |
| 	log->init_ra = !!rst_info.vbo;
 | |
| 
 | |
| 	/* If we have a valid page then grab a pointer to the restart area. */
 | |
| 	ra2 = rst_info.valid_page
 | |
| 		      ? Add2Ptr(rst_info.r_page,
 | |
| 				le16_to_cpu(rst_info.r_page->ra_off))
 | |
| 		      : NULL;
 | |
| 
 | |
| 	if (rst_info.chkdsk_was_run ||
 | |
| 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
 | |
| 		bool wrapped = false;
 | |
| 		bool use_multi_page = false;
 | |
| 		u32 open_log_count;
 | |
| 
 | |
| 		/* Do some checks based on whether we have a valid log page. */
 | |
| 		if (!rst_info.valid_page) {
 | |
| 			open_log_count = get_random_int();
 | |
| 			goto init_log_instance;
 | |
| 		}
 | |
| 		open_log_count = le32_to_cpu(ra2->open_log_count);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the restart page size isn't changing then we want to
 | |
| 		 * check how much work we need to do.
 | |
| 		 */
 | |
| 		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
 | |
| 			goto init_log_instance;
 | |
| 
 | |
| init_log_instance:
 | |
| 		log_init_pg_hdr(log, page_size, page_size, 1, 1);
 | |
| 
 | |
| 		log_create(log, l_size, rst_info.last_lsn, open_log_count,
 | |
| 			   wrapped, use_multi_page);
 | |
| 
 | |
| 		ra = log_create_ra(log);
 | |
| 		if (!ra) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		log->ra = ra;
 | |
| 
 | |
| 		/* Put the restart areas and initialize
 | |
| 		 * the log file as required.
 | |
| 		 */
 | |
| 		goto process_log;
 | |
| 	}
 | |
| 
 | |
| 	if (!ra2) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the log page or the system page sizes have changed, we can't
 | |
| 	 * use the log file. We must use the system page size instead of the
 | |
| 	 * default size if there is not a clean shutdown.
 | |
| 	 */
 | |
| 	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
 | |
| 	if (page_size != t32) {
 | |
| 		l_size = orig_file_size;
 | |
| 		page_size =
 | |
| 			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
 | |
| 	}
 | |
| 
 | |
| 	if (page_size != t32 ||
 | |
| 	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If the file size has shrunk then we won't mount it. */
 | |
| 	if (l_size < le64_to_cpu(ra2->l_size)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	log_init_pg_hdr(log, page_size, page_size,
 | |
| 			le16_to_cpu(rst_info.r_page->major_ver),
 | |
| 			le16_to_cpu(rst_info.r_page->minor_ver));
 | |
| 
 | |
| 	log->l_size = le64_to_cpu(ra2->l_size);
 | |
| 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
 | |
| 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
 | |
| 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
 | |
| 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
 | |
| 	log->seq_num = log->last_lsn >> log->file_data_bits;
 | |
| 	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
 | |
| 	log->restart_size = log->sys_page_size - log->ra_off;
 | |
| 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
 | |
| 	log->ra_size = le16_to_cpu(ra2->ra_len);
 | |
| 	log->data_off = le16_to_cpu(ra2->data_off);
 | |
| 	log->data_size = log->page_size - log->data_off;
 | |
| 	log->reserved = log->data_size - log->record_header_len;
 | |
| 
 | |
| 	vbo = lsn_to_vbo(log, log->last_lsn);
 | |
| 
 | |
| 	if (vbo < log->first_page) {
 | |
| 		/* This is a pseudo lsn. */
 | |
| 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
 | |
| 		log->next_page = log->first_page;
 | |
| 		goto find_oldest;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the end of this log record. */
 | |
| 	off = final_log_off(log, log->last_lsn,
 | |
| 			    le32_to_cpu(ra2->last_lsn_data_len));
 | |
| 
 | |
| 	/* If we wrapped the file then increment the sequence number. */
 | |
| 	if (off <= vbo) {
 | |
| 		log->seq_num += 1;
 | |
| 		log->l_flags |= NTFSLOG_WRAPPED;
 | |
| 	}
 | |
| 
 | |
| 	/* Now compute the next log page to use. */
 | |
| 	vbo &= ~log->sys_page_mask;
 | |
| 	tail = log->page_size - (off & log->page_mask) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 *If we can fit another log record on the page,
 | |
| 	 * move back a page the log file.
 | |
| 	 */
 | |
| 	if (tail >= log->record_header_len) {
 | |
| 		log->l_flags |= NTFSLOG_REUSE_TAIL;
 | |
| 		log->next_page = vbo;
 | |
| 	} else {
 | |
| 		log->next_page = next_page_off(log, vbo);
 | |
| 	}
 | |
| 
 | |
| find_oldest:
 | |
| 	/*
 | |
| 	 * Find the oldest client lsn. Use the last
 | |
| 	 * flushed lsn as a starting point.
 | |
| 	 */
 | |
| 	log->oldest_lsn = log->last_lsn;
 | |
| 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
 | |
| 			  ra2->client_idx[1], &log->oldest_lsn);
 | |
| 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
 | |
| 
 | |
| 	if (log->oldest_lsn_off < log->first_page)
 | |
| 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
 | |
| 
 | |
| 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
 | |
| 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
 | |
| 
 | |
| 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
 | |
| 	log->total_avail_pages = log->l_size - log->first_page;
 | |
| 	log->total_avail = log->total_avail_pages >> log->page_bits;
 | |
| 	log->max_current_avail = log->total_avail * log->reserved;
 | |
| 	log->total_avail = log->total_avail * log->data_size;
 | |
| 
 | |
| 	log->current_avail = current_log_avail(log);
 | |
| 
 | |
| 	ra = kzalloc(log->restart_size, GFP_NOFS);
 | |
| 	if (!ra) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	log->ra = ra;
 | |
| 
 | |
| 	t16 = le16_to_cpu(ra2->client_off);
 | |
| 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
 | |
| 		memcpy(ra, ra2, log->ra_size);
 | |
| 	} else {
 | |
| 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
 | |
| 		memcpy(ra->clients, Add2Ptr(ra2, t16),
 | |
| 		       le16_to_cpu(ra2->ra_len) - t16);
 | |
| 
 | |
| 		log->current_openlog_count = get_random_int();
 | |
| 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
 | |
| 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
 | |
| 			       sizeof(struct CLIENT_REC);
 | |
| 		ra->client_off =
 | |
| 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
 | |
| 		ra->ra_len = cpu_to_le16(log->ra_size);
 | |
| 	}
 | |
| 
 | |
| 	le32_add_cpu(&ra->open_log_count, 1);
 | |
| 
 | |
| 	/* Now we need to walk through looking for the last lsn. */
 | |
| 	err = last_log_lsn(log);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	log->current_avail = current_log_avail(log);
 | |
| 
 | |
| 	/* Remember which restart area to write first. */
 | |
| 	log->init_ra = rst_info.vbo;
 | |
| 
 | |
| process_log:
 | |
| 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
 | |
| 	switch ((log->major_ver << 16) + log->minor_ver) {
 | |
| 	case 0x10000:
 | |
| 	case 0x10001:
 | |
| 	case 0x20000:
 | |
| 		break;
 | |
| 	default:
 | |
| 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
 | |
| 			  log->major_ver, log->minor_ver);
 | |
| 		err = -EOPNOTSUPP;
 | |
| 		log->set_dirty = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* One client "NTFS" per logfile. */
 | |
| 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
 | |
| 
 | |
| 	for (client = ra->client_idx[1];; client = cr->next_client) {
 | |
| 		if (client == LFS_NO_CLIENT_LE) {
 | |
| 			/* Insert "NTFS" client LogFile. */
 | |
| 			client = ra->client_idx[0];
 | |
| 			if (client == LFS_NO_CLIENT_LE)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			t16 = le16_to_cpu(client);
 | |
| 			cr = ca + t16;
 | |
| 
 | |
| 			remove_client(ca, cr, &ra->client_idx[0]);
 | |
| 
 | |
| 			cr->restart_lsn = 0;
 | |
| 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
 | |
| 			cr->name_bytes = cpu_to_le32(8);
 | |
| 			cr->name[0] = cpu_to_le16('N');
 | |
| 			cr->name[1] = cpu_to_le16('T');
 | |
| 			cr->name[2] = cpu_to_le16('F');
 | |
| 			cr->name[3] = cpu_to_le16('S');
 | |
| 
 | |
| 			add_client(ca, t16, &ra->client_idx[1]);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cr = ca + le16_to_cpu(client);
 | |
| 
 | |
| 		if (cpu_to_le32(8) == cr->name_bytes &&
 | |
| 		    cpu_to_le16('N') == cr->name[0] &&
 | |
| 		    cpu_to_le16('T') == cr->name[1] &&
 | |
| 		    cpu_to_le16('F') == cr->name[2] &&
 | |
| 		    cpu_to_le16('S') == cr->name[3])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Update the client handle with the client block information. */
 | |
| 	log->client_id.seq_num = cr->seq_num;
 | |
| 	log->client_id.client_idx = client;
 | |
| 
 | |
| 	err = read_rst_area(log, &rst, &ra_lsn);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!rst)
 | |
| 		goto out;
 | |
| 
 | |
| 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
 | |
| 
 | |
| 	checkpt_lsn = le64_to_cpu(rst->check_point_start);
 | |
| 	if (!checkpt_lsn)
 | |
| 		checkpt_lsn = ra_lsn;
 | |
| 
 | |
| 	/* Allocate and Read the Transaction Table. */
 | |
| 	if (!rst->transact_table_len)
 | |
| 		goto check_dirty_page_table;
 | |
| 
 | |
| 	t64 = le64_to_cpu(rst->transact_table_lsn);
 | |
| 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	lrh = lcb->log_rec;
 | |
| 	frh = lcb->lrh;
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
 | |
| 			   bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->redo_off);
 | |
| 
 | |
| 	rt = Add2Ptr(lrh, t16);
 | |
| 	t32 = rec_len - t16;
 | |
| 
 | |
| 	/* Now check that this is a valid restart table. */
 | |
| 	if (!check_rstbl(rt, t32)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trtbl = kmemdup(rt, t32, GFP_NOFS);
 | |
| 	if (!trtbl) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| check_dirty_page_table:
 | |
| 	/* The next record back should be the Dirty Pages Table. */
 | |
| 	if (!rst->dirty_pages_len)
 | |
| 		goto check_attribute_names;
 | |
| 
 | |
| 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
 | |
| 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	lrh = lcb->log_rec;
 | |
| 	frh = lcb->lrh;
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
 | |
| 			   bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->redo_off);
 | |
| 
 | |
| 	rt = Add2Ptr(lrh, t16);
 | |
| 	t32 = rec_len - t16;
 | |
| 
 | |
| 	/* Now check that this is a valid restart table. */
 | |
| 	if (!check_rstbl(rt, t32)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dptbl = kmemdup(rt, t32, GFP_NOFS);
 | |
| 	if (!dptbl) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Convert Ra version '0' into version '1'. */
 | |
| 	if (rst->major_ver)
 | |
| 		goto end_conv_1;
 | |
| 
 | |
| 	dp = NULL;
 | |
| 	while ((dp = enum_rstbl(dptbl, dp))) {
 | |
| 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
 | |
| 		// NOTE: Danger. Check for of boundary.
 | |
| 		memmove(&dp->vcn, &dp0->vcn_low,
 | |
| 			2 * sizeof(u64) +
 | |
| 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
 | |
| 	}
 | |
| 
 | |
| end_conv_1:
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Go through the table and remove the duplicates,
 | |
| 	 * remembering the oldest lsn values.
 | |
| 	 */
 | |
| 	if (sbi->cluster_size <= log->page_size)
 | |
| 		goto trace_dp_table;
 | |
| 
 | |
| 	dp = NULL;
 | |
| 	while ((dp = enum_rstbl(dptbl, dp))) {
 | |
| 		struct DIR_PAGE_ENTRY *next = dp;
 | |
| 
 | |
| 		while ((next = enum_rstbl(dptbl, next))) {
 | |
| 			if (next->target_attr == dp->target_attr &&
 | |
| 			    next->vcn == dp->vcn) {
 | |
| 				if (le64_to_cpu(next->oldest_lsn) <
 | |
| 				    le64_to_cpu(dp->oldest_lsn)) {
 | |
| 					dp->oldest_lsn = next->oldest_lsn;
 | |
| 				}
 | |
| 
 | |
| 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| trace_dp_table:
 | |
| check_attribute_names:
 | |
| 	/* The next record should be the Attribute Names. */
 | |
| 	if (!rst->attr_names_len)
 | |
| 		goto check_attr_table;
 | |
| 
 | |
| 	t64 = le64_to_cpu(rst->attr_names_lsn);
 | |
| 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	lrh = lcb->log_rec;
 | |
| 	frh = lcb->lrh;
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
 | |
| 			   bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	t32 = lrh_length(lrh);
 | |
| 	rec_len -= t32;
 | |
| 
 | |
| 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
 | |
| 
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| check_attr_table:
 | |
| 	/* The next record should be the attribute Table. */
 | |
| 	if (!rst->open_attr_len)
 | |
| 		goto check_attribute_names2;
 | |
| 
 | |
| 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
 | |
| 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	lrh = lcb->log_rec;
 | |
| 	frh = lcb->lrh;
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
 | |
| 			   bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->redo_off);
 | |
| 
 | |
| 	rt = Add2Ptr(lrh, t16);
 | |
| 	t32 = rec_len - t16;
 | |
| 
 | |
| 	if (!check_rstbl(rt, t32)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	oatbl = kmemdup(rt, t32, GFP_NOFS);
 | |
| 	if (!oatbl) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	log->open_attr_tbl = oatbl;
 | |
| 
 | |
| 	/* Clear all of the Attr pointers. */
 | |
| 	oe = NULL;
 | |
| 	while ((oe = enum_rstbl(oatbl, oe))) {
 | |
| 		if (!rst->major_ver) {
 | |
| 			struct OPEN_ATTR_ENRTY_32 oe0;
 | |
| 
 | |
| 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
 | |
| 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
 | |
| 
 | |
| 			oe->bytes_per_index = oe0.bytes_per_index;
 | |
| 			oe->type = oe0.type;
 | |
| 			oe->is_dirty_pages = oe0.is_dirty_pages;
 | |
| 			oe->name_len = 0;
 | |
| 			oe->ref = oe0.ref;
 | |
| 			oe->open_record_lsn = oe0.open_record_lsn;
 | |
| 		}
 | |
| 
 | |
| 		oe->is_attr_name = 0;
 | |
| 		oe->ptr = NULL;
 | |
| 	}
 | |
| 
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| check_attribute_names2:
 | |
| 	if (!rst->attr_names_len)
 | |
| 		goto trace_attribute_table;
 | |
| 
 | |
| 	ane = attr_names;
 | |
| 	if (!oatbl)
 | |
| 		goto trace_attribute_table;
 | |
| 	while (ane->off) {
 | |
| 		/* TODO: Clear table on exit! */
 | |
| 		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
 | |
| 		t16 = le16_to_cpu(ane->name_bytes);
 | |
| 		oe->name_len = t16 / sizeof(short);
 | |
| 		oe->ptr = ane->name;
 | |
| 		oe->is_attr_name = 2;
 | |
| 		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
 | |
| 	}
 | |
| 
 | |
| trace_attribute_table:
 | |
| 	/*
 | |
| 	 * If the checkpt_lsn is zero, then this is a freshly
 | |
| 	 * formatted disk and we have no work to do.
 | |
| 	 */
 | |
| 	if (!checkpt_lsn) {
 | |
| 		err = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!oatbl) {
 | |
| 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
 | |
| 		if (!oatbl) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	log->open_attr_tbl = oatbl;
 | |
| 
 | |
| 	/* Start the analysis pass from the Checkpoint lsn. */
 | |
| 	rec_lsn = checkpt_lsn;
 | |
| 
 | |
| 	/* Read the first lsn. */
 | |
| 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Loop to read all subsequent records to the end of the log file. */
 | |
| next_log_record_analyze:
 | |
| 	err = read_next_log_rec(log, lcb, &rec_lsn);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!rec_lsn)
 | |
| 		goto end_log_records_enumerate;
 | |
| 
 | |
| 	frh = lcb->lrh;
 | |
| 	transact_id = le32_to_cpu(frh->transact_id);
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 	lrh = lcb->log_rec;
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The first lsn after the previous lsn remembered
 | |
| 	 * the checkpoint is the first candidate for the rlsn.
 | |
| 	 */
 | |
| 	if (!rlsn)
 | |
| 		rlsn = rec_lsn;
 | |
| 
 | |
| 	if (LfsClientRecord != frh->record_type)
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now update the Transaction Table for this transaction. If there
 | |
| 	 * is no entry present or it is unallocated we allocate the entry.
 | |
| 	 */
 | |
| 	if (!trtbl) {
 | |
| 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
 | |
| 				    INITIAL_NUMBER_TRANSACTIONS);
 | |
| 		if (!trtbl) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tr = Add2Ptr(trtbl, transact_id);
 | |
| 
 | |
| 	if (transact_id >= bytes_per_rt(trtbl) ||
 | |
| 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
 | |
| 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
 | |
| 		if (!tr) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		tr->transact_state = TransactionActive;
 | |
| 		tr->first_lsn = cpu_to_le64(rec_lsn);
 | |
| 	}
 | |
| 
 | |
| 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a compensation log record, then change
 | |
| 	 * the undo_next_lsn to be the undo_next_lsn of this record.
 | |
| 	 */
 | |
| 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
 | |
| 		tr->undo_next_lsn = frh->client_undo_next_lsn;
 | |
| 
 | |
| 	/* Dispatch to handle log record depending on type. */
 | |
| 	switch (le16_to_cpu(lrh->redo_op)) {
 | |
| 	case InitializeFileRecordSegment:
 | |
| 	case DeallocateFileRecordSegment:
 | |
| 	case WriteEndOfFileRecordSegment:
 | |
| 	case CreateAttribute:
 | |
| 	case DeleteAttribute:
 | |
| 	case UpdateResidentValue:
 | |
| 	case UpdateNonresidentValue:
 | |
| 	case UpdateMappingPairs:
 | |
| 	case SetNewAttributeSizes:
 | |
| 	case AddIndexEntryRoot:
 | |
| 	case DeleteIndexEntryRoot:
 | |
| 	case AddIndexEntryAllocation:
 | |
| 	case DeleteIndexEntryAllocation:
 | |
| 	case WriteEndOfIndexBuffer:
 | |
| 	case SetIndexEntryVcnRoot:
 | |
| 	case SetIndexEntryVcnAllocation:
 | |
| 	case UpdateFileNameRoot:
 | |
| 	case UpdateFileNameAllocation:
 | |
| 	case SetBitsInNonresidentBitMap:
 | |
| 	case ClearBitsInNonresidentBitMap:
 | |
| 	case UpdateRecordDataRoot:
 | |
| 	case UpdateRecordDataAllocation:
 | |
| 	case ZeroEndOfFileRecord:
 | |
| 		t16 = le16_to_cpu(lrh->target_attr);
 | |
| 		t64 = le64_to_cpu(lrh->target_vcn);
 | |
| 		dp = find_dp(dptbl, t16, t64);
 | |
| 
 | |
| 		if (dp)
 | |
| 			goto copy_lcns;
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the number of clusters per page the system
 | |
| 		 * which wrote the checkpoint, possibly creating the table.
 | |
| 		 */
 | |
| 		if (dptbl) {
 | |
| 			t32 = (le16_to_cpu(dptbl->size) -
 | |
| 			       sizeof(struct DIR_PAGE_ENTRY)) /
 | |
| 			      sizeof(u64);
 | |
| 		} else {
 | |
| 			t32 = log->clst_per_page;
 | |
| 			kfree(dptbl);
 | |
| 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
 | |
| 					    32);
 | |
| 			if (!dptbl) {
 | |
| 				err = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dp = alloc_rsttbl_idx(&dptbl);
 | |
| 		if (!dp) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		dp->target_attr = cpu_to_le32(t16);
 | |
| 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
 | |
| 		dp->lcns_follow = cpu_to_le32(t32);
 | |
| 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
 | |
| 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
 | |
| 
 | |
| copy_lcns:
 | |
| 		/*
 | |
| 		 * Copy the Lcns from the log record into the Dirty Page Entry.
 | |
| 		 * TODO: For different page size support, must somehow make
 | |
| 		 * whole routine a loop, case Lcns do not fit below.
 | |
| 		 */
 | |
| 		t16 = le16_to_cpu(lrh->lcns_follow);
 | |
| 		for (i = 0; i < t16; i++) {
 | |
| 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
 | |
| 					    le64_to_cpu(dp->vcn));
 | |
| 			dp->page_lcns[j + i] = lrh->page_lcns[i];
 | |
| 		}
 | |
| 
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case DeleteDirtyClusters: {
 | |
| 		u32 range_count =
 | |
| 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
 | |
| 		const struct LCN_RANGE *r =
 | |
| 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
 | |
| 
 | |
| 		/* Loop through all of the Lcn ranges this log record. */
 | |
| 		for (i = 0; i < range_count; i++, r++) {
 | |
| 			u64 lcn0 = le64_to_cpu(r->lcn);
 | |
| 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
 | |
| 
 | |
| 			dp = NULL;
 | |
| 			while ((dp = enum_rstbl(dptbl, dp))) {
 | |
| 				u32 j;
 | |
| 
 | |
| 				t32 = le32_to_cpu(dp->lcns_follow);
 | |
| 				for (j = 0; j < t32; j++) {
 | |
| 					t64 = le64_to_cpu(dp->page_lcns[j]);
 | |
| 					if (t64 >= lcn0 && t64 <= lcn_e)
 | |
| 						dp->page_lcns[j] = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		goto next_log_record_analyze;
 | |
| 		;
 | |
| 	}
 | |
| 
 | |
| 	case OpenNonresidentAttribute:
 | |
| 		t16 = le16_to_cpu(lrh->target_attr);
 | |
| 		if (t16 >= bytes_per_rt(oatbl)) {
 | |
| 			/*
 | |
| 			 * Compute how big the table needs to be.
 | |
| 			 * Add 10 extra entries for some cushion.
 | |
| 			 */
 | |
| 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
 | |
| 
 | |
| 			new_e += 10 - le16_to_cpu(oatbl->used);
 | |
| 
 | |
| 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
 | |
| 			log->open_attr_tbl = oatbl;
 | |
| 			if (!oatbl) {
 | |
| 				err = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Point to the entry being opened. */
 | |
| 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
 | |
| 		log->open_attr_tbl = oatbl;
 | |
| 		if (!oe) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Initialize this entry from the log record. */
 | |
| 		t16 = le16_to_cpu(lrh->redo_off);
 | |
| 		if (!rst->major_ver) {
 | |
| 			/* Convert version '0' into version '1'. */
 | |
| 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
 | |
| 
 | |
| 			oe->bytes_per_index = oe0->bytes_per_index;
 | |
| 			oe->type = oe0->type;
 | |
| 			oe->is_dirty_pages = oe0->is_dirty_pages;
 | |
| 			oe->name_len = 0; //oe0.name_len;
 | |
| 			oe->ref = oe0->ref;
 | |
| 			oe->open_record_lsn = oe0->open_record_lsn;
 | |
| 		} else {
 | |
| 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
 | |
| 		}
 | |
| 
 | |
| 		t16 = le16_to_cpu(lrh->undo_len);
 | |
| 		if (t16) {
 | |
| 			oe->ptr = kmalloc(t16, GFP_NOFS);
 | |
| 			if (!oe->ptr) {
 | |
| 				err = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			oe->name_len = t16 / sizeof(short);
 | |
| 			memcpy(oe->ptr,
 | |
| 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
 | |
| 			oe->is_attr_name = 1;
 | |
| 		} else {
 | |
| 			oe->ptr = NULL;
 | |
| 			oe->is_attr_name = 0;
 | |
| 		}
 | |
| 
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case HotFix:
 | |
| 		t16 = le16_to_cpu(lrh->target_attr);
 | |
| 		t64 = le64_to_cpu(lrh->target_vcn);
 | |
| 		dp = find_dp(dptbl, t16, t64);
 | |
| 		if (dp) {
 | |
| 			size_t j = le64_to_cpu(lrh->target_vcn) -
 | |
| 				   le64_to_cpu(dp->vcn);
 | |
| 			if (dp->page_lcns[j])
 | |
| 				dp->page_lcns[j] = lrh->page_lcns[0];
 | |
| 		}
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case EndTopLevelAction:
 | |
| 		tr = Add2Ptr(trtbl, transact_id);
 | |
| 		tr->prev_lsn = cpu_to_le64(rec_lsn);
 | |
| 		tr->undo_next_lsn = frh->client_undo_next_lsn;
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case PrepareTransaction:
 | |
| 		tr = Add2Ptr(trtbl, transact_id);
 | |
| 		tr->transact_state = TransactionPrepared;
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case CommitTransaction:
 | |
| 		tr = Add2Ptr(trtbl, transact_id);
 | |
| 		tr->transact_state = TransactionCommitted;
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case ForgetTransaction:
 | |
| 		free_rsttbl_idx(trtbl, transact_id);
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	case Noop:
 | |
| 	case OpenAttributeTableDump:
 | |
| 	case AttributeNamesDump:
 | |
| 	case DirtyPageTableDump:
 | |
| 	case TransactionTableDump:
 | |
| 		/* The following cases require no action the Analysis Pass. */
 | |
| 		goto next_log_record_analyze;
 | |
| 
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * All codes will be explicitly handled.
 | |
| 		 * If we see a code we do not expect, then we are trouble.
 | |
| 		 */
 | |
| 		goto next_log_record_analyze;
 | |
| 	}
 | |
| 
 | |
| end_log_records_enumerate:
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan the Dirty Page Table and Transaction Table for
 | |
| 	 * the lowest lsn, and return it as the Redo lsn.
 | |
| 	 */
 | |
| 	dp = NULL;
 | |
| 	while ((dp = enum_rstbl(dptbl, dp))) {
 | |
| 		t64 = le64_to_cpu(dp->oldest_lsn);
 | |
| 		if (t64 && t64 < rlsn)
 | |
| 			rlsn = t64;
 | |
| 	}
 | |
| 
 | |
| 	tr = NULL;
 | |
| 	while ((tr = enum_rstbl(trtbl, tr))) {
 | |
| 		t64 = le64_to_cpu(tr->first_lsn);
 | |
| 		if (t64 && t64 < rlsn)
 | |
| 			rlsn = t64;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only proceed if the Dirty Page Table or Transaction
 | |
| 	 * table are not empty.
 | |
| 	 */
 | |
| 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
 | |
| 		goto end_reply;
 | |
| 
 | |
| 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
 | |
| 	if (is_ro)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Reopen all of the attributes with dirty pages. */
 | |
| 	oe = NULL;
 | |
| next_open_attribute:
 | |
| 
 | |
| 	oe = enum_rstbl(oatbl, oe);
 | |
| 	if (!oe) {
 | |
| 		err = 0;
 | |
| 		dp = NULL;
 | |
| 		goto next_dirty_page;
 | |
| 	}
 | |
| 
 | |
| 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
 | |
| 	if (!oa) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
 | |
| 	if (IS_ERR(inode))
 | |
| 		goto fake_attr;
 | |
| 
 | |
| 	if (is_bad_inode(inode)) {
 | |
| 		iput(inode);
 | |
| fake_attr:
 | |
| 		if (oa->ni) {
 | |
| 			iput(&oa->ni->vfs_inode);
 | |
| 			oa->ni = NULL;
 | |
| 		}
 | |
| 
 | |
| 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
 | |
| 					      oe->name_len, 0);
 | |
| 		if (!attr) {
 | |
| 			kfree(oa);
 | |
| 			err = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		oa->attr = attr;
 | |
| 		oa->run1 = &oa->run0;
 | |
| 		goto final_oe;
 | |
| 	}
 | |
| 
 | |
| 	ni_oe = ntfs_i(inode);
 | |
| 	oa->ni = ni_oe;
 | |
| 
 | |
| 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
 | |
| 			    NULL, NULL);
 | |
| 
 | |
| 	if (!attr)
 | |
| 		goto fake_attr;
 | |
| 
 | |
| 	t32 = le32_to_cpu(attr->size);
 | |
| 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
 | |
| 	if (!oa->attr)
 | |
| 		goto fake_attr;
 | |
| 
 | |
| 	if (!S_ISDIR(inode->i_mode)) {
 | |
| 		if (attr->type == ATTR_DATA && !attr->name_len) {
 | |
| 			oa->run1 = &ni_oe->file.run;
 | |
| 			goto final_oe;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (attr->type == ATTR_ALLOC &&
 | |
| 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
 | |
| 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
 | |
| 			oa->run1 = &ni_oe->dir.alloc_run;
 | |
| 			goto final_oe;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (attr->non_res) {
 | |
| 		u16 roff = le16_to_cpu(attr->nres.run_off);
 | |
| 		CLST svcn = le64_to_cpu(attr->nres.svcn);
 | |
| 
 | |
| 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
 | |
| 				 le64_to_cpu(attr->nres.evcn), svcn,
 | |
| 				 Add2Ptr(attr, roff), t32 - roff);
 | |
| 		if (err < 0) {
 | |
| 			kfree(oa->attr);
 | |
| 			oa->attr = NULL;
 | |
| 			goto fake_attr;
 | |
| 		}
 | |
| 		err = 0;
 | |
| 	}
 | |
| 	oa->run1 = &oa->run0;
 | |
| 	attr = oa->attr;
 | |
| 
 | |
| final_oe:
 | |
| 	if (oe->is_attr_name == 1)
 | |
| 		kfree(oe->ptr);
 | |
| 	oe->is_attr_name = 0;
 | |
| 	oe->ptr = oa;
 | |
| 	oe->name_len = attr->name_len;
 | |
| 
 | |
| 	goto next_open_attribute;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
 | |
| 	 * Mapping that we have, and insert it into the appropriate run.
 | |
| 	 */
 | |
| next_dirty_page:
 | |
| 	dp = enum_rstbl(dptbl, dp);
 | |
| 	if (!dp)
 | |
| 		goto do_redo_1;
 | |
| 
 | |
| 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
 | |
| 
 | |
| 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
 | |
| 		goto next_dirty_page;
 | |
| 
 | |
| 	oa = oe->ptr;
 | |
| 	if (!oa)
 | |
| 		goto next_dirty_page;
 | |
| 
 | |
| 	i = -1;
 | |
| next_dirty_page_vcn:
 | |
| 	i += 1;
 | |
| 	if (i >= le32_to_cpu(dp->lcns_follow))
 | |
| 		goto next_dirty_page;
 | |
| 
 | |
| 	vcn = le64_to_cpu(dp->vcn) + i;
 | |
| 	size = (vcn + 1) << sbi->cluster_bits;
 | |
| 
 | |
| 	if (!dp->page_lcns[i])
 | |
| 		goto next_dirty_page_vcn;
 | |
| 
 | |
| 	rno = ino_get(&oe->ref);
 | |
| 	if (rno <= MFT_REC_MIRR &&
 | |
| 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
 | |
| 	    oe->type == ATTR_DATA) {
 | |
| 		goto next_dirty_page_vcn;
 | |
| 	}
 | |
| 
 | |
| 	lcn = le64_to_cpu(dp->page_lcns[i]);
 | |
| 
 | |
| 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
 | |
| 	     lcn0 != lcn) &&
 | |
| 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	attr = oa->attr;
 | |
| 	t64 = le64_to_cpu(attr->nres.alloc_size);
 | |
| 	if (size > t64) {
 | |
| 		attr->nres.valid_size = attr->nres.data_size =
 | |
| 			attr->nres.alloc_size = cpu_to_le64(size);
 | |
| 	}
 | |
| 	goto next_dirty_page_vcn;
 | |
| 
 | |
| do_redo_1:
 | |
| 	/*
 | |
| 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
 | |
| 	 * contents that they had immediately before the crash. If the dirty
 | |
| 	 * page table is empty, then we can skip the entire Redo Pass.
 | |
| 	 */
 | |
| 	if (!dptbl || !dptbl->total)
 | |
| 		goto do_undo_action;
 | |
| 
 | |
| 	rec_lsn = rlsn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the record at the Redo lsn, before falling
 | |
| 	 * into common code to handle each record.
 | |
| 	 */
 | |
| 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now loop to read all of our log records forwards, until
 | |
| 	 * we hit the end of the file, cleaning up at the end.
 | |
| 	 */
 | |
| do_action_next:
 | |
| 	frh = lcb->lrh;
 | |
| 
 | |
| 	if (LfsClientRecord != frh->record_type)
 | |
| 		goto read_next_log_do_action;
 | |
| 
 | |
| 	transact_id = le32_to_cpu(frh->transact_id);
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 	lrh = lcb->log_rec;
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Ignore log records that do not update pages. */
 | |
| 	if (lrh->lcns_follow)
 | |
| 		goto find_dirty_page;
 | |
| 
 | |
| 	goto read_next_log_do_action;
 | |
| 
 | |
| find_dirty_page:
 | |
| 	t16 = le16_to_cpu(lrh->target_attr);
 | |
| 	t64 = le64_to_cpu(lrh->target_vcn);
 | |
| 	dp = find_dp(dptbl, t16, t64);
 | |
| 
 | |
| 	if (!dp)
 | |
| 		goto read_next_log_do_action;
 | |
| 
 | |
| 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
 | |
| 		goto read_next_log_do_action;
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->target_attr);
 | |
| 	if (t16 >= bytes_per_rt(oatbl)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	oe = Add2Ptr(oatbl, t16);
 | |
| 
 | |
| 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	oa = oe->ptr;
 | |
| 
 | |
| 	if (!oa) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	attr = oa->attr;
 | |
| 
 | |
| 	vcn = le64_to_cpu(lrh->target_vcn);
 | |
| 
 | |
| 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
 | |
| 	    lcn == SPARSE_LCN) {
 | |
| 		goto read_next_log_do_action;
 | |
| 	}
 | |
| 
 | |
| 	/* Point to the Redo data and get its length. */
 | |
| 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
 | |
| 	dlen = le16_to_cpu(lrh->redo_len);
 | |
| 
 | |
| 	/* Shorten length by any Lcns which were deleted. */
 | |
| 	saved_len = dlen;
 | |
| 
 | |
| 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
 | |
| 		size_t j;
 | |
| 		u32 alen, voff;
 | |
| 
 | |
| 		voff = le16_to_cpu(lrh->record_off) +
 | |
| 		       le16_to_cpu(lrh->attr_off);
 | |
| 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
 | |
| 
 | |
| 		/* If the Vcn question is allocated, we can just get out. */
 | |
| 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
 | |
| 		if (dp->page_lcns[j + i - 1])
 | |
| 			break;
 | |
| 
 | |
| 		if (!saved_len)
 | |
| 			saved_len = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the allocated space left relative to the
 | |
| 		 * log record Vcn, after removing this unallocated Vcn.
 | |
| 		 */
 | |
| 		alen = (i - 1) << sbi->cluster_bits;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the update described this log record goes beyond
 | |
| 		 * the allocated space, then we will have to reduce the length.
 | |
| 		 */
 | |
| 		if (voff >= alen)
 | |
| 			dlen = 0;
 | |
| 		else if (voff + dlen > alen)
 | |
| 			dlen = alen - voff;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the resulting dlen from above is now zero,
 | |
| 	 * we can skip this log record.
 | |
| 	 */
 | |
| 	if (!dlen && saved_len)
 | |
| 		goto read_next_log_do_action;
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->redo_op);
 | |
| 	if (can_skip_action(t16))
 | |
| 		goto read_next_log_do_action;
 | |
| 
 | |
| 	/* Apply the Redo operation a common routine. */
 | |
| 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Keep reading and looping back until end of file. */
 | |
| read_next_log_do_action:
 | |
| 	err = read_next_log_rec(log, lcb, &rec_lsn);
 | |
| 	if (!err && rec_lsn)
 | |
| 		goto do_action_next;
 | |
| 
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| do_undo_action:
 | |
| 	/* Scan Transaction Table. */
 | |
| 	tr = NULL;
 | |
| transaction_table_next:
 | |
| 	tr = enum_rstbl(trtbl, tr);
 | |
| 	if (!tr)
 | |
| 		goto undo_action_done;
 | |
| 
 | |
| 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
 | |
| 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
 | |
| 		goto transaction_table_next;
 | |
| 	}
 | |
| 
 | |
| 	log->transaction_id = PtrOffset(trtbl, tr);
 | |
| 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only have to do anything if the transaction has
 | |
| 	 * something its undo_next_lsn field.
 | |
| 	 */
 | |
| 	if (!undo_next_lsn)
 | |
| 		goto commit_undo;
 | |
| 
 | |
| 	/* Read the first record to be undone by this transaction. */
 | |
| 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now loop to read all of our log records forwards,
 | |
| 	 * until we hit the end of the file, cleaning up at the end.
 | |
| 	 */
 | |
| undo_action_next:
 | |
| 
 | |
| 	lrh = lcb->log_rec;
 | |
| 	frh = lcb->lrh;
 | |
| 	transact_id = le32_to_cpu(frh->transact_id);
 | |
| 	rec_len = le32_to_cpu(frh->client_data_len);
 | |
| 
 | |
| 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (lrh->undo_op == cpu_to_le16(Noop))
 | |
| 		goto read_next_log_undo_action;
 | |
| 
 | |
| 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
 | |
| 	oa = oe->ptr;
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->lcns_follow);
 | |
| 	if (!t16)
 | |
| 		goto add_allocated_vcns;
 | |
| 
 | |
| 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
 | |
| 				     &lcn, &clen, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the mapping isn't already the table or the  mapping
 | |
| 	 * corresponds to a hole the mapping, we need to make sure
 | |
| 	 * there is no partial page already memory.
 | |
| 	 */
 | |
| 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
 | |
| 		goto add_allocated_vcns;
 | |
| 
 | |
| 	vcn = le64_to_cpu(lrh->target_vcn);
 | |
| 	vcn &= ~(log->clst_per_page - 1);
 | |
| 
 | |
| add_allocated_vcns:
 | |
| 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
 | |
| 	    size = (vcn + 1) << sbi->cluster_bits;
 | |
| 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
 | |
| 		attr = oa->attr;
 | |
| 		if (!attr->non_res) {
 | |
| 			if (size > le32_to_cpu(attr->res.data_size))
 | |
| 				attr->res.data_size = cpu_to_le32(size);
 | |
| 		} else {
 | |
| 			if (size > le64_to_cpu(attr->nres.data_size))
 | |
| 				attr->nres.valid_size = attr->nres.data_size =
 | |
| 					attr->nres.alloc_size =
 | |
| 						cpu_to_le64(size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t16 = le16_to_cpu(lrh->undo_op);
 | |
| 	if (can_skip_action(t16))
 | |
| 		goto read_next_log_undo_action;
 | |
| 
 | |
| 	/* Point to the Redo data and get its length. */
 | |
| 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
 | |
| 	dlen = le16_to_cpu(lrh->undo_len);
 | |
| 
 | |
| 	/* It is time to apply the undo action. */
 | |
| 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
 | |
| 
 | |
| read_next_log_undo_action:
 | |
| 	/*
 | |
| 	 * Keep reading and looping back until we have read the
 | |
| 	 * last record for this transaction.
 | |
| 	 */
 | |
| 	err = read_next_log_rec(log, lcb, &rec_lsn);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rec_lsn)
 | |
| 		goto undo_action_next;
 | |
| 
 | |
| 	lcb_put(lcb);
 | |
| 	lcb = NULL;
 | |
| 
 | |
| commit_undo:
 | |
| 	free_rsttbl_idx(trtbl, log->transaction_id);
 | |
| 
 | |
| 	log->transaction_id = 0;
 | |
| 
 | |
| 	goto transaction_table_next;
 | |
| 
 | |
| undo_action_done:
 | |
| 
 | |
| 	ntfs_update_mftmirr(sbi, 0);
 | |
| 
 | |
| 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
 | |
| 
 | |
| end_reply:
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (is_ro)
 | |
| 		goto out;
 | |
| 
 | |
| 	rh = kzalloc(log->page_size, GFP_NOFS);
 | |
| 	if (!rh) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
 | |
| 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
 | |
| 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
 | |
| 	rh->rhdr.fix_num = cpu_to_le16(t16);
 | |
| 	rh->sys_page_size = cpu_to_le32(log->page_size);
 | |
| 	rh->page_size = cpu_to_le32(log->page_size);
 | |
| 
 | |
| 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
 | |
| 		    8);
 | |
| 	rh->ra_off = cpu_to_le16(t16);
 | |
| 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
 | |
| 	rh->major_ver = cpu_to_le16(1); // 0x1C:
 | |
| 
 | |
| 	ra2 = Add2Ptr(rh, t16);
 | |
| 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
 | |
| 
 | |
| 	ra2->client_idx[0] = 0;
 | |
| 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
 | |
| 	ra2->flags = cpu_to_le16(2);
 | |
| 
 | |
| 	le32_add_cpu(&ra2->open_log_count, 1);
 | |
| 
 | |
| 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
 | |
| 
 | |
| 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
 | |
| 	if (!err)
 | |
| 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
 | |
| 					rh, log->page_size, 0);
 | |
| 
 | |
| 	kfree(rh);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| out:
 | |
| 	kfree(rst);
 | |
| 	if (lcb)
 | |
| 		lcb_put(lcb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Scan the Open Attribute Table to close all of
 | |
| 	 * the open attributes.
 | |
| 	 */
 | |
| 	oe = NULL;
 | |
| 	while ((oe = enum_rstbl(oatbl, oe))) {
 | |
| 		rno = ino_get(&oe->ref);
 | |
| 
 | |
| 		if (oe->is_attr_name == 1) {
 | |
| 			kfree(oe->ptr);
 | |
| 			oe->ptr = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (oe->is_attr_name)
 | |
| 			continue;
 | |
| 
 | |
| 		oa = oe->ptr;
 | |
| 		if (!oa)
 | |
| 			continue;
 | |
| 
 | |
| 		run_close(&oa->run0);
 | |
| 		kfree(oa->attr);
 | |
| 		if (oa->ni)
 | |
| 			iput(&oa->ni->vfs_inode);
 | |
| 		kfree(oa);
 | |
| 	}
 | |
| 
 | |
| 	kfree(trtbl);
 | |
| 	kfree(oatbl);
 | |
| 	kfree(dptbl);
 | |
| 	kfree(attr_names);
 | |
| 	kfree(rst_info.r_page);
 | |
| 
 | |
| 	kfree(ra);
 | |
| 	kfree(log->one_page_buf);
 | |
| 
 | |
| 	if (err)
 | |
| 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
 | |
| 
 | |
| 	if (err == -EROFS)
 | |
| 		err = 0;
 | |
| 	else if (log->set_dirty)
 | |
| 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
 | |
| 
 | |
| 	kfree(log);
 | |
| 
 | |
| 	return err;
 | |
| }
 |