mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 08:44:41 +00:00 
			
		
		
		
	 317a76f9a4
			
		
	
	
		317a76f9a4
		
	
	
	
	
		
			
			Allow TCP to have multiple pluggable congestion control algorithms. Algorithms are defined by a set of operations and can be built in or modules. The legacy "new RENO" algorithm is used as a starting point and fallback. Signed-off-by: Stephen Hemminger <shemminger@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			4318 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4318 lines
		
	
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		Implementation of the Transmission Control Protocol(TCP).
 | |
|  *
 | |
|  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
 | |
|  *
 | |
|  * Authors:	Ross Biro
 | |
|  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | |
|  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 | |
|  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 | |
|  *		Florian La Roche, <flla@stud.uni-sb.de>
 | |
|  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 | |
|  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 | |
|  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 | |
|  *		Matthew Dillon, <dillon@apollo.west.oic.com>
 | |
|  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | |
|  *		Jorge Cwik, <jorge@laser.satlink.net>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Changes:
 | |
|  *		Pedro Roque	:	Fast Retransmit/Recovery.
 | |
|  *					Two receive queues.
 | |
|  *					Retransmit queue handled by TCP.
 | |
|  *					Better retransmit timer handling.
 | |
|  *					New congestion avoidance.
 | |
|  *					Header prediction.
 | |
|  *					Variable renaming.
 | |
|  *
 | |
|  *		Eric		:	Fast Retransmit.
 | |
|  *		Randy Scott	:	MSS option defines.
 | |
|  *		Eric Schenk	:	Fixes to slow start algorithm.
 | |
|  *		Eric Schenk	:	Yet another double ACK bug.
 | |
|  *		Eric Schenk	:	Delayed ACK bug fixes.
 | |
|  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
 | |
|  *		David S. Miller	:	Don't allow zero congestion window.
 | |
|  *		Eric Schenk	:	Fix retransmitter so that it sends
 | |
|  *					next packet on ack of previous packet.
 | |
|  *		Andi Kleen	:	Moved open_request checking here
 | |
|  *					and process RSTs for open_requests.
 | |
|  *		Andi Kleen	:	Better prune_queue, and other fixes.
 | |
|  *		Andrey Savochkin:	Fix RTT measurements in the presnce of
 | |
|  *					timestamps.
 | |
|  *		Andrey Savochkin:	Check sequence numbers correctly when
 | |
|  *					removing SACKs due to in sequence incoming
 | |
|  *					data segments.
 | |
|  *		Andi Kleen:		Make sure we never ack data there is not
 | |
|  *					enough room for. Also make this condition
 | |
|  *					a fatal error if it might still happen.
 | |
|  *		Andi Kleen:		Add tcp_measure_rcv_mss to make 
 | |
|  *					connections with MSS<min(MTU,ann. MSS)
 | |
|  *					work without delayed acks. 
 | |
|  *		Andi Kleen:		Process packets with PSH set in the
 | |
|  *					fast path.
 | |
|  *		J Hadi Salim:		ECN support
 | |
|  *	 	Andrei Gurtov,
 | |
|  *		Pasi Sarolahti,
 | |
|  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
 | |
|  *					engine. Lots of bugs are found.
 | |
|  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
 | |
|  */
 | |
| 
 | |
| #include <linux/config.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/inet_common.h>
 | |
| #include <linux/ipsec.h>
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| int sysctl_tcp_timestamps = 1;
 | |
| int sysctl_tcp_window_scaling = 1;
 | |
| int sysctl_tcp_sack = 1;
 | |
| int sysctl_tcp_fack = 1;
 | |
| int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
 | |
| int sysctl_tcp_ecn;
 | |
| int sysctl_tcp_dsack = 1;
 | |
| int sysctl_tcp_app_win = 31;
 | |
| int sysctl_tcp_adv_win_scale = 2;
 | |
| 
 | |
| int sysctl_tcp_stdurg;
 | |
| int sysctl_tcp_rfc1337;
 | |
| int sysctl_tcp_max_orphans = NR_FILE;
 | |
| int sysctl_tcp_frto;
 | |
| int sysctl_tcp_nometrics_save;
 | |
| 
 | |
| int sysctl_tcp_moderate_rcvbuf = 1;
 | |
| 
 | |
| #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 | |
| #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 | |
| #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 | |
| #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 | |
| #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 | |
| #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 | |
| #define FLAG_ECE		0x40 /* ECE in this ACK				*/
 | |
| #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
 | |
| #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 | |
| 
 | |
| #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 | |
| #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 | |
| #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 | |
| #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 | |
| 
 | |
| #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
 | |
| #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
 | |
| #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
 | |
| 
 | |
| #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 | |
| 
 | |
| /* Adapt the MSS value used to make delayed ack decision to the 
 | |
|  * real world.
 | |
|  */ 
 | |
| static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
 | |
| 				       struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int len, lss;
 | |
| 
 | |
| 	lss = tp->ack.last_seg_size; 
 | |
| 	tp->ack.last_seg_size = 0; 
 | |
| 
 | |
| 	/* skb->len may jitter because of SACKs, even if peer
 | |
| 	 * sends good full-sized frames.
 | |
| 	 */
 | |
| 	len = skb->len;
 | |
| 	if (len >= tp->ack.rcv_mss) {
 | |
| 		tp->ack.rcv_mss = len;
 | |
| 	} else {
 | |
| 		/* Otherwise, we make more careful check taking into account,
 | |
| 		 * that SACKs block is variable.
 | |
| 		 *
 | |
| 		 * "len" is invariant segment length, including TCP header.
 | |
| 		 */
 | |
| 		len += skb->data - skb->h.raw;
 | |
| 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
 | |
| 		    /* If PSH is not set, packet should be
 | |
| 		     * full sized, provided peer TCP is not badly broken.
 | |
| 		     * This observation (if it is correct 8)) allows
 | |
| 		     * to handle super-low mtu links fairly.
 | |
| 		     */
 | |
| 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 | |
| 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
 | |
| 			/* Subtract also invariant (if peer is RFC compliant),
 | |
| 			 * tcp header plus fixed timestamp option length.
 | |
| 			 * Resulting "len" is MSS free of SACK jitter.
 | |
| 			 */
 | |
| 			len -= tp->tcp_header_len;
 | |
| 			tp->ack.last_seg_size = len;
 | |
| 			if (len == lss) {
 | |
| 				tp->ack.rcv_mss = len;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		tp->ack.pending |= TCP_ACK_PUSHED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tcp_incr_quickack(struct tcp_sock *tp)
 | |
| {
 | |
| 	unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
 | |
| 
 | |
| 	if (quickacks==0)
 | |
| 		quickacks=2;
 | |
| 	if (quickacks > tp->ack.quick)
 | |
| 		tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 | |
| }
 | |
| 
 | |
| void tcp_enter_quickack_mode(struct tcp_sock *tp)
 | |
| {
 | |
| 	tcp_incr_quickack(tp);
 | |
| 	tp->ack.pingpong = 0;
 | |
| 	tp->ack.ato = TCP_ATO_MIN;
 | |
| }
 | |
| 
 | |
| /* Send ACKs quickly, if "quick" count is not exhausted
 | |
|  * and the session is not interactive.
 | |
|  */
 | |
| 
 | |
| static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
 | |
| {
 | |
| 	return (tp->ack.quick && !tp->ack.pingpong);
 | |
| }
 | |
| 
 | |
| /* Buffer size and advertised window tuning.
 | |
|  *
 | |
|  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 | |
|  */
 | |
| 
 | |
| static void tcp_fixup_sndbuf(struct sock *sk)
 | |
| {
 | |
| 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
 | |
| 		     sizeof(struct sk_buff);
 | |
| 
 | |
| 	if (sk->sk_sndbuf < 3 * sndmem)
 | |
| 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
 | |
| }
 | |
| 
 | |
| /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 | |
|  *
 | |
|  * All tcp_full_space() is split to two parts: "network" buffer, allocated
 | |
|  * forward and advertised in receiver window (tp->rcv_wnd) and
 | |
|  * "application buffer", required to isolate scheduling/application
 | |
|  * latencies from network.
 | |
|  * window_clamp is maximal advertised window. It can be less than
 | |
|  * tcp_full_space(), in this case tcp_full_space() - window_clamp
 | |
|  * is reserved for "application" buffer. The less window_clamp is
 | |
|  * the smoother our behaviour from viewpoint of network, but the lower
 | |
|  * throughput and the higher sensitivity of the connection to losses. 8)
 | |
|  *
 | |
|  * rcv_ssthresh is more strict window_clamp used at "slow start"
 | |
|  * phase to predict further behaviour of this connection.
 | |
|  * It is used for two goals:
 | |
|  * - to enforce header prediction at sender, even when application
 | |
|  *   requires some significant "application buffer". It is check #1.
 | |
|  * - to prevent pruning of receive queue because of misprediction
 | |
|  *   of receiver window. Check #2.
 | |
|  *
 | |
|  * The scheme does not work when sender sends good segments opening
 | |
|  * window and then starts to feed us spagetti. But it should work
 | |
|  * in common situations. Otherwise, we have to rely on queue collapsing.
 | |
|  */
 | |
| 
 | |
| /* Slow part of check#2. */
 | |
| static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
 | |
| 			     struct sk_buff *skb)
 | |
| {
 | |
| 	/* Optimize this! */
 | |
| 	int truesize = tcp_win_from_space(skb->truesize)/2;
 | |
| 	int window = tcp_full_space(sk)/2;
 | |
| 
 | |
| 	while (tp->rcv_ssthresh <= window) {
 | |
| 		if (truesize <= skb->len)
 | |
| 			return 2*tp->ack.rcv_mss;
 | |
| 
 | |
| 		truesize >>= 1;
 | |
| 		window >>= 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	/* Check #1 */
 | |
| 	if (tp->rcv_ssthresh < tp->window_clamp &&
 | |
| 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 | |
| 	    !tcp_memory_pressure) {
 | |
| 		int incr;
 | |
| 
 | |
| 		/* Check #2. Increase window, if skb with such overhead
 | |
| 		 * will fit to rcvbuf in future.
 | |
| 		 */
 | |
| 		if (tcp_win_from_space(skb->truesize) <= skb->len)
 | |
| 			incr = 2*tp->advmss;
 | |
| 		else
 | |
| 			incr = __tcp_grow_window(sk, tp, skb);
 | |
| 
 | |
| 		if (incr) {
 | |
| 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
 | |
| 			tp->ack.quick |= 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* 3. Tuning rcvbuf, when connection enters established state. */
 | |
| 
 | |
| static void tcp_fixup_rcvbuf(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
 | |
| 
 | |
| 	/* Try to select rcvbuf so that 4 mss-sized segments
 | |
| 	 * will fit to window and correspoding skbs will fit to our rcvbuf.
 | |
| 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
 | |
| 	 */
 | |
| 	while (tcp_win_from_space(rcvmem) < tp->advmss)
 | |
| 		rcvmem += 128;
 | |
| 	if (sk->sk_rcvbuf < 4 * rcvmem)
 | |
| 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
 | |
| }
 | |
| 
 | |
| /* 4. Try to fixup all. It is made iimediately after connection enters
 | |
|  *    established state.
 | |
|  */
 | |
| static void tcp_init_buffer_space(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int maxwin;
 | |
| 
 | |
| 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 | |
| 		tcp_fixup_rcvbuf(sk);
 | |
| 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 | |
| 		tcp_fixup_sndbuf(sk);
 | |
| 
 | |
| 	tp->rcvq_space.space = tp->rcv_wnd;
 | |
| 
 | |
| 	maxwin = tcp_full_space(sk);
 | |
| 
 | |
| 	if (tp->window_clamp >= maxwin) {
 | |
| 		tp->window_clamp = maxwin;
 | |
| 
 | |
| 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 | |
| 			tp->window_clamp = max(maxwin -
 | |
| 					       (maxwin >> sysctl_tcp_app_win),
 | |
| 					       4 * tp->advmss);
 | |
| 	}
 | |
| 
 | |
| 	/* Force reservation of one segment. */
 | |
| 	if (sysctl_tcp_app_win &&
 | |
| 	    tp->window_clamp > 2 * tp->advmss &&
 | |
| 	    tp->window_clamp + tp->advmss > maxwin)
 | |
| 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 | |
| 
 | |
| 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| /* 5. Recalculate window clamp after socket hit its memory bounds. */
 | |
| static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
 | |
| 	int ofo_win = 0;
 | |
| 
 | |
| 	tp->ack.quick = 0;
 | |
| 
 | |
| 	skb_queue_walk(&tp->out_of_order_queue, skb) {
 | |
| 		ofo_win += skb->len;
 | |
| 	}
 | |
| 
 | |
| 	/* If overcommit is due to out of order segments,
 | |
| 	 * do not clamp window. Try to expand rcvbuf instead.
 | |
| 	 */
 | |
| 	if (ofo_win) {
 | |
| 		if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 | |
| 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 | |
| 		    !tcp_memory_pressure &&
 | |
| 		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
 | |
| 			sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 | |
| 					    sysctl_tcp_rmem[2]);
 | |
| 	}
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
 | |
| 		app_win += ofo_win;
 | |
| 		if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
 | |
| 			app_win >>= 1;
 | |
| 		if (app_win > tp->ack.rcv_mss)
 | |
| 			app_win -= tp->ack.rcv_mss;
 | |
| 		app_win = max(app_win, 2U*tp->advmss);
 | |
| 
 | |
| 		if (!ofo_win)
 | |
| 			tp->window_clamp = min(tp->window_clamp, app_win);
 | |
| 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Receiver "autotuning" code.
 | |
|  *
 | |
|  * The algorithm for RTT estimation w/o timestamps is based on
 | |
|  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 | |
|  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
 | |
|  *
 | |
|  * More detail on this code can be found at
 | |
|  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
 | |
|  * though this reference is out of date.  A new paper
 | |
|  * is pending.
 | |
|  */
 | |
| static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 | |
| {
 | |
| 	u32 new_sample = tp->rcv_rtt_est.rtt;
 | |
| 	long m = sample;
 | |
| 
 | |
| 	if (m == 0)
 | |
| 		m = 1;
 | |
| 
 | |
| 	if (new_sample != 0) {
 | |
| 		/* If we sample in larger samples in the non-timestamp
 | |
| 		 * case, we could grossly overestimate the RTT especially
 | |
| 		 * with chatty applications or bulk transfer apps which
 | |
| 		 * are stalled on filesystem I/O.
 | |
| 		 *
 | |
| 		 * Also, since we are only going for a minimum in the
 | |
| 		 * non-timestamp case, we do not smoothe things out
 | |
| 		 * else with timestamps disabled convergance takes too
 | |
| 		 * long.
 | |
| 		 */
 | |
| 		if (!win_dep) {
 | |
| 			m -= (new_sample >> 3);
 | |
| 			new_sample += m;
 | |
| 		} else if (m < new_sample)
 | |
| 			new_sample = m << 3;
 | |
| 	} else {
 | |
| 		/* No previous mesaure. */
 | |
| 		new_sample = m << 3;
 | |
| 	}
 | |
| 
 | |
| 	if (tp->rcv_rtt_est.rtt != new_sample)
 | |
| 		tp->rcv_rtt_est.rtt = new_sample;
 | |
| }
 | |
| 
 | |
| static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 | |
| {
 | |
| 	if (tp->rcv_rtt_est.time == 0)
 | |
| 		goto new_measure;
 | |
| 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 | |
| 		return;
 | |
| 	tcp_rcv_rtt_update(tp,
 | |
| 			   jiffies - tp->rcv_rtt_est.time,
 | |
| 			   1);
 | |
| 
 | |
| new_measure:
 | |
| 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 | |
| 	tp->rcv_rtt_est.time = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
 | |
| {
 | |
| 	if (tp->rx_opt.rcv_tsecr &&
 | |
| 	    (TCP_SKB_CB(skb)->end_seq -
 | |
| 	     TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
 | |
| 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function should be called every time data is copied to user space.
 | |
|  * It calculates the appropriate TCP receive buffer space.
 | |
|  */
 | |
| void tcp_rcv_space_adjust(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int time;
 | |
| 	int space;
 | |
| 	
 | |
| 	if (tp->rcvq_space.time == 0)
 | |
| 		goto new_measure;
 | |
| 	
 | |
| 	time = tcp_time_stamp - tp->rcvq_space.time;
 | |
| 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
 | |
| 	    tp->rcv_rtt_est.rtt == 0)
 | |
| 		return;
 | |
| 	
 | |
| 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 | |
| 
 | |
| 	space = max(tp->rcvq_space.space, space);
 | |
| 
 | |
| 	if (tp->rcvq_space.space != space) {
 | |
| 		int rcvmem;
 | |
| 
 | |
| 		tp->rcvq_space.space = space;
 | |
| 
 | |
| 		if (sysctl_tcp_moderate_rcvbuf) {
 | |
| 			int new_clamp = space;
 | |
| 
 | |
| 			/* Receive space grows, normalize in order to
 | |
| 			 * take into account packet headers and sk_buff
 | |
| 			 * structure overhead.
 | |
| 			 */
 | |
| 			space /= tp->advmss;
 | |
| 			if (!space)
 | |
| 				space = 1;
 | |
| 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
 | |
| 				  16 + sizeof(struct sk_buff));
 | |
| 			while (tcp_win_from_space(rcvmem) < tp->advmss)
 | |
| 				rcvmem += 128;
 | |
| 			space *= rcvmem;
 | |
| 			space = min(space, sysctl_tcp_rmem[2]);
 | |
| 			if (space > sk->sk_rcvbuf) {
 | |
| 				sk->sk_rcvbuf = space;
 | |
| 
 | |
| 				/* Make the window clamp follow along.  */
 | |
| 				tp->window_clamp = new_clamp;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| new_measure:
 | |
| 	tp->rcvq_space.seq = tp->copied_seq;
 | |
| 	tp->rcvq_space.time = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| /* There is something which you must keep in mind when you analyze the
 | |
|  * behavior of the tp->ato delayed ack timeout interval.  When a
 | |
|  * connection starts up, we want to ack as quickly as possible.  The
 | |
|  * problem is that "good" TCP's do slow start at the beginning of data
 | |
|  * transmission.  The means that until we send the first few ACK's the
 | |
|  * sender will sit on his end and only queue most of his data, because
 | |
|  * he can only send snd_cwnd unacked packets at any given time.  For
 | |
|  * each ACK we send, he increments snd_cwnd and transmits more of his
 | |
|  * queue.  -DaveM
 | |
|  */
 | |
| static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
 | |
| {
 | |
| 	u32 now;
 | |
| 
 | |
| 	tcp_schedule_ack(tp);
 | |
| 
 | |
| 	tcp_measure_rcv_mss(tp, skb);
 | |
| 
 | |
| 	tcp_rcv_rtt_measure(tp);
 | |
| 	
 | |
| 	now = tcp_time_stamp;
 | |
| 
 | |
| 	if (!tp->ack.ato) {
 | |
| 		/* The _first_ data packet received, initialize
 | |
| 		 * delayed ACK engine.
 | |
| 		 */
 | |
| 		tcp_incr_quickack(tp);
 | |
| 		tp->ack.ato = TCP_ATO_MIN;
 | |
| 	} else {
 | |
| 		int m = now - tp->ack.lrcvtime;
 | |
| 
 | |
| 		if (m <= TCP_ATO_MIN/2) {
 | |
| 			/* The fastest case is the first. */
 | |
| 			tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
 | |
| 		} else if (m < tp->ack.ato) {
 | |
| 			tp->ack.ato = (tp->ack.ato>>1) + m;
 | |
| 			if (tp->ack.ato > tp->rto)
 | |
| 				tp->ack.ato = tp->rto;
 | |
| 		} else if (m > tp->rto) {
 | |
| 			/* Too long gap. Apparently sender falled to
 | |
| 			 * restart window, so that we send ACKs quickly.
 | |
| 			 */
 | |
| 			tcp_incr_quickack(tp);
 | |
| 			sk_stream_mem_reclaim(sk);
 | |
| 		}
 | |
| 	}
 | |
| 	tp->ack.lrcvtime = now;
 | |
| 
 | |
| 	TCP_ECN_check_ce(tp, skb);
 | |
| 
 | |
| 	if (skb->len >= 128)
 | |
| 		tcp_grow_window(sk, tp, skb);
 | |
| }
 | |
| 
 | |
| /* Called to compute a smoothed rtt estimate. The data fed to this
 | |
|  * routine either comes from timestamps, or from segments that were
 | |
|  * known _not_ to have been retransmitted [see Karn/Partridge
 | |
|  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 | |
|  * piece by Van Jacobson.
 | |
|  * NOTE: the next three routines used to be one big routine.
 | |
|  * To save cycles in the RFC 1323 implementation it was better to break
 | |
|  * it up into three procedures. -- erics
 | |
|  */
 | |
| static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
 | |
| {
 | |
| 	long m = mrtt; /* RTT */
 | |
| 
 | |
| 	/*	The following amusing code comes from Jacobson's
 | |
| 	 *	article in SIGCOMM '88.  Note that rtt and mdev
 | |
| 	 *	are scaled versions of rtt and mean deviation.
 | |
| 	 *	This is designed to be as fast as possible 
 | |
| 	 *	m stands for "measurement".
 | |
| 	 *
 | |
| 	 *	On a 1990 paper the rto value is changed to:
 | |
| 	 *	RTO = rtt + 4 * mdev
 | |
| 	 *
 | |
| 	 * Funny. This algorithm seems to be very broken.
 | |
| 	 * These formulae increase RTO, when it should be decreased, increase
 | |
| 	 * too slowly, when it should be incresed fastly, decrease too fastly
 | |
| 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 | |
| 	 * does not matter how to _calculate_ it. Seems, it was trap
 | |
| 	 * that VJ failed to avoid. 8)
 | |
| 	 */
 | |
| 	if(m == 0)
 | |
| 		m = 1;
 | |
| 	if (tp->srtt != 0) {
 | |
| 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
 | |
| 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 | |
| 		if (m < 0) {
 | |
| 			m = -m;		/* m is now abs(error) */
 | |
| 			m -= (tp->mdev >> 2);   /* similar update on mdev */
 | |
| 			/* This is similar to one of Eifel findings.
 | |
| 			 * Eifel blocks mdev updates when rtt decreases.
 | |
| 			 * This solution is a bit different: we use finer gain
 | |
| 			 * for mdev in this case (alpha*beta).
 | |
| 			 * Like Eifel it also prevents growth of rto,
 | |
| 			 * but also it limits too fast rto decreases,
 | |
| 			 * happening in pure Eifel.
 | |
| 			 */
 | |
| 			if (m > 0)
 | |
| 				m >>= 3;
 | |
| 		} else {
 | |
| 			m -= (tp->mdev >> 2);   /* similar update on mdev */
 | |
| 		}
 | |
| 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 | |
| 		if (tp->mdev > tp->mdev_max) {
 | |
| 			tp->mdev_max = tp->mdev;
 | |
| 			if (tp->mdev_max > tp->rttvar)
 | |
| 				tp->rttvar = tp->mdev_max;
 | |
| 		}
 | |
| 		if (after(tp->snd_una, tp->rtt_seq)) {
 | |
| 			if (tp->mdev_max < tp->rttvar)
 | |
| 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
 | |
| 			tp->rtt_seq = tp->snd_nxt;
 | |
| 			tp->mdev_max = TCP_RTO_MIN;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* no previous measure. */
 | |
| 		tp->srtt = m<<3;	/* take the measured time to be rtt */
 | |
| 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
 | |
| 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
 | |
| 		tp->rtt_seq = tp->snd_nxt;
 | |
| 	}
 | |
| 
 | |
| 	if (tp->ca_ops->rtt_sample)
 | |
| 		tp->ca_ops->rtt_sample(tp, *usrtt);
 | |
| }
 | |
| 
 | |
| /* Calculate rto without backoff.  This is the second half of Van Jacobson's
 | |
|  * routine referred to above.
 | |
|  */
 | |
| static inline void tcp_set_rto(struct tcp_sock *tp)
 | |
| {
 | |
| 	/* Old crap is replaced with new one. 8)
 | |
| 	 *
 | |
| 	 * More seriously:
 | |
| 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 | |
| 	 *    It cannot be less due to utterly erratic ACK generation made
 | |
| 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 | |
| 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 | |
| 	 *    is invisible. Actually, Linux-2.4 also generates erratic
 | |
| 	 *    ACKs in some curcumstances.
 | |
| 	 */
 | |
| 	tp->rto = (tp->srtt >> 3) + tp->rttvar;
 | |
| 
 | |
| 	/* 2. Fixups made earlier cannot be right.
 | |
| 	 *    If we do not estimate RTO correctly without them,
 | |
| 	 *    all the algo is pure shit and should be replaced
 | |
| 	 *    with correct one. It is exaclty, which we pretend to do.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 | |
|  * guarantees that rto is higher.
 | |
|  */
 | |
| static inline void tcp_bound_rto(struct tcp_sock *tp)
 | |
| {
 | |
| 	if (tp->rto > TCP_RTO_MAX)
 | |
| 		tp->rto = TCP_RTO_MAX;
 | |
| }
 | |
| 
 | |
| /* Save metrics learned by this TCP session.
 | |
|    This function is called only, when TCP finishes successfully
 | |
|    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 | |
|  */
 | |
| void tcp_update_metrics(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 
 | |
| 	if (sysctl_tcp_nometrics_save)
 | |
| 		return;
 | |
| 
 | |
| 	dst_confirm(dst);
 | |
| 
 | |
| 	if (dst && (dst->flags&DST_HOST)) {
 | |
| 		int m;
 | |
| 
 | |
| 		if (tp->backoff || !tp->srtt) {
 | |
| 			/* This session failed to estimate rtt. Why?
 | |
| 			 * Probably, no packets returned in time.
 | |
| 			 * Reset our results.
 | |
| 			 */
 | |
| 			if (!(dst_metric_locked(dst, RTAX_RTT)))
 | |
| 				dst->metrics[RTAX_RTT-1] = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
 | |
| 
 | |
| 		/* If newly calculated rtt larger than stored one,
 | |
| 		 * store new one. Otherwise, use EWMA. Remember,
 | |
| 		 * rtt overestimation is always better than underestimation.
 | |
| 		 */
 | |
| 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
 | |
| 			if (m <= 0)
 | |
| 				dst->metrics[RTAX_RTT-1] = tp->srtt;
 | |
| 			else
 | |
| 				dst->metrics[RTAX_RTT-1] -= (m>>3);
 | |
| 		}
 | |
| 
 | |
| 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 | |
| 			if (m < 0)
 | |
| 				m = -m;
 | |
| 
 | |
| 			/* Scale deviation to rttvar fixed point */
 | |
| 			m >>= 1;
 | |
| 			if (m < tp->mdev)
 | |
| 				m = tp->mdev;
 | |
| 
 | |
| 			if (m >= dst_metric(dst, RTAX_RTTVAR))
 | |
| 				dst->metrics[RTAX_RTTVAR-1] = m;
 | |
| 			else
 | |
| 				dst->metrics[RTAX_RTTVAR-1] -=
 | |
| 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
 | |
| 		}
 | |
| 
 | |
| 		if (tp->snd_ssthresh >= 0xFFFF) {
 | |
| 			/* Slow start still did not finish. */
 | |
| 			if (dst_metric(dst, RTAX_SSTHRESH) &&
 | |
| 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 | |
| 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 | |
| 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
 | |
| 			if (!dst_metric_locked(dst, RTAX_CWND) &&
 | |
| 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 | |
| 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
 | |
| 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 | |
| 			   tp->ca_state == TCP_CA_Open) {
 | |
| 			/* Cong. avoidance phase, cwnd is reliable. */
 | |
| 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 | |
| 				dst->metrics[RTAX_SSTHRESH-1] =
 | |
| 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
 | |
| 			if (!dst_metric_locked(dst, RTAX_CWND))
 | |
| 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
 | |
| 		} else {
 | |
| 			/* Else slow start did not finish, cwnd is non-sense,
 | |
| 			   ssthresh may be also invalid.
 | |
| 			 */
 | |
| 			if (!dst_metric_locked(dst, RTAX_CWND))
 | |
| 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
 | |
| 			if (dst->metrics[RTAX_SSTHRESH-1] &&
 | |
| 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 | |
| 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
 | |
| 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
 | |
| 		}
 | |
| 
 | |
| 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 | |
| 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
 | |
| 			    tp->reordering != sysctl_tcp_reordering)
 | |
| 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Numbers are taken from RFC2414.  */
 | |
| __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
 | |
| {
 | |
| 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 | |
| 
 | |
| 	if (!cwnd) {
 | |
| 		if (tp->mss_cache_std > 1460)
 | |
| 			cwnd = 2;
 | |
| 		else
 | |
| 			cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
 | |
| 	}
 | |
| 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 | |
| }
 | |
| 
 | |
| /* Initialize metrics on socket. */
 | |
| 
 | |
| static void tcp_init_metrics(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct dst_entry *dst = __sk_dst_get(sk);
 | |
| 
 | |
| 	if (dst == NULL)
 | |
| 		goto reset;
 | |
| 
 | |
| 	dst_confirm(dst);
 | |
| 
 | |
| 	if (dst_metric_locked(dst, RTAX_CWND))
 | |
| 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 | |
| 	if (dst_metric(dst, RTAX_SSTHRESH)) {
 | |
| 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 | |
| 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 | |
| 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
 | |
| 	}
 | |
| 	if (dst_metric(dst, RTAX_REORDERING) &&
 | |
| 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 | |
| 		tp->rx_opt.sack_ok &= ~2;
 | |
| 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
 | |
| 	}
 | |
| 
 | |
| 	if (dst_metric(dst, RTAX_RTT) == 0)
 | |
| 		goto reset;
 | |
| 
 | |
| 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
 | |
| 		goto reset;
 | |
| 
 | |
| 	/* Initial rtt is determined from SYN,SYN-ACK.
 | |
| 	 * The segment is small and rtt may appear much
 | |
| 	 * less than real one. Use per-dst memory
 | |
| 	 * to make it more realistic.
 | |
| 	 *
 | |
| 	 * A bit of theory. RTT is time passed after "normal" sized packet
 | |
| 	 * is sent until it is ACKed. In normal curcumstances sending small
 | |
| 	 * packets force peer to delay ACKs and calculation is correct too.
 | |
| 	 * The algorithm is adaptive and, provided we follow specs, it
 | |
| 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
 | |
| 	 * tricks sort of "quick acks" for time long enough to decrease RTT
 | |
| 	 * to low value, and then abruptly stops to do it and starts to delay
 | |
| 	 * ACKs, wait for troubles.
 | |
| 	 */
 | |
| 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
 | |
| 		tp->srtt = dst_metric(dst, RTAX_RTT);
 | |
| 		tp->rtt_seq = tp->snd_nxt;
 | |
| 	}
 | |
| 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
 | |
| 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
 | |
| 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
 | |
| 	}
 | |
| 	tcp_set_rto(tp);
 | |
| 	tcp_bound_rto(tp);
 | |
| 	if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
 | |
| 		goto reset;
 | |
| 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| 	return;
 | |
| 
 | |
| reset:
 | |
| 	/* Play conservative. If timestamps are not
 | |
| 	 * supported, TCP will fail to recalculate correct
 | |
| 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
 | |
| 	 */
 | |
| 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
 | |
| 		tp->srtt = 0;
 | |
| 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
 | |
| 		tp->rto = TCP_TIMEOUT_INIT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
 | |
| {
 | |
| 	if (metric > tp->reordering) {
 | |
| 		tp->reordering = min(TCP_MAX_REORDERING, metric);
 | |
| 
 | |
| 		/* This exciting event is worth to be remembered. 8) */
 | |
| 		if (ts)
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
 | |
| 		else if (IsReno(tp))
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
 | |
| 		else if (IsFack(tp))
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
 | |
| 		else
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
 | |
| #if FASTRETRANS_DEBUG > 1
 | |
| 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
 | |
| 		       tp->rx_opt.sack_ok, tp->ca_state,
 | |
| 		       tp->reordering,
 | |
| 		       tp->fackets_out,
 | |
| 		       tp->sacked_out,
 | |
| 		       tp->undo_marker ? tp->undo_retrans : 0);
 | |
| #endif
 | |
| 		/* Disable FACK yet. */
 | |
| 		tp->rx_opt.sack_ok &= ~2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This procedure tags the retransmission queue when SACKs arrive.
 | |
|  *
 | |
|  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 | |
|  * Packets in queue with these bits set are counted in variables
 | |
|  * sacked_out, retrans_out and lost_out, correspondingly.
 | |
|  *
 | |
|  * Valid combinations are:
 | |
|  * Tag  InFlight	Description
 | |
|  * 0	1		- orig segment is in flight.
 | |
|  * S	0		- nothing flies, orig reached receiver.
 | |
|  * L	0		- nothing flies, orig lost by net.
 | |
|  * R	2		- both orig and retransmit are in flight.
 | |
|  * L|R	1		- orig is lost, retransmit is in flight.
 | |
|  * S|R  1		- orig reached receiver, retrans is still in flight.
 | |
|  * (L|S|R is logically valid, it could occur when L|R is sacked,
 | |
|  *  but it is equivalent to plain S and code short-curcuits it to S.
 | |
|  *  L|S is logically invalid, it would mean -1 packet in flight 8))
 | |
|  *
 | |
|  * These 6 states form finite state machine, controlled by the following events:
 | |
|  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 | |
|  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 | |
|  * 3. Loss detection event of one of three flavors:
 | |
|  *	A. Scoreboard estimator decided the packet is lost.
 | |
|  *	   A'. Reno "three dupacks" marks head of queue lost.
 | |
|  *	   A''. Its FACK modfication, head until snd.fack is lost.
 | |
|  *	B. SACK arrives sacking data transmitted after never retransmitted
 | |
|  *	   hole was sent out.
 | |
|  *	C. SACK arrives sacking SND.NXT at the moment, when the
 | |
|  *	   segment was retransmitted.
 | |
|  * 4. D-SACK added new rule: D-SACK changes any tag to S.
 | |
|  *
 | |
|  * It is pleasant to note, that state diagram turns out to be commutative,
 | |
|  * so that we are allowed not to be bothered by order of our actions,
 | |
|  * when multiple events arrive simultaneously. (see the function below).
 | |
|  *
 | |
|  * Reordering detection.
 | |
|  * --------------------
 | |
|  * Reordering metric is maximal distance, which a packet can be displaced
 | |
|  * in packet stream. With SACKs we can estimate it:
 | |
|  *
 | |
|  * 1. SACK fills old hole and the corresponding segment was not
 | |
|  *    ever retransmitted -> reordering. Alas, we cannot use it
 | |
|  *    when segment was retransmitted.
 | |
|  * 2. The last flaw is solved with D-SACK. D-SACK arrives
 | |
|  *    for retransmitted and already SACKed segment -> reordering..
 | |
|  * Both of these heuristics are not used in Loss state, when we cannot
 | |
|  * account for retransmits accurately.
 | |
|  */
 | |
| static int
 | |
| tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
 | |
| 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
 | |
| 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
 | |
| 	int reord = tp->packets_out;
 | |
| 	int prior_fackets;
 | |
| 	u32 lost_retrans = 0;
 | |
| 	int flag = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* So, SACKs for already sent large segments will be lost.
 | |
| 	 * Not good, but alternative is to resegment the queue. */
 | |
| 	if (sk->sk_route_caps & NETIF_F_TSO) {
 | |
| 		sk->sk_route_caps &= ~NETIF_F_TSO;
 | |
| 		sock_set_flag(sk, SOCK_NO_LARGESEND);
 | |
| 		tp->mss_cache = tp->mss_cache_std;
 | |
| 	}
 | |
| 
 | |
| 	if (!tp->sacked_out)
 | |
| 		tp->fackets_out = 0;
 | |
| 	prior_fackets = tp->fackets_out;
 | |
| 
 | |
| 	for (i=0; i<num_sacks; i++, sp++) {
 | |
| 		struct sk_buff *skb;
 | |
| 		__u32 start_seq = ntohl(sp->start_seq);
 | |
| 		__u32 end_seq = ntohl(sp->end_seq);
 | |
| 		int fack_count = 0;
 | |
| 		int dup_sack = 0;
 | |
| 
 | |
| 		/* Check for D-SACK. */
 | |
| 		if (i == 0) {
 | |
| 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
 | |
| 
 | |
| 			if (before(start_seq, ack)) {
 | |
| 				dup_sack = 1;
 | |
| 				tp->rx_opt.sack_ok |= 4;
 | |
| 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
 | |
| 			} else if (num_sacks > 1 &&
 | |
| 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
 | |
| 				   !before(start_seq, ntohl(sp[1].start_seq))) {
 | |
| 				dup_sack = 1;
 | |
| 				tp->rx_opt.sack_ok |= 4;
 | |
| 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
 | |
| 			}
 | |
| 
 | |
| 			/* D-SACK for already forgotten data...
 | |
| 			 * Do dumb counting. */
 | |
| 			if (dup_sack &&
 | |
| 			    !after(end_seq, prior_snd_una) &&
 | |
| 			    after(end_seq, tp->undo_marker))
 | |
| 				tp->undo_retrans--;
 | |
| 
 | |
| 			/* Eliminate too old ACKs, but take into
 | |
| 			 * account more or less fresh ones, they can
 | |
| 			 * contain valid SACK info.
 | |
| 			 */
 | |
| 			if (before(ack, prior_snd_una - tp->max_window))
 | |
| 				return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Event "B" in the comment above. */
 | |
| 		if (after(end_seq, tp->high_seq))
 | |
| 			flag |= FLAG_DATA_LOST;
 | |
| 
 | |
| 		sk_stream_for_retrans_queue(skb, sk) {
 | |
| 			u8 sacked = TCP_SKB_CB(skb)->sacked;
 | |
| 			int in_sack;
 | |
| 
 | |
| 			/* The retransmission queue is always in order, so
 | |
| 			 * we can short-circuit the walk early.
 | |
| 			 */
 | |
| 			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
 | |
| 				break;
 | |
| 
 | |
| 			fack_count += tcp_skb_pcount(skb);
 | |
| 
 | |
| 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
 | |
| 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| 			/* Account D-SACK for retransmitted packet. */
 | |
| 			if ((dup_sack && in_sack) &&
 | |
| 			    (sacked & TCPCB_RETRANS) &&
 | |
| 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
 | |
| 				tp->undo_retrans--;
 | |
| 
 | |
| 			/* The frame is ACKed. */
 | |
| 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
 | |
| 				if (sacked&TCPCB_RETRANS) {
 | |
| 					if ((dup_sack && in_sack) &&
 | |
| 					    (sacked&TCPCB_SACKED_ACKED))
 | |
| 						reord = min(fack_count, reord);
 | |
| 				} else {
 | |
| 					/* If it was in a hole, we detected reordering. */
 | |
| 					if (fack_count < prior_fackets &&
 | |
| 					    !(sacked&TCPCB_SACKED_ACKED))
 | |
| 						reord = min(fack_count, reord);
 | |
| 				}
 | |
| 
 | |
| 				/* Nothing to do; acked frame is about to be dropped. */
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if ((sacked&TCPCB_SACKED_RETRANS) &&
 | |
| 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
 | |
| 			    (!lost_retrans || after(end_seq, lost_retrans)))
 | |
| 				lost_retrans = end_seq;
 | |
| 
 | |
| 			if (!in_sack)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!(sacked&TCPCB_SACKED_ACKED)) {
 | |
| 				if (sacked & TCPCB_SACKED_RETRANS) {
 | |
| 					/* If the segment is not tagged as lost,
 | |
| 					 * we do not clear RETRANS, believing
 | |
| 					 * that retransmission is still in flight.
 | |
| 					 */
 | |
| 					if (sacked & TCPCB_LOST) {
 | |
| 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
 | |
| 						tp->lost_out -= tcp_skb_pcount(skb);
 | |
| 						tp->retrans_out -= tcp_skb_pcount(skb);
 | |
| 					}
 | |
| 				} else {
 | |
| 					/* New sack for not retransmitted frame,
 | |
| 					 * which was in hole. It is reordering.
 | |
| 					 */
 | |
| 					if (!(sacked & TCPCB_RETRANS) &&
 | |
| 					    fack_count < prior_fackets)
 | |
| 						reord = min(fack_count, reord);
 | |
| 
 | |
| 					if (sacked & TCPCB_LOST) {
 | |
| 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
 | |
| 						tp->lost_out -= tcp_skb_pcount(skb);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
 | |
| 				flag |= FLAG_DATA_SACKED;
 | |
| 				tp->sacked_out += tcp_skb_pcount(skb);
 | |
| 
 | |
| 				if (fack_count > tp->fackets_out)
 | |
| 					tp->fackets_out = fack_count;
 | |
| 			} else {
 | |
| 				if (dup_sack && (sacked&TCPCB_RETRANS))
 | |
| 					reord = min(fack_count, reord);
 | |
| 			}
 | |
| 
 | |
| 			/* D-SACK. We can detect redundant retransmission
 | |
| 			 * in S|R and plain R frames and clear it.
 | |
| 			 * undo_retrans is decreased above, L|R frames
 | |
| 			 * are accounted above as well.
 | |
| 			 */
 | |
| 			if (dup_sack &&
 | |
| 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
 | |
| 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
 | |
| 				tp->retrans_out -= tcp_skb_pcount(skb);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check for lost retransmit. This superb idea is
 | |
| 	 * borrowed from "ratehalving". Event "C".
 | |
| 	 * Later note: FACK people cheated me again 8),
 | |
| 	 * we have to account for reordering! Ugly,
 | |
| 	 * but should help.
 | |
| 	 */
 | |
| 	if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		sk_stream_for_retrans_queue(skb, sk) {
 | |
| 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
 | |
| 				break;
 | |
| 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
 | |
| 				continue;
 | |
| 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
 | |
| 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
 | |
| 			    (IsFack(tp) ||
 | |
| 			     !before(lost_retrans,
 | |
| 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
 | |
| 				     tp->mss_cache_std))) {
 | |
| 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
 | |
| 				tp->retrans_out -= tcp_skb_pcount(skb);
 | |
| 
 | |
| 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 | |
| 					tp->lost_out += tcp_skb_pcount(skb);
 | |
| 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 | |
| 					flag |= FLAG_DATA_SACKED;
 | |
| 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp->left_out = tp->sacked_out + tp->lost_out;
 | |
| 
 | |
| 	if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
 | |
| 		tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
 | |
| 
 | |
| #if FASTRETRANS_DEBUG > 0
 | |
| 	BUG_TRAP((int)tp->sacked_out >= 0);
 | |
| 	BUG_TRAP((int)tp->lost_out >= 0);
 | |
| 	BUG_TRAP((int)tp->retrans_out >= 0);
 | |
| 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
 | |
| #endif
 | |
| 	return flag;
 | |
| }
 | |
| 
 | |
| /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
 | |
|  * segments to see from the next ACKs whether any data was really missing.
 | |
|  * If the RTO was spurious, new ACKs should arrive.
 | |
|  */
 | |
| void tcp_enter_frto(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	tp->frto_counter = 1;
 | |
| 
 | |
| 	if (tp->ca_state <= TCP_CA_Disorder ||
 | |
|             tp->snd_una == tp->high_seq ||
 | |
|             (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
 | |
| 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
 | |
| 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
 | |
| 		tcp_ca_event(tp, CA_EVENT_FRTO);
 | |
| 	}
 | |
| 
 | |
| 	/* Have to clear retransmission markers here to keep the bookkeeping
 | |
| 	 * in shape, even though we are not yet in Loss state.
 | |
| 	 * If something was really lost, it is eventually caught up
 | |
| 	 * in tcp_enter_frto_loss.
 | |
| 	 */
 | |
| 	tp->retrans_out = 0;
 | |
| 	tp->undo_marker = tp->snd_una;
 | |
| 	tp->undo_retrans = 0;
 | |
| 
 | |
| 	sk_stream_for_retrans_queue(skb, sk) {
 | |
| 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
 | |
| 	}
 | |
| 	tcp_sync_left_out(tp);
 | |
| 
 | |
| 	tcp_set_ca_state(tp, TCP_CA_Open);
 | |
| 	tp->frto_highmark = tp->snd_nxt;
 | |
| }
 | |
| 
 | |
| /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
 | |
|  * which indicates that we should follow the traditional RTO recovery,
 | |
|  * i.e. mark everything lost and do go-back-N retransmission.
 | |
|  */
 | |
| static void tcp_enter_frto_loss(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	tp->sacked_out = 0;
 | |
| 	tp->lost_out = 0;
 | |
| 	tp->fackets_out = 0;
 | |
| 
 | |
| 	sk_stream_for_retrans_queue(skb, sk) {
 | |
| 		cnt += tcp_skb_pcount(skb);
 | |
| 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
 | |
| 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
 | |
| 
 | |
| 			/* Do not mark those segments lost that were
 | |
| 			 * forward transmitted after RTO
 | |
| 			 */
 | |
| 			if (!after(TCP_SKB_CB(skb)->end_seq,
 | |
| 				   tp->frto_highmark)) {
 | |
| 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 | |
| 				tp->lost_out += tcp_skb_pcount(skb);
 | |
| 			}
 | |
| 		} else {
 | |
| 			tp->sacked_out += tcp_skb_pcount(skb);
 | |
| 			tp->fackets_out = cnt;
 | |
| 		}
 | |
| 	}
 | |
| 	tcp_sync_left_out(tp);
 | |
| 
 | |
| 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
 | |
| 	tp->snd_cwnd_cnt = 0;
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| 	tp->undo_marker = 0;
 | |
| 	tp->frto_counter = 0;
 | |
| 
 | |
| 	tp->reordering = min_t(unsigned int, tp->reordering,
 | |
| 					     sysctl_tcp_reordering);
 | |
| 	tcp_set_ca_state(tp, TCP_CA_Loss);
 | |
| 	tp->high_seq = tp->frto_highmark;
 | |
| 	TCP_ECN_queue_cwr(tp);
 | |
| }
 | |
| 
 | |
| void tcp_clear_retrans(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->left_out = 0;
 | |
| 	tp->retrans_out = 0;
 | |
| 
 | |
| 	tp->fackets_out = 0;
 | |
| 	tp->sacked_out = 0;
 | |
| 	tp->lost_out = 0;
 | |
| 
 | |
| 	tp->undo_marker = 0;
 | |
| 	tp->undo_retrans = 0;
 | |
| }
 | |
| 
 | |
| /* Enter Loss state. If "how" is not zero, forget all SACK information
 | |
|  * and reset tags completely, otherwise preserve SACKs. If receiver
 | |
|  * dropped its ofo queue, we will know this due to reneging detection.
 | |
|  */
 | |
| void tcp_enter_loss(struct sock *sk, int how)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	/* Reduce ssthresh if it has not yet been made inside this window. */
 | |
| 	if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
 | |
| 	    (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
 | |
| 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
 | |
| 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
 | |
| 		tcp_ca_event(tp, CA_EVENT_LOSS);
 | |
| 	}
 | |
| 	tp->snd_cwnd	   = 1;
 | |
| 	tp->snd_cwnd_cnt   = 0;
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| 
 | |
| 	tcp_clear_retrans(tp);
 | |
| 
 | |
| 	/* Push undo marker, if it was plain RTO and nothing
 | |
| 	 * was retransmitted. */
 | |
| 	if (!how)
 | |
| 		tp->undo_marker = tp->snd_una;
 | |
| 
 | |
| 	sk_stream_for_retrans_queue(skb, sk) {
 | |
| 		cnt += tcp_skb_pcount(skb);
 | |
| 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
 | |
| 			tp->undo_marker = 0;
 | |
| 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
 | |
| 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
 | |
| 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
 | |
| 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 | |
| 			tp->lost_out += tcp_skb_pcount(skb);
 | |
| 		} else {
 | |
| 			tp->sacked_out += tcp_skb_pcount(skb);
 | |
| 			tp->fackets_out = cnt;
 | |
| 		}
 | |
| 	}
 | |
| 	tcp_sync_left_out(tp);
 | |
| 
 | |
| 	tp->reordering = min_t(unsigned int, tp->reordering,
 | |
| 					     sysctl_tcp_reordering);
 | |
| 	tcp_set_ca_state(tp, TCP_CA_Loss);
 | |
| 	tp->high_seq = tp->snd_nxt;
 | |
| 	TCP_ECN_queue_cwr(tp);
 | |
| }
 | |
| 
 | |
| static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* If ACK arrived pointing to a remembered SACK,
 | |
| 	 * it means that our remembered SACKs do not reflect
 | |
| 	 * real state of receiver i.e.
 | |
| 	 * receiver _host_ is heavily congested (or buggy).
 | |
| 	 * Do processing similar to RTO timeout.
 | |
| 	 */
 | |
| 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
 | |
| 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
 | |
| 
 | |
| 		tcp_enter_loss(sk, 1);
 | |
| 		tp->retransmits++;
 | |
| 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
 | |
| 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int tcp_fackets_out(struct tcp_sock *tp)
 | |
| {
 | |
| 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
 | |
| }
 | |
| 
 | |
| static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
 | |
| {
 | |
| 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
 | |
| }
 | |
| 
 | |
| static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	return tp->packets_out &&
 | |
| 	       tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
 | |
| }
 | |
| 
 | |
| /* Linux NewReno/SACK/FACK/ECN state machine.
 | |
|  * --------------------------------------
 | |
|  *
 | |
|  * "Open"	Normal state, no dubious events, fast path.
 | |
|  * "Disorder"   In all the respects it is "Open",
 | |
|  *		but requires a bit more attention. It is entered when
 | |
|  *		we see some SACKs or dupacks. It is split of "Open"
 | |
|  *		mainly to move some processing from fast path to slow one.
 | |
|  * "CWR"	CWND was reduced due to some Congestion Notification event.
 | |
|  *		It can be ECN, ICMP source quench, local device congestion.
 | |
|  * "Recovery"	CWND was reduced, we are fast-retransmitting.
 | |
|  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
 | |
|  *
 | |
|  * tcp_fastretrans_alert() is entered:
 | |
|  * - each incoming ACK, if state is not "Open"
 | |
|  * - when arrived ACK is unusual, namely:
 | |
|  *	* SACK
 | |
|  *	* Duplicate ACK.
 | |
|  *	* ECN ECE.
 | |
|  *
 | |
|  * Counting packets in flight is pretty simple.
 | |
|  *
 | |
|  *	in_flight = packets_out - left_out + retrans_out
 | |
|  *
 | |
|  *	packets_out is SND.NXT-SND.UNA counted in packets.
 | |
|  *
 | |
|  *	retrans_out is number of retransmitted segments.
 | |
|  *
 | |
|  *	left_out is number of segments left network, but not ACKed yet.
 | |
|  *
 | |
|  *		left_out = sacked_out + lost_out
 | |
|  *
 | |
|  *     sacked_out: Packets, which arrived to receiver out of order
 | |
|  *		   and hence not ACKed. With SACKs this number is simply
 | |
|  *		   amount of SACKed data. Even without SACKs
 | |
|  *		   it is easy to give pretty reliable estimate of this number,
 | |
|  *		   counting duplicate ACKs.
 | |
|  *
 | |
|  *       lost_out: Packets lost by network. TCP has no explicit
 | |
|  *		   "loss notification" feedback from network (for now).
 | |
|  *		   It means that this number can be only _guessed_.
 | |
|  *		   Actually, it is the heuristics to predict lossage that
 | |
|  *		   distinguishes different algorithms.
 | |
|  *
 | |
|  *	F.e. after RTO, when all the queue is considered as lost,
 | |
|  *	lost_out = packets_out and in_flight = retrans_out.
 | |
|  *
 | |
|  *		Essentially, we have now two algorithms counting
 | |
|  *		lost packets.
 | |
|  *
 | |
|  *		FACK: It is the simplest heuristics. As soon as we decided
 | |
|  *		that something is lost, we decide that _all_ not SACKed
 | |
|  *		packets until the most forward SACK are lost. I.e.
 | |
|  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
 | |
|  *		It is absolutely correct estimate, if network does not reorder
 | |
|  *		packets. And it loses any connection to reality when reordering
 | |
|  *		takes place. We use FACK by default until reordering
 | |
|  *		is suspected on the path to this destination.
 | |
|  *
 | |
|  *		NewReno: when Recovery is entered, we assume that one segment
 | |
|  *		is lost (classic Reno). While we are in Recovery and
 | |
|  *		a partial ACK arrives, we assume that one more packet
 | |
|  *		is lost (NewReno). This heuristics are the same in NewReno
 | |
|  *		and SACK.
 | |
|  *
 | |
|  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
 | |
|  *  deflation etc. CWND is real congestion window, never inflated, changes
 | |
|  *  only according to classic VJ rules.
 | |
|  *
 | |
|  * Really tricky (and requiring careful tuning) part of algorithm
 | |
|  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
 | |
|  * The first determines the moment _when_ we should reduce CWND and,
 | |
|  * hence, slow down forward transmission. In fact, it determines the moment
 | |
|  * when we decide that hole is caused by loss, rather than by a reorder.
 | |
|  *
 | |
|  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
 | |
|  * holes, caused by lost packets.
 | |
|  *
 | |
|  * And the most logically complicated part of algorithm is undo
 | |
|  * heuristics. We detect false retransmits due to both too early
 | |
|  * fast retransmit (reordering) and underestimated RTO, analyzing
 | |
|  * timestamps and D-SACKs. When we detect that some segments were
 | |
|  * retransmitted by mistake and CWND reduction was wrong, we undo
 | |
|  * window reduction and abort recovery phase. This logic is hidden
 | |
|  * inside several functions named tcp_try_undo_<something>.
 | |
|  */
 | |
| 
 | |
| /* This function decides, when we should leave Disordered state
 | |
|  * and enter Recovery phase, reducing congestion window.
 | |
|  *
 | |
|  * Main question: may we further continue forward transmission
 | |
|  * with the same cwnd?
 | |
|  */
 | |
| static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	__u32 packets_out;
 | |
| 
 | |
| 	/* Trick#1: The loss is proven. */
 | |
| 	if (tp->lost_out)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Not-A-Trick#2 : Classic rule... */
 | |
| 	if (tcp_fackets_out(tp) > tp->reordering)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Trick#3 : when we use RFC2988 timer restart, fast
 | |
| 	 * retransmit can be triggered by timeout of queue head.
 | |
| 	 */
 | |
| 	if (tcp_head_timedout(sk, tp))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Trick#4: It is still not OK... But will it be useful to delay
 | |
| 	 * recovery more?
 | |
| 	 */
 | |
| 	packets_out = tp->packets_out;
 | |
| 	if (packets_out <= tp->reordering &&
 | |
| 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
 | |
| 	    !tcp_may_send_now(sk, tp)) {
 | |
| 		/* We have nothing to send. This connection is limited
 | |
| 		 * either by receiver window or by application.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* If we receive more dupacks than we expected counting segments
 | |
|  * in assumption of absent reordering, interpret this as reordering.
 | |
|  * The only another reason could be bug in receiver TCP.
 | |
|  */
 | |
| static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
 | |
| {
 | |
| 	u32 holes;
 | |
| 
 | |
| 	holes = max(tp->lost_out, 1U);
 | |
| 	holes = min(holes, tp->packets_out);
 | |
| 
 | |
| 	if ((tp->sacked_out + holes) > tp->packets_out) {
 | |
| 		tp->sacked_out = tp->packets_out - holes;
 | |
| 		tcp_update_reordering(tp, tp->packets_out+addend, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Emulate SACKs for SACKless connection: account for a new dupack. */
 | |
| 
 | |
| static void tcp_add_reno_sack(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->sacked_out++;
 | |
| 	tcp_check_reno_reordering(tp, 0);
 | |
| 	tcp_sync_left_out(tp);
 | |
| }
 | |
| 
 | |
| /* Account for ACK, ACKing some data in Reno Recovery phase. */
 | |
| 
 | |
| static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
 | |
| {
 | |
| 	if (acked > 0) {
 | |
| 		/* One ACK acked hole. The rest eat duplicate ACKs. */
 | |
| 		if (acked-1 >= tp->sacked_out)
 | |
| 			tp->sacked_out = 0;
 | |
| 		else
 | |
| 			tp->sacked_out -= acked-1;
 | |
| 	}
 | |
| 	tcp_check_reno_reordering(tp, acked);
 | |
| 	tcp_sync_left_out(tp);
 | |
| }
 | |
| 
 | |
| static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->sacked_out = 0;
 | |
| 	tp->left_out = tp->lost_out;
 | |
| }
 | |
| 
 | |
| /* Mark head of queue up as lost. */
 | |
| static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
 | |
| 			       int packets, u32 high_seq)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	int cnt = packets;
 | |
| 
 | |
| 	BUG_TRAP(cnt <= tp->packets_out);
 | |
| 
 | |
| 	sk_stream_for_retrans_queue(skb, sk) {
 | |
| 		cnt -= tcp_skb_pcount(skb);
 | |
| 		if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
 | |
| 			break;
 | |
| 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
 | |
| 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 | |
| 			tp->lost_out += tcp_skb_pcount(skb);
 | |
| 		}
 | |
| 	}
 | |
| 	tcp_sync_left_out(tp);
 | |
| }
 | |
| 
 | |
| /* Account newly detected lost packet(s) */
 | |
| 
 | |
| static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	if (IsFack(tp)) {
 | |
| 		int lost = tp->fackets_out - tp->reordering;
 | |
| 		if (lost <= 0)
 | |
| 			lost = 1;
 | |
| 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
 | |
| 	} else {
 | |
| 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
 | |
| 	}
 | |
| 
 | |
| 	/* New heuristics: it is possible only after we switched
 | |
| 	 * to restart timer each time when something is ACKed.
 | |
| 	 * Hence, we can detect timed out packets during fast
 | |
| 	 * retransmit without falling to slow start.
 | |
| 	 */
 | |
| 	if (tcp_head_timedout(sk, tp)) {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		sk_stream_for_retrans_queue(skb, sk) {
 | |
| 			if (tcp_skb_timedout(tp, skb) &&
 | |
| 			    !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
 | |
| 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 | |
| 				tp->lost_out += tcp_skb_pcount(skb);
 | |
| 			}
 | |
| 		}
 | |
| 		tcp_sync_left_out(tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* CWND moderation, preventing bursts due to too big ACKs
 | |
|  * in dubious situations.
 | |
|  */
 | |
| static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->snd_cwnd = min(tp->snd_cwnd,
 | |
| 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| /* Decrease cwnd each second ack. */
 | |
| static void tcp_cwnd_down(struct tcp_sock *tp)
 | |
| {
 | |
| 	int decr = tp->snd_cwnd_cnt + 1;
 | |
| 
 | |
| 	tp->snd_cwnd_cnt = decr&1;
 | |
| 	decr >>= 1;
 | |
| 
 | |
| 	if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
 | |
| 		tp->snd_cwnd -= decr;
 | |
| 
 | |
| 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| /* Nothing was retransmitted or returned timestamp is less
 | |
|  * than timestamp of the first retransmission.
 | |
|  */
 | |
| static inline int tcp_packet_delayed(struct tcp_sock *tp)
 | |
| {
 | |
| 	return !tp->retrans_stamp ||
 | |
| 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
 | |
| 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
 | |
| }
 | |
| 
 | |
| /* Undo procedures. */
 | |
| 
 | |
| #if FASTRETRANS_DEBUG > 1
 | |
| static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
 | |
| {
 | |
| 	struct inet_sock *inet = inet_sk(sk);
 | |
| 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
 | |
| 	       msg,
 | |
| 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
 | |
| 	       tp->snd_cwnd, tp->left_out,
 | |
| 	       tp->snd_ssthresh, tp->prior_ssthresh,
 | |
| 	       tp->packets_out);
 | |
| }
 | |
| #else
 | |
| #define DBGUNDO(x...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
 | |
| {
 | |
| 	if (tp->prior_ssthresh) {
 | |
| 		if (tp->ca_ops->undo_cwnd)
 | |
| 			tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
 | |
| 		else
 | |
| 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
 | |
| 
 | |
| 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
 | |
| 			tp->snd_ssthresh = tp->prior_ssthresh;
 | |
| 			TCP_ECN_withdraw_cwr(tp);
 | |
| 		}
 | |
| 	} else {
 | |
| 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
 | |
| 	}
 | |
| 	tcp_moderate_cwnd(tp);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| static inline int tcp_may_undo(struct tcp_sock *tp)
 | |
| {
 | |
| 	return tp->undo_marker &&
 | |
| 		(!tp->undo_retrans || tcp_packet_delayed(tp));
 | |
| }
 | |
| 
 | |
| /* People celebrate: "We love our President!" */
 | |
| static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	if (tcp_may_undo(tp)) {
 | |
| 		/* Happy end! We did not retransmit anything
 | |
| 		 * or our original transmission succeeded.
 | |
| 		 */
 | |
| 		DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
 | |
| 		tcp_undo_cwr(tp, 1);
 | |
| 		if (tp->ca_state == TCP_CA_Loss)
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
 | |
| 		else
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
 | |
| 		tp->undo_marker = 0;
 | |
| 	}
 | |
| 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
 | |
| 		/* Hold old state until something *above* high_seq
 | |
| 		 * is ACKed. For Reno it is MUST to prevent false
 | |
| 		 * fast retransmits (RFC2582). SACK TCP is safe. */
 | |
| 		tcp_moderate_cwnd(tp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	tcp_set_ca_state(tp, TCP_CA_Open);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
 | |
| static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	if (tp->undo_marker && !tp->undo_retrans) {
 | |
| 		DBGUNDO(sk, tp, "D-SACK");
 | |
| 		tcp_undo_cwr(tp, 1);
 | |
| 		tp->undo_marker = 0;
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Undo during fast recovery after partial ACK. */
 | |
| 
 | |
| static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
 | |
| 				int acked)
 | |
| {
 | |
| 	/* Partial ACK arrived. Force Hoe's retransmit. */
 | |
| 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
 | |
| 
 | |
| 	if (tcp_may_undo(tp)) {
 | |
| 		/* Plain luck! Hole if filled with delayed
 | |
| 		 * packet, rather than with a retransmit.
 | |
| 		 */
 | |
| 		if (tp->retrans_out == 0)
 | |
| 			tp->retrans_stamp = 0;
 | |
| 
 | |
| 		tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
 | |
| 
 | |
| 		DBGUNDO(sk, tp, "Hoe");
 | |
| 		tcp_undo_cwr(tp, 0);
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
 | |
| 
 | |
| 		/* So... Do not make Hoe's retransmit yet.
 | |
| 		 * If the first packet was delayed, the rest
 | |
| 		 * ones are most probably delayed as well.
 | |
| 		 */
 | |
| 		failed = 0;
 | |
| 	}
 | |
| 	return failed;
 | |
| }
 | |
| 
 | |
| /* Undo during loss recovery after partial ACK. */
 | |
| static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	if (tcp_may_undo(tp)) {
 | |
| 		struct sk_buff *skb;
 | |
| 		sk_stream_for_retrans_queue(skb, sk) {
 | |
| 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
 | |
| 		}
 | |
| 		DBGUNDO(sk, tp, "partial loss");
 | |
| 		tp->lost_out = 0;
 | |
| 		tp->left_out = tp->sacked_out;
 | |
| 		tcp_undo_cwr(tp, 1);
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
 | |
| 		tp->retransmits = 0;
 | |
| 		tp->undo_marker = 0;
 | |
| 		if (!IsReno(tp))
 | |
| 			tcp_set_ca_state(tp, TCP_CA_Open);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void tcp_complete_cwr(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| 	tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
 | |
| }
 | |
| 
 | |
| static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
 | |
| {
 | |
| 	tp->left_out = tp->sacked_out;
 | |
| 
 | |
| 	if (tp->retrans_out == 0)
 | |
| 		tp->retrans_stamp = 0;
 | |
| 
 | |
| 	if (flag&FLAG_ECE)
 | |
| 		tcp_enter_cwr(tp);
 | |
| 
 | |
| 	if (tp->ca_state != TCP_CA_CWR) {
 | |
| 		int state = TCP_CA_Open;
 | |
| 
 | |
| 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
 | |
| 			state = TCP_CA_Disorder;
 | |
| 
 | |
| 		if (tp->ca_state != state) {
 | |
| 			tcp_set_ca_state(tp, state);
 | |
| 			tp->high_seq = tp->snd_nxt;
 | |
| 		}
 | |
| 		tcp_moderate_cwnd(tp);
 | |
| 	} else {
 | |
| 		tcp_cwnd_down(tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Process an event, which can update packets-in-flight not trivially.
 | |
|  * Main goal of this function is to calculate new estimate for left_out,
 | |
|  * taking into account both packets sitting in receiver's buffer and
 | |
|  * packets lost by network.
 | |
|  *
 | |
|  * Besides that it does CWND reduction, when packet loss is detected
 | |
|  * and changes state of machine.
 | |
|  *
 | |
|  * It does _not_ decide what to send, it is made in function
 | |
|  * tcp_xmit_retransmit_queue().
 | |
|  */
 | |
| static void
 | |
| tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
 | |
| 		      int prior_packets, int flag)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
 | |
| 
 | |
| 	/* Some technical things:
 | |
| 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
 | |
| 	if (!tp->packets_out)
 | |
| 		tp->sacked_out = 0;
 | |
|         /* 2. SACK counts snd_fack in packets inaccurately. */
 | |
| 	if (tp->sacked_out == 0)
 | |
| 		tp->fackets_out = 0;
 | |
| 
 | |
|         /* Now state machine starts.
 | |
| 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
 | |
| 	if (flag&FLAG_ECE)
 | |
| 		tp->prior_ssthresh = 0;
 | |
| 
 | |
| 	/* B. In all the states check for reneging SACKs. */
 | |
| 	if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
 | |
| 		return;
 | |
| 
 | |
| 	/* C. Process data loss notification, provided it is valid. */
 | |
| 	if ((flag&FLAG_DATA_LOST) &&
 | |
| 	    before(tp->snd_una, tp->high_seq) &&
 | |
| 	    tp->ca_state != TCP_CA_Open &&
 | |
| 	    tp->fackets_out > tp->reordering) {
 | |
| 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
 | |
| 	}
 | |
| 
 | |
| 	/* D. Synchronize left_out to current state. */
 | |
| 	tcp_sync_left_out(tp);
 | |
| 
 | |
| 	/* E. Check state exit conditions. State can be terminated
 | |
| 	 *    when high_seq is ACKed. */
 | |
| 	if (tp->ca_state == TCP_CA_Open) {
 | |
| 		if (!sysctl_tcp_frto)
 | |
| 			BUG_TRAP(tp->retrans_out == 0);
 | |
| 		tp->retrans_stamp = 0;
 | |
| 	} else if (!before(tp->snd_una, tp->high_seq)) {
 | |
| 		switch (tp->ca_state) {
 | |
| 		case TCP_CA_Loss:
 | |
| 			tp->retransmits = 0;
 | |
| 			if (tcp_try_undo_recovery(sk, tp))
 | |
| 				return;
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_CA_CWR:
 | |
| 			/* CWR is to be held something *above* high_seq
 | |
| 			 * is ACKed for CWR bit to reach receiver. */
 | |
| 			if (tp->snd_una != tp->high_seq) {
 | |
| 				tcp_complete_cwr(tp);
 | |
| 				tcp_set_ca_state(tp, TCP_CA_Open);
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_CA_Disorder:
 | |
| 			tcp_try_undo_dsack(sk, tp);
 | |
| 			if (!tp->undo_marker ||
 | |
| 			    /* For SACK case do not Open to allow to undo
 | |
| 			     * catching for all duplicate ACKs. */
 | |
| 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
 | |
| 				tp->undo_marker = 0;
 | |
| 				tcp_set_ca_state(tp, TCP_CA_Open);
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_CA_Recovery:
 | |
| 			if (IsReno(tp))
 | |
| 				tcp_reset_reno_sack(tp);
 | |
| 			if (tcp_try_undo_recovery(sk, tp))
 | |
| 				return;
 | |
| 			tcp_complete_cwr(tp);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* F. Process state. */
 | |
| 	switch (tp->ca_state) {
 | |
| 	case TCP_CA_Recovery:
 | |
| 		if (prior_snd_una == tp->snd_una) {
 | |
| 			if (IsReno(tp) && is_dupack)
 | |
| 				tcp_add_reno_sack(tp);
 | |
| 		} else {
 | |
| 			int acked = prior_packets - tp->packets_out;
 | |
| 			if (IsReno(tp))
 | |
| 				tcp_remove_reno_sacks(sk, tp, acked);
 | |
| 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
 | |
| 		}
 | |
| 		break;
 | |
| 	case TCP_CA_Loss:
 | |
| 		if (flag&FLAG_DATA_ACKED)
 | |
| 			tp->retransmits = 0;
 | |
| 		if (!tcp_try_undo_loss(sk, tp)) {
 | |
| 			tcp_moderate_cwnd(tp);
 | |
| 			tcp_xmit_retransmit_queue(sk);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (tp->ca_state != TCP_CA_Open)
 | |
| 			return;
 | |
| 		/* Loss is undone; fall through to processing in Open state. */
 | |
| 	default:
 | |
| 		if (IsReno(tp)) {
 | |
| 			if (tp->snd_una != prior_snd_una)
 | |
| 				tcp_reset_reno_sack(tp);
 | |
| 			if (is_dupack)
 | |
| 				tcp_add_reno_sack(tp);
 | |
| 		}
 | |
| 
 | |
| 		if (tp->ca_state == TCP_CA_Disorder)
 | |
| 			tcp_try_undo_dsack(sk, tp);
 | |
| 
 | |
| 		if (!tcp_time_to_recover(sk, tp)) {
 | |
| 			tcp_try_to_open(sk, tp, flag);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Otherwise enter Recovery state */
 | |
| 
 | |
| 		if (IsReno(tp))
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
 | |
| 		else
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
 | |
| 
 | |
| 		tp->high_seq = tp->snd_nxt;
 | |
| 		tp->prior_ssthresh = 0;
 | |
| 		tp->undo_marker = tp->snd_una;
 | |
| 		tp->undo_retrans = tp->retrans_out;
 | |
| 
 | |
| 		if (tp->ca_state < TCP_CA_CWR) {
 | |
| 			if (!(flag&FLAG_ECE))
 | |
| 				tp->prior_ssthresh = tcp_current_ssthresh(tp);
 | |
| 			tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
 | |
| 			TCP_ECN_queue_cwr(tp);
 | |
| 		}
 | |
| 
 | |
| 		tp->snd_cwnd_cnt = 0;
 | |
| 		tcp_set_ca_state(tp, TCP_CA_Recovery);
 | |
| 	}
 | |
| 
 | |
| 	if (is_dupack || tcp_head_timedout(sk, tp))
 | |
| 		tcp_update_scoreboard(sk, tp);
 | |
| 	tcp_cwnd_down(tp);
 | |
| 	tcp_xmit_retransmit_queue(sk);
 | |
| }
 | |
| 
 | |
| /* Read draft-ietf-tcplw-high-performance before mucking
 | |
|  * with this code. (Superceeds RFC1323)
 | |
|  */
 | |
| static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag)
 | |
| {
 | |
| 	__u32 seq_rtt;
 | |
| 
 | |
| 	/* RTTM Rule: A TSecr value received in a segment is used to
 | |
| 	 * update the averaged RTT measurement only if the segment
 | |
| 	 * acknowledges some new data, i.e., only if it advances the
 | |
| 	 * left edge of the send window.
 | |
| 	 *
 | |
| 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
 | |
| 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
 | |
| 	 *
 | |
| 	 * Changed: reset backoff as soon as we see the first valid sample.
 | |
| 	 * If we do not, we get strongly overstimated rto. With timestamps
 | |
| 	 * samples are accepted even from very old segments: f.e., when rtt=1
 | |
| 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
 | |
| 	 * answer arrives rto becomes 120 seconds! If at least one of segments
 | |
| 	 * in window is lost... Voila.	 			--ANK (010210)
 | |
| 	 */
 | |
| 	seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
 | |
| 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
 | |
| 	tcp_set_rto(tp);
 | |
| 	tp->backoff = 0;
 | |
| 	tcp_bound_rto(tp);
 | |
| }
 | |
| 
 | |
| static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag)
 | |
| {
 | |
| 	/* We don't have a timestamp. Can only use
 | |
| 	 * packets that are not retransmitted to determine
 | |
| 	 * rtt estimates. Also, we must not reset the
 | |
| 	 * backoff for rto until we get a non-retransmitted
 | |
| 	 * packet. This allows us to deal with a situation
 | |
| 	 * where the network delay has increased suddenly.
 | |
| 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
 | |
| 	 */
 | |
| 
 | |
| 	if (flag & FLAG_RETRANS_DATA_ACKED)
 | |
| 		return;
 | |
| 
 | |
| 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
 | |
| 	tcp_set_rto(tp);
 | |
| 	tp->backoff = 0;
 | |
| 	tcp_bound_rto(tp);
 | |
| }
 | |
| 
 | |
| static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
 | |
| 				      int flag, s32 seq_rtt, u32 *usrtt)
 | |
| {
 | |
| 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
 | |
| 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
 | |
| 		tcp_ack_saw_tstamp(tp, usrtt, flag);
 | |
| 	else if (seq_rtt >= 0)
 | |
| 		tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag);
 | |
| }
 | |
| 
 | |
| static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
 | |
| 				  u32 in_flight, int good)
 | |
| {
 | |
| 	tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| /* Restart timer after forward progress on connection.
 | |
|  * RFC2988 recommends to restart timer to now+rto.
 | |
|  */
 | |
| 
 | |
| static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
 | |
| {
 | |
| 	if (!tp->packets_out) {
 | |
| 		tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
 | |
| 	} else {
 | |
| 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* There is one downside to this scheme.  Although we keep the
 | |
|  * ACK clock ticking, adjusting packet counters and advancing
 | |
|  * congestion window, we do not liberate socket send buffer
 | |
|  * space.
 | |
|  *
 | |
|  * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
 | |
|  * then making a write space wakeup callback is a possible
 | |
|  * future enhancement.  WARNING: it is not trivial to make.
 | |
|  */
 | |
| static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
 | |
| 			 __u32 now, __s32 *seq_rtt)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
 | |
| 	__u32 seq = tp->snd_una;
 | |
| 	__u32 packets_acked;
 | |
| 	int acked = 0;
 | |
| 
 | |
| 	/* If we get here, the whole TSO packet has not been
 | |
| 	 * acked.
 | |
| 	 */
 | |
| 	BUG_ON(!after(scb->end_seq, seq));
 | |
| 
 | |
| 	packets_acked = tcp_skb_pcount(skb);
 | |
| 	if (tcp_trim_head(sk, skb, seq - scb->seq))
 | |
| 		return 0;
 | |
| 	packets_acked -= tcp_skb_pcount(skb);
 | |
| 
 | |
| 	if (packets_acked) {
 | |
| 		__u8 sacked = scb->sacked;
 | |
| 
 | |
| 		acked |= FLAG_DATA_ACKED;
 | |
| 		if (sacked) {
 | |
| 			if (sacked & TCPCB_RETRANS) {
 | |
| 				if (sacked & TCPCB_SACKED_RETRANS)
 | |
| 					tp->retrans_out -= packets_acked;
 | |
| 				acked |= FLAG_RETRANS_DATA_ACKED;
 | |
| 				*seq_rtt = -1;
 | |
| 			} else if (*seq_rtt < 0)
 | |
| 				*seq_rtt = now - scb->when;
 | |
| 			if (sacked & TCPCB_SACKED_ACKED)
 | |
| 				tp->sacked_out -= packets_acked;
 | |
| 			if (sacked & TCPCB_LOST)
 | |
| 				tp->lost_out -= packets_acked;
 | |
| 			if (sacked & TCPCB_URG) {
 | |
| 				if (tp->urg_mode &&
 | |
| 				    !before(seq, tp->snd_up))
 | |
| 					tp->urg_mode = 0;
 | |
| 			}
 | |
| 		} else if (*seq_rtt < 0)
 | |
| 			*seq_rtt = now - scb->when;
 | |
| 
 | |
| 		if (tp->fackets_out) {
 | |
| 			__u32 dval = min(tp->fackets_out, packets_acked);
 | |
| 			tp->fackets_out -= dval;
 | |
| 		}
 | |
| 		tp->packets_out -= packets_acked;
 | |
| 
 | |
| 		BUG_ON(tcp_skb_pcount(skb) == 0);
 | |
| 		BUG_ON(!before(scb->seq, scb->end_seq));
 | |
| 	}
 | |
| 
 | |
| 	return acked;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Remove acknowledged frames from the retransmission queue. */
 | |
| static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb;
 | |
| 	__u32 now = tcp_time_stamp;
 | |
| 	int acked = 0;
 | |
| 	__s32 seq_rtt = -1;
 | |
| 	struct timeval usnow;
 | |
| 	u32 pkts_acked = 0;
 | |
| 
 | |
| 	if (seq_usrtt)
 | |
| 		do_gettimeofday(&usnow);
 | |
| 
 | |
| 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
 | |
| 	       skb != sk->sk_send_head) {
 | |
| 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
 | |
| 		__u8 sacked = scb->sacked;
 | |
| 
 | |
| 		/* If our packet is before the ack sequence we can
 | |
| 		 * discard it as it's confirmed to have arrived at
 | |
| 		 * the other end.
 | |
| 		 */
 | |
| 		if (after(scb->end_seq, tp->snd_una)) {
 | |
| 			if (tcp_skb_pcount(skb) > 1)
 | |
| 				acked |= tcp_tso_acked(sk, skb,
 | |
| 						       now, &seq_rtt);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Initial outgoing SYN's get put onto the write_queue
 | |
| 		 * just like anything else we transmit.  It is not
 | |
| 		 * true data, and if we misinform our callers that
 | |
| 		 * this ACK acks real data, we will erroneously exit
 | |
| 		 * connection startup slow start one packet too
 | |
| 		 * quickly.  This is severely frowned upon behavior.
 | |
| 		 */
 | |
| 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
 | |
| 			acked |= FLAG_DATA_ACKED;
 | |
| 			++pkts_acked;
 | |
| 		} else {
 | |
| 			acked |= FLAG_SYN_ACKED;
 | |
| 			tp->retrans_stamp = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (sacked) {
 | |
| 			if (sacked & TCPCB_RETRANS) {
 | |
| 				if(sacked & TCPCB_SACKED_RETRANS)
 | |
| 					tp->retrans_out -= tcp_skb_pcount(skb);
 | |
| 				acked |= FLAG_RETRANS_DATA_ACKED;
 | |
| 				seq_rtt = -1;
 | |
| 			} else if (seq_rtt < 0)
 | |
| 				seq_rtt = now - scb->when;
 | |
| 			if (seq_usrtt)
 | |
| 				*seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
 | |
| 					+ (usnow.tv_usec - skb->stamp.tv_usec);
 | |
| 
 | |
| 			if (sacked & TCPCB_SACKED_ACKED)
 | |
| 				tp->sacked_out -= tcp_skb_pcount(skb);
 | |
| 			if (sacked & TCPCB_LOST)
 | |
| 				tp->lost_out -= tcp_skb_pcount(skb);
 | |
| 			if (sacked & TCPCB_URG) {
 | |
| 				if (tp->urg_mode &&
 | |
| 				    !before(scb->end_seq, tp->snd_up))
 | |
| 					tp->urg_mode = 0;
 | |
| 			}
 | |
| 		} else if (seq_rtt < 0)
 | |
| 			seq_rtt = now - scb->when;
 | |
| 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
 | |
| 		tcp_packets_out_dec(tp, skb);
 | |
| 		__skb_unlink(skb, skb->list);
 | |
| 		sk_stream_free_skb(sk, skb);
 | |
| 	}
 | |
| 
 | |
| 	if (acked&FLAG_ACKED) {
 | |
| 		tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt);
 | |
| 		tcp_ack_packets_out(sk, tp);
 | |
| 
 | |
| 		if (tp->ca_ops->pkts_acked)
 | |
| 			tp->ca_ops->pkts_acked(tp, pkts_acked);
 | |
| 	}
 | |
| 
 | |
| #if FASTRETRANS_DEBUG > 0
 | |
| 	BUG_TRAP((int)tp->sacked_out >= 0);
 | |
| 	BUG_TRAP((int)tp->lost_out >= 0);
 | |
| 	BUG_TRAP((int)tp->retrans_out >= 0);
 | |
| 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
 | |
| 		if (tp->lost_out) {
 | |
| 			printk(KERN_DEBUG "Leak l=%u %d\n",
 | |
| 			       tp->lost_out, tp->ca_state);
 | |
| 			tp->lost_out = 0;
 | |
| 		}
 | |
| 		if (tp->sacked_out) {
 | |
| 			printk(KERN_DEBUG "Leak s=%u %d\n",
 | |
| 			       tp->sacked_out, tp->ca_state);
 | |
| 			tp->sacked_out = 0;
 | |
| 		}
 | |
| 		if (tp->retrans_out) {
 | |
| 			printk(KERN_DEBUG "Leak r=%u %d\n",
 | |
| 			       tp->retrans_out, tp->ca_state);
 | |
| 			tp->retrans_out = 0;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	*seq_rtt_p = seq_rtt;
 | |
| 	return acked;
 | |
| }
 | |
| 
 | |
| static void tcp_ack_probe(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* Was it a usable window open? */
 | |
| 
 | |
| 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
 | |
| 		   tp->snd_una + tp->snd_wnd)) {
 | |
| 		tp->backoff = 0;
 | |
| 		tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
 | |
| 		/* Socket must be waked up by subsequent tcp_data_snd_check().
 | |
| 		 * This function is not for random using!
 | |
| 		 */
 | |
| 	} else {
 | |
| 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
 | |
| 				     min(tp->rto << tp->backoff, TCP_RTO_MAX));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
 | |
| {
 | |
| 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
 | |
| 		tp->ca_state != TCP_CA_Open);
 | |
| }
 | |
| 
 | |
| static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
 | |
| {
 | |
| 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
 | |
| 		!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
 | |
| }
 | |
| 
 | |
| /* Check that window update is acceptable.
 | |
|  * The function assumes that snd_una<=ack<=snd_next.
 | |
|  */
 | |
| static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
 | |
| 					u32 ack_seq, u32 nwin)
 | |
| {
 | |
| 	return (after(ack, tp->snd_una) ||
 | |
| 		after(ack_seq, tp->snd_wl1) ||
 | |
| 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
 | |
| }
 | |
| 
 | |
| /* Update our send window.
 | |
|  *
 | |
|  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
 | |
|  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
 | |
|  */
 | |
| static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
 | |
| 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
 | |
| {
 | |
| 	int flag = 0;
 | |
| 	u32 nwin = ntohs(skb->h.th->window);
 | |
| 
 | |
| 	if (likely(!skb->h.th->syn))
 | |
| 		nwin <<= tp->rx_opt.snd_wscale;
 | |
| 
 | |
| 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
 | |
| 		flag |= FLAG_WIN_UPDATE;
 | |
| 		tcp_update_wl(tp, ack, ack_seq);
 | |
| 
 | |
| 		if (tp->snd_wnd != nwin) {
 | |
| 			tp->snd_wnd = nwin;
 | |
| 
 | |
| 			/* Note, it is the only place, where
 | |
| 			 * fast path is recovered for sending TCP.
 | |
| 			 */
 | |
| 			tcp_fast_path_check(sk, tp);
 | |
| 
 | |
| 			if (nwin > tp->max_window) {
 | |
| 				tp->max_window = nwin;
 | |
| 				tcp_sync_mss(sk, tp->pmtu_cookie);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp->snd_una = ack;
 | |
| 
 | |
| 	return flag;
 | |
| }
 | |
| 
 | |
| static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	
 | |
| 	tcp_sync_left_out(tp);
 | |
| 	
 | |
| 	if (tp->snd_una == prior_snd_una ||
 | |
| 	    !before(tp->snd_una, tp->frto_highmark)) {
 | |
| 		/* RTO was caused by loss, start retransmitting in
 | |
| 		 * go-back-N slow start
 | |
| 		 */
 | |
| 		tcp_enter_frto_loss(sk);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (tp->frto_counter == 1) {
 | |
| 		/* First ACK after RTO advances the window: allow two new
 | |
| 		 * segments out.
 | |
| 		 */
 | |
| 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
 | |
| 	} else {
 | |
| 		/* Also the second ACK after RTO advances the window.
 | |
| 		 * The RTO was likely spurious. Reduce cwnd and continue
 | |
| 		 * in congestion avoidance
 | |
| 		 */
 | |
| 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
 | |
| 		tcp_moderate_cwnd(tp);
 | |
| 	}
 | |
| 
 | |
| 	/* F-RTO affects on two new ACKs following RTO.
 | |
| 	 * At latest on third ACK the TCP behavor is back to normal.
 | |
| 	 */
 | |
| 	tp->frto_counter = (tp->frto_counter + 1) % 3;
 | |
| }
 | |
| 
 | |
| /* This routine deals with incoming acks, but not outgoing ones. */
 | |
| static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	u32 prior_snd_una = tp->snd_una;
 | |
| 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
 | |
| 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
 | |
| 	u32 prior_in_flight;
 | |
| 	s32 seq_rtt;
 | |
| 	s32 seq_usrtt = 0;
 | |
| 	int prior_packets;
 | |
| 
 | |
| 	/* If the ack is newer than sent or older than previous acks
 | |
| 	 * then we can probably ignore it.
 | |
| 	 */
 | |
| 	if (after(ack, tp->snd_nxt))
 | |
| 		goto uninteresting_ack;
 | |
| 
 | |
| 	if (before(ack, prior_snd_una))
 | |
| 		goto old_ack;
 | |
| 
 | |
| 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 | |
| 		/* Window is constant, pure forward advance.
 | |
| 		 * No more checks are required.
 | |
| 		 * Note, we use the fact that SND.UNA>=SND.WL2.
 | |
| 		 */
 | |
| 		tcp_update_wl(tp, ack, ack_seq);
 | |
| 		tp->snd_una = ack;
 | |
| 		flag |= FLAG_WIN_UPDATE;
 | |
| 
 | |
| 		tcp_ca_event(tp, CA_EVENT_FAST_ACK);
 | |
| 
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
 | |
| 	} else {
 | |
| 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
 | |
| 			flag |= FLAG_DATA;
 | |
| 		else
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
 | |
| 
 | |
| 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
 | |
| 
 | |
| 		if (TCP_SKB_CB(skb)->sacked)
 | |
| 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 | |
| 
 | |
| 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
 | |
| 			flag |= FLAG_ECE;
 | |
| 
 | |
| 		tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
 | |
| 	}
 | |
| 
 | |
| 	/* We passed data and got it acked, remove any soft error
 | |
| 	 * log. Something worked...
 | |
| 	 */
 | |
| 	sk->sk_err_soft = 0;
 | |
| 	tp->rcv_tstamp = tcp_time_stamp;
 | |
| 	prior_packets = tp->packets_out;
 | |
| 	if (!prior_packets)
 | |
| 		goto no_queue;
 | |
| 
 | |
| 	prior_in_flight = tcp_packets_in_flight(tp);
 | |
| 
 | |
| 	/* See if we can take anything off of the retransmit queue. */
 | |
| 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
 | |
| 				    tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
 | |
| 
 | |
| 	if (tp->frto_counter)
 | |
| 		tcp_process_frto(sk, prior_snd_una);
 | |
| 
 | |
| 	if (tcp_ack_is_dubious(tp, flag)) {
 | |
| 		/* Advanve CWND, if state allows this. */
 | |
| 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
 | |
| 			tcp_cong_avoid(tp, ack,  seq_rtt, prior_in_flight, 0);
 | |
| 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
 | |
| 	} else {
 | |
| 		if ((flag & FLAG_DATA_ACKED))
 | |
| 			tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
 | |
| 	}
 | |
| 
 | |
| 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
 | |
| 		dst_confirm(sk->sk_dst_cache);
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| no_queue:
 | |
| 	tp->probes_out = 0;
 | |
| 
 | |
| 	/* If this ack opens up a zero window, clear backoff.  It was
 | |
| 	 * being used to time the probes, and is probably far higher than
 | |
| 	 * it needs to be for normal retransmission.
 | |
| 	 */
 | |
| 	if (sk->sk_send_head)
 | |
| 		tcp_ack_probe(sk);
 | |
| 	return 1;
 | |
| 
 | |
| old_ack:
 | |
| 	if (TCP_SKB_CB(skb)->sacked)
 | |
| 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 | |
| 
 | |
| uninteresting_ack:
 | |
| 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Look for tcp options. Normally only called on SYN and SYNACK packets.
 | |
|  * But, this can also be called on packets in the established flow when
 | |
|  * the fast version below fails.
 | |
|  */
 | |
| void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
 | |
| {
 | |
| 	unsigned char *ptr;
 | |
| 	struct tcphdr *th = skb->h.th;
 | |
| 	int length=(th->doff*4)-sizeof(struct tcphdr);
 | |
| 
 | |
| 	ptr = (unsigned char *)(th + 1);
 | |
| 	opt_rx->saw_tstamp = 0;
 | |
| 
 | |
| 	while(length>0) {
 | |
| 	  	int opcode=*ptr++;
 | |
| 		int opsize;
 | |
| 
 | |
| 		switch (opcode) {
 | |
| 			case TCPOPT_EOL:
 | |
| 				return;
 | |
| 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
 | |
| 				length--;
 | |
| 				continue;
 | |
| 			default:
 | |
| 				opsize=*ptr++;
 | |
| 				if (opsize < 2) /* "silly options" */
 | |
| 					return;
 | |
| 				if (opsize > length)
 | |
| 					return;	/* don't parse partial options */
 | |
| 	  			switch(opcode) {
 | |
| 				case TCPOPT_MSS:
 | |
| 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
 | |
| 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
 | |
| 						if (in_mss) {
 | |
| 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
 | |
| 								in_mss = opt_rx->user_mss;
 | |
| 							opt_rx->mss_clamp = in_mss;
 | |
| 						}
 | |
| 					}
 | |
| 					break;
 | |
| 				case TCPOPT_WINDOW:
 | |
| 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
 | |
| 						if (sysctl_tcp_window_scaling) {
 | |
| 							__u8 snd_wscale = *(__u8 *) ptr;
 | |
| 							opt_rx->wscale_ok = 1;
 | |
| 							if (snd_wscale > 14) {
 | |
| 								if(net_ratelimit())
 | |
| 									printk(KERN_INFO "tcp_parse_options: Illegal window "
 | |
| 									       "scaling value %d >14 received.\n",
 | |
| 									       snd_wscale);
 | |
| 								snd_wscale = 14;
 | |
| 							}
 | |
| 							opt_rx->snd_wscale = snd_wscale;
 | |
| 						}
 | |
| 					break;
 | |
| 				case TCPOPT_TIMESTAMP:
 | |
| 					if(opsize==TCPOLEN_TIMESTAMP) {
 | |
| 						if ((estab && opt_rx->tstamp_ok) ||
 | |
| 						    (!estab && sysctl_tcp_timestamps)) {
 | |
| 							opt_rx->saw_tstamp = 1;
 | |
| 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
 | |
| 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
 | |
| 						}
 | |
| 					}
 | |
| 					break;
 | |
| 				case TCPOPT_SACK_PERM:
 | |
| 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
 | |
| 						if (sysctl_tcp_sack) {
 | |
| 							opt_rx->sack_ok = 1;
 | |
| 							tcp_sack_reset(opt_rx);
 | |
| 						}
 | |
| 					}
 | |
| 					break;
 | |
| 
 | |
| 				case TCPOPT_SACK:
 | |
| 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
 | |
| 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
 | |
| 					   opt_rx->sack_ok) {
 | |
| 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
 | |
| 					}
 | |
| 	  			};
 | |
| 	  			ptr+=opsize-2;
 | |
| 	  			length-=opsize;
 | |
| 	  	};
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Fast parse options. This hopes to only see timestamps.
 | |
|  * If it is wrong it falls back on tcp_parse_options().
 | |
|  */
 | |
| static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
 | |
| 					 struct tcp_sock *tp)
 | |
| {
 | |
| 	if (th->doff == sizeof(struct tcphdr)>>2) {
 | |
| 		tp->rx_opt.saw_tstamp = 0;
 | |
| 		return 0;
 | |
| 	} else if (tp->rx_opt.tstamp_ok &&
 | |
| 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
 | |
| 		__u32 *ptr = (__u32 *)(th + 1);
 | |
| 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
 | |
| 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
 | |
| 			tp->rx_opt.saw_tstamp = 1;
 | |
| 			++ptr;
 | |
| 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
 | |
| 			++ptr;
 | |
| 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	tcp_parse_options(skb, &tp->rx_opt, 1);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void tcp_store_ts_recent(struct tcp_sock *tp)
 | |
| {
 | |
| 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
 | |
| 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
 | |
| }
 | |
| 
 | |
| static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
 | |
| {
 | |
| 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
 | |
| 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
 | |
| 		 * extra check below makes sure this can only happen
 | |
| 		 * for pure ACK frames.  -DaveM
 | |
| 		 *
 | |
| 		 * Not only, also it occurs for expired timestamps.
 | |
| 		 */
 | |
| 
 | |
| 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
 | |
| 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
 | |
| 			tcp_store_ts_recent(tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
 | |
|  *
 | |
|  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
 | |
|  * it can pass through stack. So, the following predicate verifies that
 | |
|  * this segment is not used for anything but congestion avoidance or
 | |
|  * fast retransmit. Moreover, we even are able to eliminate most of such
 | |
|  * second order effects, if we apply some small "replay" window (~RTO)
 | |
|  * to timestamp space.
 | |
|  *
 | |
|  * All these measures still do not guarantee that we reject wrapped ACKs
 | |
|  * on networks with high bandwidth, when sequence space is recycled fastly,
 | |
|  * but it guarantees that such events will be very rare and do not affect
 | |
|  * connection seriously. This doesn't look nice, but alas, PAWS is really
 | |
|  * buggy extension.
 | |
|  *
 | |
|  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
 | |
|  * states that events when retransmit arrives after original data are rare.
 | |
|  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
 | |
|  * the biggest problem on large power networks even with minor reordering.
 | |
|  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
 | |
|  * up to bandwidth of 18Gigabit/sec. 8) ]
 | |
|  */
 | |
| 
 | |
| static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcphdr *th = skb->h.th;
 | |
| 	u32 seq = TCP_SKB_CB(skb)->seq;
 | |
| 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
 | |
| 
 | |
| 	return (/* 1. Pure ACK with correct sequence number. */
 | |
| 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
 | |
| 
 | |
| 		/* 2. ... and duplicate ACK. */
 | |
| 		ack == tp->snd_una &&
 | |
| 
 | |
| 		/* 3. ... and does not update window. */
 | |
| 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
 | |
| 
 | |
| 		/* 4. ... and sits in replay window. */
 | |
| 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
 | |
| }
 | |
| 
 | |
| static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
 | |
| {
 | |
| 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
 | |
| 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
 | |
| 		!tcp_disordered_ack(tp, skb));
 | |
| }
 | |
| 
 | |
| /* Check segment sequence number for validity.
 | |
|  *
 | |
|  * Segment controls are considered valid, if the segment
 | |
|  * fits to the window after truncation to the window. Acceptability
 | |
|  * of data (and SYN, FIN, of course) is checked separately.
 | |
|  * See tcp_data_queue(), for example.
 | |
|  *
 | |
|  * Also, controls (RST is main one) are accepted using RCV.WUP instead
 | |
|  * of RCV.NXT. Peer still did not advance his SND.UNA when we
 | |
|  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
 | |
|  * (borrowed from freebsd)
 | |
|  */
 | |
| 
 | |
| static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
 | |
| {
 | |
| 	return	!before(end_seq, tp->rcv_wup) &&
 | |
| 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
 | |
| }
 | |
| 
 | |
| /* When we get a reset we do this. */
 | |
| static void tcp_reset(struct sock *sk)
 | |
| {
 | |
| 	/* We want the right error as BSD sees it (and indeed as we do). */
 | |
| 	switch (sk->sk_state) {
 | |
| 		case TCP_SYN_SENT:
 | |
| 			sk->sk_err = ECONNREFUSED;
 | |
| 			break;
 | |
| 		case TCP_CLOSE_WAIT:
 | |
| 			sk->sk_err = EPIPE;
 | |
| 			break;
 | |
| 		case TCP_CLOSE:
 | |
| 			return;
 | |
| 		default:
 | |
| 			sk->sk_err = ECONNRESET;
 | |
| 	}
 | |
| 
 | |
| 	if (!sock_flag(sk, SOCK_DEAD))
 | |
| 		sk->sk_error_report(sk);
 | |
| 
 | |
| 	tcp_done(sk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 	Process the FIN bit. This now behaves as it is supposed to work
 | |
|  *	and the FIN takes effect when it is validly part of sequence
 | |
|  *	space. Not before when we get holes.
 | |
|  *
 | |
|  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
 | |
|  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
 | |
|  *	TIME-WAIT)
 | |
|  *
 | |
|  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
 | |
|  *	close and we go into CLOSING (and later onto TIME-WAIT)
 | |
|  *
 | |
|  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
 | |
|  */
 | |
| static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	tcp_schedule_ack(tp);
 | |
| 
 | |
| 	sk->sk_shutdown |= RCV_SHUTDOWN;
 | |
| 	sock_set_flag(sk, SOCK_DONE);
 | |
| 
 | |
| 	switch (sk->sk_state) {
 | |
| 		case TCP_SYN_RECV:
 | |
| 		case TCP_ESTABLISHED:
 | |
| 			/* Move to CLOSE_WAIT */
 | |
| 			tcp_set_state(sk, TCP_CLOSE_WAIT);
 | |
| 			tp->ack.pingpong = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_CLOSE_WAIT:
 | |
| 		case TCP_CLOSING:
 | |
| 			/* Received a retransmission of the FIN, do
 | |
| 			 * nothing.
 | |
| 			 */
 | |
| 			break;
 | |
| 		case TCP_LAST_ACK:
 | |
| 			/* RFC793: Remain in the LAST-ACK state. */
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_FIN_WAIT1:
 | |
| 			/* This case occurs when a simultaneous close
 | |
| 			 * happens, we must ack the received FIN and
 | |
| 			 * enter the CLOSING state.
 | |
| 			 */
 | |
| 			tcp_send_ack(sk);
 | |
| 			tcp_set_state(sk, TCP_CLOSING);
 | |
| 			break;
 | |
| 		case TCP_FIN_WAIT2:
 | |
| 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
 | |
| 			tcp_send_ack(sk);
 | |
| 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
 | |
| 			 * cases we should never reach this piece of code.
 | |
| 			 */
 | |
| 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
 | |
| 			       __FUNCTION__, sk->sk_state);
 | |
| 			break;
 | |
| 	};
 | |
| 
 | |
| 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
 | |
| 	 * Probably, we should reset in this case. For now drop them.
 | |
| 	 */
 | |
| 	__skb_queue_purge(&tp->out_of_order_queue);
 | |
| 	if (tp->rx_opt.sack_ok)
 | |
| 		tcp_sack_reset(&tp->rx_opt);
 | |
| 	sk_stream_mem_reclaim(sk);
 | |
| 
 | |
| 	if (!sock_flag(sk, SOCK_DEAD)) {
 | |
| 		sk->sk_state_change(sk);
 | |
| 
 | |
| 		/* Do not send POLL_HUP for half duplex close. */
 | |
| 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
 | |
| 		    sk->sk_state == TCP_CLOSE)
 | |
| 			sk_wake_async(sk, 1, POLL_HUP);
 | |
| 		else
 | |
| 			sk_wake_async(sk, 1, POLL_IN);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __inline__ int
 | |
| tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
 | |
| {
 | |
| 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
 | |
| 		if (before(seq, sp->start_seq))
 | |
| 			sp->start_seq = seq;
 | |
| 		if (after(end_seq, sp->end_seq))
 | |
| 			sp->end_seq = end_seq;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
 | |
| {
 | |
| 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
 | |
| 		if (before(seq, tp->rcv_nxt))
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
 | |
| 		else
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
 | |
| 
 | |
| 		tp->rx_opt.dsack = 1;
 | |
| 		tp->duplicate_sack[0].start_seq = seq;
 | |
| 		tp->duplicate_sack[0].end_seq = end_seq;
 | |
| 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
 | |
| {
 | |
| 	if (!tp->rx_opt.dsack)
 | |
| 		tcp_dsack_set(tp, seq, end_seq);
 | |
| 	else
 | |
| 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
 | |
| }
 | |
| 
 | |
| static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
 | |
| 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
 | |
| 		tcp_enter_quickack_mode(tp);
 | |
| 
 | |
| 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
 | |
| 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 
 | |
| 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
 | |
| 				end_seq = tp->rcv_nxt;
 | |
| 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tcp_send_ack(sk);
 | |
| }
 | |
| 
 | |
| /* These routines update the SACK block as out-of-order packets arrive or
 | |
|  * in-order packets close up the sequence space.
 | |
|  */
 | |
| static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
 | |
| {
 | |
| 	int this_sack;
 | |
| 	struct tcp_sack_block *sp = &tp->selective_acks[0];
 | |
| 	struct tcp_sack_block *swalk = sp+1;
 | |
| 
 | |
| 	/* See if the recent change to the first SACK eats into
 | |
| 	 * or hits the sequence space of other SACK blocks, if so coalesce.
 | |
| 	 */
 | |
| 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
 | |
| 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
 | |
| 			int i;
 | |
| 
 | |
| 			/* Zap SWALK, by moving every further SACK up by one slot.
 | |
| 			 * Decrease num_sacks.
 | |
| 			 */
 | |
| 			tp->rx_opt.num_sacks--;
 | |
| 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
 | |
| 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
 | |
| 				sp[i] = sp[i+1];
 | |
| 			continue;
 | |
| 		}
 | |
| 		this_sack++, swalk++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
 | |
| {
 | |
| 	__u32 tmp;
 | |
| 
 | |
| 	tmp = sack1->start_seq;
 | |
| 	sack1->start_seq = sack2->start_seq;
 | |
| 	sack2->start_seq = tmp;
 | |
| 
 | |
| 	tmp = sack1->end_seq;
 | |
| 	sack1->end_seq = sack2->end_seq;
 | |
| 	sack2->end_seq = tmp;
 | |
| }
 | |
| 
 | |
| static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_sack_block *sp = &tp->selective_acks[0];
 | |
| 	int cur_sacks = tp->rx_opt.num_sacks;
 | |
| 	int this_sack;
 | |
| 
 | |
| 	if (!cur_sacks)
 | |
| 		goto new_sack;
 | |
| 
 | |
| 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
 | |
| 		if (tcp_sack_extend(sp, seq, end_seq)) {
 | |
| 			/* Rotate this_sack to the first one. */
 | |
| 			for (; this_sack>0; this_sack--, sp--)
 | |
| 				tcp_sack_swap(sp, sp-1);
 | |
| 			if (cur_sacks > 1)
 | |
| 				tcp_sack_maybe_coalesce(tp);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Could not find an adjacent existing SACK, build a new one,
 | |
| 	 * put it at the front, and shift everyone else down.  We
 | |
| 	 * always know there is at least one SACK present already here.
 | |
| 	 *
 | |
| 	 * If the sack array is full, forget about the last one.
 | |
| 	 */
 | |
| 	if (this_sack >= 4) {
 | |
| 		this_sack--;
 | |
| 		tp->rx_opt.num_sacks--;
 | |
| 		sp--;
 | |
| 	}
 | |
| 	for(; this_sack > 0; this_sack--, sp--)
 | |
| 		*sp = *(sp-1);
 | |
| 
 | |
| new_sack:
 | |
| 	/* Build the new head SACK, and we're done. */
 | |
| 	sp->start_seq = seq;
 | |
| 	sp->end_seq = end_seq;
 | |
| 	tp->rx_opt.num_sacks++;
 | |
| 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
 | |
| }
 | |
| 
 | |
| /* RCV.NXT advances, some SACKs should be eaten. */
 | |
| 
 | |
| static void tcp_sack_remove(struct tcp_sock *tp)
 | |
| {
 | |
| 	struct tcp_sack_block *sp = &tp->selective_acks[0];
 | |
| 	int num_sacks = tp->rx_opt.num_sacks;
 | |
| 	int this_sack;
 | |
| 
 | |
| 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
 | |
| 	if (skb_queue_len(&tp->out_of_order_queue) == 0) {
 | |
| 		tp->rx_opt.num_sacks = 0;
 | |
| 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for(this_sack = 0; this_sack < num_sacks; ) {
 | |
| 		/* Check if the start of the sack is covered by RCV.NXT. */
 | |
| 		if (!before(tp->rcv_nxt, sp->start_seq)) {
 | |
| 			int i;
 | |
| 
 | |
| 			/* RCV.NXT must cover all the block! */
 | |
| 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
 | |
| 
 | |
| 			/* Zap this SACK, by moving forward any other SACKS. */
 | |
| 			for (i=this_sack+1; i < num_sacks; i++)
 | |
| 				tp->selective_acks[i-1] = tp->selective_acks[i];
 | |
| 			num_sacks--;
 | |
| 			continue;
 | |
| 		}
 | |
| 		this_sack++;
 | |
| 		sp++;
 | |
| 	}
 | |
| 	if (num_sacks != tp->rx_opt.num_sacks) {
 | |
| 		tp->rx_opt.num_sacks = num_sacks;
 | |
| 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This one checks to see if we can put data from the
 | |
|  * out_of_order queue into the receive_queue.
 | |
|  */
 | |
| static void tcp_ofo_queue(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	__u32 dsack_high = tp->rcv_nxt;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
 | |
| 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 | |
| 			break;
 | |
| 
 | |
| 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
 | |
| 			__u32 dsack = dsack_high;
 | |
| 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
 | |
| 				dsack_high = TCP_SKB_CB(skb)->end_seq;
 | |
| 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
 | |
| 		}
 | |
| 
 | |
| 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 | |
| 			SOCK_DEBUG(sk, "ofo packet was already received \n");
 | |
| 			__skb_unlink(skb, skb->list);
 | |
| 			__kfree_skb(skb);
 | |
| 			continue;
 | |
| 		}
 | |
| 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
 | |
| 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
 | |
| 			   TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| 		__skb_unlink(skb, skb->list);
 | |
| 		__skb_queue_tail(&sk->sk_receive_queue, skb);
 | |
| 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 | |
| 		if(skb->h.th->fin)
 | |
| 			tcp_fin(skb, sk, skb->h.th);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tcp_prune_queue(struct sock *sk);
 | |
| 
 | |
| static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcphdr *th = skb->h.th;
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int eaten = -1;
 | |
| 
 | |
| 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
 | |
| 		goto drop;
 | |
| 
 | |
| 	__skb_pull(skb, th->doff*4);
 | |
| 
 | |
| 	TCP_ECN_accept_cwr(tp, skb);
 | |
| 
 | |
| 	if (tp->rx_opt.dsack) {
 | |
| 		tp->rx_opt.dsack = 0;
 | |
| 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
 | |
| 						    4 - tp->rx_opt.tstamp_ok);
 | |
| 	}
 | |
| 
 | |
| 	/*  Queue data for delivery to the user.
 | |
| 	 *  Packets in sequence go to the receive queue.
 | |
| 	 *  Out of sequence packets to the out_of_order_queue.
 | |
| 	 */
 | |
| 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
 | |
| 		if (tcp_receive_window(tp) == 0)
 | |
| 			goto out_of_window;
 | |
| 
 | |
| 		/* Ok. In sequence. In window. */
 | |
| 		if (tp->ucopy.task == current &&
 | |
| 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
 | |
| 		    sock_owned_by_user(sk) && !tp->urg_data) {
 | |
| 			int chunk = min_t(unsigned int, skb->len,
 | |
| 							tp->ucopy.len);
 | |
| 
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 			local_bh_enable();
 | |
| 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
 | |
| 				tp->ucopy.len -= chunk;
 | |
| 				tp->copied_seq += chunk;
 | |
| 				eaten = (chunk == skb->len && !th->fin);
 | |
| 				tcp_rcv_space_adjust(sk);
 | |
| 			}
 | |
| 			local_bh_disable();
 | |
| 		}
 | |
| 
 | |
| 		if (eaten <= 0) {
 | |
| queue_and_out:
 | |
| 			if (eaten < 0 &&
 | |
| 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
 | |
| 			     !sk_stream_rmem_schedule(sk, skb))) {
 | |
| 				if (tcp_prune_queue(sk) < 0 ||
 | |
| 				    !sk_stream_rmem_schedule(sk, skb))
 | |
| 					goto drop;
 | |
| 			}
 | |
| 			sk_stream_set_owner_r(skb, sk);
 | |
| 			__skb_queue_tail(&sk->sk_receive_queue, skb);
 | |
| 		}
 | |
| 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 | |
| 		if(skb->len)
 | |
| 			tcp_event_data_recv(sk, tp, skb);
 | |
| 		if(th->fin)
 | |
| 			tcp_fin(skb, sk, th);
 | |
| 
 | |
| 		if (skb_queue_len(&tp->out_of_order_queue)) {
 | |
| 			tcp_ofo_queue(sk);
 | |
| 
 | |
| 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
 | |
| 			 * gap in queue is filled.
 | |
| 			 */
 | |
| 			if (!skb_queue_len(&tp->out_of_order_queue))
 | |
| 				tp->ack.pingpong = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (tp->rx_opt.num_sacks)
 | |
| 			tcp_sack_remove(tp);
 | |
| 
 | |
| 		tcp_fast_path_check(sk, tp);
 | |
| 
 | |
| 		if (eaten > 0)
 | |
| 			__kfree_skb(skb);
 | |
| 		else if (!sock_flag(sk, SOCK_DEAD))
 | |
| 			sk->sk_data_ready(sk, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 | |
| 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
 | |
| 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| out_of_window:
 | |
| 		tcp_enter_quickack_mode(tp);
 | |
| 		tcp_schedule_ack(tp);
 | |
| drop:
 | |
| 		__kfree_skb(skb);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Out of window. F.e. zero window probe. */
 | |
| 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 | |
| 		goto out_of_window;
 | |
| 
 | |
| 	tcp_enter_quickack_mode(tp);
 | |
| 
 | |
| 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 | |
| 		/* Partial packet, seq < rcv_next < end_seq */
 | |
| 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
 | |
| 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
 | |
| 			   TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
 | |
| 		
 | |
| 		/* If window is closed, drop tail of packet. But after
 | |
| 		 * remembering D-SACK for its head made in previous line.
 | |
| 		 */
 | |
| 		if (!tcp_receive_window(tp))
 | |
| 			goto out_of_window;
 | |
| 		goto queue_and_out;
 | |
| 	}
 | |
| 
 | |
| 	TCP_ECN_check_ce(tp, skb);
 | |
| 
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
 | |
| 	    !sk_stream_rmem_schedule(sk, skb)) {
 | |
| 		if (tcp_prune_queue(sk) < 0 ||
 | |
| 		    !sk_stream_rmem_schedule(sk, skb))
 | |
| 			goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable header prediction. */
 | |
| 	tp->pred_flags = 0;
 | |
| 	tcp_schedule_ack(tp);
 | |
| 
 | |
| 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
 | |
| 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
 | |
| 
 | |
| 	sk_stream_set_owner_r(skb, sk);
 | |
| 
 | |
| 	if (!skb_peek(&tp->out_of_order_queue)) {
 | |
| 		/* Initial out of order segment, build 1 SACK. */
 | |
| 		if (tp->rx_opt.sack_ok) {
 | |
| 			tp->rx_opt.num_sacks = 1;
 | |
| 			tp->rx_opt.dsack     = 0;
 | |
| 			tp->rx_opt.eff_sacks = 1;
 | |
| 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
 | |
| 			tp->selective_acks[0].end_seq =
 | |
| 						TCP_SKB_CB(skb)->end_seq;
 | |
| 		}
 | |
| 		__skb_queue_head(&tp->out_of_order_queue,skb);
 | |
| 	} else {
 | |
| 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
 | |
| 		u32 seq = TCP_SKB_CB(skb)->seq;
 | |
| 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
 | |
| 
 | |
| 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
 | |
| 			__skb_append(skb1, skb);
 | |
| 
 | |
| 			if (!tp->rx_opt.num_sacks ||
 | |
| 			    tp->selective_acks[0].end_seq != seq)
 | |
| 				goto add_sack;
 | |
| 
 | |
| 			/* Common case: data arrive in order after hole. */
 | |
| 			tp->selective_acks[0].end_seq = end_seq;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Find place to insert this segment. */
 | |
| 		do {
 | |
| 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
 | |
| 				break;
 | |
| 		} while ((skb1 = skb1->prev) !=
 | |
| 			 (struct sk_buff*)&tp->out_of_order_queue);
 | |
| 
 | |
| 		/* Do skb overlap to previous one? */
 | |
| 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
 | |
| 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
 | |
| 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
 | |
| 				/* All the bits are present. Drop. */
 | |
| 				__kfree_skb(skb);
 | |
| 				tcp_dsack_set(tp, seq, end_seq);
 | |
| 				goto add_sack;
 | |
| 			}
 | |
| 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
 | |
| 				/* Partial overlap. */
 | |
| 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
 | |
| 			} else {
 | |
| 				skb1 = skb1->prev;
 | |
| 			}
 | |
| 		}
 | |
| 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
 | |
| 		
 | |
| 		/* And clean segments covered by new one as whole. */
 | |
| 		while ((skb1 = skb->next) !=
 | |
| 		       (struct sk_buff*)&tp->out_of_order_queue &&
 | |
| 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
 | |
| 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
 | |
| 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
 | |
| 			       break;
 | |
| 		       }
 | |
| 		       __skb_unlink(skb1, skb1->list);
 | |
| 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
 | |
| 		       __kfree_skb(skb1);
 | |
| 		}
 | |
| 
 | |
| add_sack:
 | |
| 		if (tp->rx_opt.sack_ok)
 | |
| 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Collapse contiguous sequence of skbs head..tail with
 | |
|  * sequence numbers start..end.
 | |
|  * Segments with FIN/SYN are not collapsed (only because this
 | |
|  * simplifies code)
 | |
|  */
 | |
| static void
 | |
| tcp_collapse(struct sock *sk, struct sk_buff *head,
 | |
| 	     struct sk_buff *tail, u32 start, u32 end)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* First, check that queue is collapsable and find
 | |
| 	 * the point where collapsing can be useful. */
 | |
| 	for (skb = head; skb != tail; ) {
 | |
| 		/* No new bits? It is possible on ofo queue. */
 | |
| 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
 | |
| 			struct sk_buff *next = skb->next;
 | |
| 			__skb_unlink(skb, skb->list);
 | |
| 			__kfree_skb(skb);
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
 | |
| 			skb = next;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* The first skb to collapse is:
 | |
| 		 * - not SYN/FIN and
 | |
| 		 * - bloated or contains data before "start" or
 | |
| 		 *   overlaps to the next one.
 | |
| 		 */
 | |
| 		if (!skb->h.th->syn && !skb->h.th->fin &&
 | |
| 		    (tcp_win_from_space(skb->truesize) > skb->len ||
 | |
| 		     before(TCP_SKB_CB(skb)->seq, start) ||
 | |
| 		     (skb->next != tail &&
 | |
| 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
 | |
| 			break;
 | |
| 
 | |
| 		/* Decided to skip this, advance start seq. */
 | |
| 		start = TCP_SKB_CB(skb)->end_seq;
 | |
| 		skb = skb->next;
 | |
| 	}
 | |
| 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
 | |
| 		return;
 | |
| 
 | |
| 	while (before(start, end)) {
 | |
| 		struct sk_buff *nskb;
 | |
| 		int header = skb_headroom(skb);
 | |
| 		int copy = SKB_MAX_ORDER(header, 0);
 | |
| 
 | |
| 		/* Too big header? This can happen with IPv6. */
 | |
| 		if (copy < 0)
 | |
| 			return;
 | |
| 		if (end-start < copy)
 | |
| 			copy = end-start;
 | |
| 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
 | |
| 		if (!nskb)
 | |
| 			return;
 | |
| 		skb_reserve(nskb, header);
 | |
| 		memcpy(nskb->head, skb->head, header);
 | |
| 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
 | |
| 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
 | |
| 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
 | |
| 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 | |
| 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
 | |
| 		__skb_insert(nskb, skb->prev, skb, skb->list);
 | |
| 		sk_stream_set_owner_r(nskb, sk);
 | |
| 
 | |
| 		/* Copy data, releasing collapsed skbs. */
 | |
| 		while (copy > 0) {
 | |
| 			int offset = start - TCP_SKB_CB(skb)->seq;
 | |
| 			int size = TCP_SKB_CB(skb)->end_seq - start;
 | |
| 
 | |
| 			if (offset < 0) BUG();
 | |
| 			if (size > 0) {
 | |
| 				size = min(copy, size);
 | |
| 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
 | |
| 					BUG();
 | |
| 				TCP_SKB_CB(nskb)->end_seq += size;
 | |
| 				copy -= size;
 | |
| 				start += size;
 | |
| 			}
 | |
| 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
 | |
| 				struct sk_buff *next = skb->next;
 | |
| 				__skb_unlink(skb, skb->list);
 | |
| 				__kfree_skb(skb);
 | |
| 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
 | |
| 				skb = next;
 | |
| 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
 | |
| 					return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
 | |
|  * and tcp_collapse() them until all the queue is collapsed.
 | |
|  */
 | |
| static void tcp_collapse_ofo_queue(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
 | |
| 	struct sk_buff *head;
 | |
| 	u32 start, end;
 | |
| 
 | |
| 	if (skb == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	start = TCP_SKB_CB(skb)->seq;
 | |
| 	end = TCP_SKB_CB(skb)->end_seq;
 | |
| 	head = skb;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		skb = skb->next;
 | |
| 
 | |
| 		/* Segment is terminated when we see gap or when
 | |
| 		 * we are at the end of all the queue. */
 | |
| 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
 | |
| 		    after(TCP_SKB_CB(skb)->seq, end) ||
 | |
| 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
 | |
| 			tcp_collapse(sk, head, skb, start, end);
 | |
| 			head = skb;
 | |
| 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
 | |
| 				break;
 | |
| 			/* Start new segment */
 | |
| 			start = TCP_SKB_CB(skb)->seq;
 | |
| 			end = TCP_SKB_CB(skb)->end_seq;
 | |
| 		} else {
 | |
| 			if (before(TCP_SKB_CB(skb)->seq, start))
 | |
| 				start = TCP_SKB_CB(skb)->seq;
 | |
| 			if (after(TCP_SKB_CB(skb)->end_seq, end))
 | |
| 				end = TCP_SKB_CB(skb)->end_seq;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Reduce allocated memory if we can, trying to get
 | |
|  * the socket within its memory limits again.
 | |
|  *
 | |
|  * Return less than zero if we should start dropping frames
 | |
|  * until the socket owning process reads some of the data
 | |
|  * to stabilize the situation.
 | |
|  */
 | |
| static int tcp_prune_queue(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk); 
 | |
| 
 | |
| 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
 | |
| 
 | |
| 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
 | |
| 
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
 | |
| 		tcp_clamp_window(sk, tp);
 | |
| 	else if (tcp_memory_pressure)
 | |
| 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
 | |
| 
 | |
| 	tcp_collapse_ofo_queue(sk);
 | |
| 	tcp_collapse(sk, sk->sk_receive_queue.next,
 | |
| 		     (struct sk_buff*)&sk->sk_receive_queue,
 | |
| 		     tp->copied_seq, tp->rcv_nxt);
 | |
| 	sk_stream_mem_reclaim(sk);
 | |
| 
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Collapsing did not help, destructive actions follow.
 | |
| 	 * This must not ever occur. */
 | |
| 
 | |
| 	/* First, purge the out_of_order queue. */
 | |
| 	if (skb_queue_len(&tp->out_of_order_queue)) {
 | |
| 		NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED, 
 | |
| 				 skb_queue_len(&tp->out_of_order_queue));
 | |
| 		__skb_queue_purge(&tp->out_of_order_queue);
 | |
| 
 | |
| 		/* Reset SACK state.  A conforming SACK implementation will
 | |
| 		 * do the same at a timeout based retransmit.  When a connection
 | |
| 		 * is in a sad state like this, we care only about integrity
 | |
| 		 * of the connection not performance.
 | |
| 		 */
 | |
| 		if (tp->rx_opt.sack_ok)
 | |
| 			tcp_sack_reset(&tp->rx_opt);
 | |
| 		sk_stream_mem_reclaim(sk);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we are really being abused, tell the caller to silently
 | |
| 	 * drop receive data on the floor.  It will get retransmitted
 | |
| 	 * and hopefully then we'll have sufficient space.
 | |
| 	 */
 | |
| 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
 | |
| 
 | |
| 	/* Massive buffer overcommit. */
 | |
| 	tp->pred_flags = 0;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
 | |
|  * As additional protections, we do not touch cwnd in retransmission phases,
 | |
|  * and if application hit its sndbuf limit recently.
 | |
|  */
 | |
| void tcp_cwnd_application_limited(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (tp->ca_state == TCP_CA_Open &&
 | |
| 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
 | |
| 		/* Limited by application or receiver window. */
 | |
| 		u32 win_used = max(tp->snd_cwnd_used, 2U);
 | |
| 		if (win_used < tp->snd_cwnd) {
 | |
| 			tp->snd_ssthresh = tcp_current_ssthresh(tp);
 | |
| 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
 | |
| 		}
 | |
| 		tp->snd_cwnd_used = 0;
 | |
| 	}
 | |
| 	tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* When incoming ACK allowed to free some skb from write_queue,
 | |
|  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
 | |
|  * on the exit from tcp input handler.
 | |
|  *
 | |
|  * PROBLEM: sndbuf expansion does not work well with largesend.
 | |
|  */
 | |
| static void tcp_new_space(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (tp->packets_out < tp->snd_cwnd &&
 | |
| 	    !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
 | |
| 	    !tcp_memory_pressure &&
 | |
| 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
 | |
|  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
 | |
| 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
 | |
| 		    demanded = max_t(unsigned int, tp->snd_cwnd,
 | |
| 						   tp->reordering + 1);
 | |
| 		sndmem *= 2*demanded;
 | |
| 		if (sndmem > sk->sk_sndbuf)
 | |
| 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 | |
| 		tp->snd_cwnd_stamp = tcp_time_stamp;
 | |
| 	}
 | |
| 
 | |
| 	sk->sk_write_space(sk);
 | |
| }
 | |
| 
 | |
| static inline void tcp_check_space(struct sock *sk)
 | |
| {
 | |
| 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
 | |
| 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
 | |
| 		if (sk->sk_socket &&
 | |
| 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
 | |
| 			tcp_new_space(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
 | |
| 	    tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
 | |
| 	    tcp_write_xmit(sk, tp->nonagle))
 | |
| 		tcp_check_probe_timer(sk, tp);
 | |
| }
 | |
| 
 | |
| static __inline__ void tcp_data_snd_check(struct sock *sk)
 | |
| {
 | |
| 	struct sk_buff *skb = sk->sk_send_head;
 | |
| 
 | |
| 	if (skb != NULL)
 | |
| 		__tcp_data_snd_check(sk, skb);
 | |
| 	tcp_check_space(sk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if sending an ack is needed.
 | |
|  */
 | |
| static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	    /* More than one full frame received... */
 | |
| 	if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
 | |
| 	     /* ... and right edge of window advances far enough.
 | |
| 	      * (tcp_recvmsg() will send ACK otherwise). Or...
 | |
| 	      */
 | |
| 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
 | |
| 	    /* We ACK each frame or... */
 | |
| 	    tcp_in_quickack_mode(tp) ||
 | |
| 	    /* We have out of order data. */
 | |
| 	    (ofo_possible &&
 | |
| 	     skb_peek(&tp->out_of_order_queue))) {
 | |
| 		/* Then ack it now */
 | |
| 		tcp_send_ack(sk);
 | |
| 	} else {
 | |
| 		/* Else, send delayed ack. */
 | |
| 		tcp_send_delayed_ack(sk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __inline__ void tcp_ack_snd_check(struct sock *sk)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	if (!tcp_ack_scheduled(tp)) {
 | |
| 		/* We sent a data segment already. */
 | |
| 		return;
 | |
| 	}
 | |
| 	__tcp_ack_snd_check(sk, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	This routine is only called when we have urgent data
 | |
|  *	signalled. Its the 'slow' part of tcp_urg. It could be
 | |
|  *	moved inline now as tcp_urg is only called from one
 | |
|  *	place. We handle URGent data wrong. We have to - as
 | |
|  *	BSD still doesn't use the correction from RFC961.
 | |
|  *	For 1003.1g we should support a new option TCP_STDURG to permit
 | |
|  *	either form (or just set the sysctl tcp_stdurg).
 | |
|  */
 | |
|  
 | |
| static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	u32 ptr = ntohs(th->urg_ptr);
 | |
| 
 | |
| 	if (ptr && !sysctl_tcp_stdurg)
 | |
| 		ptr--;
 | |
| 	ptr += ntohl(th->seq);
 | |
| 
 | |
| 	/* Ignore urgent data that we've already seen and read. */
 | |
| 	if (after(tp->copied_seq, ptr))
 | |
| 		return;
 | |
| 
 | |
| 	/* Do not replay urg ptr.
 | |
| 	 *
 | |
| 	 * NOTE: interesting situation not covered by specs.
 | |
| 	 * Misbehaving sender may send urg ptr, pointing to segment,
 | |
| 	 * which we already have in ofo queue. We are not able to fetch
 | |
| 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
 | |
| 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
 | |
| 	 * situations. But it is worth to think about possibility of some
 | |
| 	 * DoSes using some hypothetical application level deadlock.
 | |
| 	 */
 | |
| 	if (before(ptr, tp->rcv_nxt))
 | |
| 		return;
 | |
| 
 | |
| 	/* Do we already have a newer (or duplicate) urgent pointer? */
 | |
| 	if (tp->urg_data && !after(ptr, tp->urg_seq))
 | |
| 		return;
 | |
| 
 | |
| 	/* Tell the world about our new urgent pointer. */
 | |
| 	sk_send_sigurg(sk);
 | |
| 
 | |
| 	/* We may be adding urgent data when the last byte read was
 | |
| 	 * urgent. To do this requires some care. We cannot just ignore
 | |
| 	 * tp->copied_seq since we would read the last urgent byte again
 | |
| 	 * as data, nor can we alter copied_seq until this data arrives
 | |
| 	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
 | |
| 	 *
 | |
| 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
 | |
| 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
 | |
| 	 * and expect that both A and B disappear from stream. This is _wrong_.
 | |
| 	 * Though this happens in BSD with high probability, this is occasional.
 | |
| 	 * Any application relying on this is buggy. Note also, that fix "works"
 | |
| 	 * only in this artificial test. Insert some normal data between A and B and we will
 | |
| 	 * decline of BSD again. Verdict: it is better to remove to trap
 | |
| 	 * buggy users.
 | |
| 	 */
 | |
| 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
 | |
| 	    !sock_flag(sk, SOCK_URGINLINE) &&
 | |
| 	    tp->copied_seq != tp->rcv_nxt) {
 | |
| 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
 | |
| 		tp->copied_seq++;
 | |
| 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
 | |
| 			__skb_unlink(skb, skb->list);
 | |
| 			__kfree_skb(skb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp->urg_data   = TCP_URG_NOTYET;
 | |
| 	tp->urg_seq    = ptr;
 | |
| 
 | |
| 	/* Disable header prediction. */
 | |
| 	tp->pred_flags = 0;
 | |
| }
 | |
| 
 | |
| /* This is the 'fast' part of urgent handling. */
 | |
| static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/* Check if we get a new urgent pointer - normally not. */
 | |
| 	if (th->urg)
 | |
| 		tcp_check_urg(sk,th);
 | |
| 
 | |
| 	/* Do we wait for any urgent data? - normally not... */
 | |
| 	if (tp->urg_data == TCP_URG_NOTYET) {
 | |
| 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
 | |
| 			  th->syn;
 | |
| 
 | |
| 		/* Is the urgent pointer pointing into this packet? */	 
 | |
| 		if (ptr < skb->len) {
 | |
| 			u8 tmp;
 | |
| 			if (skb_copy_bits(skb, ptr, &tmp, 1))
 | |
| 				BUG();
 | |
| 			tp->urg_data = TCP_URG_VALID | tmp;
 | |
| 			if (!sock_flag(sk, SOCK_DEAD))
 | |
| 				sk->sk_data_ready(sk, 0);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int chunk = skb->len - hlen;
 | |
| 	int err;
 | |
| 
 | |
| 	local_bh_enable();
 | |
| 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
 | |
| 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
 | |
| 	else
 | |
| 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
 | |
| 						       tp->ucopy.iov);
 | |
| 
 | |
| 	if (!err) {
 | |
| 		tp->ucopy.len -= chunk;
 | |
| 		tp->copied_seq += chunk;
 | |
| 		tcp_rcv_space_adjust(sk);
 | |
| 	}
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	if (sock_owned_by_user(sk)) {
 | |
| 		local_bh_enable();
 | |
| 		result = __tcp_checksum_complete(skb);
 | |
| 		local_bh_disable();
 | |
| 	} else {
 | |
| 		result = __tcp_checksum_complete(skb);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static __inline__ int
 | |
| tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
 | |
| 		__tcp_checksum_complete_user(sk, skb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	TCP receive function for the ESTABLISHED state. 
 | |
|  *
 | |
|  *	It is split into a fast path and a slow path. The fast path is 
 | |
|  * 	disabled when:
 | |
|  *	- A zero window was announced from us - zero window probing
 | |
|  *        is only handled properly in the slow path. 
 | |
|  *	- Out of order segments arrived.
 | |
|  *	- Urgent data is expected.
 | |
|  *	- There is no buffer space left
 | |
|  *	- Unexpected TCP flags/window values/header lengths are received
 | |
|  *	  (detected by checking the TCP header against pred_flags) 
 | |
|  *	- Data is sent in both directions. Fast path only supports pure senders
 | |
|  *	  or pure receivers (this means either the sequence number or the ack
 | |
|  *	  value must stay constant)
 | |
|  *	- Unexpected TCP option.
 | |
|  *
 | |
|  *	When these conditions are not satisfied it drops into a standard 
 | |
|  *	receive procedure patterned after RFC793 to handle all cases.
 | |
|  *	The first three cases are guaranteed by proper pred_flags setting,
 | |
|  *	the rest is checked inline. Fast processing is turned on in 
 | |
|  *	tcp_data_queue when everything is OK.
 | |
|  */
 | |
| int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 | |
| 			struct tcphdr *th, unsigned len)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Header prediction.
 | |
| 	 *	The code loosely follows the one in the famous 
 | |
| 	 *	"30 instruction TCP receive" Van Jacobson mail.
 | |
| 	 *	
 | |
| 	 *	Van's trick is to deposit buffers into socket queue 
 | |
| 	 *	on a device interrupt, to call tcp_recv function
 | |
| 	 *	on the receive process context and checksum and copy
 | |
| 	 *	the buffer to user space. smart...
 | |
| 	 *
 | |
| 	 *	Our current scheme is not silly either but we take the 
 | |
| 	 *	extra cost of the net_bh soft interrupt processing...
 | |
| 	 *	We do checksum and copy also but from device to kernel.
 | |
| 	 */
 | |
| 
 | |
| 	tp->rx_opt.saw_tstamp = 0;
 | |
| 
 | |
| 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
 | |
| 	 *	if header_predition is to be made
 | |
| 	 *	'S' will always be tp->tcp_header_len >> 2
 | |
| 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
 | |
| 	 *  turn it off	(when there are holes in the receive 
 | |
| 	 *	 space for instance)
 | |
| 	 *	PSH flag is ignored.
 | |
| 	 */
 | |
| 
 | |
| 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
 | |
| 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
 | |
| 		int tcp_header_len = tp->tcp_header_len;
 | |
| 
 | |
| 		/* Timestamp header prediction: tcp_header_len
 | |
| 		 * is automatically equal to th->doff*4 due to pred_flags
 | |
| 		 * match.
 | |
| 		 */
 | |
| 
 | |
| 		/* Check timestamp */
 | |
| 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
 | |
| 			__u32 *ptr = (__u32 *)(th + 1);
 | |
| 
 | |
| 			/* No? Slow path! */
 | |
| 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
 | |
| 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
 | |
| 				goto slow_path;
 | |
| 
 | |
| 			tp->rx_opt.saw_tstamp = 1;
 | |
| 			++ptr; 
 | |
| 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
 | |
| 			++ptr;
 | |
| 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
 | |
| 
 | |
| 			/* If PAWS failed, check it more carefully in slow path */
 | |
| 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
 | |
| 				goto slow_path;
 | |
| 
 | |
| 			/* DO NOT update ts_recent here, if checksum fails
 | |
| 			 * and timestamp was corrupted part, it will result
 | |
| 			 * in a hung connection since we will drop all
 | |
| 			 * future packets due to the PAWS test.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		if (len <= tcp_header_len) {
 | |
| 			/* Bulk data transfer: sender */
 | |
| 			if (len == tcp_header_len) {
 | |
| 				/* Predicted packet is in window by definition.
 | |
| 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
 | |
| 				 * Hence, check seq<=rcv_wup reduces to:
 | |
| 				 */
 | |
| 				if (tcp_header_len ==
 | |
| 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
 | |
| 				    tp->rcv_nxt == tp->rcv_wup)
 | |
| 					tcp_store_ts_recent(tp);
 | |
| 
 | |
| 				tcp_rcv_rtt_measure_ts(tp, skb);
 | |
| 
 | |
| 				/* We know that such packets are checksummed
 | |
| 				 * on entry.
 | |
| 				 */
 | |
| 				tcp_ack(sk, skb, 0);
 | |
| 				__kfree_skb(skb); 
 | |
| 				tcp_data_snd_check(sk);
 | |
| 				return 0;
 | |
| 			} else { /* Header too small */
 | |
| 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
 | |
| 				goto discard;
 | |
| 			}
 | |
| 		} else {
 | |
| 			int eaten = 0;
 | |
| 
 | |
| 			if (tp->ucopy.task == current &&
 | |
| 			    tp->copied_seq == tp->rcv_nxt &&
 | |
| 			    len - tcp_header_len <= tp->ucopy.len &&
 | |
| 			    sock_owned_by_user(sk)) {
 | |
| 				__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
 | |
| 					/* Predicted packet is in window by definition.
 | |
| 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
 | |
| 					 * Hence, check seq<=rcv_wup reduces to:
 | |
| 					 */
 | |
| 					if (tcp_header_len ==
 | |
| 					    (sizeof(struct tcphdr) +
 | |
| 					     TCPOLEN_TSTAMP_ALIGNED) &&
 | |
| 					    tp->rcv_nxt == tp->rcv_wup)
 | |
| 						tcp_store_ts_recent(tp);
 | |
| 
 | |
| 					tcp_rcv_rtt_measure_ts(tp, skb);
 | |
| 
 | |
| 					__skb_pull(skb, tcp_header_len);
 | |
| 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 | |
| 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
 | |
| 					eaten = 1;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!eaten) {
 | |
| 				if (tcp_checksum_complete_user(sk, skb))
 | |
| 					goto csum_error;
 | |
| 
 | |
| 				/* Predicted packet is in window by definition.
 | |
| 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
 | |
| 				 * Hence, check seq<=rcv_wup reduces to:
 | |
| 				 */
 | |
| 				if (tcp_header_len ==
 | |
| 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
 | |
| 				    tp->rcv_nxt == tp->rcv_wup)
 | |
| 					tcp_store_ts_recent(tp);
 | |
| 
 | |
| 				tcp_rcv_rtt_measure_ts(tp, skb);
 | |
| 
 | |
| 				if ((int)skb->truesize > sk->sk_forward_alloc)
 | |
| 					goto step5;
 | |
| 
 | |
| 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
 | |
| 
 | |
| 				/* Bulk data transfer: receiver */
 | |
| 				__skb_pull(skb,tcp_header_len);
 | |
| 				__skb_queue_tail(&sk->sk_receive_queue, skb);
 | |
| 				sk_stream_set_owner_r(skb, sk);
 | |
| 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
 | |
| 			}
 | |
| 
 | |
| 			tcp_event_data_recv(sk, tp, skb);
 | |
| 
 | |
| 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
 | |
| 				/* Well, only one small jumplet in fast path... */
 | |
| 				tcp_ack(sk, skb, FLAG_DATA);
 | |
| 				tcp_data_snd_check(sk);
 | |
| 				if (!tcp_ack_scheduled(tp))
 | |
| 					goto no_ack;
 | |
| 			}
 | |
| 
 | |
| 			__tcp_ack_snd_check(sk, 0);
 | |
| no_ack:
 | |
| 			if (eaten)
 | |
| 				__kfree_skb(skb);
 | |
| 			else
 | |
| 				sk->sk_data_ready(sk, 0);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| slow_path:
 | |
| 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
 | |
| 		goto csum_error;
 | |
| 
 | |
| 	/*
 | |
| 	 * RFC1323: H1. Apply PAWS check first.
 | |
| 	 */
 | |
| 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
 | |
| 	    tcp_paws_discard(tp, skb)) {
 | |
| 		if (!th->rst) {
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | |
| 			tcp_send_dupack(sk, skb);
 | |
| 			goto discard;
 | |
| 		}
 | |
| 		/* Resets are accepted even if PAWS failed.
 | |
| 
 | |
| 		   ts_recent update must be made after we are sure
 | |
| 		   that the packet is in window.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *	Standard slow path.
 | |
| 	 */
 | |
| 
 | |
| 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
 | |
| 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
 | |
| 		 * (RST) segments are validated by checking their SEQ-fields."
 | |
| 		 * And page 69: "If an incoming segment is not acceptable,
 | |
| 		 * an acknowledgment should be sent in reply (unless the RST bit
 | |
| 		 * is set, if so drop the segment and return)".
 | |
| 		 */
 | |
| 		if (!th->rst)
 | |
| 			tcp_send_dupack(sk, skb);
 | |
| 		goto discard;
 | |
| 	}
 | |
| 
 | |
| 	if(th->rst) {
 | |
| 		tcp_reset(sk);
 | |
| 		goto discard;
 | |
| 	}
 | |
| 
 | |
| 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
 | |
| 
 | |
| 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 | |
| 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
 | |
| 		tcp_reset(sk);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| step5:
 | |
| 	if(th->ack)
 | |
| 		tcp_ack(sk, skb, FLAG_SLOWPATH);
 | |
| 
 | |
| 	tcp_rcv_rtt_measure_ts(tp, skb);
 | |
| 
 | |
| 	/* Process urgent data. */
 | |
| 	tcp_urg(sk, skb, th);
 | |
| 
 | |
| 	/* step 7: process the segment text */
 | |
| 	tcp_data_queue(sk, skb);
 | |
| 
 | |
| 	tcp_data_snd_check(sk);
 | |
| 	tcp_ack_snd_check(sk);
 | |
| 	return 0;
 | |
| 
 | |
| csum_error:
 | |
| 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
 | |
| 
 | |
| discard:
 | |
| 	__kfree_skb(skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
 | |
| 					 struct tcphdr *th, unsigned len)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int saved_clamp = tp->rx_opt.mss_clamp;
 | |
| 
 | |
| 	tcp_parse_options(skb, &tp->rx_opt, 0);
 | |
| 
 | |
| 	if (th->ack) {
 | |
| 		/* rfc793:
 | |
| 		 * "If the state is SYN-SENT then
 | |
| 		 *    first check the ACK bit
 | |
| 		 *      If the ACK bit is set
 | |
| 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
 | |
| 		 *        a reset (unless the RST bit is set, if so drop
 | |
| 		 *        the segment and return)"
 | |
| 		 *
 | |
| 		 *  We do not send data with SYN, so that RFC-correct
 | |
| 		 *  test reduces to:
 | |
| 		 */
 | |
| 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
 | |
| 			goto reset_and_undo;
 | |
| 
 | |
| 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
 | |
| 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
 | |
| 			     tcp_time_stamp)) {
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
 | |
| 			goto reset_and_undo;
 | |
| 		}
 | |
| 
 | |
| 		/* Now ACK is acceptable.
 | |
| 		 *
 | |
| 		 * "If the RST bit is set
 | |
| 		 *    If the ACK was acceptable then signal the user "error:
 | |
| 		 *    connection reset", drop the segment, enter CLOSED state,
 | |
| 		 *    delete TCB, and return."
 | |
| 		 */
 | |
| 
 | |
| 		if (th->rst) {
 | |
| 			tcp_reset(sk);
 | |
| 			goto discard;
 | |
| 		}
 | |
| 
 | |
| 		/* rfc793:
 | |
| 		 *   "fifth, if neither of the SYN or RST bits is set then
 | |
| 		 *    drop the segment and return."
 | |
| 		 *
 | |
| 		 *    See note below!
 | |
| 		 *                                        --ANK(990513)
 | |
| 		 */
 | |
| 		if (!th->syn)
 | |
| 			goto discard_and_undo;
 | |
| 
 | |
| 		/* rfc793:
 | |
| 		 *   "If the SYN bit is on ...
 | |
| 		 *    are acceptable then ...
 | |
| 		 *    (our SYN has been ACKed), change the connection
 | |
| 		 *    state to ESTABLISHED..."
 | |
| 		 */
 | |
| 
 | |
| 		TCP_ECN_rcv_synack(tp, th);
 | |
| 		if (tp->ecn_flags&TCP_ECN_OK)
 | |
| 			sock_set_flag(sk, SOCK_NO_LARGESEND);
 | |
| 
 | |
| 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
 | |
| 		tcp_ack(sk, skb, FLAG_SLOWPATH);
 | |
| 
 | |
| 		/* Ok.. it's good. Set up sequence numbers and
 | |
| 		 * move to established.
 | |
| 		 */
 | |
| 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 | |
| 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
 | |
| 
 | |
| 		/* RFC1323: The window in SYN & SYN/ACK segments is
 | |
| 		 * never scaled.
 | |
| 		 */
 | |
| 		tp->snd_wnd = ntohs(th->window);
 | |
| 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
 | |
| 
 | |
| 		if (!tp->rx_opt.wscale_ok) {
 | |
| 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
 | |
| 			tp->window_clamp = min(tp->window_clamp, 65535U);
 | |
| 		}
 | |
| 
 | |
| 		if (tp->rx_opt.saw_tstamp) {
 | |
| 			tp->rx_opt.tstamp_ok	   = 1;
 | |
| 			tp->tcp_header_len =
 | |
| 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 | |
| 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
 | |
| 			tcp_store_ts_recent(tp);
 | |
| 		} else {
 | |
| 			tp->tcp_header_len = sizeof(struct tcphdr);
 | |
| 		}
 | |
| 
 | |
| 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
 | |
| 			tp->rx_opt.sack_ok |= 2;
 | |
| 
 | |
| 		tcp_sync_mss(sk, tp->pmtu_cookie);
 | |
| 		tcp_initialize_rcv_mss(sk);
 | |
| 
 | |
| 		/* Remember, tcp_poll() does not lock socket!
 | |
| 		 * Change state from SYN-SENT only after copied_seq
 | |
| 		 * is initialized. */
 | |
| 		tp->copied_seq = tp->rcv_nxt;
 | |
| 		mb();
 | |
| 		tcp_set_state(sk, TCP_ESTABLISHED);
 | |
| 
 | |
| 		/* Make sure socket is routed, for correct metrics.  */
 | |
| 		tp->af_specific->rebuild_header(sk);
 | |
| 
 | |
| 		tcp_init_metrics(sk);
 | |
| 
 | |
| 		tcp_init_congestion_control(tp);
 | |
| 
 | |
| 		/* Prevent spurious tcp_cwnd_restart() on first data
 | |
| 		 * packet.
 | |
| 		 */
 | |
| 		tp->lsndtime = tcp_time_stamp;
 | |
| 
 | |
| 		tcp_init_buffer_space(sk);
 | |
| 
 | |
| 		if (sock_flag(sk, SOCK_KEEPOPEN))
 | |
| 			tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
 | |
| 
 | |
| 		if (!tp->rx_opt.snd_wscale)
 | |
| 			__tcp_fast_path_on(tp, tp->snd_wnd);
 | |
| 		else
 | |
| 			tp->pred_flags = 0;
 | |
| 
 | |
| 		if (!sock_flag(sk, SOCK_DEAD)) {
 | |
| 			sk->sk_state_change(sk);
 | |
| 			sk_wake_async(sk, 0, POLL_OUT);
 | |
| 		}
 | |
| 
 | |
| 		if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
 | |
| 			/* Save one ACK. Data will be ready after
 | |
| 			 * several ticks, if write_pending is set.
 | |
| 			 *
 | |
| 			 * It may be deleted, but with this feature tcpdumps
 | |
| 			 * look so _wonderfully_ clever, that I was not able
 | |
| 			 * to stand against the temptation 8)     --ANK
 | |
| 			 */
 | |
| 			tcp_schedule_ack(tp);
 | |
| 			tp->ack.lrcvtime = tcp_time_stamp;
 | |
| 			tp->ack.ato	 = TCP_ATO_MIN;
 | |
| 			tcp_incr_quickack(tp);
 | |
| 			tcp_enter_quickack_mode(tp);
 | |
| 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
 | |
| 
 | |
| discard:
 | |
| 			__kfree_skb(skb);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			tcp_send_ack(sk);
 | |
| 		}
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* No ACK in the segment */
 | |
| 
 | |
| 	if (th->rst) {
 | |
| 		/* rfc793:
 | |
| 		 * "If the RST bit is set
 | |
| 		 *
 | |
| 		 *      Otherwise (no ACK) drop the segment and return."
 | |
| 		 */
 | |
| 
 | |
| 		goto discard_and_undo;
 | |
| 	}
 | |
| 
 | |
| 	/* PAWS check. */
 | |
| 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
 | |
| 		goto discard_and_undo;
 | |
| 
 | |
| 	if (th->syn) {
 | |
| 		/* We see SYN without ACK. It is attempt of
 | |
| 		 * simultaneous connect with crossed SYNs.
 | |
| 		 * Particularly, it can be connect to self.
 | |
| 		 */
 | |
| 		tcp_set_state(sk, TCP_SYN_RECV);
 | |
| 
 | |
| 		if (tp->rx_opt.saw_tstamp) {
 | |
| 			tp->rx_opt.tstamp_ok = 1;
 | |
| 			tcp_store_ts_recent(tp);
 | |
| 			tp->tcp_header_len =
 | |
| 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 | |
| 		} else {
 | |
| 			tp->tcp_header_len = sizeof(struct tcphdr);
 | |
| 		}
 | |
| 
 | |
| 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 | |
| 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
 | |
| 
 | |
| 		/* RFC1323: The window in SYN & SYN/ACK segments is
 | |
| 		 * never scaled.
 | |
| 		 */
 | |
| 		tp->snd_wnd    = ntohs(th->window);
 | |
| 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
 | |
| 		tp->max_window = tp->snd_wnd;
 | |
| 
 | |
| 		TCP_ECN_rcv_syn(tp, th);
 | |
| 		if (tp->ecn_flags&TCP_ECN_OK)
 | |
| 			sock_set_flag(sk, SOCK_NO_LARGESEND);
 | |
| 
 | |
| 		tcp_sync_mss(sk, tp->pmtu_cookie);
 | |
| 		tcp_initialize_rcv_mss(sk);
 | |
| 
 | |
| 
 | |
| 		tcp_send_synack(sk);
 | |
| #if 0
 | |
| 		/* Note, we could accept data and URG from this segment.
 | |
| 		 * There are no obstacles to make this.
 | |
| 		 *
 | |
| 		 * However, if we ignore data in ACKless segments sometimes,
 | |
| 		 * we have no reasons to accept it sometimes.
 | |
| 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
 | |
| 		 * is not flawless. So, discard packet for sanity.
 | |
| 		 * Uncomment this return to process the data.
 | |
| 		 */
 | |
| 		return -1;
 | |
| #else
 | |
| 		goto discard;
 | |
| #endif
 | |
| 	}
 | |
| 	/* "fifth, if neither of the SYN or RST bits is set then
 | |
| 	 * drop the segment and return."
 | |
| 	 */
 | |
| 
 | |
| discard_and_undo:
 | |
| 	tcp_clear_options(&tp->rx_opt);
 | |
| 	tp->rx_opt.mss_clamp = saved_clamp;
 | |
| 	goto discard;
 | |
| 
 | |
| reset_and_undo:
 | |
| 	tcp_clear_options(&tp->rx_opt);
 | |
| 	tp->rx_opt.mss_clamp = saved_clamp;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	This function implements the receiving procedure of RFC 793 for
 | |
|  *	all states except ESTABLISHED and TIME_WAIT. 
 | |
|  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
 | |
|  *	address independent.
 | |
|  */
 | |
| 	
 | |
| int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
 | |
| 			  struct tcphdr *th, unsigned len)
 | |
| {
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	int queued = 0;
 | |
| 
 | |
| 	tp->rx_opt.saw_tstamp = 0;
 | |
| 
 | |
| 	switch (sk->sk_state) {
 | |
| 	case TCP_CLOSE:
 | |
| 		goto discard;
 | |
| 
 | |
| 	case TCP_LISTEN:
 | |
| 		if(th->ack)
 | |
| 			return 1;
 | |
| 
 | |
| 		if(th->rst)
 | |
| 			goto discard;
 | |
| 
 | |
| 		if(th->syn) {
 | |
| 			if(tp->af_specific->conn_request(sk, skb) < 0)
 | |
| 				return 1;
 | |
| 
 | |
| 			/* Now we have several options: In theory there is 
 | |
| 			 * nothing else in the frame. KA9Q has an option to 
 | |
| 			 * send data with the syn, BSD accepts data with the
 | |
| 			 * syn up to the [to be] advertised window and 
 | |
| 			 * Solaris 2.1 gives you a protocol error. For now 
 | |
| 			 * we just ignore it, that fits the spec precisely 
 | |
| 			 * and avoids incompatibilities. It would be nice in
 | |
| 			 * future to drop through and process the data.
 | |
| 			 *
 | |
| 			 * Now that TTCP is starting to be used we ought to 
 | |
| 			 * queue this data.
 | |
| 			 * But, this leaves one open to an easy denial of
 | |
| 		 	 * service attack, and SYN cookies can't defend
 | |
| 			 * against this problem. So, we drop the data
 | |
| 			 * in the interest of security over speed.
 | |
| 			 */
 | |
| 			goto discard;
 | |
| 		}
 | |
| 		goto discard;
 | |
| 
 | |
| 	case TCP_SYN_SENT:
 | |
| 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
 | |
| 		if (queued >= 0)
 | |
| 			return queued;
 | |
| 
 | |
| 		/* Do step6 onward by hand. */
 | |
| 		tcp_urg(sk, skb, th);
 | |
| 		__kfree_skb(skb);
 | |
| 		tcp_data_snd_check(sk);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
 | |
| 	    tcp_paws_discard(tp, skb)) {
 | |
| 		if (!th->rst) {
 | |
| 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
 | |
| 			tcp_send_dupack(sk, skb);
 | |
| 			goto discard;
 | |
| 		}
 | |
| 		/* Reset is accepted even if it did not pass PAWS. */
 | |
| 	}
 | |
| 
 | |
| 	/* step 1: check sequence number */
 | |
| 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
 | |
| 		if (!th->rst)
 | |
| 			tcp_send_dupack(sk, skb);
 | |
| 		goto discard;
 | |
| 	}
 | |
| 
 | |
| 	/* step 2: check RST bit */
 | |
| 	if(th->rst) {
 | |
| 		tcp_reset(sk);
 | |
| 		goto discard;
 | |
| 	}
 | |
| 
 | |
| 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
 | |
| 
 | |
| 	/* step 3: check security and precedence [ignored] */
 | |
| 
 | |
| 	/*	step 4:
 | |
| 	 *
 | |
| 	 *	Check for a SYN in window.
 | |
| 	 */
 | |
| 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 | |
| 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
 | |
| 		tcp_reset(sk);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* step 5: check the ACK field */
 | |
| 	if (th->ack) {
 | |
| 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
 | |
| 
 | |
| 		switch(sk->sk_state) {
 | |
| 		case TCP_SYN_RECV:
 | |
| 			if (acceptable) {
 | |
| 				tp->copied_seq = tp->rcv_nxt;
 | |
| 				mb();
 | |
| 				tcp_set_state(sk, TCP_ESTABLISHED);
 | |
| 				sk->sk_state_change(sk);
 | |
| 
 | |
| 				/* Note, that this wakeup is only for marginal
 | |
| 				 * crossed SYN case. Passively open sockets
 | |
| 				 * are not waked up, because sk->sk_sleep ==
 | |
| 				 * NULL and sk->sk_socket == NULL.
 | |
| 				 */
 | |
| 				if (sk->sk_socket) {
 | |
| 					sk_wake_async(sk,0,POLL_OUT);
 | |
| 				}
 | |
| 
 | |
| 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
 | |
| 				tp->snd_wnd = ntohs(th->window) <<
 | |
| 					      tp->rx_opt.snd_wscale;
 | |
| 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
 | |
| 					    TCP_SKB_CB(skb)->seq);
 | |
| 
 | |
| 				/* tcp_ack considers this ACK as duplicate
 | |
| 				 * and does not calculate rtt.
 | |
| 				 * Fix it at least with timestamps.
 | |
| 				 */
 | |
| 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
 | |
| 				    !tp->srtt)
 | |
| 					tcp_ack_saw_tstamp(tp, 0, 0);
 | |
| 
 | |
| 				if (tp->rx_opt.tstamp_ok)
 | |
| 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
 | |
| 
 | |
| 				/* Make sure socket is routed, for
 | |
| 				 * correct metrics.
 | |
| 				 */
 | |
| 				tp->af_specific->rebuild_header(sk);
 | |
| 
 | |
| 				tcp_init_metrics(sk);
 | |
| 
 | |
| 				tcp_init_congestion_control(tp);
 | |
| 
 | |
| 				/* Prevent spurious tcp_cwnd_restart() on
 | |
| 				 * first data packet.
 | |
| 				 */
 | |
| 				tp->lsndtime = tcp_time_stamp;
 | |
| 
 | |
| 				tcp_initialize_rcv_mss(sk);
 | |
| 				tcp_init_buffer_space(sk);
 | |
| 				tcp_fast_path_on(tp);
 | |
| 			} else {
 | |
| 				return 1;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_FIN_WAIT1:
 | |
| 			if (tp->snd_una == tp->write_seq) {
 | |
| 				tcp_set_state(sk, TCP_FIN_WAIT2);
 | |
| 				sk->sk_shutdown |= SEND_SHUTDOWN;
 | |
| 				dst_confirm(sk->sk_dst_cache);
 | |
| 
 | |
| 				if (!sock_flag(sk, SOCK_DEAD))
 | |
| 					/* Wake up lingering close() */
 | |
| 					sk->sk_state_change(sk);
 | |
| 				else {
 | |
| 					int tmo;
 | |
| 
 | |
| 					if (tp->linger2 < 0 ||
 | |
| 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
 | |
| 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
 | |
| 						tcp_done(sk);
 | |
| 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
 | |
| 						return 1;
 | |
| 					}
 | |
| 
 | |
| 					tmo = tcp_fin_time(tp);
 | |
| 					if (tmo > TCP_TIMEWAIT_LEN) {
 | |
| 						tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
 | |
| 					} else if (th->fin || sock_owned_by_user(sk)) {
 | |
| 						/* Bad case. We could lose such FIN otherwise.
 | |
| 						 * It is not a big problem, but it looks confusing
 | |
| 						 * and not so rare event. We still can lose it now,
 | |
| 						 * if it spins in bh_lock_sock(), but it is really
 | |
| 						 * marginal case.
 | |
| 						 */
 | |
| 						tcp_reset_keepalive_timer(sk, tmo);
 | |
| 					} else {
 | |
| 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
 | |
| 						goto discard;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_CLOSING:
 | |
| 			if (tp->snd_una == tp->write_seq) {
 | |
| 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
 | |
| 				goto discard;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case TCP_LAST_ACK:
 | |
| 			if (tp->snd_una == tp->write_seq) {
 | |
| 				tcp_update_metrics(sk);
 | |
| 				tcp_done(sk);
 | |
| 				goto discard;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	} else
 | |
| 		goto discard;
 | |
| 
 | |
| 	/* step 6: check the URG bit */
 | |
| 	tcp_urg(sk, skb, th);
 | |
| 
 | |
| 	/* step 7: process the segment text */
 | |
| 	switch (sk->sk_state) {
 | |
| 	case TCP_CLOSE_WAIT:
 | |
| 	case TCP_CLOSING:
 | |
| 	case TCP_LAST_ACK:
 | |
| 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 | |
| 			break;
 | |
| 	case TCP_FIN_WAIT1:
 | |
| 	case TCP_FIN_WAIT2:
 | |
| 		/* RFC 793 says to queue data in these states,
 | |
| 		 * RFC 1122 says we MUST send a reset. 
 | |
| 		 * BSD 4.4 also does reset.
 | |
| 		 */
 | |
| 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
 | |
| 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
 | |
| 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
 | |
| 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
 | |
| 				tcp_reset(sk);
 | |
| 				return 1;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Fall through */
 | |
| 	case TCP_ESTABLISHED: 
 | |
| 		tcp_data_queue(sk, skb);
 | |
| 		queued = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* tcp_data could move socket to TIME-WAIT */
 | |
| 	if (sk->sk_state != TCP_CLOSE) {
 | |
| 		tcp_data_snd_check(sk);
 | |
| 		tcp_ack_snd_check(sk);
 | |
| 	}
 | |
| 
 | |
| 	if (!queued) { 
 | |
| discard:
 | |
| 		__kfree_skb(skb);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(sysctl_tcp_ecn);
 | |
| EXPORT_SYMBOL(sysctl_tcp_reordering);
 | |
| EXPORT_SYMBOL(tcp_parse_options);
 | |
| EXPORT_SYMBOL(tcp_rcv_established);
 | |
| EXPORT_SYMBOL(tcp_rcv_state_process);
 |