mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 582cd91f69
			
		
	
	
		582cd91f69
		
	
	
	
	
		
			
			-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+ RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26 WC22RGC2MA== =os1E -----END PGP SIGNATURE----- Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block Pull core block updates from Jens Axboe: "Another nice round of removing more code than what is added, mostly due to Christoph's relentless pursuit of tech debt removal/cleanups. This pull request contains: - Two series of BFQ improvements (Paolo, Jan, Jia) - Block iov_iter improvements (Pavel) - bsg error path fix (Pan) - blk-mq scheduler improvements (Jan) - -EBUSY discard fix (Jan) - bvec allocation improvements (Ming, Christoph) - bio allocation and init improvements (Christoph) - Store bdev pointer in bio instead of gendisk + partno (Christoph) - Block trace point cleanups (Christoph) - hard read-only vs read-only split (Christoph) - Block based swap cleanups (Christoph) - Zoned write granularity support (Damien) - Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)" * tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits) mm: simplify swapdev_block sd_zbc: clear zone resources for non-zoned case block: introduce blk_queue_clear_zone_settings() zonefs: use zone write granularity as block size block: introduce zone_write_granularity limit block: use blk_queue_set_zoned in add_partition() nullb: use blk_queue_set_zoned() to setup zoned devices nvme: cleanup zone information initialization block: document zone_append_max_bytes attribute block: use bi_max_vecs to find the bvec pool md/raid10: remove dead code in reshape_request block: mark the bio as cloned in bio_iov_bvec_set block: set BIO_NO_PAGE_REF in bio_iov_bvec_set block: remove a layer of indentation in bio_iov_iter_get_pages block: turn the nr_iovecs argument to bio_alloc* into an unsigned short block: remove the 1 and 4 vec bvec_slabs entries block: streamline bvec_alloc block: factor out a bvec_alloc_gfp helper block: move struct biovec_slab to bio.c block: reuse BIO_INLINE_VECS for integrity bvecs ...
		
			
				
	
	
		
			8054 lines
		
	
	
	
		
			213 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8054 lines
		
	
	
	
		
			213 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/raid/pq.h>
 | |
| #include <linux/semaphore.h>
 | |
| #include <linux/uuid.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include "misc.h"
 | |
| #include "ctree.h"
 | |
| #include "extent_map.h"
 | |
| #include "disk-io.h"
 | |
| #include "transaction.h"
 | |
| #include "print-tree.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "async-thread.h"
 | |
| #include "check-integrity.h"
 | |
| #include "rcu-string.h"
 | |
| #include "dev-replace.h"
 | |
| #include "sysfs.h"
 | |
| #include "tree-checker.h"
 | |
| #include "space-info.h"
 | |
| #include "block-group.h"
 | |
| #include "discard.h"
 | |
| #include "zoned.h"
 | |
| 
 | |
| const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
 | |
| 	[BTRFS_RAID_RAID10] = {
 | |
| 		.sub_stripes	= 2,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,	/* 0 == as many as possible */
 | |
| 		.devs_min	= 4,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 2,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "raid10",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 2,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 2,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "raid1",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1C3] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 3,
 | |
| 		.devs_min	= 3,
 | |
| 		.tolerated_failures = 2,
 | |
| 		.devs_increment	= 3,
 | |
| 		.ncopies	= 3,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "raid1c3",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID1C4] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 4,
 | |
| 		.devs_min	= 4,
 | |
| 		.tolerated_failures = 3,
 | |
| 		.devs_increment	= 4,
 | |
| 		.ncopies	= 4,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "raid1c4",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 | |
| 	},
 | |
| 	[BTRFS_RAID_DUP] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 2,
 | |
| 		.devs_max	= 1,
 | |
| 		.devs_min	= 1,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 2,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "dup",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 | |
| 		.mindev_error	= 0,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID0] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "raid0",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 | |
| 		.mindev_error	= 0,
 | |
| 	},
 | |
| 	[BTRFS_RAID_SINGLE] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 1,
 | |
| 		.devs_min	= 1,
 | |
| 		.tolerated_failures = 0,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity        = 0,
 | |
| 		.raid_name	= "single",
 | |
| 		.bg_flag	= 0,
 | |
| 		.mindev_error	= 0,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID5] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 2,
 | |
| 		.tolerated_failures = 1,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity        = 1,
 | |
| 		.raid_name	= "raid5",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 | |
| 	},
 | |
| 	[BTRFS_RAID_RAID6] = {
 | |
| 		.sub_stripes	= 1,
 | |
| 		.dev_stripes	= 1,
 | |
| 		.devs_max	= 0,
 | |
| 		.devs_min	= 3,
 | |
| 		.tolerated_failures = 2,
 | |
| 		.devs_increment	= 1,
 | |
| 		.ncopies	= 1,
 | |
| 		.nparity        = 2,
 | |
| 		.raid_name	= "raid6",
 | |
| 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 | |
| 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| const char *btrfs_bg_type_to_raid_name(u64 flags)
 | |
| {
 | |
| 	const int index = btrfs_bg_flags_to_raid_index(flags);
 | |
| 
 | |
| 	if (index >= BTRFS_NR_RAID_TYPES)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return btrfs_raid_array[index].raid_name;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill @buf with textual description of @bg_flags, no more than @size_buf
 | |
|  * bytes including terminating null byte.
 | |
|  */
 | |
| void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	char *bp = buf;
 | |
| 	u64 flags = bg_flags;
 | |
| 	u32 size_bp = size_buf;
 | |
| 
 | |
| 	if (!flags) {
 | |
| 		strcpy(bp, "NONE");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #define DESCRIBE_FLAG(flag, desc)						\
 | |
| 	do {								\
 | |
| 		if (flags & (flag)) {					\
 | |
| 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 | |
| 			if (ret < 0 || ret >= size_bp)			\
 | |
| 				goto out_overflow;			\
 | |
| 			size_bp -= ret;					\
 | |
| 			bp += ret;					\
 | |
| 			flags &= ~(flag);				\
 | |
| 		}							\
 | |
| 	} while (0)
 | |
| 
 | |
| 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 | |
| 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 | |
| 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 | |
| 
 | |
| 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 | |
| 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 | |
| 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 | |
| 			      btrfs_raid_array[i].raid_name);
 | |
| #undef DESCRIBE_FLAG
 | |
| 
 | |
| 	if (flags) {
 | |
| 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 | |
| 		size_bp -= ret;
 | |
| 	}
 | |
| 
 | |
| 	if (size_bp < size_buf)
 | |
| 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 | |
| 
 | |
| 	/*
 | |
| 	 * The text is trimmed, it's up to the caller to provide sufficiently
 | |
| 	 * large buffer
 | |
| 	 */
 | |
| out_overflow:;
 | |
| }
 | |
| 
 | |
| static int init_first_rw_device(struct btrfs_trans_handle *trans);
 | |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 | |
| static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 | |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 | |
| static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 | |
| 			     enum btrfs_map_op op,
 | |
| 			     u64 logical, u64 *length,
 | |
| 			     struct btrfs_bio **bbio_ret,
 | |
| 			     int mirror_num, int need_raid_map);
 | |
| 
 | |
| /*
 | |
|  * Device locking
 | |
|  * ==============
 | |
|  *
 | |
|  * There are several mutexes that protect manipulation of devices and low-level
 | |
|  * structures like chunks but not block groups, extents or files
 | |
|  *
 | |
|  * uuid_mutex (global lock)
 | |
|  * ------------------------
 | |
|  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 | |
|  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 | |
|  * device) or requested by the device= mount option
 | |
|  *
 | |
|  * the mutex can be very coarse and can cover long-running operations
 | |
|  *
 | |
|  * protects: updates to fs_devices counters like missing devices, rw devices,
 | |
|  * seeding, structure cloning, opening/closing devices at mount/umount time
 | |
|  *
 | |
|  * global::fs_devs - add, remove, updates to the global list
 | |
|  *
 | |
|  * does not protect: manipulation of the fs_devices::devices list in general
 | |
|  * but in mount context it could be used to exclude list modifications by eg.
 | |
|  * scan ioctl
 | |
|  *
 | |
|  * btrfs_device::name - renames (write side), read is RCU
 | |
|  *
 | |
|  * fs_devices::device_list_mutex (per-fs, with RCU)
 | |
|  * ------------------------------------------------
 | |
|  * protects updates to fs_devices::devices, ie. adding and deleting
 | |
|  *
 | |
|  * simple list traversal with read-only actions can be done with RCU protection
 | |
|  *
 | |
|  * may be used to exclude some operations from running concurrently without any
 | |
|  * modifications to the list (see write_all_supers)
 | |
|  *
 | |
|  * Is not required at mount and close times, because our device list is
 | |
|  * protected by the uuid_mutex at that point.
 | |
|  *
 | |
|  * balance_mutex
 | |
|  * -------------
 | |
|  * protects balance structures (status, state) and context accessed from
 | |
|  * several places (internally, ioctl)
 | |
|  *
 | |
|  * chunk_mutex
 | |
|  * -----------
 | |
|  * protects chunks, adding or removing during allocation, trim or when a new
 | |
|  * device is added/removed. Additionally it also protects post_commit_list of
 | |
|  * individual devices, since they can be added to the transaction's
 | |
|  * post_commit_list only with chunk_mutex held.
 | |
|  *
 | |
|  * cleaner_mutex
 | |
|  * -------------
 | |
|  * a big lock that is held by the cleaner thread and prevents running subvolume
 | |
|  * cleaning together with relocation or delayed iputs
 | |
|  *
 | |
|  *
 | |
|  * Lock nesting
 | |
|  * ============
 | |
|  *
 | |
|  * uuid_mutex
 | |
|  *   device_list_mutex
 | |
|  *     chunk_mutex
 | |
|  *   balance_mutex
 | |
|  *
 | |
|  *
 | |
|  * Exclusive operations
 | |
|  * ====================
 | |
|  *
 | |
|  * Maintains the exclusivity of the following operations that apply to the
 | |
|  * whole filesystem and cannot run in parallel.
 | |
|  *
 | |
|  * - Balance (*)
 | |
|  * - Device add
 | |
|  * - Device remove
 | |
|  * - Device replace (*)
 | |
|  * - Resize
 | |
|  *
 | |
|  * The device operations (as above) can be in one of the following states:
 | |
|  *
 | |
|  * - Running state
 | |
|  * - Paused state
 | |
|  * - Completed state
 | |
|  *
 | |
|  * Only device operations marked with (*) can go into the Paused state for the
 | |
|  * following reasons:
 | |
|  *
 | |
|  * - ioctl (only Balance can be Paused through ioctl)
 | |
|  * - filesystem remounted as read-only
 | |
|  * - filesystem unmounted and mounted as read-only
 | |
|  * - system power-cycle and filesystem mounted as read-only
 | |
|  * - filesystem or device errors leading to forced read-only
 | |
|  *
 | |
|  * The status of exclusive operation is set and cleared atomically.
 | |
|  * During the course of Paused state, fs_info::exclusive_operation remains set.
 | |
|  * A device operation in Paused or Running state can be canceled or resumed
 | |
|  * either by ioctl (Balance only) or when remounted as read-write.
 | |
|  * The exclusive status is cleared when the device operation is canceled or
 | |
|  * completed.
 | |
|  */
 | |
| 
 | |
| DEFINE_MUTEX(uuid_mutex);
 | |
| static LIST_HEAD(fs_uuids);
 | |
| struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 | |
| {
 | |
| 	return &fs_uuids;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * alloc_fs_devices - allocate struct btrfs_fs_devices
 | |
|  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 | |
|  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 | |
|  *
 | |
|  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 | |
|  * The returned struct is not linked onto any lists and can be destroyed with
 | |
|  * kfree() right away.
 | |
|  */
 | |
| static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 | |
| 						 const u8 *metadata_fsid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devs;
 | |
| 
 | |
| 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 | |
| 	if (!fs_devs)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	mutex_init(&fs_devs->device_list_mutex);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fs_devs->devices);
 | |
| 	INIT_LIST_HEAD(&fs_devs->alloc_list);
 | |
| 	INIT_LIST_HEAD(&fs_devs->fs_list);
 | |
| 	INIT_LIST_HEAD(&fs_devs->seed_list);
 | |
| 	if (fsid)
 | |
| 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	if (metadata_fsid)
 | |
| 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 | |
| 	else if (fsid)
 | |
| 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	return fs_devs;
 | |
| }
 | |
| 
 | |
| void btrfs_free_device(struct btrfs_device *device)
 | |
| {
 | |
| 	WARN_ON(!list_empty(&device->post_commit_list));
 | |
| 	rcu_string_free(device->name);
 | |
| 	extent_io_tree_release(&device->alloc_state);
 | |
| 	bio_put(device->flush_bio);
 | |
| 	btrfs_destroy_dev_zone_info(device);
 | |
| 	kfree(device);
 | |
| }
 | |
| 
 | |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	WARN_ON(fs_devices->opened);
 | |
| 	while (!list_empty(&fs_devices->devices)) {
 | |
| 		device = list_entry(fs_devices->devices.next,
 | |
| 				    struct btrfs_device, dev_list);
 | |
| 		list_del(&device->dev_list);
 | |
| 		btrfs_free_device(device);
 | |
| 	}
 | |
| 	kfree(fs_devices);
 | |
| }
 | |
| 
 | |
| void __exit btrfs_cleanup_fs_uuids(void)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	while (!list_empty(&fs_uuids)) {
 | |
| 		fs_devices = list_entry(fs_uuids.next,
 | |
| 					struct btrfs_fs_devices, fs_list);
 | |
| 		list_del(&fs_devices->fs_list);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 | |
|  * Returned struct is not linked onto any lists and must be destroyed using
 | |
|  * btrfs_free_device.
 | |
|  */
 | |
| static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 
 | |
| 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 | |
| 	if (!dev)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preallocate a bio that's always going to be used for flushing device
 | |
| 	 * barriers and matches the device lifespan
 | |
| 	 */
 | |
| 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
 | |
| 	if (!dev->flush_bio) {
 | |
| 		kfree(dev);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dev->dev_list);
 | |
| 	INIT_LIST_HEAD(&dev->dev_alloc_list);
 | |
| 	INIT_LIST_HEAD(&dev->post_commit_list);
 | |
| 
 | |
| 	atomic_set(&dev->reada_in_flight, 0);
 | |
| 	atomic_set(&dev->dev_stats_ccnt, 0);
 | |
| 	btrfs_device_data_ordered_init(dev);
 | |
| 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 | |
| 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 | |
| 	extent_io_tree_init(fs_info, &dev->alloc_state,
 | |
| 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| static noinline struct btrfs_fs_devices *find_fsid(
 | |
| 		const u8 *fsid, const u8 *metadata_fsid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	ASSERT(fsid);
 | |
| 
 | |
| 	/* Handle non-split brain cases */
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		if (metadata_fsid) {
 | |
| 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 | |
| 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 | |
| 				      BTRFS_FSID_SIZE) == 0)
 | |
| 				return fs_devices;
 | |
| 		} else {
 | |
| 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 | |
| 				return fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 | |
| 				struct btrfs_super_block *disk_super)
 | |
| {
 | |
| 
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle scanned device having completed its fsid change but
 | |
| 	 * belonging to a fs_devices that was created by first scanning
 | |
| 	 * a device which didn't have its fsid/metadata_uuid changed
 | |
| 	 * at all and the CHANGING_FSID_V2 flag set.
 | |
| 	 */
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		if (fs_devices->fsid_change &&
 | |
| 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 | |
| 			   BTRFS_FSID_SIZE) == 0 &&
 | |
| 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 | |
| 			   BTRFS_FSID_SIZE) == 0) {
 | |
| 			return fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Handle scanned device having completed its fsid change but
 | |
| 	 * belonging to a fs_devices that was created by a device that
 | |
| 	 * has an outdated pair of fsid/metadata_uuid and
 | |
| 	 * CHANGING_FSID_V2 flag set.
 | |
| 	 */
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		if (fs_devices->fsid_change &&
 | |
| 		    memcmp(fs_devices->metadata_uuid,
 | |
| 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 | |
| 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 | |
| 			   BTRFS_FSID_SIZE) == 0) {
 | |
| 			return fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 | |
| 		      int flush, struct block_device **bdev,
 | |
| 		      struct btrfs_super_block **disk_super)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	*bdev = blkdev_get_by_path(device_path, flags, holder);
 | |
| 
 | |
| 	if (IS_ERR(*bdev)) {
 | |
| 		ret = PTR_ERR(*bdev);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (flush)
 | |
| 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 | |
| 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 | |
| 	if (ret) {
 | |
| 		blkdev_put(*bdev, flags);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	invalidate_bdev(*bdev);
 | |
| 	*disk_super = btrfs_read_dev_super(*bdev);
 | |
| 	if (IS_ERR(*disk_super)) {
 | |
| 		ret = PTR_ERR(*disk_super);
 | |
| 		blkdev_put(*bdev, flags);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	*bdev = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool device_path_matched(const char *path, struct btrfs_device *device)
 | |
| {
 | |
| 	int found;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	found = strcmp(rcu_str_deref(device->name), path);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return found == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Search and remove all stale (devices which are not mounted) devices.
 | |
|  *  When both inputs are NULL, it will search and release all stale devices.
 | |
|  *  path:	Optional. When provided will it release all unmounted devices
 | |
|  *		matching this path only.
 | |
|  *  skip_dev:	Optional. Will skip this device when searching for the stale
 | |
|  *		devices.
 | |
|  *  Return:	0 for success or if @path is NULL.
 | |
|  * 		-EBUSY if @path is a mounted device.
 | |
|  * 		-ENOENT if @path does not match any device in the list.
 | |
|  */
 | |
| static int btrfs_free_stale_devices(const char *path,
 | |
| 				     struct btrfs_device *skip_device)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 | |
| 	struct btrfs_device *device, *tmp_device;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (path)
 | |
| 		ret = -ENOENT;
 | |
| 
 | |
| 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 | |
| 
 | |
| 		mutex_lock(&fs_devices->device_list_mutex);
 | |
| 		list_for_each_entry_safe(device, tmp_device,
 | |
| 					 &fs_devices->devices, dev_list) {
 | |
| 			if (skip_device && skip_device == device)
 | |
| 				continue;
 | |
| 			if (path && !device->name)
 | |
| 				continue;
 | |
| 			if (path && !device_path_matched(path, device))
 | |
| 				continue;
 | |
| 			if (fs_devices->opened) {
 | |
| 				/* for an already deleted device return 0 */
 | |
| 				if (path && ret != 0)
 | |
| 					ret = -EBUSY;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* delete the stale device */
 | |
| 			fs_devices->num_devices--;
 | |
| 			list_del(&device->dev_list);
 | |
| 			btrfs_free_device(device);
 | |
| 
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 		mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 		if (fs_devices->num_devices == 0) {
 | |
| 			btrfs_sysfs_remove_fsid(fs_devices);
 | |
| 			list_del(&fs_devices->fs_list);
 | |
| 			free_fs_devices(fs_devices);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is only used on mount, and we are protected from competing things
 | |
|  * messing with our fs_devices by the uuid_mutex, thus we do not need the
 | |
|  * fs_devices->device_list_mutex here.
 | |
|  */
 | |
| static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 | |
| 			struct btrfs_device *device, fmode_t flags,
 | |
| 			void *holder)
 | |
| {
 | |
| 	struct request_queue *q;
 | |
| 	struct block_device *bdev;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	u64 devid;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (device->bdev)
 | |
| 		return -EINVAL;
 | |
| 	if (!device->name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 | |
| 				    &bdev, &disk_super);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 	if (devid != device->devid)
 | |
| 		goto error_free_page;
 | |
| 
 | |
| 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 | |
| 		goto error_free_page;
 | |
| 
 | |
| 	device->generation = btrfs_super_generation(disk_super);
 | |
| 
 | |
| 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 | |
| 		if (btrfs_super_incompat_flags(disk_super) &
 | |
| 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 | |
| 			pr_err(
 | |
| 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 | |
| 			goto error_free_page;
 | |
| 		}
 | |
| 
 | |
| 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 		fs_devices->seeding = true;
 | |
| 	} else {
 | |
| 		if (bdev_read_only(bdev))
 | |
| 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 		else
 | |
| 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 	}
 | |
| 
 | |
| 	q = bdev_get_queue(bdev);
 | |
| 	if (!blk_queue_nonrot(q))
 | |
| 		fs_devices->rotating = true;
 | |
| 
 | |
| 	device->bdev = bdev;
 | |
| 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 | |
| 	device->mode = flags;
 | |
| 
 | |
| 	fs_devices->open_devices++;
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 | |
| 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 | |
| 		fs_devices->rw_devices++;
 | |
| 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 | |
| 	}
 | |
| 	btrfs_release_disk_super(disk_super);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_free_page:
 | |
| 	btrfs_release_disk_super(disk_super);
 | |
| 	blkdev_put(bdev, flags);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 | |
|  * being created with a disk that has already completed its fsid change. Such
 | |
|  * disk can belong to an fs which has its FSID changed or to one which doesn't.
 | |
|  * Handle both cases here.
 | |
|  */
 | |
| static struct btrfs_fs_devices *find_fsid_inprogress(
 | |
| 					struct btrfs_super_block *disk_super)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 | |
| 			   BTRFS_FSID_SIZE) != 0 &&
 | |
| 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 | |
| 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 | |
| 			return fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return find_fsid(disk_super->fsid, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct btrfs_fs_devices *find_fsid_changed(
 | |
| 					struct btrfs_super_block *disk_super)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handles the case where scanned device is part of an fs that had
 | |
| 	 * multiple successful changes of FSID but curently device didn't
 | |
| 	 * observe it. Meaning our fsid will be different than theirs. We need
 | |
| 	 * to handle two subcases :
 | |
| 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 | |
| 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 | |
| 	 *  are equal).
 | |
| 	 */
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		/* Changed UUIDs */
 | |
| 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 | |
| 			   BTRFS_FSID_SIZE) != 0 &&
 | |
| 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 | |
| 			   BTRFS_FSID_SIZE) == 0 &&
 | |
| 		    memcmp(fs_devices->fsid, disk_super->fsid,
 | |
| 			   BTRFS_FSID_SIZE) != 0)
 | |
| 			return fs_devices;
 | |
| 
 | |
| 		/* Unchanged UUIDs */
 | |
| 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 | |
| 			   BTRFS_FSID_SIZE) == 0 &&
 | |
| 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 | |
| 			   BTRFS_FSID_SIZE) == 0)
 | |
| 			return fs_devices;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 | |
| 				struct btrfs_super_block *disk_super)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the case where the scanned device is part of an fs whose last
 | |
| 	 * metadata UUID change reverted it to the original FSID. At the same
 | |
| 	 * time * fs_devices was first created by another constitutent device
 | |
| 	 * which didn't fully observe the operation. This results in an
 | |
| 	 * btrfs_fs_devices created with metadata/fsid different AND
 | |
| 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 | |
| 	 * fs_devices equal to the FSID of the disk.
 | |
| 	 */
 | |
| 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 | |
| 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 | |
| 			   BTRFS_FSID_SIZE) != 0 &&
 | |
| 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 | |
| 			   BTRFS_FSID_SIZE) == 0 &&
 | |
| 		    fs_devices->fsid_change)
 | |
| 			return fs_devices;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| /*
 | |
|  * Add new device to list of registered devices
 | |
|  *
 | |
|  * Returns:
 | |
|  * device pointer which was just added or updated when successful
 | |
|  * error pointer when failed
 | |
|  */
 | |
| static noinline struct btrfs_device *device_list_add(const char *path,
 | |
| 			   struct btrfs_super_block *disk_super,
 | |
| 			   bool *new_device_added)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *fs_devices = NULL;
 | |
| 	struct rcu_string *name;
 | |
| 	u64 found_transid = btrfs_super_generation(disk_super);
 | |
| 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 | |
| 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 | |
| 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 | |
| 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 | |
| 
 | |
| 	if (fsid_change_in_progress) {
 | |
| 		if (!has_metadata_uuid)
 | |
| 			fs_devices = find_fsid_inprogress(disk_super);
 | |
| 		else
 | |
| 			fs_devices = find_fsid_changed(disk_super);
 | |
| 	} else if (has_metadata_uuid) {
 | |
| 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 | |
| 	} else {
 | |
| 		fs_devices = find_fsid_reverted_metadata(disk_super);
 | |
| 		if (!fs_devices)
 | |
| 			fs_devices = find_fsid(disk_super->fsid, NULL);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (!fs_devices) {
 | |
| 		if (has_metadata_uuid)
 | |
| 			fs_devices = alloc_fs_devices(disk_super->fsid,
 | |
| 						      disk_super->metadata_uuid);
 | |
| 		else
 | |
| 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 | |
| 
 | |
| 		if (IS_ERR(fs_devices))
 | |
| 			return ERR_CAST(fs_devices);
 | |
| 
 | |
| 		fs_devices->fsid_change = fsid_change_in_progress;
 | |
| 
 | |
| 		mutex_lock(&fs_devices->device_list_mutex);
 | |
| 		list_add(&fs_devices->fs_list, &fs_uuids);
 | |
| 
 | |
| 		device = NULL;
 | |
| 	} else {
 | |
| 		mutex_lock(&fs_devices->device_list_mutex);
 | |
| 		device = btrfs_find_device(fs_devices, devid,
 | |
| 				disk_super->dev_item.uuid, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * If this disk has been pulled into an fs devices created by
 | |
| 		 * a device which had the CHANGING_FSID_V2 flag then replace the
 | |
| 		 * metadata_uuid/fsid values of the fs_devices.
 | |
| 		 */
 | |
| 		if (fs_devices->fsid_change &&
 | |
| 		    found_transid > fs_devices->latest_generation) {
 | |
| 			memcpy(fs_devices->fsid, disk_super->fsid,
 | |
| 					BTRFS_FSID_SIZE);
 | |
| 
 | |
| 			if (has_metadata_uuid)
 | |
| 				memcpy(fs_devices->metadata_uuid,
 | |
| 				       disk_super->metadata_uuid,
 | |
| 				       BTRFS_FSID_SIZE);
 | |
| 			else
 | |
| 				memcpy(fs_devices->metadata_uuid,
 | |
| 				       disk_super->fsid, BTRFS_FSID_SIZE);
 | |
| 
 | |
| 			fs_devices->fsid_change = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!device) {
 | |
| 		if (fs_devices->opened) {
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			return ERR_PTR(-EBUSY);
 | |
| 		}
 | |
| 
 | |
| 		device = btrfs_alloc_device(NULL, &devid,
 | |
| 					    disk_super->dev_item.uuid);
 | |
| 		if (IS_ERR(device)) {
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			/* we can safely leave the fs_devices entry around */
 | |
| 			return device;
 | |
| 		}
 | |
| 
 | |
| 		name = rcu_string_strdup(path, GFP_NOFS);
 | |
| 		if (!name) {
 | |
| 			btrfs_free_device(device);
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 		rcu_assign_pointer(device->name, name);
 | |
| 
 | |
| 		list_add_rcu(&device->dev_list, &fs_devices->devices);
 | |
| 		fs_devices->num_devices++;
 | |
| 
 | |
| 		device->fs_devices = fs_devices;
 | |
| 		*new_device_added = true;
 | |
| 
 | |
| 		if (disk_super->label[0])
 | |
| 			pr_info(
 | |
| 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 | |
| 				disk_super->label, devid, found_transid, path,
 | |
| 				current->comm, task_pid_nr(current));
 | |
| 		else
 | |
| 			pr_info(
 | |
| 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 | |
| 				disk_super->fsid, devid, found_transid, path,
 | |
| 				current->comm, task_pid_nr(current));
 | |
| 
 | |
| 	} else if (!device->name || strcmp(device->name->str, path)) {
 | |
| 		/*
 | |
| 		 * When FS is already mounted.
 | |
| 		 * 1. If you are here and if the device->name is NULL that
 | |
| 		 *    means this device was missing at time of FS mount.
 | |
| 		 * 2. If you are here and if the device->name is different
 | |
| 		 *    from 'path' that means either
 | |
| 		 *      a. The same device disappeared and reappeared with
 | |
| 		 *         different name. or
 | |
| 		 *      b. The missing-disk-which-was-replaced, has
 | |
| 		 *         reappeared now.
 | |
| 		 *
 | |
| 		 * We must allow 1 and 2a above. But 2b would be a spurious
 | |
| 		 * and unintentional.
 | |
| 		 *
 | |
| 		 * Further in case of 1 and 2a above, the disk at 'path'
 | |
| 		 * would have missed some transaction when it was away and
 | |
| 		 * in case of 2a the stale bdev has to be updated as well.
 | |
| 		 * 2b must not be allowed at all time.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * For now, we do allow update to btrfs_fs_device through the
 | |
| 		 * btrfs dev scan cli after FS has been mounted.  We're still
 | |
| 		 * tracking a problem where systems fail mount by subvolume id
 | |
| 		 * when we reject replacement on a mounted FS.
 | |
| 		 */
 | |
| 		if (!fs_devices->opened && found_transid < device->generation) {
 | |
| 			/*
 | |
| 			 * That is if the FS is _not_ mounted and if you
 | |
| 			 * are here, that means there is more than one
 | |
| 			 * disk with same uuid and devid.We keep the one
 | |
| 			 * with larger generation number or the last-in if
 | |
| 			 * generation are equal.
 | |
| 			 */
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			return ERR_PTR(-EEXIST);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We are going to replace the device path for a given devid,
 | |
| 		 * make sure it's the same device if the device is mounted
 | |
| 		 */
 | |
| 		if (device->bdev) {
 | |
| 			int error;
 | |
| 			dev_t path_dev;
 | |
| 
 | |
| 			error = lookup_bdev(path, &path_dev);
 | |
| 			if (error) {
 | |
| 				mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 				return ERR_PTR(error);
 | |
| 			}
 | |
| 
 | |
| 			if (device->bdev->bd_dev != path_dev) {
 | |
| 				mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 				/*
 | |
| 				 * device->fs_info may not be reliable here, so
 | |
| 				 * pass in a NULL instead. This avoids a
 | |
| 				 * possible use-after-free when the fs_info and
 | |
| 				 * fs_info->sb are already torn down.
 | |
| 				 */
 | |
| 				btrfs_warn_in_rcu(NULL,
 | |
| 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 | |
| 						  path, devid, found_transid,
 | |
| 						  current->comm,
 | |
| 						  task_pid_nr(current));
 | |
| 				return ERR_PTR(-EEXIST);
 | |
| 			}
 | |
| 			btrfs_info_in_rcu(device->fs_info,
 | |
| 	"devid %llu device path %s changed to %s scanned by %s (%d)",
 | |
| 					  devid, rcu_str_deref(device->name),
 | |
| 					  path, current->comm,
 | |
| 					  task_pid_nr(current));
 | |
| 		}
 | |
| 
 | |
| 		name = rcu_string_strdup(path, GFP_NOFS);
 | |
| 		if (!name) {
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 		rcu_string_free(device->name);
 | |
| 		rcu_assign_pointer(device->name, name);
 | |
| 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 | |
| 			fs_devices->missing_devices--;
 | |
| 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unmount does not free the btrfs_device struct but would zero
 | |
| 	 * generation along with most of the other members. So just update
 | |
| 	 * it back. We need it to pick the disk with largest generation
 | |
| 	 * (as above).
 | |
| 	 */
 | |
| 	if (!fs_devices->opened) {
 | |
| 		device->generation = found_transid;
 | |
| 		fs_devices->latest_generation = max_t(u64, found_transid,
 | |
| 						fs_devices->latest_generation);
 | |
| 	}
 | |
| 
 | |
| 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 | |
| 
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_device *orig_dev;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
 | |
| 	if (IS_ERR(fs_devices))
 | |
| 		return fs_devices;
 | |
| 
 | |
| 	mutex_lock(&orig->device_list_mutex);
 | |
| 	fs_devices->total_devices = orig->total_devices;
 | |
| 
 | |
| 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 | |
| 		struct rcu_string *name;
 | |
| 
 | |
| 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 | |
| 					    orig_dev->uuid);
 | |
| 		if (IS_ERR(device)) {
 | |
| 			ret = PTR_ERR(device);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This is ok to do without rcu read locked because we hold the
 | |
| 		 * uuid mutex so nothing we touch in here is going to disappear.
 | |
| 		 */
 | |
| 		if (orig_dev->name) {
 | |
| 			name = rcu_string_strdup(orig_dev->name->str,
 | |
| 					GFP_KERNEL);
 | |
| 			if (!name) {
 | |
| 				btrfs_free_device(device);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto error;
 | |
| 			}
 | |
| 			rcu_assign_pointer(device->name, name);
 | |
| 		}
 | |
| 
 | |
| 		list_add(&device->dev_list, &fs_devices->devices);
 | |
| 		device->fs_devices = fs_devices;
 | |
| 		fs_devices->num_devices++;
 | |
| 	}
 | |
| 	mutex_unlock(&orig->device_list_mutex);
 | |
| 	return fs_devices;
 | |
| error:
 | |
| 	mutex_unlock(&orig->device_list_mutex);
 | |
| 	free_fs_devices(fs_devices);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
 | |
| 				      struct btrfs_device **latest_dev)
 | |
| {
 | |
| 	struct btrfs_device *device, *next;
 | |
| 
 | |
| 	/* This is the initialized path, it is safe to release the devices. */
 | |
| 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 | |
| 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
 | |
| 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
 | |
| 				      &device->dev_state) &&
 | |
| 			    !test_bit(BTRFS_DEV_STATE_MISSING,
 | |
| 				      &device->dev_state) &&
 | |
| 			    (!*latest_dev ||
 | |
| 			     device->generation > (*latest_dev)->generation)) {
 | |
| 				*latest_dev = device;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
 | |
| 		 * in btrfs_init_dev_replace() so just continue.
 | |
| 		 */
 | |
| 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
 | |
| 			continue;
 | |
| 
 | |
| 		if (device->bdev) {
 | |
| 			blkdev_put(device->bdev, device->mode);
 | |
| 			device->bdev = NULL;
 | |
| 			fs_devices->open_devices--;
 | |
| 		}
 | |
| 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 			list_del_init(&device->dev_alloc_list);
 | |
| 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 		}
 | |
| 		list_del_init(&device->dev_list);
 | |
| 		fs_devices->num_devices--;
 | |
| 		btrfs_free_device(device);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After we have read the system tree and know devids belonging to this
 | |
|  * filesystem, remove the device which does not belong there.
 | |
|  */
 | |
| void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *latest_dev = NULL;
 | |
| 	struct btrfs_fs_devices *seed_dev;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
 | |
| 
 | |
| 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
 | |
| 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
 | |
| 
 | |
| 	fs_devices->latest_bdev = latest_dev->bdev;
 | |
| 
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| }
 | |
| 
 | |
| static void btrfs_close_bdev(struct btrfs_device *device)
 | |
| {
 | |
| 	if (!device->bdev)
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 		sync_blockdev(device->bdev);
 | |
| 		invalidate_bdev(device->bdev);
 | |
| 	}
 | |
| 
 | |
| 	blkdev_put(device->bdev, device->mode);
 | |
| }
 | |
| 
 | |
| static void btrfs_close_one_device(struct btrfs_device *device)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 | |
| 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 | |
| 		list_del_init(&device->dev_alloc_list);
 | |
| 		fs_devices->rw_devices--;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
 | |
| 		fs_devices->missing_devices--;
 | |
| 
 | |
| 	btrfs_close_bdev(device);
 | |
| 	if (device->bdev) {
 | |
| 		fs_devices->open_devices--;
 | |
| 		device->bdev = NULL;
 | |
| 	}
 | |
| 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 	btrfs_destroy_dev_zone_info(device);
 | |
| 
 | |
| 	device->fs_info = NULL;
 | |
| 	atomic_set(&device->dev_stats_ccnt, 0);
 | |
| 	extent_io_tree_release(&device->alloc_state);
 | |
| 
 | |
| 	/* Verify the device is back in a pristine state  */
 | |
| 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
 | |
| 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
 | |
| 	ASSERT(list_empty(&device->dev_alloc_list));
 | |
| 	ASSERT(list_empty(&device->post_commit_list));
 | |
| 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
 | |
| }
 | |
| 
 | |
| static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	struct btrfs_device *device, *tmp;
 | |
| 
 | |
| 	lockdep_assert_held(&uuid_mutex);
 | |
| 
 | |
| 	if (--fs_devices->opened > 0)
 | |
| 		return;
 | |
| 
 | |
| 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
 | |
| 		btrfs_close_one_device(device);
 | |
| 
 | |
| 	WARN_ON(fs_devices->open_devices);
 | |
| 	WARN_ON(fs_devices->rw_devices);
 | |
| 	fs_devices->opened = 0;
 | |
| 	fs_devices->seeding = false;
 | |
| 	fs_devices->fs_info = NULL;
 | |
| }
 | |
| 
 | |
| void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 | |
| {
 | |
| 	LIST_HEAD(list);
 | |
| 	struct btrfs_fs_devices *tmp;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	close_fs_devices(fs_devices);
 | |
| 	if (!fs_devices->opened)
 | |
| 		list_splice_init(&fs_devices->seed_list, &list);
 | |
| 
 | |
| 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
 | |
| 		close_fs_devices(fs_devices);
 | |
| 		list_del(&fs_devices->seed_list);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 	}
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| }
 | |
| 
 | |
| static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
 | |
| 				fmode_t flags, void *holder)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_device *latest_dev = NULL;
 | |
| 	struct btrfs_device *tmp_device;
 | |
| 
 | |
| 	flags |= FMODE_EXCL;
 | |
| 
 | |
| 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
 | |
| 				 dev_list) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
 | |
| 		if (ret == 0 &&
 | |
| 		    (!latest_dev || device->generation > latest_dev->generation)) {
 | |
| 			latest_dev = device;
 | |
| 		} else if (ret == -ENODATA) {
 | |
| 			fs_devices->num_devices--;
 | |
| 			list_del(&device->dev_list);
 | |
| 			btrfs_free_device(device);
 | |
| 		}
 | |
| 	}
 | |
| 	if (fs_devices->open_devices == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	fs_devices->opened = 1;
 | |
| 	fs_devices->latest_bdev = latest_dev->bdev;
 | |
| 	fs_devices->total_rw_bytes = 0;
 | |
| 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
 | |
| 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
 | |
| {
 | |
| 	struct btrfs_device *dev1, *dev2;
 | |
| 
 | |
| 	dev1 = list_entry(a, struct btrfs_device, dev_list);
 | |
| 	dev2 = list_entry(b, struct btrfs_device, dev_list);
 | |
| 
 | |
| 	if (dev1->devid < dev2->devid)
 | |
| 		return -1;
 | |
| 	else if (dev1->devid > dev2->devid)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 | |
| 		       fmode_t flags, void *holder)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&uuid_mutex);
 | |
| 	/*
 | |
| 	 * The device_list_mutex cannot be taken here in case opening the
 | |
| 	 * underlying device takes further locks like bd_mutex.
 | |
| 	 *
 | |
| 	 * We also don't need the lock here as this is called during mount and
 | |
| 	 * exclusion is provided by uuid_mutex
 | |
| 	 */
 | |
| 
 | |
| 	if (fs_devices->opened) {
 | |
| 		fs_devices->opened++;
 | |
| 		ret = 0;
 | |
| 	} else {
 | |
| 		list_sort(NULL, &fs_devices->devices, devid_cmp);
 | |
| 		ret = open_fs_devices(fs_devices, flags, holder);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_release_disk_super(struct btrfs_super_block *super)
 | |
| {
 | |
| 	struct page *page = virt_to_page(super);
 | |
| 
 | |
| 	put_page(page);
 | |
| }
 | |
| 
 | |
| static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
 | |
| 						       u64 bytenr, u64 bytenr_orig)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	struct page *page;
 | |
| 	void *p;
 | |
| 	pgoff_t index;
 | |
| 
 | |
| 	/* make sure our super fits in the device */
 | |
| 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* make sure our super fits in the page */
 | |
| 	if (sizeof(*disk_super) > PAGE_SIZE)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* make sure our super doesn't straddle pages on disk */
 | |
| 	index = bytenr >> PAGE_SHIFT;
 | |
| 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* pull in the page with our super */
 | |
| 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
 | |
| 
 | |
| 	if (IS_ERR(page))
 | |
| 		return ERR_CAST(page);
 | |
| 
 | |
| 	p = page_address(page);
 | |
| 
 | |
| 	/* align our pointer to the offset of the super block */
 | |
| 	disk_super = p + offset_in_page(bytenr);
 | |
| 
 | |
| 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
 | |
| 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
 | |
| 		btrfs_release_disk_super(p);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
 | |
| 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
 | |
| 
 | |
| 	return disk_super;
 | |
| }
 | |
| 
 | |
| int btrfs_forget_devices(const char *path)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look for a btrfs signature on a device. This may be called out of the mount path
 | |
|  * and we are not allowed to call set_blocksize during the scan. The superblock
 | |
|  * is read via pagecache
 | |
|  */
 | |
| struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
 | |
| 					   void *holder)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	bool new_device_added = false;
 | |
| 	struct btrfs_device *device = NULL;
 | |
| 	struct block_device *bdev;
 | |
| 	u64 bytenr, bytenr_orig;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&uuid_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * we would like to check all the supers, but that would make
 | |
| 	 * a btrfs mount succeed after a mkfs from a different FS.
 | |
| 	 * So, we need to add a special mount option to scan for
 | |
| 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
 | |
| 	 */
 | |
| 	flags |= FMODE_EXCL;
 | |
| 
 | |
| 	bdev = blkdev_get_by_path(path, flags, holder);
 | |
| 	if (IS_ERR(bdev))
 | |
| 		return ERR_CAST(bdev);
 | |
| 
 | |
| 	bytenr_orig = btrfs_sb_offset(0);
 | |
| 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
 | |
| 	if (IS_ERR(disk_super)) {
 | |
| 		device = ERR_CAST(disk_super);
 | |
| 		goto error_bdev_put;
 | |
| 	}
 | |
| 
 | |
| 	device = device_list_add(path, disk_super, &new_device_added);
 | |
| 	if (!IS_ERR(device)) {
 | |
| 		if (new_device_added)
 | |
| 			btrfs_free_stale_devices(path, device);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_release_disk_super(disk_super);
 | |
| 
 | |
| error_bdev_put:
 | |
| 	blkdev_put(bdev, flags);
 | |
| 
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to find a chunk that intersects [start, start + len] range and when one
 | |
|  * such is found, record the end of it in *start
 | |
|  */
 | |
| static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
 | |
| 				    u64 len)
 | |
| {
 | |
| 	u64 physical_start, physical_end;
 | |
| 
 | |
| 	lockdep_assert_held(&device->fs_info->chunk_mutex);
 | |
| 
 | |
| 	if (!find_first_extent_bit(&device->alloc_state, *start,
 | |
| 				   &physical_start, &physical_end,
 | |
| 				   CHUNK_ALLOCATED, NULL)) {
 | |
| 
 | |
| 		if (in_range(physical_start, *start, len) ||
 | |
| 		    in_range(*start, physical_start,
 | |
| 			     physical_end - physical_start)) {
 | |
| 			*start = physical_end + 1;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
 | |
| {
 | |
| 	switch (device->fs_devices->chunk_alloc_policy) {
 | |
| 	case BTRFS_CHUNK_ALLOC_REGULAR:
 | |
| 		/*
 | |
| 		 * We don't want to overwrite the superblock on the drive nor
 | |
| 		 * any area used by the boot loader (grub for example), so we
 | |
| 		 * make sure to start at an offset of at least 1MB.
 | |
| 		 */
 | |
| 		return max_t(u64, start, SZ_1M);
 | |
| 	case BTRFS_CHUNK_ALLOC_ZONED:
 | |
| 		/*
 | |
| 		 * We don't care about the starting region like regular
 | |
| 		 * allocator, because we anyway use/reserve the first two zones
 | |
| 		 * for superblock logging.
 | |
| 		 */
 | |
| 		return ALIGN(start, device->zone_info->zone_size);
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
 | |
| 					u64 *hole_start, u64 *hole_size,
 | |
| 					u64 num_bytes)
 | |
| {
 | |
| 	u64 zone_size = device->zone_info->zone_size;
 | |
| 	u64 pos;
 | |
| 	int ret;
 | |
| 	bool changed = false;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
 | |
| 
 | |
| 	while (*hole_size > 0) {
 | |
| 		pos = btrfs_find_allocatable_zones(device, *hole_start,
 | |
| 						   *hole_start + *hole_size,
 | |
| 						   num_bytes);
 | |
| 		if (pos != *hole_start) {
 | |
| 			*hole_size = *hole_start + *hole_size - pos;
 | |
| 			*hole_start = pos;
 | |
| 			changed = true;
 | |
| 			if (*hole_size < num_bytes)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
 | |
| 
 | |
| 		/* Range is ensured to be empty */
 | |
| 		if (!ret)
 | |
| 			return changed;
 | |
| 
 | |
| 		/* Given hole range was invalid (outside of device) */
 | |
| 		if (ret == -ERANGE) {
 | |
| 			*hole_start += *hole_size;
 | |
| 			*hole_size = 0;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		*hole_start += zone_size;
 | |
| 		*hole_size -= zone_size;
 | |
| 		changed = true;
 | |
| 	}
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dev_extent_hole_check - check if specified hole is suitable for allocation
 | |
|  * @device:	the device which we have the hole
 | |
|  * @hole_start: starting position of the hole
 | |
|  * @hole_size:	the size of the hole
 | |
|  * @num_bytes:	the size of the free space that we need
 | |
|  *
 | |
|  * This function may modify @hole_start and @hole_size to reflect the suitable
 | |
|  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
 | |
|  */
 | |
| static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
 | |
| 				  u64 *hole_size, u64 num_bytes)
 | |
| {
 | |
| 	bool changed = false;
 | |
| 	u64 hole_end = *hole_start + *hole_size;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Check before we set max_hole_start, otherwise we could end up
 | |
| 		 * sending back this offset anyway.
 | |
| 		 */
 | |
| 		if (contains_pending_extent(device, hole_start, *hole_size)) {
 | |
| 			if (hole_end >= *hole_start)
 | |
| 				*hole_size = hole_end - *hole_start;
 | |
| 			else
 | |
| 				*hole_size = 0;
 | |
| 			changed = true;
 | |
| 		}
 | |
| 
 | |
| 		switch (device->fs_devices->chunk_alloc_policy) {
 | |
| 		case BTRFS_CHUNK_ALLOC_REGULAR:
 | |
| 			/* No extra check */
 | |
| 			break;
 | |
| 		case BTRFS_CHUNK_ALLOC_ZONED:
 | |
| 			if (dev_extent_hole_check_zoned(device, hole_start,
 | |
| 							hole_size, num_bytes)) {
 | |
| 				changed = true;
 | |
| 				/*
 | |
| 				 * The changed hole can contain pending extent.
 | |
| 				 * Loop again to check that.
 | |
| 				 */
 | |
| 				continue;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_free_dev_extent_start - find free space in the specified device
 | |
|  * @device:	  the device which we search the free space in
 | |
|  * @num_bytes:	  the size of the free space that we need
 | |
|  * @search_start: the position from which to begin the search
 | |
|  * @start:	  store the start of the free space.
 | |
|  * @len:	  the size of the free space. that we find, or the size
 | |
|  *		  of the max free space if we don't find suitable free space
 | |
|  *
 | |
|  * this uses a pretty simple search, the expectation is that it is
 | |
|  * called very infrequently and that a given device has a small number
 | |
|  * of extents
 | |
|  *
 | |
|  * @start is used to store the start of the free space if we find. But if we
 | |
|  * don't find suitable free space, it will be used to store the start position
 | |
|  * of the max free space.
 | |
|  *
 | |
|  * @len is used to store the size of the free space that we find.
 | |
|  * But if we don't find suitable free space, it is used to store the size of
 | |
|  * the max free space.
 | |
|  *
 | |
|  * NOTE: This function will search *commit* root of device tree, and does extra
 | |
|  * check to ensure dev extents are not double allocated.
 | |
|  * This makes the function safe to allocate dev extents but may not report
 | |
|  * correct usable device space, as device extent freed in current transaction
 | |
|  * is not reported as avaiable.
 | |
|  */
 | |
| static int find_free_dev_extent_start(struct btrfs_device *device,
 | |
| 				u64 num_bytes, u64 search_start, u64 *start,
 | |
| 				u64 *len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_dev_extent *dev_extent;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 hole_size;
 | |
| 	u64 max_hole_start;
 | |
| 	u64 max_hole_size;
 | |
| 	u64 extent_end;
 | |
| 	u64 search_end = device->total_bytes;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	struct extent_buffer *l;
 | |
| 
 | |
| 	search_start = dev_extent_search_start(device, search_start);
 | |
| 
 | |
| 	WARN_ON(device->zone_info &&
 | |
| 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	max_hole_start = search_start;
 | |
| 	max_hole_size = 0;
 | |
| 
 | |
| again:
 | |
| 	if (search_start >= search_end ||
 | |
| 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = search_start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(l)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto out;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(l, &key, slot);
 | |
| 
 | |
| 		if (key.objectid < device->devid)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (key.objectid > device->devid)
 | |
| 			break;
 | |
| 
 | |
| 		if (key.type != BTRFS_DEV_EXTENT_KEY)
 | |
| 			goto next;
 | |
| 
 | |
| 		if (key.offset > search_start) {
 | |
| 			hole_size = key.offset - search_start;
 | |
| 			dev_extent_hole_check(device, &search_start, &hole_size,
 | |
| 					      num_bytes);
 | |
| 
 | |
| 			if (hole_size > max_hole_size) {
 | |
| 				max_hole_start = search_start;
 | |
| 				max_hole_size = hole_size;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * If this free space is greater than which we need,
 | |
| 			 * it must be the max free space that we have found
 | |
| 			 * until now, so max_hole_start must point to the start
 | |
| 			 * of this free space and the length of this free space
 | |
| 			 * is stored in max_hole_size. Thus, we return
 | |
| 			 * max_hole_start and max_hole_size and go back to the
 | |
| 			 * caller.
 | |
| 			 */
 | |
| 			if (hole_size >= num_bytes) {
 | |
| 				ret = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		extent_end = key.offset + btrfs_dev_extent_length(l,
 | |
| 								  dev_extent);
 | |
| 		if (extent_end > search_start)
 | |
| 			search_start = extent_end;
 | |
| next:
 | |
| 		path->slots[0]++;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, search_start should be the end of
 | |
| 	 * allocated dev extents, and when shrinking the device,
 | |
| 	 * search_end may be smaller than search_start.
 | |
| 	 */
 | |
| 	if (search_end > search_start) {
 | |
| 		hole_size = search_end - search_start;
 | |
| 		if (dev_extent_hole_check(device, &search_start, &hole_size,
 | |
| 					  num_bytes)) {
 | |
| 			btrfs_release_path(path);
 | |
| 			goto again;
 | |
| 		}
 | |
| 
 | |
| 		if (hole_size > max_hole_size) {
 | |
| 			max_hole_start = search_start;
 | |
| 			max_hole_size = hole_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* See above. */
 | |
| 	if (max_hole_size < num_bytes)
 | |
| 		ret = -ENOSPC;
 | |
| 	else
 | |
| 		ret = 0;
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	*start = max_hole_start;
 | |
| 	if (len)
 | |
| 		*len = max_hole_size;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
 | |
| 			 u64 *start, u64 *len)
 | |
| {
 | |
| 	/* FIXME use last free of some kind */
 | |
| 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
 | |
| }
 | |
| 
 | |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_device *device,
 | |
| 			  u64 start, u64 *dev_extent_len)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf = NULL;
 | |
| 	struct btrfs_dev_extent *extent = NULL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| again:
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret > 0) {
 | |
| 		ret = btrfs_previous_item(root, path, key.objectid,
 | |
| 					  BTRFS_DEV_EXTENT_KEY);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_dev_extent);
 | |
| 		BUG_ON(found_key.offset > start || found_key.offset +
 | |
| 		       btrfs_dev_extent_length(leaf, extent) < start);
 | |
| 		key = found_key;
 | |
| 		btrfs_release_path(path);
 | |
| 		goto again;
 | |
| 	} else if (ret == 0) {
 | |
| 		leaf = path->nodes[0];
 | |
| 		extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					struct btrfs_dev_extent);
 | |
| 	} else {
 | |
| 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 	if (ret) {
 | |
| 		btrfs_handle_fs_error(fs_info, ret,
 | |
| 				      "Failed to remove dev extent item");
 | |
| 	} else {
 | |
| 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
 | |
| 				  struct btrfs_device *device,
 | |
| 				  u64 chunk_offset, u64 start, u64 num_bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct btrfs_dev_extent *extent;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
 | |
| 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = start;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(*extent));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	extent = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_dev_extent);
 | |
| 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
 | |
| 					BTRFS_CHUNK_TREE_OBJECTID);
 | |
| 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
 | |
| 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
 | |
| 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
 | |
| 
 | |
| 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_map *em;
 | |
| 	struct rb_node *n;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	em_tree = &fs_info->mapping_tree;
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	n = rb_last(&em_tree->map.rb_root);
 | |
| 	if (n) {
 | |
| 		em = rb_entry(n, struct extent_map, rb_node);
 | |
| 		ret = em->start + em->len;
 | |
| 	}
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
 | |
| 				    u64 *devid_ret)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct btrfs_path *path;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = (u64)-1;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (ret == 0) {
 | |
| 		/* Corruption */
 | |
| 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_previous_item(fs_info->chunk_root, path,
 | |
| 				  BTRFS_DEV_ITEMS_OBJECTID,
 | |
| 				  BTRFS_DEV_ITEM_KEY);
 | |
| 	if (ret) {
 | |
| 		*devid_ret = 1;
 | |
| 	} else {
 | |
| 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
 | |
| 				      path->slots[0]);
 | |
| 		*devid_ret = found_key.offset + 1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the device information is stored in the chunk root
 | |
|  * the btrfs_device struct should be fully filled in
 | |
|  */
 | |
| static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_device *device)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
 | |
| 				      &key, sizeof(*dev_item));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | |
| 
 | |
| 	btrfs_set_device_id(leaf, dev_item, device->devid);
 | |
| 	btrfs_set_device_generation(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_type(leaf, dev_item, device->type);
 | |
| 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | |
| 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | |
| 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | |
| 	btrfs_set_device_total_bytes(leaf, dev_item,
 | |
| 				     btrfs_device_get_disk_total_bytes(device));
 | |
| 	btrfs_set_device_bytes_used(leaf, dev_item,
 | |
| 				    btrfs_device_get_bytes_used(device));
 | |
| 	btrfs_set_device_group(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
 | |
| 	btrfs_set_device_start_offset(leaf, dev_item, 0);
 | |
| 
 | |
| 	ptr = btrfs_device_uuid(dev_item);
 | |
| 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | |
| 	ptr = btrfs_device_fsid(dev_item);
 | |
| 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
 | |
| 			    ptr, BTRFS_FSID_SIZE);
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function to update ctime/mtime for a given device path.
 | |
|  * Mainly used for ctime/mtime based probe like libblkid.
 | |
|  */
 | |
| static void update_dev_time(const char *path_name)
 | |
| {
 | |
| 	struct file *filp;
 | |
| 
 | |
| 	filp = filp_open(path_name, O_RDWR, 0);
 | |
| 	if (IS_ERR(filp))
 | |
| 		return;
 | |
| 	file_update_time(filp);
 | |
| 	filp_close(filp, NULL);
 | |
| }
 | |
| 
 | |
| static int btrfs_rm_dev_item(struct btrfs_device *device)
 | |
| {
 | |
| 	struct btrfs_root *root = device->fs_info->chunk_root;
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return PTR_ERR(trans);
 | |
| 	}
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret) {
 | |
| 		if (ret > 0)
 | |
| 			ret = -ENOENT;
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (!ret)
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that @num_devices satisfies the RAID profile constraints in the whole
 | |
|  * filesystem. It's up to the caller to adjust that number regarding eg. device
 | |
|  * replace.
 | |
|  */
 | |
| static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
 | |
| 		u64 num_devices)
 | |
| {
 | |
| 	u64 all_avail;
 | |
| 	unsigned seq;
 | |
| 	int i;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&fs_info->profiles_lock);
 | |
| 
 | |
| 		all_avail = fs_info->avail_data_alloc_bits |
 | |
| 			    fs_info->avail_system_alloc_bits |
 | |
| 			    fs_info->avail_metadata_alloc_bits;
 | |
| 	} while (read_seqretry(&fs_info->profiles_lock, seq));
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
 | |
| 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
 | |
| 			continue;
 | |
| 
 | |
| 		if (num_devices < btrfs_raid_array[i].devs_min) {
 | |
| 			int ret = btrfs_raid_array[i].mindev_error;
 | |
| 
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct btrfs_device * btrfs_find_next_active_device(
 | |
| 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
 | |
| {
 | |
| 	struct btrfs_device *next_device;
 | |
| 
 | |
| 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
 | |
| 		if (next_device != device &&
 | |
| 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
 | |
| 		    && next_device->bdev)
 | |
| 			return next_device;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to check if the given device is part of s_bdev / latest_bdev
 | |
|  * and replace it with the provided or the next active device, in the context
 | |
|  * where this function called, there should be always be another device (or
 | |
|  * this_dev) which is active.
 | |
|  */
 | |
| void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
 | |
| 					    struct btrfs_device *next_device)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 
 | |
| 	if (!next_device)
 | |
| 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
 | |
| 							    device);
 | |
| 	ASSERT(next_device);
 | |
| 
 | |
| 	if (fs_info->sb->s_bdev &&
 | |
| 			(fs_info->sb->s_bdev == device->bdev))
 | |
| 		fs_info->sb->s_bdev = next_device->bdev;
 | |
| 
 | |
| 	if (fs_info->fs_devices->latest_bdev == device->bdev)
 | |
| 		fs_info->fs_devices->latest_bdev = next_device->bdev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return btrfs_fs_devices::num_devices excluding the device that's being
 | |
|  * currently replaced.
 | |
|  */
 | |
| static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u64 num_devices = fs_info->fs_devices->num_devices;
 | |
| 
 | |
| 	down_read(&fs_info->dev_replace.rwsem);
 | |
| 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
 | |
| 		ASSERT(num_devices > 1);
 | |
| 		num_devices--;
 | |
| 	}
 | |
| 	up_read(&fs_info->dev_replace.rwsem);
 | |
| 
 | |
| 	return num_devices;
 | |
| }
 | |
| 
 | |
| void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
 | |
| 			       struct block_device *bdev,
 | |
| 			       const char *device_path)
 | |
| {
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	int copy_num;
 | |
| 
 | |
| 	if (!bdev)
 | |
| 		return;
 | |
| 
 | |
| 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
 | |
| 		struct page *page;
 | |
| 		int ret;
 | |
| 
 | |
| 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
 | |
| 		if (IS_ERR(disk_super))
 | |
| 			continue;
 | |
| 
 | |
| 		if (bdev_is_zoned(bdev)) {
 | |
| 			btrfs_reset_sb_log_zones(bdev, copy_num);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
 | |
| 
 | |
| 		page = virt_to_page(disk_super);
 | |
| 		set_page_dirty(page);
 | |
| 		lock_page(page);
 | |
| 		/* write_on_page() unlocks the page */
 | |
| 		ret = write_one_page(page);
 | |
| 		if (ret)
 | |
| 			btrfs_warn(fs_info,
 | |
| 				"error clearing superblock number %d (%d)",
 | |
| 				copy_num, ret);
 | |
| 		btrfs_release_disk_super(disk_super);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/* Notify udev that device has changed */
 | |
| 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
 | |
| 
 | |
| 	/* Update ctime/mtime for device path for libblkid */
 | |
| 	update_dev_time(device_path);
 | |
| }
 | |
| 
 | |
| int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
 | |
| 		    u64 devid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *cur_devices;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	u64 num_devices;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 
 | |
| 	num_devices = btrfs_num_devices(fs_info);
 | |
| 
 | |
| 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
 | |
| 
 | |
| 	if (IS_ERR(device)) {
 | |
| 		if (PTR_ERR(device) == -ENOENT &&
 | |
| 		    strcmp(device_path, "missing") == 0)
 | |
| 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
 | |
| 		else
 | |
| 			ret = PTR_ERR(device);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
 | |
| 		btrfs_warn_in_rcu(fs_info,
 | |
| 		  "cannot remove device %s (devid %llu) due to active swapfile",
 | |
| 				  rcu_str_deref(device->name), device->devid);
 | |
| 		ret = -ETXTBSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
 | |
| 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 | |
| 	    fs_info->fs_devices->rw_devices == 1) {
 | |
| 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 		mutex_lock(&fs_info->chunk_mutex);
 | |
| 		list_del_init(&device->dev_alloc_list);
 | |
| 		device->fs_devices->rw_devices--;
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	ret = btrfs_shrink_device(device, 0);
 | |
| 	if (!ret)
 | |
| 		btrfs_reada_remove_dev(device);
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 	if (ret)
 | |
| 		goto error_undo;
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: the superblock still includes this device in its num_devices
 | |
| 	 * counter although write_all_supers() is not locked out. This
 | |
| 	 * could give a filesystem state which requires a degraded mount.
 | |
| 	 */
 | |
| 	ret = btrfs_rm_dev_item(device);
 | |
| 	if (ret)
 | |
| 		goto error_undo;
 | |
| 
 | |
| 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 | |
| 	btrfs_scrub_cancel_dev(device);
 | |
| 
 | |
| 	/*
 | |
| 	 * the device list mutex makes sure that we don't change
 | |
| 	 * the device list while someone else is writing out all
 | |
| 	 * the device supers. Whoever is writing all supers, should
 | |
| 	 * lock the device list mutex before getting the number of
 | |
| 	 * devices in the super block (super_copy). Conversely,
 | |
| 	 * whoever updates the number of devices in the super block
 | |
| 	 * (super_copy) should hold the device list mutex.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * In normal cases the cur_devices == fs_devices. But in case
 | |
| 	 * of deleting a seed device, the cur_devices should point to
 | |
| 	 * its own fs_devices listed under the fs_devices->seed.
 | |
| 	 */
 | |
| 	cur_devices = device->fs_devices;
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_del_rcu(&device->dev_list);
 | |
| 
 | |
| 	cur_devices->num_devices--;
 | |
| 	cur_devices->total_devices--;
 | |
| 	/* Update total_devices of the parent fs_devices if it's seed */
 | |
| 	if (cur_devices != fs_devices)
 | |
| 		fs_devices->total_devices--;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
 | |
| 		cur_devices->missing_devices--;
 | |
| 
 | |
| 	btrfs_assign_next_active_device(device, NULL);
 | |
| 
 | |
| 	if (device->bdev) {
 | |
| 		cur_devices->open_devices--;
 | |
| 		/* remove sysfs entry */
 | |
| 		btrfs_sysfs_remove_device(device);
 | |
| 	}
 | |
| 
 | |
| 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
 | |
| 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point, the device is zero sized and detached from
 | |
| 	 * the devices list.  All that's left is to zero out the old
 | |
| 	 * supers and free the device.
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
 | |
| 		btrfs_scratch_superblocks(fs_info, device->bdev,
 | |
| 					  device->name->str);
 | |
| 
 | |
| 	btrfs_close_bdev(device);
 | |
| 	synchronize_rcu();
 | |
| 	btrfs_free_device(device);
 | |
| 
 | |
| 	if (cur_devices->open_devices == 0) {
 | |
| 		list_del_init(&cur_devices->seed_list);
 | |
| 		close_fs_devices(cur_devices);
 | |
| 		free_fs_devices(cur_devices);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 	return ret;
 | |
| 
 | |
| error_undo:
 | |
| 	btrfs_reada_undo_remove_dev(device);
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 		mutex_lock(&fs_info->chunk_mutex);
 | |
| 		list_add(&device->dev_alloc_list,
 | |
| 			 &fs_devices->alloc_list);
 | |
| 		device->fs_devices->rw_devices++;
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	}
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 
 | |
| 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * in case of fs with no seed, srcdev->fs_devices will point
 | |
| 	 * to fs_devices of fs_info. However when the dev being replaced is
 | |
| 	 * a seed dev it will point to the seed's local fs_devices. In short
 | |
| 	 * srcdev will have its correct fs_devices in both the cases.
 | |
| 	 */
 | |
| 	fs_devices = srcdev->fs_devices;
 | |
| 
 | |
| 	list_del_rcu(&srcdev->dev_list);
 | |
| 	list_del(&srcdev->dev_alloc_list);
 | |
| 	fs_devices->num_devices--;
 | |
| 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
 | |
| 		fs_devices->missing_devices--;
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
 | |
| 		fs_devices->rw_devices--;
 | |
| 
 | |
| 	if (srcdev->bdev)
 | |
| 		fs_devices->open_devices--;
 | |
| }
 | |
| 
 | |
| void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
 | |
| 
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 
 | |
| 	btrfs_close_bdev(srcdev);
 | |
| 	synchronize_rcu();
 | |
| 	btrfs_free_device(srcdev);
 | |
| 
 | |
| 	/* if this is no devs we rather delete the fs_devices */
 | |
| 	if (!fs_devices->num_devices) {
 | |
| 		/*
 | |
| 		 * On a mounted FS, num_devices can't be zero unless it's a
 | |
| 		 * seed. In case of a seed device being replaced, the replace
 | |
| 		 * target added to the sprout FS, so there will be no more
 | |
| 		 * device left under the seed FS.
 | |
| 		 */
 | |
| 		ASSERT(fs_devices->seeding);
 | |
| 
 | |
| 		list_del_init(&fs_devices->seed_list);
 | |
| 		close_fs_devices(fs_devices);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 	}
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| }
 | |
| 
 | |
| void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	btrfs_sysfs_remove_device(tgtdev);
 | |
| 
 | |
| 	if (tgtdev->bdev)
 | |
| 		fs_devices->open_devices--;
 | |
| 
 | |
| 	fs_devices->num_devices--;
 | |
| 
 | |
| 	btrfs_assign_next_active_device(tgtdev, NULL);
 | |
| 
 | |
| 	list_del_rcu(&tgtdev->dev_list);
 | |
| 
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * The update_dev_time() with in btrfs_scratch_superblocks()
 | |
| 	 * may lead to a call to btrfs_show_devname() which will try
 | |
| 	 * to hold device_list_mutex. And here this device
 | |
| 	 * is already out of device list, so we don't have to hold
 | |
| 	 * the device_list_mutex lock.
 | |
| 	 */
 | |
| 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
 | |
| 				  tgtdev->name->str);
 | |
| 
 | |
| 	btrfs_close_bdev(tgtdev);
 | |
| 	synchronize_rcu();
 | |
| 	btrfs_free_device(tgtdev);
 | |
| }
 | |
| 
 | |
| static struct btrfs_device *btrfs_find_device_by_path(
 | |
| 		struct btrfs_fs_info *fs_info, const char *device_path)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct btrfs_super_block *disk_super;
 | |
| 	u64 devid;
 | |
| 	u8 *dev_uuid;
 | |
| 	struct block_device *bdev;
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
 | |
| 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	devid = btrfs_stack_device_id(&disk_super->dev_item);
 | |
| 	dev_uuid = disk_super->dev_item.uuid;
 | |
| 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 | |
| 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
 | |
| 					   disk_super->metadata_uuid);
 | |
| 	else
 | |
| 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
 | |
| 					   disk_super->fsid);
 | |
| 
 | |
| 	btrfs_release_disk_super(disk_super);
 | |
| 	if (!device)
 | |
| 		device = ERR_PTR(-ENOENT);
 | |
| 	blkdev_put(bdev, FMODE_READ);
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup a device given by device id, or the path if the id is 0.
 | |
|  */
 | |
| struct btrfs_device *btrfs_find_device_by_devspec(
 | |
| 		struct btrfs_fs_info *fs_info, u64 devid,
 | |
| 		const char *device_path)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	if (devid) {
 | |
| 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
 | |
| 					   NULL);
 | |
| 		if (!device)
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| 		return device;
 | |
| 	}
 | |
| 
 | |
| 	if (!device_path || !device_path[0])
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if (strcmp(device_path, "missing") == 0) {
 | |
| 		/* Find first missing device */
 | |
| 		list_for_each_entry(device, &fs_info->fs_devices->devices,
 | |
| 				    dev_list) {
 | |
| 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
 | |
| 				     &device->dev_state) && !device->bdev)
 | |
| 				return device;
 | |
| 		}
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	return btrfs_find_device_by_path(fs_info, device_path);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * does all the dirty work required for changing file system's UUID.
 | |
|  */
 | |
| static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_fs_devices *old_devices;
 | |
| 	struct btrfs_fs_devices *seed_devices;
 | |
| 	struct btrfs_super_block *disk_super = fs_info->super_copy;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 super_flags;
 | |
| 
 | |
| 	lockdep_assert_held(&uuid_mutex);
 | |
| 	if (!fs_devices->seeding)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Private copy of the seed devices, anchored at
 | |
| 	 * fs_info->fs_devices->seed_list
 | |
| 	 */
 | |
| 	seed_devices = alloc_fs_devices(NULL, NULL);
 | |
| 	if (IS_ERR(seed_devices))
 | |
| 		return PTR_ERR(seed_devices);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's necessary to retain a copy of the original seed fs_devices in
 | |
| 	 * fs_uuids so that filesystems which have been seeded can successfully
 | |
| 	 * reference the seed device from open_seed_devices. This also supports
 | |
| 	 * multiple fs seed.
 | |
| 	 */
 | |
| 	old_devices = clone_fs_devices(fs_devices);
 | |
| 	if (IS_ERR(old_devices)) {
 | |
| 		kfree(seed_devices);
 | |
| 		return PTR_ERR(old_devices);
 | |
| 	}
 | |
| 
 | |
| 	list_add(&old_devices->fs_list, &fs_uuids);
 | |
| 
 | |
| 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
 | |
| 	seed_devices->opened = 1;
 | |
| 	INIT_LIST_HEAD(&seed_devices->devices);
 | |
| 	INIT_LIST_HEAD(&seed_devices->alloc_list);
 | |
| 	mutex_init(&seed_devices->device_list_mutex);
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
 | |
| 			      synchronize_rcu);
 | |
| 	list_for_each_entry(device, &seed_devices->devices, dev_list)
 | |
| 		device->fs_devices = seed_devices;
 | |
| 
 | |
| 	fs_devices->seeding = false;
 | |
| 	fs_devices->num_devices = 0;
 | |
| 	fs_devices->open_devices = 0;
 | |
| 	fs_devices->missing_devices = 0;
 | |
| 	fs_devices->rotating = false;
 | |
| 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
 | |
| 
 | |
| 	generate_random_uuid(fs_devices->fsid);
 | |
| 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	super_flags = btrfs_super_flags(disk_super) &
 | |
| 		      ~BTRFS_SUPER_FLAG_SEEDING;
 | |
| 	btrfs_set_super_flags(disk_super, super_flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Store the expected generation for seed devices in device items.
 | |
|  */
 | |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->chunk_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_key key;
 | |
| 	u8 fs_uuid[BTRFS_FSID_SIZE];
 | |
| 	u8 dev_uuid[BTRFS_UUID_SIZE];
 | |
| 	u64 devid;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.offset = 0;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| next_slot:
 | |
| 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 			leaf = path->nodes[0];
 | |
| 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 			btrfs_release_path(path);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 | |
| 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
 | |
| 		    key.type != BTRFS_DEV_ITEM_KEY)
 | |
| 			break;
 | |
| 
 | |
| 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 					  struct btrfs_dev_item);
 | |
| 		devid = btrfs_device_id(leaf, dev_item);
 | |
| 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
 | |
| 				   BTRFS_FSID_SIZE);
 | |
| 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
 | |
| 					   fs_uuid);
 | |
| 		BUG_ON(!device); /* Logic error */
 | |
| 
 | |
| 		if (device->fs_devices->seeding) {
 | |
| 			btrfs_set_device_generation(leaf, dev_item,
 | |
| 						    device->generation);
 | |
| 			btrfs_mark_buffer_dirty(leaf);
 | |
| 		}
 | |
| 
 | |
| 		path->slots[0]++;
 | |
| 		goto next_slot;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct request_queue *q;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct block_device *bdev;
 | |
| 	struct super_block *sb = fs_info->sb;
 | |
| 	struct rcu_string *name;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	u64 orig_super_total_bytes;
 | |
| 	u64 orig_super_num_devices;
 | |
| 	int seeding_dev = 0;
 | |
| 	int ret = 0;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (sb_rdonly(sb) && !fs_devices->seeding)
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
 | |
| 				  fs_info->bdev_holder);
 | |
| 	if (IS_ERR(bdev))
 | |
| 		return PTR_ERR(bdev);
 | |
| 
 | |
| 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (fs_devices->seeding) {
 | |
| 		seeding_dev = 1;
 | |
| 		down_write(&sb->s_umount);
 | |
| 		mutex_lock(&uuid_mutex);
 | |
| 		locked = true;
 | |
| 	}
 | |
| 
 | |
| 	sync_blockdev(bdev);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
 | |
| 		if (device->bdev == bdev) {
 | |
| 			ret = -EEXIST;
 | |
| 			rcu_read_unlock();
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	device = btrfs_alloc_device(fs_info, NULL, NULL);
 | |
| 	if (IS_ERR(device)) {
 | |
| 		/* we can safely leave the fs_devices entry around */
 | |
| 		ret = PTR_ERR(device);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	name = rcu_string_strdup(device_path, GFP_KERNEL);
 | |
| 	if (!name) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error_free_device;
 | |
| 	}
 | |
| 	rcu_assign_pointer(device->name, name);
 | |
| 
 | |
| 	device->fs_info = fs_info;
 | |
| 	device->bdev = bdev;
 | |
| 
 | |
| 	ret = btrfs_get_dev_zone_info(device);
 | |
| 	if (ret)
 | |
| 		goto error_free_device;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto error_free_zone;
 | |
| 	}
 | |
| 
 | |
| 	q = bdev_get_queue(bdev);
 | |
| 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 | |
| 	device->generation = trans->transid;
 | |
| 	device->io_width = fs_info->sectorsize;
 | |
| 	device->io_align = fs_info->sectorsize;
 | |
| 	device->sector_size = fs_info->sectorsize;
 | |
| 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
 | |
| 					 fs_info->sectorsize);
 | |
| 	device->disk_total_bytes = device->total_bytes;
 | |
| 	device->commit_total_bytes = device->total_bytes;
 | |
| 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 | |
| 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
 | |
| 	device->mode = FMODE_EXCL;
 | |
| 	device->dev_stats_valid = 1;
 | |
| 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		btrfs_clear_sb_rdonly(sb);
 | |
| 		ret = btrfs_prepare_sprout(fs_info);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_trans;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	device->fs_devices = fs_devices;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	list_add_rcu(&device->dev_list, &fs_devices->devices);
 | |
| 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
 | |
| 	fs_devices->num_devices++;
 | |
| 	fs_devices->open_devices++;
 | |
| 	fs_devices->rw_devices++;
 | |
| 	fs_devices->total_devices++;
 | |
| 	fs_devices->total_rw_bytes += device->total_bytes;
 | |
| 
 | |
| 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
 | |
| 
 | |
| 	if (!blk_queue_nonrot(q))
 | |
| 		fs_devices->rotating = true;
 | |
| 
 | |
| 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 | |
| 	btrfs_set_super_total_bytes(fs_info->super_copy,
 | |
| 		round_down(orig_super_total_bytes + device->total_bytes,
 | |
| 			   fs_info->sectorsize));
 | |
| 
 | |
| 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
 | |
| 	btrfs_set_super_num_devices(fs_info->super_copy,
 | |
| 				    orig_super_num_devices + 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * we've got more storage, clear any full flags on the space
 | |
| 	 * infos
 | |
| 	 */
 | |
| 	btrfs_clear_space_info_full(fs_info);
 | |
| 
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	/* Add sysfs device entry */
 | |
| 	btrfs_sysfs_add_device(device);
 | |
| 
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		mutex_lock(&fs_info->chunk_mutex);
 | |
| 		ret = init_first_rw_device(trans);
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_sysfs;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_add_dev_item(trans, device);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto error_sysfs;
 | |
| 	}
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		ret = btrfs_finish_sprout(trans);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto error_sysfs;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fs_devices now represents the newly sprouted filesystem and
 | |
| 		 * its fsid has been changed by btrfs_prepare_sprout
 | |
| 		 */
 | |
| 		btrfs_sysfs_update_sprout_fsid(fs_devices);
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_commit_transaction(trans);
 | |
| 
 | |
| 	if (seeding_dev) {
 | |
| 		mutex_unlock(&uuid_mutex);
 | |
| 		up_write(&sb->s_umount);
 | |
| 		locked = false;
 | |
| 
 | |
| 		if (ret) /* transaction commit */
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = btrfs_relocate_sys_chunks(fs_info);
 | |
| 		if (ret < 0)
 | |
| 			btrfs_handle_fs_error(fs_info, ret,
 | |
| 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
 | |
| 		trans = btrfs_attach_transaction(root);
 | |
| 		if (IS_ERR(trans)) {
 | |
| 			if (PTR_ERR(trans) == -ENOENT)
 | |
| 				return 0;
 | |
| 			ret = PTR_ERR(trans);
 | |
| 			trans = NULL;
 | |
| 			goto error_sysfs;
 | |
| 		}
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have written a new super block to this device, check all
 | |
| 	 * other fs_devices list if device_path alienates any other scanned
 | |
| 	 * device.
 | |
| 	 * We can ignore the return value as it typically returns -EINVAL and
 | |
| 	 * only succeeds if the device was an alien.
 | |
| 	 */
 | |
| 	btrfs_forget_devices(device_path);
 | |
| 
 | |
| 	/* Update ctime/mtime for blkid or udev */
 | |
| 	update_dev_time(device_path);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| error_sysfs:
 | |
| 	btrfs_sysfs_remove_device(device);
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	list_del_rcu(&device->dev_list);
 | |
| 	list_del(&device->dev_alloc_list);
 | |
| 	fs_info->fs_devices->num_devices--;
 | |
| 	fs_info->fs_devices->open_devices--;
 | |
| 	fs_info->fs_devices->rw_devices--;
 | |
| 	fs_info->fs_devices->total_devices--;
 | |
| 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
 | |
| 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
 | |
| 	btrfs_set_super_total_bytes(fs_info->super_copy,
 | |
| 				    orig_super_total_bytes);
 | |
| 	btrfs_set_super_num_devices(fs_info->super_copy,
 | |
| 				    orig_super_num_devices);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| error_trans:
 | |
| 	if (seeding_dev)
 | |
| 		btrfs_set_sb_rdonly(sb);
 | |
| 	if (trans)
 | |
| 		btrfs_end_transaction(trans);
 | |
| error_free_zone:
 | |
| 	btrfs_destroy_dev_zone_info(device);
 | |
| error_free_device:
 | |
| 	btrfs_free_device(device);
 | |
| error:
 | |
| 	blkdev_put(bdev, FMODE_EXCL);
 | |
| 	if (locked) {
 | |
| 		mutex_unlock(&uuid_mutex);
 | |
| 		up_write(&sb->s_umount);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
 | |
| 					struct btrfs_device *device)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = device->fs_info->chunk_root;
 | |
| 	struct btrfs_dev_item *dev_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.type = BTRFS_DEV_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
 | |
| 
 | |
| 	btrfs_set_device_id(leaf, dev_item, device->devid);
 | |
| 	btrfs_set_device_type(leaf, dev_item, device->type);
 | |
| 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
 | |
| 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
 | |
| 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
 | |
| 	btrfs_set_device_total_bytes(leaf, dev_item,
 | |
| 				     btrfs_device_get_disk_total_bytes(device));
 | |
| 	btrfs_set_device_bytes_used(leaf, dev_item,
 | |
| 				    btrfs_device_get_bytes_used(device));
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_grow_device(struct btrfs_trans_handle *trans,
 | |
| 		      struct btrfs_device *device, u64 new_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	u64 old_total;
 | |
| 	u64 diff;
 | |
| 
 | |
| 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
 | |
| 		return -EACCES;
 | |
| 
 | |
| 	new_size = round_down(new_size, fs_info->sectorsize);
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	old_total = btrfs_super_total_bytes(super_copy);
 | |
| 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
 | |
| 
 | |
| 	if (new_size <= device->total_bytes ||
 | |
| 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_set_super_total_bytes(super_copy,
 | |
| 			round_down(old_total + diff, fs_info->sectorsize));
 | |
| 	device->fs_devices->total_rw_bytes += diff;
 | |
| 
 | |
| 	btrfs_device_set_total_bytes(device, new_size);
 | |
| 	btrfs_device_set_disk_total_bytes(device, new_size);
 | |
| 	btrfs_clear_space_info_full(device->fs_info);
 | |
| 	if (list_empty(&device->post_commit_list))
 | |
| 		list_add_tail(&device->post_commit_list,
 | |
| 			      &trans->transaction->dev_update_list);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	return btrfs_update_device(trans, device);
 | |
| }
 | |
| 
 | |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->chunk_root;
 | |
| 	int ret;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.offset = chunk_offset;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	else if (ret > 0) { /* Logic error or corruption */
 | |
| 		btrfs_handle_fs_error(fs_info, -ENOENT,
 | |
| 				      "Failed lookup while freeing chunk.");
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| 	if (ret < 0)
 | |
| 		btrfs_handle_fs_error(fs_info, ret,
 | |
| 				      "Failed to delete chunk item.");
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	struct btrfs_disk_key *disk_key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	u8 *ptr;
 | |
| 	int ret = 0;
 | |
| 	u32 num_stripes;
 | |
| 	u32 array_size;
 | |
| 	u32 len = 0;
 | |
| 	u32 cur;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 
 | |
| 	ptr = super_copy->sys_chunk_array;
 | |
| 	cur = 0;
 | |
| 
 | |
| 	while (cur < array_size) {
 | |
| 		disk_key = (struct btrfs_disk_key *)ptr;
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 
 | |
| 		len = sizeof(*disk_key);
 | |
| 
 | |
| 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			chunk = (struct btrfs_chunk *)(ptr + len);
 | |
| 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
 | |
| 			len += btrfs_chunk_item_size(num_stripes);
 | |
| 		} else {
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
 | |
| 		    key.offset == chunk_offset) {
 | |
| 			memmove(ptr, ptr + len, array_size - (cur + len));
 | |
| 			array_size -= len;
 | |
| 			btrfs_set_super_sys_array_size(super_copy, array_size);
 | |
| 		} else {
 | |
| 			ptr += len;
 | |
| 			cur += len;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 | |
|  * @logical: Logical block offset in bytes.
 | |
|  * @length: Length of extent in bytes.
 | |
|  *
 | |
|  * Return: Chunk mapping or ERR_PTR.
 | |
|  */
 | |
| struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
 | |
| 				       u64 logical, u64 length)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	em_tree = &fs_info->mapping_tree;
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, logical, length);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	if (!em) {
 | |
| 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
 | |
| 			   logical, length);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (em->start > logical || em->start + em->len < logical) {
 | |
| 		btrfs_crit(fs_info,
 | |
| 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
 | |
| 			   logical, length, em->start, em->start + em->len);
 | |
| 		free_extent_map(em);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/* callers are responsible for dropping em's ref. */
 | |
| 	return em;
 | |
| }
 | |
| 
 | |
| int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	u64 dev_extent_len = 0;
 | |
| 	int i, ret = 0;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
 | |
| 	if (IS_ERR(em)) {
 | |
| 		/*
 | |
| 		 * This is a logic error, but we don't want to just rely on the
 | |
| 		 * user having built with ASSERT enabled, so if ASSERT doesn't
 | |
| 		 * do anything we still error out.
 | |
| 		 */
 | |
| 		ASSERT(0);
 | |
| 		return PTR_ERR(em);
 | |
| 	}
 | |
| 	map = em->map_lookup;
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	check_system_chunk(trans, map->type);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the device list mutex to prevent races with the final phase of
 | |
| 	 * a device replace operation that replaces the device object associated
 | |
| 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
 | |
| 	 */
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		struct btrfs_device *device = map->stripes[i].dev;
 | |
| 		ret = btrfs_free_dev_extent(trans, device,
 | |
| 					    map->stripes[i].physical,
 | |
| 					    &dev_extent_len);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (device->bytes_used > 0) {
 | |
| 			mutex_lock(&fs_info->chunk_mutex);
 | |
| 			btrfs_device_set_bytes_used(device,
 | |
| 					device->bytes_used - dev_extent_len);
 | |
| 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
 | |
| 			btrfs_clear_space_info_full(fs_info);
 | |
| 			mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_update_device(trans, device);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	ret = btrfs_free_chunk(trans, chunk_offset);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
 | |
| 
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
 | |
| 	if (ret) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* once for us */
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->chunk_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent races with automatic removal of unused block groups.
 | |
| 	 * After we relocate and before we remove the chunk with offset
 | |
| 	 * chunk_offset, automatic removal of the block group can kick in,
 | |
| 	 * resulting in a failure when calling btrfs_remove_chunk() below.
 | |
| 	 *
 | |
| 	 * Make sure to acquire this mutex before doing a tree search (dev
 | |
| 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
 | |
| 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
 | |
| 	 * we release the path used to search the chunk/dev tree and before
 | |
| 	 * the current task acquires this mutex and calls us.
 | |
| 	 */
 | |
| 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
 | |
| 
 | |
| 	/* step one, relocate all the extents inside this chunk */
 | |
| 	btrfs_scrub_pause(fs_info);
 | |
| 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
 | |
| 	btrfs_scrub_continue(fs_info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 	if (!block_group)
 | |
| 		return -ENOENT;
 | |
| 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 
 | |
| 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
 | |
| 						     chunk_offset);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * step two, delete the device extents and the
 | |
| 	 * chunk tree entries
 | |
| 	 */
 | |
| 	ret = btrfs_remove_chunk(trans, chunk_offset);
 | |
| 	btrfs_end_transaction(trans);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *chunk_root = fs_info->chunk_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	u64 chunk_type;
 | |
| 	bool retried = false;
 | |
| 	int failed = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| again:
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto error;
 | |
| 		}
 | |
| 		BUG_ON(ret == 0); /* Corruption */
 | |
| 
 | |
| 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
 | |
| 					  key.type);
 | |
| 		if (ret)
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		if (ret < 0)
 | |
| 			goto error;
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 
 | |
| 		chunk = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				       struct btrfs_chunk);
 | |
| 		chunk_type = btrfs_chunk_type(leaf, chunk);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
 | |
| 			if (ret == -ENOSPC)
 | |
| 				failed++;
 | |
| 			else
 | |
| 				BUG_ON(ret);
 | |
| 		}
 | |
| 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 	if (failed && !retried) {
 | |
| 		failed = 0;
 | |
| 		retried = true;
 | |
| 		goto again;
 | |
| 	} else if (WARN_ON(failed && retried)) {
 | |
| 		ret = -ENOSPC;
 | |
| 	}
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return 1 : allocate a data chunk successfully,
 | |
|  * return <0: errors during allocating a data chunk,
 | |
|  * return 0 : no need to allocate a data chunk.
 | |
|  */
 | |
| static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
 | |
| 				      u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	u64 bytes_used;
 | |
| 	u64 chunk_type;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 	ASSERT(cache);
 | |
| 	chunk_type = cache->flags;
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&fs_info->data_sinfo->lock);
 | |
| 	bytes_used = fs_info->data_sinfo->bytes_used;
 | |
| 	spin_unlock(&fs_info->data_sinfo->lock);
 | |
| 
 | |
| 	if (!bytes_used) {
 | |
| 		struct btrfs_trans_handle *trans;
 | |
| 		int ret;
 | |
| 
 | |
| 		trans =	btrfs_join_transaction(fs_info->tree_root);
 | |
| 		if (IS_ERR(trans))
 | |
| 			return PTR_ERR(trans);
 | |
| 
 | |
| 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int insert_balance_item(struct btrfs_fs_info *fs_info,
 | |
| 			       struct btrfs_balance_control *bctl)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_balance_item *item;
 | |
| 	struct btrfs_disk_balance_args disk_bargs;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret, err;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return PTR_ERR(trans);
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = BTRFS_BALANCE_OBJECTID;
 | |
| 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(*item));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
 | |
| 
 | |
| 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
 | |
| 
 | |
| 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
 | |
| 	btrfs_set_balance_data(leaf, item, &disk_bargs);
 | |
| 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
 | |
| 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
 | |
| 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
 | |
| 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
 | |
| 
 | |
| 	btrfs_set_balance_flags(leaf, item, bctl->flags);
 | |
| 
 | |
| 	btrfs_mark_buffer_dirty(leaf);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	err = btrfs_commit_transaction(trans);
 | |
| 	if (err && !ret)
 | |
| 		ret = err;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int del_balance_item(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret, err;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return PTR_ERR(trans);
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = BTRFS_BALANCE_OBJECTID;
 | |
| 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) {
 | |
| 		ret = -ENOENT;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_del_item(trans, root, path);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	err = btrfs_commit_transaction(trans);
 | |
| 	if (err && !ret)
 | |
| 		ret = err;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a heuristic used to reduce the number of chunks balanced on
 | |
|  * resume after balance was interrupted.
 | |
|  */
 | |
| static void update_balance_args(struct btrfs_balance_control *bctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * Turn on soft mode for chunk types that were being converted.
 | |
| 	 */
 | |
| 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
 | |
| 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
 | |
| 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
 | |
| 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
 | |
| 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
 | |
| 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Turn on usage filter if is not already used.  The idea is
 | |
| 	 * that chunks that we have already balanced should be
 | |
| 	 * reasonably full.  Don't do it for chunks that are being
 | |
| 	 * converted - that will keep us from relocating unconverted
 | |
| 	 * (albeit full) chunks.
 | |
| 	 */
 | |
| 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 | |
| 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
 | |
| 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
 | |
| 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
 | |
| 		bctl->data.usage = 90;
 | |
| 	}
 | |
| 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 | |
| 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
 | |
| 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
 | |
| 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
 | |
| 		bctl->sys.usage = 90;
 | |
| 	}
 | |
| 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
 | |
| 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
 | |
| 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
 | |
| 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
 | |
| 		bctl->meta.usage = 90;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the balance status in fs_info and delete the balance item from disk.
 | |
|  */
 | |
| static void reset_balance_state(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!fs_info->balance_ctl);
 | |
| 
 | |
| 	spin_lock(&fs_info->balance_lock);
 | |
| 	fs_info->balance_ctl = NULL;
 | |
| 	spin_unlock(&fs_info->balance_lock);
 | |
| 
 | |
| 	kfree(bctl);
 | |
| 	ret = del_balance_item(fs_info);
 | |
| 	if (ret)
 | |
| 		btrfs_handle_fs_error(fs_info, ret, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Balance filters.  Return 1 if chunk should be filtered out
 | |
|  * (should not be balanced).
 | |
|  */
 | |
| static int chunk_profiles_filter(u64 chunk_type,
 | |
| 				 struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	chunk_type = chunk_to_extended(chunk_type) &
 | |
| 				BTRFS_EXTENDED_PROFILE_MASK;
 | |
| 
 | |
| 	if (bargs->profiles & chunk_type)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
 | |
| 			      struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	u64 chunk_used;
 | |
| 	u64 user_thresh_min;
 | |
| 	u64 user_thresh_max;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 	chunk_used = cache->used;
 | |
| 
 | |
| 	if (bargs->usage_min == 0)
 | |
| 		user_thresh_min = 0;
 | |
| 	else
 | |
| 		user_thresh_min = div_factor_fine(cache->length,
 | |
| 						  bargs->usage_min);
 | |
| 
 | |
| 	if (bargs->usage_max == 0)
 | |
| 		user_thresh_max = 1;
 | |
| 	else if (bargs->usage_max > 100)
 | |
| 		user_thresh_max = cache->length;
 | |
| 	else
 | |
| 		user_thresh_max = div_factor_fine(cache->length,
 | |
| 						  bargs->usage_max);
 | |
| 
 | |
| 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
 | |
| 		u64 chunk_offset, struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	u64 chunk_used, user_thresh;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
 | |
| 	chunk_used = cache->used;
 | |
| 
 | |
| 	if (bargs->usage_min == 0)
 | |
| 		user_thresh = 1;
 | |
| 	else if (bargs->usage > 100)
 | |
| 		user_thresh = cache->length;
 | |
| 	else
 | |
| 		user_thresh = div_factor_fine(cache->length, bargs->usage);
 | |
| 
 | |
| 	if (chunk_used < user_thresh)
 | |
| 		ret = 0;
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int chunk_devid_filter(struct extent_buffer *leaf,
 | |
| 			      struct btrfs_chunk *chunk,
 | |
| 			      struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	struct btrfs_stripe *stripe;
 | |
| 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		stripe = btrfs_stripe_nr(chunk, i);
 | |
| 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u64 calc_data_stripes(u64 type, int num_stripes)
 | |
| {
 | |
| 	const int index = btrfs_bg_flags_to_raid_index(type);
 | |
| 	const int ncopies = btrfs_raid_array[index].ncopies;
 | |
| 	const int nparity = btrfs_raid_array[index].nparity;
 | |
| 
 | |
| 	if (nparity)
 | |
| 		return num_stripes - nparity;
 | |
| 	else
 | |
| 		return num_stripes / ncopies;
 | |
| }
 | |
| 
 | |
| /* [pstart, pend) */
 | |
| static int chunk_drange_filter(struct extent_buffer *leaf,
 | |
| 			       struct btrfs_chunk *chunk,
 | |
| 			       struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	struct btrfs_stripe *stripe;
 | |
| 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 	u64 stripe_offset;
 | |
| 	u64 stripe_length;
 | |
| 	u64 type;
 | |
| 	int factor;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
 | |
| 		return 0;
 | |
| 
 | |
| 	type = btrfs_chunk_type(leaf, chunk);
 | |
| 	factor = calc_data_stripes(type, num_stripes);
 | |
| 
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		stripe = btrfs_stripe_nr(chunk, i);
 | |
| 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
 | |
| 			continue;
 | |
| 
 | |
| 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
 | |
| 		stripe_length = btrfs_chunk_length(leaf, chunk);
 | |
| 		stripe_length = div_u64(stripe_length, factor);
 | |
| 
 | |
| 		if (stripe_offset < bargs->pend &&
 | |
| 		    stripe_offset + stripe_length > bargs->pstart)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* [vstart, vend) */
 | |
| static int chunk_vrange_filter(struct extent_buffer *leaf,
 | |
| 			       struct btrfs_chunk *chunk,
 | |
| 			       u64 chunk_offset,
 | |
| 			       struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	if (chunk_offset < bargs->vend &&
 | |
| 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
 | |
| 		/* at least part of the chunk is inside this vrange */
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int chunk_stripes_range_filter(struct extent_buffer *leaf,
 | |
| 			       struct btrfs_chunk *chunk,
 | |
| 			       struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 
 | |
| 	if (bargs->stripes_min <= num_stripes
 | |
| 			&& num_stripes <= bargs->stripes_max)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int chunk_soft_convert_filter(u64 chunk_type,
 | |
| 				     struct btrfs_balance_args *bargs)
 | |
| {
 | |
| 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
 | |
| 		return 0;
 | |
| 
 | |
| 	chunk_type = chunk_to_extended(chunk_type) &
 | |
| 				BTRFS_EXTENDED_PROFILE_MASK;
 | |
| 
 | |
| 	if (bargs->target == chunk_type)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int should_balance_chunk(struct extent_buffer *leaf,
 | |
| 				struct btrfs_chunk *chunk, u64 chunk_offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = leaf->fs_info;
 | |
| 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 | |
| 	struct btrfs_balance_args *bargs = NULL;
 | |
| 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
 | |
| 
 | |
| 	/* type filter */
 | |
| 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
 | |
| 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		bargs = &bctl->data;
 | |
| 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 		bargs = &bctl->sys;
 | |
| 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 		bargs = &bctl->meta;
 | |
| 
 | |
| 	/* profiles filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
 | |
| 	    chunk_profiles_filter(chunk_type, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* usage filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
 | |
| 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
 | |
| 		return 0;
 | |
| 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
 | |
| 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* devid filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
 | |
| 	    chunk_devid_filter(leaf, chunk, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* drange filter, makes sense only with devid filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
 | |
| 	    chunk_drange_filter(leaf, chunk, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* vrange filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
 | |
| 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* stripes filter */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
 | |
| 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* soft profile changing mode */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
 | |
| 	    chunk_soft_convert_filter(chunk_type, bargs)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * limited by count, must be the last filter
 | |
| 	 */
 | |
| 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
 | |
| 		if (bargs->limit == 0)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			bargs->limit--;
 | |
| 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
 | |
| 		/*
 | |
| 		 * Same logic as the 'limit' filter; the minimum cannot be
 | |
| 		 * determined here because we do not have the global information
 | |
| 		 * about the count of all chunks that satisfy the filters.
 | |
| 		 */
 | |
| 		if (bargs->limit_max == 0)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			bargs->limit_max--;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __btrfs_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 | |
| 	struct btrfs_root *chunk_root = fs_info->chunk_root;
 | |
| 	u64 chunk_type;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int slot;
 | |
| 	int ret;
 | |
| 	int enospc_errors = 0;
 | |
| 	bool counting = true;
 | |
| 	/* The single value limit and min/max limits use the same bytes in the */
 | |
| 	u64 limit_data = bctl->data.limit;
 | |
| 	u64 limit_meta = bctl->meta.limit;
 | |
| 	u64 limit_sys = bctl->sys.limit;
 | |
| 	u32 count_data = 0;
 | |
| 	u32 count_meta = 0;
 | |
| 	u32 count_sys = 0;
 | |
| 	int chunk_reserved = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* zero out stat counters */
 | |
| 	spin_lock(&fs_info->balance_lock);
 | |
| 	memset(&bctl->stat, 0, sizeof(bctl->stat));
 | |
| 	spin_unlock(&fs_info->balance_lock);
 | |
| again:
 | |
| 	if (!counting) {
 | |
| 		/*
 | |
| 		 * The single value limit and min/max limits use the same bytes
 | |
| 		 * in the
 | |
| 		 */
 | |
| 		bctl->data.limit = limit_data;
 | |
| 		bctl->meta.limit = limit_meta;
 | |
| 		bctl->sys.limit = limit_sys;
 | |
| 	}
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
 | |
| 		    atomic_read(&fs_info->balance_cancel_req)) {
 | |
| 			ret = -ECANCELED;
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * this shouldn't happen, it means the last relocate
 | |
| 		 * failed
 | |
| 		 */
 | |
| 		if (ret == 0)
 | |
| 			BUG(); /* FIXME break ? */
 | |
| 
 | |
| 		ret = btrfs_previous_item(chunk_root, path, 0,
 | |
| 					  BTRFS_CHUNK_ITEM_KEY);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | |
| 
 | |
| 		if (found_key.objectid != key.objectid) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 | |
| 		chunk_type = btrfs_chunk_type(leaf, chunk);
 | |
| 
 | |
| 		if (!counting) {
 | |
| 			spin_lock(&fs_info->balance_lock);
 | |
| 			bctl->stat.considered++;
 | |
| 			spin_unlock(&fs_info->balance_lock);
 | |
| 		}
 | |
| 
 | |
| 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
 | |
| 
 | |
| 		btrfs_release_path(path);
 | |
| 		if (!ret) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		if (counting) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			spin_lock(&fs_info->balance_lock);
 | |
| 			bctl->stat.expected++;
 | |
| 			spin_unlock(&fs_info->balance_lock);
 | |
| 
 | |
| 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
 | |
| 				count_data++;
 | |
| 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 				count_sys++;
 | |
| 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
 | |
| 				count_meta++;
 | |
| 
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Apply limit_min filter, no need to check if the LIMITS
 | |
| 		 * filter is used, limit_min is 0 by default
 | |
| 		 */
 | |
| 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
 | |
| 					count_data < bctl->data.limit_min)
 | |
| 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
 | |
| 					count_meta < bctl->meta.limit_min)
 | |
| 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
 | |
| 					count_sys < bctl->sys.limit_min)) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto loop;
 | |
| 		}
 | |
| 
 | |
| 		if (!chunk_reserved) {
 | |
| 			/*
 | |
| 			 * We may be relocating the only data chunk we have,
 | |
| 			 * which could potentially end up with losing data's
 | |
| 			 * raid profile, so lets allocate an empty one in
 | |
| 			 * advance.
 | |
| 			 */
 | |
| 			ret = btrfs_may_alloc_data_chunk(fs_info,
 | |
| 							 found_key.offset);
 | |
| 			if (ret < 0) {
 | |
| 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 				goto error;
 | |
| 			} else if (ret == 1) {
 | |
| 				chunk_reserved = 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
 | |
| 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		if (ret == -ENOSPC) {
 | |
| 			enospc_errors++;
 | |
| 		} else if (ret == -ETXTBSY) {
 | |
| 			btrfs_info(fs_info,
 | |
| 	   "skipping relocation of block group %llu due to active swapfile",
 | |
| 				   found_key.offset);
 | |
| 			ret = 0;
 | |
| 		} else if (ret) {
 | |
| 			goto error;
 | |
| 		} else {
 | |
| 			spin_lock(&fs_info->balance_lock);
 | |
| 			bctl->stat.completed++;
 | |
| 			spin_unlock(&fs_info->balance_lock);
 | |
| 		}
 | |
| loop:
 | |
| 		if (found_key.offset == 0)
 | |
| 			break;
 | |
| 		key.offset = found_key.offset - 1;
 | |
| 	}
 | |
| 
 | |
| 	if (counting) {
 | |
| 		btrfs_release_path(path);
 | |
| 		counting = false;
 | |
| 		goto again;
 | |
| 	}
 | |
| error:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (enospc_errors) {
 | |
| 		btrfs_info(fs_info, "%d enospc errors during balance",
 | |
| 			   enospc_errors);
 | |
| 		if (!ret)
 | |
| 			ret = -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * alloc_profile_is_valid - see if a given profile is valid and reduced
 | |
|  * @flags: profile to validate
 | |
|  * @extended: if true @flags is treated as an extended profile
 | |
|  */
 | |
| static int alloc_profile_is_valid(u64 flags, int extended)
 | |
| {
 | |
| 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
 | |
| 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
 | |
| 
 | |
| 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
 | |
| 
 | |
| 	/* 1) check that all other bits are zeroed */
 | |
| 	if (flags & ~mask)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* 2) see if profile is reduced */
 | |
| 	if (flags == 0)
 | |
| 		return !extended; /* "0" is valid for usual profiles */
 | |
| 
 | |
| 	return has_single_bit_set(flags);
 | |
| }
 | |
| 
 | |
| static inline int balance_need_close(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	/* cancel requested || normal exit path */
 | |
| 	return atomic_read(&fs_info->balance_cancel_req) ||
 | |
| 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
 | |
| 		 atomic_read(&fs_info->balance_cancel_req) == 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate target profile against allowed profiles and return true if it's OK.
 | |
|  * Otherwise print the error message and return false.
 | |
|  */
 | |
| static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
 | |
| 		const struct btrfs_balance_args *bargs,
 | |
| 		u64 allowed, const char *type)
 | |
| {
 | |
| 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Profile is valid and does not have bits outside of the allowed set */
 | |
| 	if (alloc_profile_is_valid(bargs->target, 1) &&
 | |
| 	    (bargs->target & ~allowed) == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
 | |
| 			type, btrfs_bg_type_to_raid_name(bargs->target));
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill @buf with textual description of balance filter flags @bargs, up to
 | |
|  * @size_buf including the terminating null. The output may be trimmed if it
 | |
|  * does not fit into the provided buffer.
 | |
|  */
 | |
| static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
 | |
| 				 u32 size_buf)
 | |
| {
 | |
| 	int ret;
 | |
| 	u32 size_bp = size_buf;
 | |
| 	char *bp = buf;
 | |
| 	u64 flags = bargs->flags;
 | |
| 	char tmp_buf[128] = {'\0'};
 | |
| 
 | |
| 	if (!flags)
 | |
| 		return;
 | |
| 
 | |
| #define CHECK_APPEND_NOARG(a)						\
 | |
| 	do {								\
 | |
| 		ret = snprintf(bp, size_bp, (a));			\
 | |
| 		if (ret < 0 || ret >= size_bp)				\
 | |
| 			goto out_overflow;				\
 | |
| 		size_bp -= ret;						\
 | |
| 		bp += ret;						\
 | |
| 	} while (0)
 | |
| 
 | |
| #define CHECK_APPEND_1ARG(a, v1)					\
 | |
| 	do {								\
 | |
| 		ret = snprintf(bp, size_bp, (a), (v1));			\
 | |
| 		if (ret < 0 || ret >= size_bp)				\
 | |
| 			goto out_overflow;				\
 | |
| 		size_bp -= ret;						\
 | |
| 		bp += ret;						\
 | |
| 	} while (0)
 | |
| 
 | |
| #define CHECK_APPEND_2ARG(a, v1, v2)					\
 | |
| 	do {								\
 | |
| 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
 | |
| 		if (ret < 0 || ret >= size_bp)				\
 | |
| 			goto out_overflow;				\
 | |
| 		size_bp -= ret;						\
 | |
| 		bp += ret;						\
 | |
| 	} while (0)
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
 | |
| 		CHECK_APPEND_1ARG("convert=%s,",
 | |
| 				  btrfs_bg_type_to_raid_name(bargs->target));
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
 | |
| 		CHECK_APPEND_NOARG("soft,");
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
 | |
| 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
 | |
| 					    sizeof(tmp_buf));
 | |
| 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
 | |
| 	}
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
 | |
| 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
 | |
| 		CHECK_APPEND_2ARG("usage=%u..%u,",
 | |
| 				  bargs->usage_min, bargs->usage_max);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
 | |
| 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
 | |
| 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
 | |
| 				  bargs->pstart, bargs->pend);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
 | |
| 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
 | |
| 				  bargs->vstart, bargs->vend);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
 | |
| 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
 | |
| 		CHECK_APPEND_2ARG("limit=%u..%u,",
 | |
| 				bargs->limit_min, bargs->limit_max);
 | |
| 
 | |
| 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
 | |
| 		CHECK_APPEND_2ARG("stripes=%u..%u,",
 | |
| 				  bargs->stripes_min, bargs->stripes_max);
 | |
| 
 | |
| #undef CHECK_APPEND_2ARG
 | |
| #undef CHECK_APPEND_1ARG
 | |
| #undef CHECK_APPEND_NOARG
 | |
| 
 | |
| out_overflow:
 | |
| 
 | |
| 	if (size_bp < size_buf)
 | |
| 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
 | |
| 	else
 | |
| 		buf[0] = '\0';
 | |
| }
 | |
| 
 | |
| static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	u32 size_buf = 1024;
 | |
| 	char tmp_buf[192] = {'\0'};
 | |
| 	char *buf;
 | |
| 	char *bp;
 | |
| 	u32 size_bp = size_buf;
 | |
| 	int ret;
 | |
| 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 | |
| 
 | |
| 	buf = kzalloc(size_buf, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return;
 | |
| 
 | |
| 	bp = buf;
 | |
| 
 | |
| #define CHECK_APPEND_1ARG(a, v1)					\
 | |
| 	do {								\
 | |
| 		ret = snprintf(bp, size_bp, (a), (v1));			\
 | |
| 		if (ret < 0 || ret >= size_bp)				\
 | |
| 			goto out_overflow;				\
 | |
| 		size_bp -= ret;						\
 | |
| 		bp += ret;						\
 | |
| 	} while (0)
 | |
| 
 | |
| 	if (bctl->flags & BTRFS_BALANCE_FORCE)
 | |
| 		CHECK_APPEND_1ARG("%s", "-f ");
 | |
| 
 | |
| 	if (bctl->flags & BTRFS_BALANCE_DATA) {
 | |
| 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
 | |
| 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
 | |
| 	}
 | |
| 
 | |
| 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
 | |
| 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
 | |
| 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
 | |
| 	}
 | |
| 
 | |
| 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
 | |
| 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
 | |
| 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
 | |
| 	}
 | |
| 
 | |
| #undef CHECK_APPEND_1ARG
 | |
| 
 | |
| out_overflow:
 | |
| 
 | |
| 	if (size_bp < size_buf)
 | |
| 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
 | |
| 	btrfs_info(fs_info, "balance: %s %s",
 | |
| 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
 | |
| 		   "resume" : "start", buf);
 | |
| 
 | |
| 	kfree(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should be called with balance mutexe held
 | |
|  */
 | |
| int btrfs_balance(struct btrfs_fs_info *fs_info,
 | |
| 		  struct btrfs_balance_control *bctl,
 | |
| 		  struct btrfs_ioctl_balance_args *bargs)
 | |
| {
 | |
| 	u64 meta_target, data_target;
 | |
| 	u64 allowed;
 | |
| 	int mixed = 0;
 | |
| 	int ret;
 | |
| 	u64 num_devices;
 | |
| 	unsigned seq;
 | |
| 	bool reducing_redundancy;
 | |
| 	int i;
 | |
| 
 | |
| 	if (btrfs_fs_closing(fs_info) ||
 | |
| 	    atomic_read(&fs_info->balance_pause_req) ||
 | |
| 	    btrfs_should_cancel_balance(fs_info)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
 | |
| 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 | |
| 		mixed = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of mixed groups both data and meta should be picked,
 | |
| 	 * and identical options should be given for both of them.
 | |
| 	 */
 | |
| 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
 | |
| 	if (mixed && (bctl->flags & allowed)) {
 | |
| 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
 | |
| 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
 | |
| 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
 | |
| 			btrfs_err(fs_info,
 | |
| 	  "balance: mixed groups data and metadata options must be the same");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * rw_devices will not change at the moment, device add/delete/replace
 | |
| 	 * are exclusive
 | |
| 	 */
 | |
| 	num_devices = fs_info->fs_devices->rw_devices;
 | |
| 
 | |
| 	/*
 | |
| 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
 | |
| 	 * special bit for it, to make it easier to distinguish.  Thus we need
 | |
| 	 * to set it manually, or balance would refuse the profile.
 | |
| 	 */
 | |
| 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 | |
| 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
 | |
| 		if (num_devices >= btrfs_raid_array[i].devs_min)
 | |
| 			allowed |= btrfs_raid_array[i].bg_flag;
 | |
| 
 | |
| 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
 | |
| 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
 | |
| 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow to reduce metadata or system integrity only if force set for
 | |
| 	 * profiles with redundancy (copies, parity)
 | |
| 	 */
 | |
| 	allowed = 0;
 | |
| 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
 | |
| 		if (btrfs_raid_array[i].ncopies >= 2 ||
 | |
| 		    btrfs_raid_array[i].tolerated_failures >= 1)
 | |
| 			allowed |= btrfs_raid_array[i].bg_flag;
 | |
| 	}
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&fs_info->profiles_lock);
 | |
| 
 | |
| 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
 | |
| 		     (fs_info->avail_system_alloc_bits & allowed) &&
 | |
| 		     !(bctl->sys.target & allowed)) ||
 | |
| 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
 | |
| 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
 | |
| 		     !(bctl->meta.target & allowed)))
 | |
| 			reducing_redundancy = true;
 | |
| 		else
 | |
| 			reducing_redundancy = false;
 | |
| 
 | |
| 		/* if we're not converting, the target field is uninitialized */
 | |
| 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
 | |
| 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
 | |
| 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
 | |
| 			bctl->data.target : fs_info->avail_data_alloc_bits;
 | |
| 	} while (read_seqretry(&fs_info->profiles_lock, seq));
 | |
| 
 | |
| 	if (reducing_redundancy) {
 | |
| 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
 | |
| 			btrfs_info(fs_info,
 | |
| 			   "balance: force reducing metadata redundancy");
 | |
| 		} else {
 | |
| 			btrfs_err(fs_info,
 | |
| 	"balance: reduces metadata redundancy, use --force if you want this");
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
 | |
| 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
 | |
| 		btrfs_warn(fs_info,
 | |
| 	"balance: metadata profile %s has lower redundancy than data profile %s",
 | |
| 				btrfs_bg_type_to_raid_name(meta_target),
 | |
| 				btrfs_bg_type_to_raid_name(data_target));
 | |
| 	}
 | |
| 
 | |
| 	if (fs_info->send_in_progress) {
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| "cannot run balance while send operations are in progress (%d in progress)",
 | |
| 			      fs_info->send_in_progress);
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = insert_balance_item(fs_info, bctl);
 | |
| 	if (ret && ret != -EEXIST)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
 | |
| 		BUG_ON(ret == -EEXIST);
 | |
| 		BUG_ON(fs_info->balance_ctl);
 | |
| 		spin_lock(&fs_info->balance_lock);
 | |
| 		fs_info->balance_ctl = bctl;
 | |
| 		spin_unlock(&fs_info->balance_lock);
 | |
| 	} else {
 | |
| 		BUG_ON(ret != -EEXIST);
 | |
| 		spin_lock(&fs_info->balance_lock);
 | |
| 		update_balance_args(bctl);
 | |
| 		spin_unlock(&fs_info->balance_lock);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 | |
| 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
 | |
| 	describe_balance_start_or_resume(fs_info);
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| 
 | |
| 	ret = __btrfs_balance(fs_info);
 | |
| 
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
 | |
| 		btrfs_info(fs_info, "balance: paused");
 | |
| 	/*
 | |
| 	 * Balance can be canceled by:
 | |
| 	 *
 | |
| 	 * - Regular cancel request
 | |
| 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
 | |
| 	 *
 | |
| 	 * - Fatal signal to "btrfs" process
 | |
| 	 *   Either the signal caught by wait_reserve_ticket() and callers
 | |
| 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
 | |
| 	 *   got -ECANCELED.
 | |
| 	 *   Either way, in this case balance_cancel_req = 0, and
 | |
| 	 *   ret == -EINTR or ret == -ECANCELED.
 | |
| 	 *
 | |
| 	 * So here we only check the return value to catch canceled balance.
 | |
| 	 */
 | |
| 	else if (ret == -ECANCELED || ret == -EINTR)
 | |
| 		btrfs_info(fs_info, "balance: canceled");
 | |
| 	else
 | |
| 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
 | |
| 
 | |
| 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
 | |
| 
 | |
| 	if (bargs) {
 | |
| 		memset(bargs, 0, sizeof(*bargs));
 | |
| 		btrfs_update_ioctl_balance_args(fs_info, bargs);
 | |
| 	}
 | |
| 
 | |
| 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
 | |
| 	    balance_need_close(fs_info)) {
 | |
| 		reset_balance_state(fs_info);
 | |
| 		btrfs_exclop_finish(fs_info);
 | |
| 	}
 | |
| 
 | |
| 	wake_up(&fs_info->balance_wait_q);
 | |
| 
 | |
| 	return ret;
 | |
| out:
 | |
| 	if (bctl->flags & BTRFS_BALANCE_RESUME)
 | |
| 		reset_balance_state(fs_info);
 | |
| 	else
 | |
| 		kfree(bctl);
 | |
| 	btrfs_exclop_finish(fs_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int balance_kthread(void *data)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = data;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	if (fs_info->balance_ctl)
 | |
| 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	if (!fs_info->balance_ctl) {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| 
 | |
| 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
 | |
| 		btrfs_info(fs_info, "balance: resume skipped");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A ro->rw remount sequence should continue with the paused balance
 | |
| 	 * regardless of who pauses it, system or the user as of now, so set
 | |
| 	 * the resume flag.
 | |
| 	 */
 | |
| 	spin_lock(&fs_info->balance_lock);
 | |
| 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
 | |
| 	spin_unlock(&fs_info->balance_lock);
 | |
| 
 | |
| 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
 | |
| 	return PTR_ERR_OR_ZERO(tsk);
 | |
| }
 | |
| 
 | |
| int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_balance_control *bctl;
 | |
| 	struct btrfs_balance_item *item;
 | |
| 	struct btrfs_disk_balance_args disk_bargs;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = BTRFS_BALANCE_OBJECTID;
 | |
| 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 	if (ret > 0) { /* ret = -ENOENT; */
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
 | |
| 	if (!bctl) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
 | |
| 
 | |
| 	bctl->flags = btrfs_balance_flags(leaf, item);
 | |
| 	bctl->flags |= BTRFS_BALANCE_RESUME;
 | |
| 
 | |
| 	btrfs_balance_data(leaf, item, &disk_bargs);
 | |
| 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
 | |
| 	btrfs_balance_meta(leaf, item, &disk_bargs);
 | |
| 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
 | |
| 	btrfs_balance_sys(leaf, item, &disk_bargs);
 | |
| 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
 | |
| 
 | |
| 	/*
 | |
| 	 * This should never happen, as the paused balance state is recovered
 | |
| 	 * during mount without any chance of other exclusive ops to collide.
 | |
| 	 *
 | |
| 	 * This gives the exclusive op status to balance and keeps in paused
 | |
| 	 * state until user intervention (cancel or umount). If the ownership
 | |
| 	 * cannot be assigned, show a message but do not fail. The balance
 | |
| 	 * is in a paused state and must have fs_info::balance_ctl properly
 | |
| 	 * set up.
 | |
| 	 */
 | |
| 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
 | |
| 		btrfs_warn(fs_info,
 | |
| 	"balance: cannot set exclusive op status, resume manually");
 | |
| 
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	BUG_ON(fs_info->balance_ctl);
 | |
| 	spin_lock(&fs_info->balance_lock);
 | |
| 	fs_info->balance_ctl = bctl;
 | |
| 	spin_unlock(&fs_info->balance_lock);
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	if (!fs_info->balance_ctl) {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
 | |
| 		atomic_inc(&fs_info->balance_pause_req);
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 
 | |
| 		wait_event(fs_info->balance_wait_q,
 | |
| 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 | |
| 
 | |
| 		mutex_lock(&fs_info->balance_mutex);
 | |
| 		/* we are good with balance_ctl ripped off from under us */
 | |
| 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 | |
| 		atomic_dec(&fs_info->balance_pause_req);
 | |
| 	} else {
 | |
| 		ret = -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	mutex_lock(&fs_info->balance_mutex);
 | |
| 	if (!fs_info->balance_ctl) {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		return -ENOTCONN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A paused balance with the item stored on disk can be resumed at
 | |
| 	 * mount time if the mount is read-write. Otherwise it's still paused
 | |
| 	 * and we must not allow cancelling as it deletes the item.
 | |
| 	 */
 | |
| 	if (sb_rdonly(fs_info->sb)) {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		return -EROFS;
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&fs_info->balance_cancel_req);
 | |
| 	/*
 | |
| 	 * if we are running just wait and return, balance item is
 | |
| 	 * deleted in btrfs_balance in this case
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		wait_event(fs_info->balance_wait_q,
 | |
| 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 | |
| 		mutex_lock(&fs_info->balance_mutex);
 | |
| 	} else {
 | |
| 		mutex_unlock(&fs_info->balance_mutex);
 | |
| 		/*
 | |
| 		 * Lock released to allow other waiters to continue, we'll
 | |
| 		 * reexamine the status again.
 | |
| 		 */
 | |
| 		mutex_lock(&fs_info->balance_mutex);
 | |
| 
 | |
| 		if (fs_info->balance_ctl) {
 | |
| 			reset_balance_state(fs_info);
 | |
| 			btrfs_exclop_finish(fs_info);
 | |
| 			btrfs_info(fs_info, "balance: canceled");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(fs_info->balance_ctl ||
 | |
| 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 | |
| 	atomic_dec(&fs_info->balance_cancel_req);
 | |
| 	mutex_unlock(&fs_info->balance_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_uuid_scan_kthread(void *data)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = data;
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 	int ret = 0;
 | |
| 	struct extent_buffer *eb;
 | |
| 	int slot;
 | |
| 	struct btrfs_root_item root_item;
 | |
| 	u32 item_size;
 | |
| 	struct btrfs_trans_handle *trans = NULL;
 | |
| 	bool closing = false;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	key.objectid = 0;
 | |
| 	key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (btrfs_fs_closing(fs_info)) {
 | |
| 			closing = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		ret = btrfs_search_forward(root, &key, path,
 | |
| 				BTRFS_OLDEST_GENERATION);
 | |
| 		if (ret) {
 | |
| 			if (ret > 0)
 | |
| 				ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
 | |
| 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
 | |
| 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
 | |
| 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
 | |
| 			goto skip;
 | |
| 
 | |
| 		eb = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		item_size = btrfs_item_size_nr(eb, slot);
 | |
| 		if (item_size < sizeof(root_item))
 | |
| 			goto skip;
 | |
| 
 | |
| 		read_extent_buffer(eb, &root_item,
 | |
| 				   btrfs_item_ptr_offset(eb, slot),
 | |
| 				   (int)sizeof(root_item));
 | |
| 		if (btrfs_root_refs(&root_item) == 0)
 | |
| 			goto skip;
 | |
| 
 | |
| 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
 | |
| 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
 | |
| 			if (trans)
 | |
| 				goto update_tree;
 | |
| 
 | |
| 			btrfs_release_path(path);
 | |
| 			/*
 | |
| 			 * 1 - subvol uuid item
 | |
| 			 * 1 - received_subvol uuid item
 | |
| 			 */
 | |
| 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
 | |
| 			if (IS_ERR(trans)) {
 | |
| 				ret = PTR_ERR(trans);
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		} else {
 | |
| 			goto skip;
 | |
| 		}
 | |
| update_tree:
 | |
| 		btrfs_release_path(path);
 | |
| 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
 | |
| 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
 | |
| 						  BTRFS_UUID_KEY_SUBVOL,
 | |
| 						  key.objectid);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
 | |
| 					ret);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
 | |
| 			ret = btrfs_uuid_tree_add(trans,
 | |
| 						  root_item.received_uuid,
 | |
| 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
 | |
| 						  key.objectid);
 | |
| 			if (ret < 0) {
 | |
| 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
 | |
| 					ret);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| skip:
 | |
| 		btrfs_release_path(path);
 | |
| 		if (trans) {
 | |
| 			ret = btrfs_end_transaction(trans);
 | |
| 			trans = NULL;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (key.offset < (u64)-1) {
 | |
| 			key.offset++;
 | |
| 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
 | |
| 			key.offset = 0;
 | |
| 			key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 		} else if (key.objectid < (u64)-1) {
 | |
| 			key.offset = 0;
 | |
| 			key.type = BTRFS_ROOT_ITEM_KEY;
 | |
| 			key.objectid++;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (trans && !IS_ERR(trans))
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	if (ret)
 | |
| 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
 | |
| 	else if (!closing)
 | |
| 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
 | |
| 	up(&fs_info->uuid_tree_rescan_sem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_root *tree_root = fs_info->tree_root;
 | |
| 	struct btrfs_root *uuid_root;
 | |
| 	struct task_struct *task;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 - root node
 | |
| 	 * 1 - root item
 | |
| 	 */
 | |
| 	trans = btrfs_start_transaction(tree_root, 2);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 
 | |
| 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
 | |
| 	if (IS_ERR(uuid_root)) {
 | |
| 		ret = PTR_ERR(uuid_root);
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->uuid_root = uuid_root;
 | |
| 
 | |
| 	ret = btrfs_commit_transaction(trans);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	down(&fs_info->uuid_tree_rescan_sem);
 | |
| 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
 | |
| 	if (IS_ERR(task)) {
 | |
| 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
 | |
| 		btrfs_warn(fs_info, "failed to start uuid_scan task");
 | |
| 		up(&fs_info->uuid_tree_rescan_sem);
 | |
| 		return PTR_ERR(task);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * shrinking a device means finding all of the device extents past
 | |
|  * the new size, and then following the back refs to the chunks.
 | |
|  * The chunk relocation code actually frees the device extent
 | |
|  */
 | |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	struct btrfs_dev_extent *dev_extent = NULL;
 | |
| 	struct btrfs_path *path;
 | |
| 	u64 length;
 | |
| 	u64 chunk_offset;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	int failed = 0;
 | |
| 	bool retried = false;
 | |
| 	struct extent_buffer *l;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	u64 old_total = btrfs_super_total_bytes(super_copy);
 | |
| 	u64 old_size = btrfs_device_get_total_bytes(device);
 | |
| 	u64 diff;
 | |
| 	u64 start;
 | |
| 
 | |
| 	new_size = round_down(new_size, fs_info->sectorsize);
 | |
| 	start = new_size;
 | |
| 	diff = round_down(old_size - new_size, fs_info->sectorsize);
 | |
| 
 | |
| 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_BACK;
 | |
| 
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return PTR_ERR(trans);
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	btrfs_device_set_total_bytes(device, new_size);
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 		device->fs_devices->total_rw_bytes -= diff;
 | |
| 		atomic64_sub(diff, &fs_info->free_chunk_space);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the device's size has been set to the new size, ensure all
 | |
| 	 * in-memory chunks are synced to disk so that the loop below sees them
 | |
| 	 * and relocates them accordingly.
 | |
| 	 */
 | |
| 	if (contains_pending_extent(device, &start, diff)) {
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 		if (ret)
 | |
| 			goto done;
 | |
| 	} else {
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	key.objectid = device->devid;
 | |
| 	key.offset = (u64)-1;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 
 | |
| 	do {
 | |
| 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 		if (ret < 0) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_previous_item(root, path, 0, key.type);
 | |
| 		if (ret) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			if (ret < 0)
 | |
| 				goto done;
 | |
| 			ret = 0;
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		l = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
 | |
| 
 | |
| 		if (key.objectid != device->devid) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
 | |
| 		length = btrfs_dev_extent_length(l, dev_extent);
 | |
| 
 | |
| 		if (key.offset + length <= new_size) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			btrfs_release_path(path);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
 | |
| 		btrfs_release_path(path);
 | |
| 
 | |
| 		/*
 | |
| 		 * We may be relocating the only data chunk we have,
 | |
| 		 * which could potentially end up with losing data's
 | |
| 		 * raid profile, so lets allocate an empty one in
 | |
| 		 * advance.
 | |
| 		 */
 | |
| 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
 | |
| 		if (ret < 0) {
 | |
| 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
 | |
| 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 		if (ret == -ENOSPC) {
 | |
| 			failed++;
 | |
| 		} else if (ret) {
 | |
| 			if (ret == -ETXTBSY) {
 | |
| 				btrfs_warn(fs_info,
 | |
| 		   "could not shrink block group %llu due to active swapfile",
 | |
| 					   chunk_offset);
 | |
| 			}
 | |
| 			goto done;
 | |
| 		}
 | |
| 	} while (key.offset-- > 0);
 | |
| 
 | |
| 	if (failed && !retried) {
 | |
| 		failed = 0;
 | |
| 		retried = true;
 | |
| 		goto again;
 | |
| 	} else if (failed && retried) {
 | |
| 		ret = -ENOSPC;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Shrinking succeeded, else we would be at "done". */
 | |
| 	trans = btrfs_start_transaction(root, 0);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	/* Clear all state bits beyond the shrunk device size */
 | |
| 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
 | |
| 			  CHUNK_STATE_MASK);
 | |
| 
 | |
| 	btrfs_device_set_disk_total_bytes(device, new_size);
 | |
| 	if (list_empty(&device->post_commit_list))
 | |
| 		list_add_tail(&device->post_commit_list,
 | |
| 			      &trans->transaction->dev_update_list);
 | |
| 
 | |
| 	WARN_ON(diff > old_total);
 | |
| 	btrfs_set_super_total_bytes(super_copy,
 | |
| 			round_down(old_total - diff, fs_info->sectorsize));
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	/* Now btrfs_update_device() will change the on-disk size. */
 | |
| 	ret = btrfs_update_device(trans, device);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 		btrfs_end_transaction(trans);
 | |
| 	} else {
 | |
| 		ret = btrfs_commit_transaction(trans);
 | |
| 	}
 | |
| done:
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret) {
 | |
| 		mutex_lock(&fs_info->chunk_mutex);
 | |
| 		btrfs_device_set_total_bytes(device, old_size);
 | |
| 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
 | |
| 			device->fs_devices->total_rw_bytes += diff;
 | |
| 		atomic64_add(diff, &fs_info->free_chunk_space);
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
 | |
| 			   struct btrfs_key *key,
 | |
| 			   struct btrfs_chunk *chunk, int item_size)
 | |
| {
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	u32 array_size;
 | |
| 	u8 *ptr;
 | |
| 
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 	if (array_size + item_size + sizeof(disk_key)
 | |
| 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
 | |
| 		mutex_unlock(&fs_info->chunk_mutex);
 | |
| 		return -EFBIG;
 | |
| 	}
 | |
| 
 | |
| 	ptr = super_copy->sys_chunk_array + array_size;
 | |
| 	btrfs_cpu_key_to_disk(&disk_key, key);
 | |
| 	memcpy(ptr, &disk_key, sizeof(disk_key));
 | |
| 	ptr += sizeof(disk_key);
 | |
| 	memcpy(ptr, chunk, item_size);
 | |
| 	item_size += sizeof(disk_key);
 | |
| 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sort the devices in descending order by max_avail, total_avail
 | |
|  */
 | |
| static int btrfs_cmp_device_info(const void *a, const void *b)
 | |
| {
 | |
| 	const struct btrfs_device_info *di_a = a;
 | |
| 	const struct btrfs_device_info *di_b = b;
 | |
| 
 | |
| 	if (di_a->max_avail > di_b->max_avail)
 | |
| 		return -1;
 | |
| 	if (di_a->max_avail < di_b->max_avail)
 | |
| 		return 1;
 | |
| 	if (di_a->total_avail > di_b->total_avail)
 | |
| 		return -1;
 | |
| 	if (di_a->total_avail < di_b->total_avail)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
 | |
| {
 | |
| 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	btrfs_set_fs_incompat(info, RAID56);
 | |
| }
 | |
| 
 | |
| static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
 | |
| {
 | |
| 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
 | |
| 		return;
 | |
| 
 | |
| 	btrfs_set_fs_incompat(info, RAID1C34);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure used internally for __btrfs_alloc_chunk() function.
 | |
|  * Wraps needed parameters.
 | |
|  */
 | |
| struct alloc_chunk_ctl {
 | |
| 	u64 start;
 | |
| 	u64 type;
 | |
| 	/* Total number of stripes to allocate */
 | |
| 	int num_stripes;
 | |
| 	/* sub_stripes info for map */
 | |
| 	int sub_stripes;
 | |
| 	/* Stripes per device */
 | |
| 	int dev_stripes;
 | |
| 	/* Maximum number of devices to use */
 | |
| 	int devs_max;
 | |
| 	/* Minimum number of devices to use */
 | |
| 	int devs_min;
 | |
| 	/* ndevs has to be a multiple of this */
 | |
| 	int devs_increment;
 | |
| 	/* Number of copies */
 | |
| 	int ncopies;
 | |
| 	/* Number of stripes worth of bytes to store parity information */
 | |
| 	int nparity;
 | |
| 	u64 max_stripe_size;
 | |
| 	u64 max_chunk_size;
 | |
| 	u64 dev_extent_min;
 | |
| 	u64 stripe_size;
 | |
| 	u64 chunk_size;
 | |
| 	int ndevs;
 | |
| };
 | |
| 
 | |
| static void init_alloc_chunk_ctl_policy_regular(
 | |
| 				struct btrfs_fs_devices *fs_devices,
 | |
| 				struct alloc_chunk_ctl *ctl)
 | |
| {
 | |
| 	u64 type = ctl->type;
 | |
| 
 | |
| 	if (type & BTRFS_BLOCK_GROUP_DATA) {
 | |
| 		ctl->max_stripe_size = SZ_1G;
 | |
| 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		/* For larger filesystems, use larger metadata chunks */
 | |
| 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
 | |
| 			ctl->max_stripe_size = SZ_1G;
 | |
| 		else
 | |
| 			ctl->max_stripe_size = SZ_256M;
 | |
| 		ctl->max_chunk_size = ctl->max_stripe_size;
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		ctl->max_stripe_size = SZ_32M;
 | |
| 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
 | |
| 		ctl->devs_max = min_t(int, ctl->devs_max,
 | |
| 				      BTRFS_MAX_DEVS_SYS_CHUNK);
 | |
| 	} else {
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/* We don't want a chunk larger than 10% of writable space */
 | |
| 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
 | |
| 				  ctl->max_chunk_size);
 | |
| 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
 | |
| }
 | |
| 
 | |
| static void init_alloc_chunk_ctl_policy_zoned(
 | |
| 				      struct btrfs_fs_devices *fs_devices,
 | |
| 				      struct alloc_chunk_ctl *ctl)
 | |
| {
 | |
| 	u64 zone_size = fs_devices->fs_info->zone_size;
 | |
| 	u64 limit;
 | |
| 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
 | |
| 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
 | |
| 	u64 min_chunk_size = min_data_stripes * zone_size;
 | |
| 	u64 type = ctl->type;
 | |
| 
 | |
| 	ctl->max_stripe_size = zone_size;
 | |
| 	if (type & BTRFS_BLOCK_GROUP_DATA) {
 | |
| 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
 | |
| 						 zone_size);
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		ctl->max_chunk_size = ctl->max_stripe_size;
 | |
| 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
 | |
| 		ctl->devs_max = min_t(int, ctl->devs_max,
 | |
| 				      BTRFS_MAX_DEVS_SYS_CHUNK);
 | |
| 	}
 | |
| 
 | |
| 	/* We don't want a chunk larger than 10% of writable space */
 | |
| 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
 | |
| 			       zone_size),
 | |
| 		    min_chunk_size);
 | |
| 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
 | |
| 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
 | |
| }
 | |
| 
 | |
| static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
 | |
| 				 struct alloc_chunk_ctl *ctl)
 | |
| {
 | |
| 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
 | |
| 
 | |
| 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
 | |
| 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
 | |
| 	ctl->devs_max = btrfs_raid_array[index].devs_max;
 | |
| 	if (!ctl->devs_max)
 | |
| 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
 | |
| 	ctl->devs_min = btrfs_raid_array[index].devs_min;
 | |
| 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
 | |
| 	ctl->ncopies = btrfs_raid_array[index].ncopies;
 | |
| 	ctl->nparity = btrfs_raid_array[index].nparity;
 | |
| 	ctl->ndevs = 0;
 | |
| 
 | |
| 	switch (fs_devices->chunk_alloc_policy) {
 | |
| 	case BTRFS_CHUNK_ALLOC_REGULAR:
 | |
| 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
 | |
| 		break;
 | |
| 	case BTRFS_CHUNK_ALLOC_ZONED:
 | |
| 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int gather_device_info(struct btrfs_fs_devices *fs_devices,
 | |
| 			      struct alloc_chunk_ctl *ctl,
 | |
| 			      struct btrfs_device_info *devices_info)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = fs_devices->fs_info;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 total_avail;
 | |
| 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
 | |
| 	int ret;
 | |
| 	int ndevs = 0;
 | |
| 	u64 max_avail;
 | |
| 	u64 dev_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * in the first pass through the devices list, we gather information
 | |
| 	 * about the available holes on each device.
 | |
| 	 */
 | |
| 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 | |
| 			WARN(1, KERN_ERR
 | |
| 			       "BTRFS: read-only device in alloc_list\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
 | |
| 					&device->dev_state) ||
 | |
| 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
 | |
| 			continue;
 | |
| 
 | |
| 		if (device->total_bytes > device->bytes_used)
 | |
| 			total_avail = device->total_bytes - device->bytes_used;
 | |
| 		else
 | |
| 			total_avail = 0;
 | |
| 
 | |
| 		/* If there is no space on this device, skip it. */
 | |
| 		if (total_avail < ctl->dev_extent_min)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
 | |
| 					   &max_avail);
 | |
| 		if (ret && ret != -ENOSPC)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (ret == 0)
 | |
| 			max_avail = dev_extent_want;
 | |
| 
 | |
| 		if (max_avail < ctl->dev_extent_min) {
 | |
| 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
 | |
| 				btrfs_debug(info,
 | |
| 			"%s: devid %llu has no free space, have=%llu want=%llu",
 | |
| 					    __func__, device->devid, max_avail,
 | |
| 					    ctl->dev_extent_min);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ndevs == fs_devices->rw_devices) {
 | |
| 			WARN(1, "%s: found more than %llu devices\n",
 | |
| 			     __func__, fs_devices->rw_devices);
 | |
| 			break;
 | |
| 		}
 | |
| 		devices_info[ndevs].dev_offset = dev_offset;
 | |
| 		devices_info[ndevs].max_avail = max_avail;
 | |
| 		devices_info[ndevs].total_avail = total_avail;
 | |
| 		devices_info[ndevs].dev = device;
 | |
| 		++ndevs;
 | |
| 	}
 | |
| 	ctl->ndevs = ndevs;
 | |
| 
 | |
| 	/*
 | |
| 	 * now sort the devices by hole size / available space
 | |
| 	 */
 | |
| 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
 | |
| 	     btrfs_cmp_device_info, NULL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
 | |
| 				      struct btrfs_device_info *devices_info)
 | |
| {
 | |
| 	/* Number of stripes that count for block group size */
 | |
| 	int data_stripes;
 | |
| 
 | |
| 	/*
 | |
| 	 * The primary goal is to maximize the number of stripes, so use as
 | |
| 	 * many devices as possible, even if the stripes are not maximum sized.
 | |
| 	 *
 | |
| 	 * The DUP profile stores more than one stripe per device, the
 | |
| 	 * max_avail is the total size so we have to adjust.
 | |
| 	 */
 | |
| 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
 | |
| 				   ctl->dev_stripes);
 | |
| 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
 | |
| 
 | |
| 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
 | |
| 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the number of data stripes to figure out how big this chunk is
 | |
| 	 * really going to be in terms of logical address space, and compare
 | |
| 	 * that answer with the max chunk size. If it's higher, we try to
 | |
| 	 * reduce stripe_size.
 | |
| 	 */
 | |
| 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
 | |
| 		/*
 | |
| 		 * Reduce stripe_size, round it up to a 16MB boundary again and
 | |
| 		 * then use it, unless it ends up being even bigger than the
 | |
| 		 * previous value we had already.
 | |
| 		 */
 | |
| 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
 | |
| 							data_stripes), SZ_16M),
 | |
| 				       ctl->stripe_size);
 | |
| 	}
 | |
| 
 | |
| 	/* Align to BTRFS_STRIPE_LEN */
 | |
| 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
 | |
| 	ctl->chunk_size = ctl->stripe_size * data_stripes;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
 | |
| 				    struct btrfs_device_info *devices_info)
 | |
| {
 | |
| 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
 | |
| 	/* Number of stripes that count for block group size */
 | |
| 	int data_stripes;
 | |
| 
 | |
| 	/*
 | |
| 	 * It should hold because:
 | |
| 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
 | |
| 	 */
 | |
| 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
 | |
| 
 | |
| 	ctl->stripe_size = zone_size;
 | |
| 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
 | |
| 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
 | |
| 
 | |
| 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
 | |
| 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
 | |
| 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
 | |
| 					     ctl->stripe_size) + ctl->nparity,
 | |
| 				     ctl->dev_stripes);
 | |
| 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
 | |
| 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
 | |
| 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
 | |
| 	}
 | |
| 
 | |
| 	ctl->chunk_size = ctl->stripe_size * data_stripes;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
 | |
| 			      struct alloc_chunk_ctl *ctl,
 | |
| 			      struct btrfs_device_info *devices_info)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = fs_devices->fs_info;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round down to number of usable stripes, devs_increment can be any
 | |
| 	 * number so we can't use round_down() that requires power of 2, while
 | |
| 	 * rounddown is safe.
 | |
| 	 */
 | |
| 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
 | |
| 
 | |
| 	if (ctl->ndevs < ctl->devs_min) {
 | |
| 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
 | |
| 			btrfs_debug(info,
 | |
| 	"%s: not enough devices with free space: have=%d minimum required=%d",
 | |
| 				    __func__, ctl->ndevs, ctl->devs_min);
 | |
| 		}
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
 | |
| 
 | |
| 	switch (fs_devices->chunk_alloc_policy) {
 | |
| 	case BTRFS_CHUNK_ALLOC_REGULAR:
 | |
| 		return decide_stripe_size_regular(ctl, devices_info);
 | |
| 	case BTRFS_CHUNK_ALLOC_ZONED:
 | |
| 		return decide_stripe_size_zoned(ctl, devices_info);
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int create_chunk(struct btrfs_trans_handle *trans,
 | |
| 			struct alloc_chunk_ctl *ctl,
 | |
| 			struct btrfs_device_info *devices_info)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = trans->fs_info;
 | |
| 	struct map_lookup *map = NULL;
 | |
| 	struct extent_map_tree *em_tree;
 | |
| 	struct extent_map *em;
 | |
| 	u64 start = ctl->start;
 | |
| 	u64 type = ctl->type;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	int j;
 | |
| 
 | |
| 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
 | |
| 	if (!map)
 | |
| 		return -ENOMEM;
 | |
| 	map->num_stripes = ctl->num_stripes;
 | |
| 
 | |
| 	for (i = 0; i < ctl->ndevs; ++i) {
 | |
| 		for (j = 0; j < ctl->dev_stripes; ++j) {
 | |
| 			int s = i * ctl->dev_stripes + j;
 | |
| 			map->stripes[s].dev = devices_info[i].dev;
 | |
| 			map->stripes[s].physical = devices_info[i].dev_offset +
 | |
| 						   j * ctl->stripe_size;
 | |
| 		}
 | |
| 	}
 | |
| 	map->stripe_len = BTRFS_STRIPE_LEN;
 | |
| 	map->io_align = BTRFS_STRIPE_LEN;
 | |
| 	map->io_width = BTRFS_STRIPE_LEN;
 | |
| 	map->type = type;
 | |
| 	map->sub_stripes = ctl->sub_stripes;
 | |
| 
 | |
| 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em) {
 | |
| 		kfree(map);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
 | |
| 	em->map_lookup = map;
 | |
| 	em->start = start;
 | |
| 	em->len = ctl->chunk_size;
 | |
| 	em->block_start = 0;
 | |
| 	em->block_len = em->len;
 | |
| 	em->orig_block_len = ctl->stripe_size;
 | |
| 
 | |
| 	em_tree = &info->mapping_tree;
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	ret = add_extent_mapping(em_tree, em, 0);
 | |
| 	if (ret) {
 | |
| 		write_unlock(&em_tree->lock);
 | |
| 		free_extent_map(em);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	write_unlock(&em_tree->lock);
 | |
| 
 | |
| 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
 | |
| 	if (ret)
 | |
| 		goto error_del_extent;
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		struct btrfs_device *dev = map->stripes[i].dev;
 | |
| 
 | |
| 		btrfs_device_set_bytes_used(dev,
 | |
| 					    dev->bytes_used + ctl->stripe_size);
 | |
| 		if (list_empty(&dev->post_commit_list))
 | |
| 			list_add_tail(&dev->post_commit_list,
 | |
| 				      &trans->transaction->dev_update_list);
 | |
| 	}
 | |
| 
 | |
| 	atomic64_sub(ctl->stripe_size * map->num_stripes,
 | |
| 		     &info->free_chunk_space);
 | |
| 
 | |
| 	free_extent_map(em);
 | |
| 	check_raid56_incompat_flag(info, type);
 | |
| 	check_raid1c34_incompat_flag(info, type);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_del_extent:
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	remove_extent_mapping(em_tree, em);
 | |
| 	write_unlock(&em_tree->lock);
 | |
| 
 | |
| 	/* One for our allocation */
 | |
| 	free_extent_map(em);
 | |
| 	/* One for the tree reference */
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
 | |
| {
 | |
| 	struct btrfs_fs_info *info = trans->fs_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
 | |
| 	struct btrfs_device_info *devices_info = NULL;
 | |
| 	struct alloc_chunk_ctl ctl;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&info->chunk_mutex);
 | |
| 
 | |
| 	if (!alloc_profile_is_valid(type, 0)) {
 | |
| 		ASSERT(0);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(&fs_devices->alloc_list)) {
 | |
| 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
 | |
| 			btrfs_debug(info, "%s: no writable device", __func__);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
 | |
| 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
 | |
| 		ASSERT(0);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ctl.start = find_next_chunk(info);
 | |
| 	ctl.type = type;
 | |
| 	init_alloc_chunk_ctl(fs_devices, &ctl);
 | |
| 
 | |
| 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
 | |
| 			       GFP_NOFS);
 | |
| 	if (!devices_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = gather_device_info(fs_devices, &ctl, devices_info);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = create_chunk(trans, &ctl, devices_info);
 | |
| 
 | |
| out:
 | |
| 	kfree(devices_info);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Chunk allocation falls into two parts. The first part does work
 | |
|  * that makes the new allocated chunk usable, but does not do any operation
 | |
|  * that modifies the chunk tree. The second part does the work that
 | |
|  * requires modifying the chunk tree. This division is important for the
 | |
|  * bootstrap process of adding storage to a seed btrfs.
 | |
|  */
 | |
| int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
 | |
| 			     u64 chunk_offset, u64 chunk_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *extent_root = fs_info->extent_root;
 | |
| 	struct btrfs_root *chunk_root = fs_info->chunk_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	struct btrfs_stripe *stripe;
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	size_t item_size;
 | |
| 	u64 dev_offset;
 | |
| 	u64 stripe_size;
 | |
| 	int i = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
 | |
| 	if (IS_ERR(em))
 | |
| 		return PTR_ERR(em);
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	item_size = btrfs_chunk_item_size(map->num_stripes);
 | |
| 	stripe_size = em->orig_block_len;
 | |
| 
 | |
| 	chunk = kzalloc(item_size, GFP_NOFS);
 | |
| 	if (!chunk) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the device list mutex to prevent races with the final phase of
 | |
| 	 * a device replace operation that replaces the device object associated
 | |
| 	 * with the map's stripes, because the device object's id can change
 | |
| 	 * at any time during that final phase of the device replace operation
 | |
| 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
 | |
| 	 */
 | |
| 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		device = map->stripes[i].dev;
 | |
| 		dev_offset = map->stripes[i].physical;
 | |
| 
 | |
| 		ret = btrfs_update_device(trans, device);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
 | |
| 					     dev_offset, stripe_size);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (ret) {
 | |
| 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	stripe = &chunk->stripe;
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		device = map->stripes[i].dev;
 | |
| 		dev_offset = map->stripes[i].physical;
 | |
| 
 | |
| 		btrfs_set_stack_stripe_devid(stripe, device->devid);
 | |
| 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
 | |
| 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
 | |
| 		stripe++;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 | |
| 
 | |
| 	btrfs_set_stack_chunk_length(chunk, chunk_size);
 | |
| 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
 | |
| 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_type(chunk, map->type);
 | |
| 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
 | |
| 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
 | |
| 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
 | |
| 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
 | |
| 
 | |
| 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
 | |
| 	key.type = BTRFS_CHUNK_ITEM_KEY;
 | |
| 	key.offset = chunk_offset;
 | |
| 
 | |
| 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
 | |
| 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
 | |
| 		/*
 | |
| 		 * TODO: Cleanup of inserted chunk root in case of
 | |
| 		 * failure.
 | |
| 		 */
 | |
| 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	kfree(chunk);
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	u64 alloc_profile;
 | |
| 	int ret;
 | |
| 
 | |
| 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
 | |
| 	ret = btrfs_alloc_chunk(trans, alloc_profile);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	alloc_profile = btrfs_system_alloc_profile(fs_info);
 | |
| 	ret = btrfs_alloc_chunk(trans, alloc_profile);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int btrfs_chunk_max_errors(struct map_lookup *map)
 | |
| {
 | |
| 	const int index = btrfs_bg_flags_to_raid_index(map->type);
 | |
| 
 | |
| 	return btrfs_raid_array[index].tolerated_failures;
 | |
| }
 | |
| 
 | |
| int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	int readonly = 0;
 | |
| 	int miss_ndevs = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
 | |
| 	if (IS_ERR(em))
 | |
| 		return 1;
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		if (test_bit(BTRFS_DEV_STATE_MISSING,
 | |
| 					&map->stripes[i].dev->dev_state)) {
 | |
| 			miss_ndevs++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
 | |
| 					&map->stripes[i].dev->dev_state)) {
 | |
| 			readonly = 1;
 | |
| 			goto end;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the number of missing devices is larger than max errors,
 | |
| 	 * we can not write the data into that chunk successfully, so
 | |
| 	 * set it readonly.
 | |
| 	 */
 | |
| 	if (miss_ndevs > btrfs_chunk_max_errors(map))
 | |
| 		readonly = 1;
 | |
| end:
 | |
| 	free_extent_map(em);
 | |
| 	return readonly;
 | |
| }
 | |
| 
 | |
| void btrfs_mapping_tree_free(struct extent_map_tree *tree)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	while (1) {
 | |
| 		write_lock(&tree->lock);
 | |
| 		em = lookup_extent_mapping(tree, 0, (u64)-1);
 | |
| 		if (em)
 | |
| 			remove_extent_mapping(tree, em);
 | |
| 		write_unlock(&tree->lock);
 | |
| 		if (!em)
 | |
| 			break;
 | |
| 		/* once for us */
 | |
| 		free_extent_map(em);
 | |
| 		/* once for the tree */
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	int ret;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, logical, len);
 | |
| 	if (IS_ERR(em))
 | |
| 		/*
 | |
| 		 * We could return errors for these cases, but that could get
 | |
| 		 * ugly and we'd probably do the same thing which is just not do
 | |
| 		 * anything else and exit, so return 1 so the callers don't try
 | |
| 		 * to use other copies.
 | |
| 		 */
 | |
| 		return 1;
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
 | |
| 		ret = map->num_stripes;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		ret = map->sub_stripes;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
 | |
| 		ret = 2;
 | |
| 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 		/*
 | |
| 		 * There could be two corrupted data stripes, we need
 | |
| 		 * to loop retry in order to rebuild the correct data.
 | |
| 		 *
 | |
| 		 * Fail a stripe at a time on every retry except the
 | |
| 		 * stripe under reconstruction.
 | |
| 		 */
 | |
| 		ret = map->num_stripes;
 | |
| 	else
 | |
| 		ret = 1;
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	down_read(&fs_info->dev_replace.rwsem);
 | |
| 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
 | |
| 	    fs_info->dev_replace.tgtdev)
 | |
| 		ret++;
 | |
| 	up_read(&fs_info->dev_replace.rwsem);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
 | |
| 				    u64 logical)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	unsigned long len = fs_info->sectorsize;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, logical, len);
 | |
| 
 | |
| 	if (!WARN_ON(IS_ERR(em))) {
 | |
| 		map = em->map_lookup;
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			len = map->stripe_len * nr_data_stripes(map);
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, logical, len);
 | |
| 
 | |
| 	if(!WARN_ON(IS_ERR(em))) {
 | |
| 		map = em->map_lookup;
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
 | |
| 			ret = 1;
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int find_live_mirror(struct btrfs_fs_info *fs_info,
 | |
| 			    struct map_lookup *map, int first,
 | |
| 			    int dev_replace_is_ongoing)
 | |
| {
 | |
| 	int i;
 | |
| 	int num_stripes;
 | |
| 	int preferred_mirror;
 | |
| 	int tolerance;
 | |
| 	struct btrfs_device *srcdev;
 | |
| 
 | |
| 	ASSERT((map->type &
 | |
| 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
 | |
| 
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
 | |
| 		num_stripes = map->sub_stripes;
 | |
| 	else
 | |
| 		num_stripes = map->num_stripes;
 | |
| 
 | |
| 	switch (fs_info->fs_devices->read_policy) {
 | |
| 	default:
 | |
| 		/* Shouldn't happen, just warn and use pid instead of failing */
 | |
| 		btrfs_warn_rl(fs_info,
 | |
| 			      "unknown read_policy type %u, reset to pid",
 | |
| 			      fs_info->fs_devices->read_policy);
 | |
| 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
 | |
| 		fallthrough;
 | |
| 	case BTRFS_READ_POLICY_PID:
 | |
| 		preferred_mirror = first + (current->pid % num_stripes);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (dev_replace_is_ongoing &&
 | |
| 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
 | |
| 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
 | |
| 		srcdev = fs_info->dev_replace.srcdev;
 | |
| 	else
 | |
| 		srcdev = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * try to avoid the drive that is the source drive for a
 | |
| 	 * dev-replace procedure, only choose it if no other non-missing
 | |
| 	 * mirror is available
 | |
| 	 */
 | |
| 	for (tolerance = 0; tolerance < 2; tolerance++) {
 | |
| 		if (map->stripes[preferred_mirror].dev->bdev &&
 | |
| 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
 | |
| 			return preferred_mirror;
 | |
| 		for (i = first; i < first + num_stripes; i++) {
 | |
| 			if (map->stripes[i].dev->bdev &&
 | |
| 			    (tolerance || map->stripes[i].dev != srcdev))
 | |
| 				return i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* we couldn't find one that doesn't fail.  Just return something
 | |
| 	 * and the io error handling code will clean up eventually
 | |
| 	 */
 | |
| 	return preferred_mirror;
 | |
| }
 | |
| 
 | |
| /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
 | |
| static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
 | |
| {
 | |
| 	int i;
 | |
| 	int again = 1;
 | |
| 
 | |
| 	while (again) {
 | |
| 		again = 0;
 | |
| 		for (i = 0; i < num_stripes - 1; i++) {
 | |
| 			/* Swap if parity is on a smaller index */
 | |
| 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
 | |
| 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
 | |
| 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
 | |
| 				again = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = kzalloc(
 | |
| 		 /* the size of the btrfs_bio */
 | |
| 		sizeof(struct btrfs_bio) +
 | |
| 		/* plus the variable array for the stripes */
 | |
| 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
 | |
| 		/* plus the variable array for the tgt dev */
 | |
| 		sizeof(int) * (real_stripes) +
 | |
| 		/*
 | |
| 		 * plus the raid_map, which includes both the tgt dev
 | |
| 		 * and the stripes
 | |
| 		 */
 | |
| 		sizeof(u64) * (total_stripes),
 | |
| 		GFP_NOFS|__GFP_NOFAIL);
 | |
| 
 | |
| 	atomic_set(&bbio->error, 0);
 | |
| 	refcount_set(&bbio->refs, 1);
 | |
| 
 | |
| 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
 | |
| 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
 | |
| 
 | |
| 	return bbio;
 | |
| }
 | |
| 
 | |
| void btrfs_get_bbio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	WARN_ON(!refcount_read(&bbio->refs));
 | |
| 	refcount_inc(&bbio->refs);
 | |
| }
 | |
| 
 | |
| void btrfs_put_bbio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	if (!bbio)
 | |
| 		return;
 | |
| 	if (refcount_dec_and_test(&bbio->refs))
 | |
| 		kfree(bbio);
 | |
| }
 | |
| 
 | |
| /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
 | |
| /*
 | |
|  * Please note that, discard won't be sent to target device of device
 | |
|  * replace.
 | |
|  */
 | |
| static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
 | |
| 					 u64 logical, u64 *length_ret,
 | |
| 					 struct btrfs_bio **bbio_ret)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	u64 length = *length_ret;
 | |
| 	u64 offset;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 stripe_nr_end;
 | |
| 	u64 stripe_end_offset;
 | |
| 	u64 stripe_cnt;
 | |
| 	u64 stripe_len;
 | |
| 	u64 stripe_offset;
 | |
| 	u64 num_stripes;
 | |
| 	u32 stripe_index;
 | |
| 	u32 factor = 0;
 | |
| 	u32 sub_stripes = 0;
 | |
| 	u64 stripes_per_dev = 0;
 | |
| 	u32 remaining_stripes = 0;
 | |
| 	u32 last_stripe = 0;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/* discard always return a bbio */
 | |
| 	ASSERT(bbio_ret);
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, logical, length);
 | |
| 	if (IS_ERR(em))
 | |
| 		return PTR_ERR(em);
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	/* we don't discard raid56 yet */
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		ret = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	offset = logical - em->start;
 | |
| 	length = min_t(u64, em->start + em->len - logical, length);
 | |
| 	*length_ret = length;
 | |
| 
 | |
| 	stripe_len = map->stripe_len;
 | |
| 	/*
 | |
| 	 * stripe_nr counts the total number of stripes we have to stride
 | |
| 	 * to get to this block
 | |
| 	 */
 | |
| 	stripe_nr = div64_u64(offset, stripe_len);
 | |
| 
 | |
| 	/* stripe_offset is the offset of this block in its stripe */
 | |
| 	stripe_offset = offset - stripe_nr * stripe_len;
 | |
| 
 | |
| 	stripe_nr_end = round_up(offset + length, map->stripe_len);
 | |
| 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
 | |
| 	stripe_cnt = stripe_nr_end - stripe_nr;
 | |
| 	stripe_end_offset = stripe_nr_end * map->stripe_len -
 | |
| 			    (offset + length);
 | |
| 	/*
 | |
| 	 * after this, stripe_nr is the number of stripes on this
 | |
| 	 * device we have to walk to find the data, and stripe_index is
 | |
| 	 * the number of our device in the stripe array
 | |
| 	 */
 | |
| 	num_stripes = 1;
 | |
| 	stripe_index = 0;
 | |
| 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 			 BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
 | |
| 			sub_stripes = 1;
 | |
| 		else
 | |
| 			sub_stripes = map->sub_stripes;
 | |
| 
 | |
| 		factor = map->num_stripes / sub_stripes;
 | |
| 		num_stripes = min_t(u64, map->num_stripes,
 | |
| 				    sub_stripes * stripe_cnt);
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
 | |
| 		stripe_index *= sub_stripes;
 | |
| 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
 | |
| 					      &remaining_stripes);
 | |
| 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
 | |
| 		last_stripe *= sub_stripes;
 | |
| 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
 | |
| 				BTRFS_BLOCK_GROUP_DUP)) {
 | |
| 		num_stripes = map->num_stripes;
 | |
| 	} else {
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
 | |
| 					&stripe_index);
 | |
| 	}
 | |
| 
 | |
| 	bbio = alloc_btrfs_bio(num_stripes, 0);
 | |
| 	if (!bbio) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		bbio->stripes[i].physical =
 | |
| 			map->stripes[stripe_index].physical +
 | |
| 			stripe_offset + stripe_nr * map->stripe_len;
 | |
| 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
 | |
| 
 | |
| 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
 | |
| 				 BTRFS_BLOCK_GROUP_RAID10)) {
 | |
| 			bbio->stripes[i].length = stripes_per_dev *
 | |
| 				map->stripe_len;
 | |
| 
 | |
| 			if (i / sub_stripes < remaining_stripes)
 | |
| 				bbio->stripes[i].length +=
 | |
| 					map->stripe_len;
 | |
| 
 | |
| 			/*
 | |
| 			 * Special for the first stripe and
 | |
| 			 * the last stripe:
 | |
| 			 *
 | |
| 			 * |-------|...|-------|
 | |
| 			 *     |----------|
 | |
| 			 *    off     end_off
 | |
| 			 */
 | |
| 			if (i < sub_stripes)
 | |
| 				bbio->stripes[i].length -=
 | |
| 					stripe_offset;
 | |
| 
 | |
| 			if (stripe_index >= last_stripe &&
 | |
| 			    stripe_index <= (last_stripe +
 | |
| 					     sub_stripes - 1))
 | |
| 				bbio->stripes[i].length -=
 | |
| 					stripe_end_offset;
 | |
| 
 | |
| 			if (i == sub_stripes - 1)
 | |
| 				stripe_offset = 0;
 | |
| 		} else {
 | |
| 			bbio->stripes[i].length = length;
 | |
| 		}
 | |
| 
 | |
| 		stripe_index++;
 | |
| 		if (stripe_index == map->num_stripes) {
 | |
| 			stripe_index = 0;
 | |
| 			stripe_nr++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*bbio_ret = bbio;
 | |
| 	bbio->map_type = map->type;
 | |
| 	bbio->num_stripes = num_stripes;
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In dev-replace case, for repair case (that's the only case where the mirror
 | |
|  * is selected explicitly when calling btrfs_map_block), blocks left of the
 | |
|  * left cursor can also be read from the target drive.
 | |
|  *
 | |
|  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 | |
|  * array of stripes.
 | |
|  * For READ, it also needs to be supported using the same mirror number.
 | |
|  *
 | |
|  * If the requested block is not left of the left cursor, EIO is returned. This
 | |
|  * can happen because btrfs_num_copies() returns one more in the dev-replace
 | |
|  * case.
 | |
|  */
 | |
| static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
 | |
| 					 u64 logical, u64 length,
 | |
| 					 u64 srcdev_devid, int *mirror_num,
 | |
| 					 u64 *physical)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	int num_stripes;
 | |
| 	int index_srcdev = 0;
 | |
| 	int found = 0;
 | |
| 	u64 physical_of_found = 0;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 | |
| 				logical, &length, &bbio, 0, 0);
 | |
| 	if (ret) {
 | |
| 		ASSERT(bbio == NULL);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	num_stripes = bbio->num_stripes;
 | |
| 	if (*mirror_num > num_stripes) {
 | |
| 		/*
 | |
| 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
 | |
| 		 * that means that the requested area is not left of the left
 | |
| 		 * cursor
 | |
| 		 */
 | |
| 		btrfs_put_bbio(bbio);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * process the rest of the function using the mirror_num of the source
 | |
| 	 * drive. Therefore look it up first.  At the end, patch the device
 | |
| 	 * pointer to the one of the target drive.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		if (bbio->stripes[i].dev->devid != srcdev_devid)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case of DUP, in order to keep it simple, only add the
 | |
| 		 * mirror with the lowest physical address
 | |
| 		 */
 | |
| 		if (found &&
 | |
| 		    physical_of_found <= bbio->stripes[i].physical)
 | |
| 			continue;
 | |
| 
 | |
| 		index_srcdev = i;
 | |
| 		found = 1;
 | |
| 		physical_of_found = bbio->stripes[i].physical;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_put_bbio(bbio);
 | |
| 
 | |
| 	ASSERT(found);
 | |
| 	if (!found)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*mirror_num = index_srcdev + 1;
 | |
| 	*physical = physical_of_found;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	bool ret;
 | |
| 
 | |
| 	/* Non zoned filesystem does not use "to_copy" flag */
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return false;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, logical);
 | |
| 
 | |
| 	spin_lock(&cache->lock);
 | |
| 	ret = cache->to_copy;
 | |
| 	spin_unlock(&cache->lock);
 | |
| 
 | |
| 	btrfs_put_block_group(cache);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void handle_ops_on_dev_replace(enum btrfs_map_op op,
 | |
| 				      struct btrfs_bio **bbio_ret,
 | |
| 				      struct btrfs_dev_replace *dev_replace,
 | |
| 				      u64 logical,
 | |
| 				      int *num_stripes_ret, int *max_errors_ret)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = *bbio_ret;
 | |
| 	u64 srcdev_devid = dev_replace->srcdev->devid;
 | |
| 	int tgtdev_indexes = 0;
 | |
| 	int num_stripes = *num_stripes_ret;
 | |
| 	int max_errors = *max_errors_ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (op == BTRFS_MAP_WRITE) {
 | |
| 		int index_where_to_add;
 | |
| 
 | |
| 		/*
 | |
| 		 * A block group which have "to_copy" set will eventually
 | |
| 		 * copied by dev-replace process. We can avoid cloning IO here.
 | |
| 		 */
 | |
| 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * duplicate the write operations while the dev replace
 | |
| 		 * procedure is running. Since the copying of the old disk to
 | |
| 		 * the new disk takes place at run time while the filesystem is
 | |
| 		 * mounted writable, the regular write operations to the old
 | |
| 		 * disk have to be duplicated to go to the new disk as well.
 | |
| 		 *
 | |
| 		 * Note that device->missing is handled by the caller, and that
 | |
| 		 * the write to the old disk is already set up in the stripes
 | |
| 		 * array.
 | |
| 		 */
 | |
| 		index_where_to_add = num_stripes;
 | |
| 		for (i = 0; i < num_stripes; i++) {
 | |
| 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
 | |
| 				/* write to new disk, too */
 | |
| 				struct btrfs_bio_stripe *new =
 | |
| 					bbio->stripes + index_where_to_add;
 | |
| 				struct btrfs_bio_stripe *old =
 | |
| 					bbio->stripes + i;
 | |
| 
 | |
| 				new->physical = old->physical;
 | |
| 				new->length = old->length;
 | |
| 				new->dev = dev_replace->tgtdev;
 | |
| 				bbio->tgtdev_map[i] = index_where_to_add;
 | |
| 				index_where_to_add++;
 | |
| 				max_errors++;
 | |
| 				tgtdev_indexes++;
 | |
| 			}
 | |
| 		}
 | |
| 		num_stripes = index_where_to_add;
 | |
| 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
 | |
| 		int index_srcdev = 0;
 | |
| 		int found = 0;
 | |
| 		u64 physical_of_found = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * During the dev-replace procedure, the target drive can also
 | |
| 		 * be used to read data in case it is needed to repair a corrupt
 | |
| 		 * block elsewhere. This is possible if the requested area is
 | |
| 		 * left of the left cursor. In this area, the target drive is a
 | |
| 		 * full copy of the source drive.
 | |
| 		 */
 | |
| 		for (i = 0; i < num_stripes; i++) {
 | |
| 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
 | |
| 				/*
 | |
| 				 * In case of DUP, in order to keep it simple,
 | |
| 				 * only add the mirror with the lowest physical
 | |
| 				 * address
 | |
| 				 */
 | |
| 				if (found &&
 | |
| 				    physical_of_found <=
 | |
| 				     bbio->stripes[i].physical)
 | |
| 					continue;
 | |
| 				index_srcdev = i;
 | |
| 				found = 1;
 | |
| 				physical_of_found = bbio->stripes[i].physical;
 | |
| 			}
 | |
| 		}
 | |
| 		if (found) {
 | |
| 			struct btrfs_bio_stripe *tgtdev_stripe =
 | |
| 				bbio->stripes + num_stripes;
 | |
| 
 | |
| 			tgtdev_stripe->physical = physical_of_found;
 | |
| 			tgtdev_stripe->length =
 | |
| 				bbio->stripes[index_srcdev].length;
 | |
| 			tgtdev_stripe->dev = dev_replace->tgtdev;
 | |
| 			bbio->tgtdev_map[index_srcdev] = num_stripes;
 | |
| 
 | |
| 			tgtdev_indexes++;
 | |
| 			num_stripes++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	*num_stripes_ret = num_stripes;
 | |
| 	*max_errors_ret = max_errors;
 | |
| 	bbio->num_tgtdevs = tgtdev_indexes;
 | |
| 	*bbio_ret = bbio;
 | |
| }
 | |
| 
 | |
| static bool need_full_stripe(enum btrfs_map_op op)
 | |
| {
 | |
| 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the geometry of a particular (address, len) tuple. This
 | |
|  * information is used to calculate how big a particular bio can get before it
 | |
|  * straddles a stripe.
 | |
|  *
 | |
|  * @fs_info: the filesystem
 | |
|  * @em:      mapping containing the logical extent
 | |
|  * @op:      type of operation - write or read
 | |
|  * @logical: address that we want to figure out the geometry of
 | |
|  * @len:     the length of IO we are going to perform, starting at @logical
 | |
|  * @io_geom: pointer used to return values
 | |
|  *
 | |
|  * Returns < 0 in case a chunk for the given logical address cannot be found,
 | |
|  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 | |
|  */
 | |
| int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
 | |
| 			  enum btrfs_map_op op, u64 logical, u64 len,
 | |
| 			  struct btrfs_io_geometry *io_geom)
 | |
| {
 | |
| 	struct map_lookup *map;
 | |
| 	u64 offset;
 | |
| 	u64 stripe_offset;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 stripe_len;
 | |
| 	u64 raid56_full_stripe_start = (u64)-1;
 | |
| 	int data_stripes;
 | |
| 
 | |
| 	ASSERT(op != BTRFS_MAP_DISCARD);
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	/* Offset of this logical address in the chunk */
 | |
| 	offset = logical - em->start;
 | |
| 	/* Len of a stripe in a chunk */
 | |
| 	stripe_len = map->stripe_len;
 | |
| 	/* Stripe wher this block falls in */
 | |
| 	stripe_nr = div64_u64(offset, stripe_len);
 | |
| 	/* Offset of stripe in the chunk */
 | |
| 	stripe_offset = stripe_nr * stripe_len;
 | |
| 	if (offset < stripe_offset) {
 | |
| 		btrfs_crit(fs_info,
 | |
| "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
 | |
| 			stripe_offset, offset, em->start, logical, stripe_len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* stripe_offset is the offset of this block in its stripe */
 | |
| 	stripe_offset = offset - stripe_offset;
 | |
| 	data_stripes = nr_data_stripes(map);
 | |
| 
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
 | |
| 		u64 max_len = stripe_len - stripe_offset;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case of raid56, we need to know the stripe aligned start
 | |
| 		 */
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 			unsigned long full_stripe_len = stripe_len * data_stripes;
 | |
| 			raid56_full_stripe_start = offset;
 | |
| 
 | |
| 			/*
 | |
| 			 * Allow a write of a full stripe, but make sure we
 | |
| 			 * don't allow straddling of stripes
 | |
| 			 */
 | |
| 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
 | |
| 					full_stripe_len);
 | |
| 			raid56_full_stripe_start *= full_stripe_len;
 | |
| 
 | |
| 			/*
 | |
| 			 * For writes to RAID[56], allow a full stripeset across
 | |
| 			 * all disks. For other RAID types and for RAID[56]
 | |
| 			 * reads, just allow a single stripe (on a single disk).
 | |
| 			 */
 | |
| 			if (op == BTRFS_MAP_WRITE) {
 | |
| 				max_len = stripe_len * data_stripes -
 | |
| 					  (offset - raid56_full_stripe_start);
 | |
| 			}
 | |
| 		}
 | |
| 		len = min_t(u64, em->len - offset, max_len);
 | |
| 	} else {
 | |
| 		len = em->len - offset;
 | |
| 	}
 | |
| 
 | |
| 	io_geom->len = len;
 | |
| 	io_geom->offset = offset;
 | |
| 	io_geom->stripe_len = stripe_len;
 | |
| 	io_geom->stripe_nr = stripe_nr;
 | |
| 	io_geom->stripe_offset = stripe_offset;
 | |
| 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 | |
| 			     enum btrfs_map_op op,
 | |
| 			     u64 logical, u64 *length,
 | |
| 			     struct btrfs_bio **bbio_ret,
 | |
| 			     int mirror_num, int need_raid_map)
 | |
| {
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	u64 stripe_offset;
 | |
| 	u64 stripe_nr;
 | |
| 	u64 stripe_len;
 | |
| 	u32 stripe_index;
 | |
| 	int data_stripes;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 	int num_stripes;
 | |
| 	int max_errors = 0;
 | |
| 	int tgtdev_indexes = 0;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 	int dev_replace_is_ongoing = 0;
 | |
| 	int num_alloc_stripes;
 | |
| 	int patch_the_first_stripe_for_dev_replace = 0;
 | |
| 	u64 physical_to_patch_in_first_stripe = 0;
 | |
| 	u64 raid56_full_stripe_start = (u64)-1;
 | |
| 	struct btrfs_io_geometry geom;
 | |
| 
 | |
| 	ASSERT(bbio_ret);
 | |
| 	ASSERT(op != BTRFS_MAP_DISCARD);
 | |
| 
 | |
| 	em = btrfs_get_chunk_map(fs_info, logical, *length);
 | |
| 	ASSERT(!IS_ERR(em));
 | |
| 
 | |
| 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 
 | |
| 	*length = geom.len;
 | |
| 	stripe_len = geom.stripe_len;
 | |
| 	stripe_nr = geom.stripe_nr;
 | |
| 	stripe_offset = geom.stripe_offset;
 | |
| 	raid56_full_stripe_start = geom.raid56_stripe_offset;
 | |
| 	data_stripes = nr_data_stripes(map);
 | |
| 
 | |
| 	down_read(&dev_replace->rwsem);
 | |
| 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
 | |
| 	/*
 | |
| 	 * Hold the semaphore for read during the whole operation, write is
 | |
| 	 * requested at commit time but must wait.
 | |
| 	 */
 | |
| 	if (!dev_replace_is_ongoing)
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 
 | |
| 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
 | |
| 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
 | |
| 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
 | |
| 						    dev_replace->srcdev->devid,
 | |
| 						    &mirror_num,
 | |
| 					    &physical_to_patch_in_first_stripe);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		else
 | |
| 			patch_the_first_stripe_for_dev_replace = 1;
 | |
| 	} else if (mirror_num > map->num_stripes) {
 | |
| 		mirror_num = 0;
 | |
| 	}
 | |
| 
 | |
| 	num_stripes = 1;
 | |
| 	stripe_index = 0;
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
 | |
| 				&stripe_index);
 | |
| 		if (!need_full_stripe(op))
 | |
| 			mirror_num = 1;
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
 | |
| 		if (need_full_stripe(op))
 | |
| 			num_stripes = map->num_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 		else {
 | |
| 			stripe_index = find_live_mirror(fs_info, map, 0,
 | |
| 					    dev_replace_is_ongoing);
 | |
| 			mirror_num = stripe_index + 1;
 | |
| 		}
 | |
| 
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
 | |
| 		if (need_full_stripe(op)) {
 | |
| 			num_stripes = map->num_stripes;
 | |
| 		} else if (mirror_num) {
 | |
| 			stripe_index = mirror_num - 1;
 | |
| 		} else {
 | |
| 			mirror_num = 1;
 | |
| 		}
 | |
| 
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 		u32 factor = map->num_stripes / map->sub_stripes;
 | |
| 
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
 | |
| 		stripe_index *= map->sub_stripes;
 | |
| 
 | |
| 		if (need_full_stripe(op))
 | |
| 			num_stripes = map->sub_stripes;
 | |
| 		else if (mirror_num)
 | |
| 			stripe_index += mirror_num - 1;
 | |
| 		else {
 | |
| 			int old_stripe_index = stripe_index;
 | |
| 			stripe_index = find_live_mirror(fs_info, map,
 | |
| 					      stripe_index,
 | |
| 					      dev_replace_is_ongoing);
 | |
| 			mirror_num = stripe_index - old_stripe_index + 1;
 | |
| 		}
 | |
| 
 | |
| 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
 | |
| 			/* push stripe_nr back to the start of the full stripe */
 | |
| 			stripe_nr = div64_u64(raid56_full_stripe_start,
 | |
| 					stripe_len * data_stripes);
 | |
| 
 | |
| 			/* RAID[56] write or recovery. Return all stripes */
 | |
| 			num_stripes = map->num_stripes;
 | |
| 			max_errors = nr_parity_stripes(map);
 | |
| 
 | |
| 			*length = map->stripe_len;
 | |
| 			stripe_index = 0;
 | |
| 			stripe_offset = 0;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Mirror #0 or #1 means the original data block.
 | |
| 			 * Mirror #2 is RAID5 parity block.
 | |
| 			 * Mirror #3 is RAID6 Q block.
 | |
| 			 */
 | |
| 			stripe_nr = div_u64_rem(stripe_nr,
 | |
| 					data_stripes, &stripe_index);
 | |
| 			if (mirror_num > 1)
 | |
| 				stripe_index = data_stripes + mirror_num - 2;
 | |
| 
 | |
| 			/* We distribute the parity blocks across stripes */
 | |
| 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
 | |
| 					&stripe_index);
 | |
| 			if (!need_full_stripe(op) && mirror_num <= 1)
 | |
| 				mirror_num = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * after this, stripe_nr is the number of stripes on this
 | |
| 		 * device we have to walk to find the data, and stripe_index is
 | |
| 		 * the number of our device in the stripe array
 | |
| 		 */
 | |
| 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
 | |
| 				&stripe_index);
 | |
| 		mirror_num = stripe_index + 1;
 | |
| 	}
 | |
| 	if (stripe_index >= map->num_stripes) {
 | |
| 		btrfs_crit(fs_info,
 | |
| 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
 | |
| 			   stripe_index, map->num_stripes);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	num_alloc_stripes = num_stripes;
 | |
| 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
 | |
| 		if (op == BTRFS_MAP_WRITE)
 | |
| 			num_alloc_stripes <<= 1;
 | |
| 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
 | |
| 			num_alloc_stripes++;
 | |
| 		tgtdev_indexes = num_stripes;
 | |
| 	}
 | |
| 
 | |
| 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
 | |
| 	if (!bbio) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
 | |
| 			stripe_offset + stripe_nr * map->stripe_len;
 | |
| 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
 | |
| 		stripe_index++;
 | |
| 	}
 | |
| 
 | |
| 	/* build raid_map */
 | |
| 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
 | |
| 	    (need_full_stripe(op) || mirror_num > 1)) {
 | |
| 		u64 tmp;
 | |
| 		unsigned rot;
 | |
| 
 | |
| 		/* Work out the disk rotation on this stripe-set */
 | |
| 		div_u64_rem(stripe_nr, num_stripes, &rot);
 | |
| 
 | |
| 		/* Fill in the logical address of each stripe */
 | |
| 		tmp = stripe_nr * data_stripes;
 | |
| 		for (i = 0; i < data_stripes; i++)
 | |
| 			bbio->raid_map[(i+rot) % num_stripes] =
 | |
| 				em->start + (tmp + i) * map->stripe_len;
 | |
| 
 | |
| 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
 | |
| 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
 | |
| 			bbio->raid_map[(i+rot+1) % num_stripes] =
 | |
| 				RAID6_Q_STRIPE;
 | |
| 
 | |
| 		sort_parity_stripes(bbio, num_stripes);
 | |
| 	}
 | |
| 
 | |
| 	if (need_full_stripe(op))
 | |
| 		max_errors = btrfs_chunk_max_errors(map);
 | |
| 
 | |
| 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
 | |
| 	    need_full_stripe(op)) {
 | |
| 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
 | |
| 					  &num_stripes, &max_errors);
 | |
| 	}
 | |
| 
 | |
| 	*bbio_ret = bbio;
 | |
| 	bbio->map_type = map->type;
 | |
| 	bbio->num_stripes = num_stripes;
 | |
| 	bbio->max_errors = max_errors;
 | |
| 	bbio->mirror_num = mirror_num;
 | |
| 
 | |
| 	/*
 | |
| 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
 | |
| 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
 | |
| 	 * available as a mirror
 | |
| 	 */
 | |
| 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
 | |
| 		WARN_ON(num_stripes > 1);
 | |
| 		bbio->stripes[0].dev = dev_replace->tgtdev;
 | |
| 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
 | |
| 		bbio->mirror_num = map->num_stripes + 1;
 | |
| 	}
 | |
| out:
 | |
| 	if (dev_replace_is_ongoing) {
 | |
| 		lockdep_assert_held(&dev_replace->rwsem);
 | |
| 		/* Unlock and let waiting writers proceed */
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
 | |
| 		      u64 logical, u64 *length,
 | |
| 		      struct btrfs_bio **bbio_ret, int mirror_num)
 | |
| {
 | |
| 	if (op == BTRFS_MAP_DISCARD)
 | |
| 		return __btrfs_map_block_for_discard(fs_info, logical,
 | |
| 						     length, bbio_ret);
 | |
| 
 | |
| 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
 | |
| 				 mirror_num, 0);
 | |
| }
 | |
| 
 | |
| /* For Scrub/replace */
 | |
| int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
 | |
| 		     u64 logical, u64 *length,
 | |
| 		     struct btrfs_bio **bbio_ret)
 | |
| {
 | |
| 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
 | |
| }
 | |
| 
 | |
| static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
 | |
| {
 | |
| 	bio->bi_private = bbio->private;
 | |
| 	bio->bi_end_io = bbio->end_io;
 | |
| 	bio_endio(bio);
 | |
| 
 | |
| 	btrfs_put_bbio(bbio);
 | |
| }
 | |
| 
 | |
| static void btrfs_end_bio(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = bio->bi_private;
 | |
| 	int is_orig_bio = 0;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		atomic_inc(&bbio->error);
 | |
| 		if (bio->bi_status == BLK_STS_IOERR ||
 | |
| 		    bio->bi_status == BLK_STS_TARGET) {
 | |
| 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
 | |
| 
 | |
| 			ASSERT(dev->bdev);
 | |
| 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
 | |
| 				btrfs_dev_stat_inc_and_print(dev,
 | |
| 						BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 			else if (!(bio->bi_opf & REQ_RAHEAD))
 | |
| 				btrfs_dev_stat_inc_and_print(dev,
 | |
| 						BTRFS_DEV_STAT_READ_ERRS);
 | |
| 			if (bio->bi_opf & REQ_PREFLUSH)
 | |
| 				btrfs_dev_stat_inc_and_print(dev,
 | |
| 						BTRFS_DEV_STAT_FLUSH_ERRS);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio == bbio->orig_bio)
 | |
| 		is_orig_bio = 1;
 | |
| 
 | |
| 	btrfs_bio_counter_dec(bbio->fs_info);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
 | |
| 		if (!is_orig_bio) {
 | |
| 			bio_put(bio);
 | |
| 			bio = bbio->orig_bio;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
 | |
| 		/* only send an error to the higher layers if it is
 | |
| 		 * beyond the tolerance of the btrfs bio
 | |
| 		 */
 | |
| 		if (atomic_read(&bbio->error) > bbio->max_errors) {
 | |
| 			bio->bi_status = BLK_STS_IOERR;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * this bio is actually up to date, we didn't
 | |
| 			 * go over the max number of errors
 | |
| 			 */
 | |
| 			bio->bi_status = BLK_STS_OK;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_end_bbio(bbio, bio);
 | |
| 	} else if (!is_orig_bio) {
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
 | |
| 			      u64 physical, struct btrfs_device *dev)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 
 | |
| 	bio->bi_private = bbio;
 | |
| 	btrfs_io_bio(bio)->device = dev;
 | |
| 	bio->bi_end_io = btrfs_end_bio;
 | |
| 	bio->bi_iter.bi_sector = physical >> 9;
 | |
| 	/*
 | |
| 	 * For zone append writing, bi_sector must point the beginning of the
 | |
| 	 * zone
 | |
| 	 */
 | |
| 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
 | |
| 		if (btrfs_dev_is_sequential(dev, physical)) {
 | |
| 			u64 zone_start = round_down(physical, fs_info->zone_size);
 | |
| 
 | |
| 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
 | |
| 		} else {
 | |
| 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
 | |
| 			bio->bi_opf |= REQ_OP_WRITE;
 | |
| 		}
 | |
| 	}
 | |
| 	btrfs_debug_in_rcu(fs_info,
 | |
| 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
 | |
| 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
 | |
| 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
 | |
| 		dev->devid, bio->bi_iter.bi_size);
 | |
| 	bio_set_dev(bio, dev->bdev);
 | |
| 
 | |
| 	btrfs_bio_counter_inc_noblocked(fs_info);
 | |
| 
 | |
| 	btrfsic_submit_bio(bio);
 | |
| }
 | |
| 
 | |
| static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
 | |
| {
 | |
| 	atomic_inc(&bbio->error);
 | |
| 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
 | |
| 		/* Should be the original bio. */
 | |
| 		WARN_ON(bio != bbio->orig_bio);
 | |
| 
 | |
| 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
 | |
| 		bio->bi_iter.bi_sector = logical >> 9;
 | |
| 		if (atomic_read(&bbio->error) > bbio->max_errors)
 | |
| 			bio->bi_status = BLK_STS_IOERR;
 | |
| 		else
 | |
| 			bio->bi_status = BLK_STS_OK;
 | |
| 		btrfs_end_bbio(bbio, bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 | |
| 			   int mirror_num)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct bio *first_bio = bio;
 | |
| 	u64 logical = bio->bi_iter.bi_sector << 9;
 | |
| 	u64 length = 0;
 | |
| 	u64 map_length;
 | |
| 	int ret;
 | |
| 	int dev_nr;
 | |
| 	int total_devs;
 | |
| 	struct btrfs_bio *bbio = NULL;
 | |
| 
 | |
| 	length = bio->bi_iter.bi_size;
 | |
| 	map_length = length;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
 | |
| 				&map_length, &bbio, mirror_num, 1);
 | |
| 	if (ret) {
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		return errno_to_blk_status(ret);
 | |
| 	}
 | |
| 
 | |
| 	total_devs = bbio->num_stripes;
 | |
| 	bbio->orig_bio = first_bio;
 | |
| 	bbio->private = first_bio->bi_private;
 | |
| 	bbio->end_io = first_bio->bi_end_io;
 | |
| 	bbio->fs_info = fs_info;
 | |
| 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
 | |
| 
 | |
| 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
 | |
| 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
 | |
| 		/* In this case, map_length has been set to the length of
 | |
| 		   a single stripe; not the whole write */
 | |
| 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
 | |
| 			ret = raid56_parity_write(fs_info, bio, bbio,
 | |
| 						  map_length);
 | |
| 		} else {
 | |
| 			ret = raid56_parity_recover(fs_info, bio, bbio,
 | |
| 						    map_length, mirror_num, 1);
 | |
| 		}
 | |
| 
 | |
| 		btrfs_bio_counter_dec(fs_info);
 | |
| 		return errno_to_blk_status(ret);
 | |
| 	}
 | |
| 
 | |
| 	if (map_length < length) {
 | |
| 		btrfs_crit(fs_info,
 | |
| 			   "mapping failed logical %llu bio len %llu len %llu",
 | |
| 			   logical, length, map_length);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
 | |
| 		dev = bbio->stripes[dev_nr].dev;
 | |
| 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
 | |
| 						   &dev->dev_state) ||
 | |
| 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
 | |
| 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
 | |
| 			bbio_error(bbio, first_bio, logical);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (dev_nr < total_devs - 1)
 | |
| 			bio = btrfs_bio_clone(first_bio);
 | |
| 		else
 | |
| 			bio = first_bio;
 | |
| 
 | |
| 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
 | |
| 	}
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	return BLK_STS_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 | |
|  * return NULL.
 | |
|  *
 | |
|  * If devid and uuid are both specified, the match must be exact, otherwise
 | |
|  * only devid is used.
 | |
|  *
 | |
|  * If @seed is true, traverse through the seed devices.
 | |
|  */
 | |
| struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
 | |
| 				       u64 devid, u8 *uuid, u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_fs_devices *seed_devs;
 | |
| 
 | |
| 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
 | |
| 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 			if (device->devid == devid &&
 | |
| 			    (!uuid || memcmp(device->uuid, uuid,
 | |
| 					     BTRFS_UUID_SIZE) == 0))
 | |
| 				return device;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
 | |
| 		if (!fsid ||
 | |
| 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
 | |
| 			list_for_each_entry(device, &seed_devs->devices,
 | |
| 					    dev_list) {
 | |
| 				if (device->devid == devid &&
 | |
| 				    (!uuid || memcmp(device->uuid, uuid,
 | |
| 						     BTRFS_UUID_SIZE) == 0))
 | |
| 					return device;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
 | |
| 					    u64 devid, u8 *dev_uuid)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 	unsigned int nofs_flag;
 | |
| 
 | |
| 	/*
 | |
| 	 * We call this under the chunk_mutex, so we want to use NOFS for this
 | |
| 	 * allocation, however we don't want to change btrfs_alloc_device() to
 | |
| 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
 | |
| 	 * places.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (IS_ERR(device))
 | |
| 		return device;
 | |
| 
 | |
| 	list_add(&device->dev_list, &fs_devices->devices);
 | |
| 	device->fs_devices = fs_devices;
 | |
| 	fs_devices->num_devices++;
 | |
| 
 | |
| 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 | |
| 	fs_devices->missing_devices++;
 | |
| 
 | |
| 	return device;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * btrfs_alloc_device - allocate struct btrfs_device
 | |
|  * @fs_info:	used only for generating a new devid, can be NULL if
 | |
|  *		devid is provided (i.e. @devid != NULL).
 | |
|  * @devid:	a pointer to devid for this device.  If NULL a new devid
 | |
|  *		is generated.
 | |
|  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 | |
|  *		is generated.
 | |
|  *
 | |
|  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
 | |
|  * on error.  Returned struct is not linked onto any lists and must be
 | |
|  * destroyed with btrfs_free_device.
 | |
|  */
 | |
| struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
 | |
| 					const u64 *devid,
 | |
| 					const u8 *uuid)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	u64 tmp;
 | |
| 
 | |
| 	if (WARN_ON(!devid && !fs_info))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	dev = __alloc_device(fs_info);
 | |
| 	if (IS_ERR(dev))
 | |
| 		return dev;
 | |
| 
 | |
| 	if (devid)
 | |
| 		tmp = *devid;
 | |
| 	else {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = find_next_devid(fs_info, &tmp);
 | |
| 		if (ret) {
 | |
| 			btrfs_free_device(dev);
 | |
| 			return ERR_PTR(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	dev->devid = tmp;
 | |
| 
 | |
| 	if (uuid)
 | |
| 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
 | |
| 	else
 | |
| 		generate_random_uuid(dev->uuid);
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| 
 | |
| static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
 | |
| 					u64 devid, u8 *uuid, bool error)
 | |
| {
 | |
| 	if (error)
 | |
| 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
 | |
| 			      devid, uuid);
 | |
| 	else
 | |
| 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
 | |
| 			      devid, uuid);
 | |
| }
 | |
| 
 | |
| static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
 | |
| {
 | |
| 	int index = btrfs_bg_flags_to_raid_index(type);
 | |
| 	int ncopies = btrfs_raid_array[index].ncopies;
 | |
| 	const int nparity = btrfs_raid_array[index].nparity;
 | |
| 	int data_stripes;
 | |
| 
 | |
| 	if (nparity)
 | |
| 		data_stripes = num_stripes - nparity;
 | |
| 	else
 | |
| 		data_stripes = num_stripes / ncopies;
 | |
| 
 | |
| 	return div_u64(chunk_len, data_stripes);
 | |
| }
 | |
| 
 | |
| static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
 | |
| 			  struct btrfs_chunk *chunk)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = leaf->fs_info;
 | |
| 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct map_lookup *map;
 | |
| 	struct extent_map *em;
 | |
| 	u64 logical;
 | |
| 	u64 length;
 | |
| 	u64 devid;
 | |
| 	u8 uuid[BTRFS_UUID_SIZE];
 | |
| 	int num_stripes;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	logical = key->offset;
 | |
| 	length = btrfs_chunk_length(leaf, chunk);
 | |
| 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only need to verify chunk item if we're reading from sys chunk array,
 | |
| 	 * as chunk item in tree block is already verified by tree-checker.
 | |
| 	 */
 | |
| 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
 | |
| 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	read_lock(&map_tree->lock);
 | |
| 	em = lookup_extent_mapping(map_tree, logical, 1);
 | |
| 	read_unlock(&map_tree->lock);
 | |
| 
 | |
| 	/* already mapped? */
 | |
| 	if (em && em->start <= logical && em->start + em->len > logical) {
 | |
| 		free_extent_map(em);
 | |
| 		return 0;
 | |
| 	} else if (em) {
 | |
| 		free_extent_map(em);
 | |
| 	}
 | |
| 
 | |
| 	em = alloc_extent_map();
 | |
| 	if (!em)
 | |
| 		return -ENOMEM;
 | |
| 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
 | |
| 	if (!map) {
 | |
| 		free_extent_map(em);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
 | |
| 	em->map_lookup = map;
 | |
| 	em->start = logical;
 | |
| 	em->len = length;
 | |
| 	em->orig_start = 0;
 | |
| 	em->block_start = 0;
 | |
| 	em->block_len = em->len;
 | |
| 
 | |
| 	map->num_stripes = num_stripes;
 | |
| 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
 | |
| 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 | |
| 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 | |
| 	map->type = btrfs_chunk_type(leaf, chunk);
 | |
| 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 | |
| 	map->verified_stripes = 0;
 | |
| 	em->orig_block_len = calc_stripe_length(map->type, em->len,
 | |
| 						map->num_stripes);
 | |
| 	for (i = 0; i < num_stripes; i++) {
 | |
| 		map->stripes[i].physical =
 | |
| 			btrfs_stripe_offset_nr(leaf, chunk, i);
 | |
| 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 | |
| 		read_extent_buffer(leaf, uuid, (unsigned long)
 | |
| 				   btrfs_stripe_dev_uuid_nr(chunk, i),
 | |
| 				   BTRFS_UUID_SIZE);
 | |
| 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
 | |
| 							devid, uuid, NULL);
 | |
| 		if (!map->stripes[i].dev &&
 | |
| 		    !btrfs_test_opt(fs_info, DEGRADED)) {
 | |
| 			free_extent_map(em);
 | |
| 			btrfs_report_missing_device(fs_info, devid, uuid, true);
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 		if (!map->stripes[i].dev) {
 | |
| 			map->stripes[i].dev =
 | |
| 				add_missing_dev(fs_info->fs_devices, devid,
 | |
| 						uuid);
 | |
| 			if (IS_ERR(map->stripes[i].dev)) {
 | |
| 				free_extent_map(em);
 | |
| 				btrfs_err(fs_info,
 | |
| 					"failed to init missing dev %llu: %ld",
 | |
| 					devid, PTR_ERR(map->stripes[i].dev));
 | |
| 				return PTR_ERR(map->stripes[i].dev);
 | |
| 			}
 | |
| 			btrfs_report_missing_device(fs_info, devid, uuid, false);
 | |
| 		}
 | |
| 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
 | |
| 				&(map->stripes[i].dev->dev_state));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	write_lock(&map_tree->lock);
 | |
| 	ret = add_extent_mapping(map_tree, em, 0);
 | |
| 	write_unlock(&map_tree->lock);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "failed to add chunk map, start=%llu len=%llu: %d",
 | |
| 			  em->start, em->len, ret);
 | |
| 	}
 | |
| 	free_extent_map(em);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void fill_device_from_item(struct extent_buffer *leaf,
 | |
| 				 struct btrfs_dev_item *dev_item,
 | |
| 				 struct btrfs_device *device)
 | |
| {
 | |
| 	unsigned long ptr;
 | |
| 
 | |
| 	device->devid = btrfs_device_id(leaf, dev_item);
 | |
| 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
 | |
| 	device->total_bytes = device->disk_total_bytes;
 | |
| 	device->commit_total_bytes = device->disk_total_bytes;
 | |
| 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
 | |
| 	device->commit_bytes_used = device->bytes_used;
 | |
| 	device->type = btrfs_device_type(leaf, dev_item);
 | |
| 	device->io_align = btrfs_device_io_align(leaf, dev_item);
 | |
| 	device->io_width = btrfs_device_io_width(leaf, dev_item);
 | |
| 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
 | |
| 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
 | |
| 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
 | |
| 
 | |
| 	ptr = btrfs_device_uuid(dev_item);
 | |
| 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
 | |
| }
 | |
| 
 | |
| static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
 | |
| 						  u8 *fsid)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&uuid_mutex);
 | |
| 	ASSERT(fsid);
 | |
| 
 | |
| 	/* This will match only for multi-device seed fs */
 | |
| 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
 | |
| 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
 | |
| 			return fs_devices;
 | |
| 
 | |
| 
 | |
| 	fs_devices = find_fsid(fsid, NULL);
 | |
| 	if (!fs_devices) {
 | |
| 		if (!btrfs_test_opt(fs_info, DEGRADED))
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 		fs_devices = alloc_fs_devices(fsid, NULL);
 | |
| 		if (IS_ERR(fs_devices))
 | |
| 			return fs_devices;
 | |
| 
 | |
| 		fs_devices->seeding = true;
 | |
| 		fs_devices->opened = 1;
 | |
| 		return fs_devices;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Upon first call for a seed fs fsid, just create a private copy of the
 | |
| 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
 | |
| 	 */
 | |
| 	fs_devices = clone_fs_devices(fs_devices);
 | |
| 	if (IS_ERR(fs_devices))
 | |
| 		return fs_devices;
 | |
| 
 | |
| 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
 | |
| 	if (ret) {
 | |
| 		free_fs_devices(fs_devices);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	if (!fs_devices->seeding) {
 | |
| 		close_fs_devices(fs_devices);
 | |
| 		free_fs_devices(fs_devices);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
 | |
| 
 | |
| 	return fs_devices;
 | |
| }
 | |
| 
 | |
| static int read_one_dev(struct extent_buffer *leaf,
 | |
| 			struct btrfs_dev_item *dev_item)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = leaf->fs_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 devid;
 | |
| 	int ret;
 | |
| 	u8 fs_uuid[BTRFS_FSID_SIZE];
 | |
| 	u8 dev_uuid[BTRFS_UUID_SIZE];
 | |
| 
 | |
| 	devid = btrfs_device_id(leaf, dev_item);
 | |
| 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
 | |
| 			   BTRFS_UUID_SIZE);
 | |
| 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
 | |
| 			   BTRFS_FSID_SIZE);
 | |
| 
 | |
| 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
 | |
| 		fs_devices = open_seed_devices(fs_info, fs_uuid);
 | |
| 		if (IS_ERR(fs_devices))
 | |
| 			return PTR_ERR(fs_devices);
 | |
| 	}
 | |
| 
 | |
| 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
 | |
| 				   fs_uuid);
 | |
| 	if (!device) {
 | |
| 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
 | |
| 			btrfs_report_missing_device(fs_info, devid,
 | |
| 							dev_uuid, true);
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		device = add_missing_dev(fs_devices, devid, dev_uuid);
 | |
| 		if (IS_ERR(device)) {
 | |
| 			btrfs_err(fs_info,
 | |
| 				"failed to add missing dev %llu: %ld",
 | |
| 				devid, PTR_ERR(device));
 | |
| 			return PTR_ERR(device);
 | |
| 		}
 | |
| 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
 | |
| 	} else {
 | |
| 		if (!device->bdev) {
 | |
| 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
 | |
| 				btrfs_report_missing_device(fs_info,
 | |
| 						devid, dev_uuid, true);
 | |
| 				return -ENOENT;
 | |
| 			}
 | |
| 			btrfs_report_missing_device(fs_info, devid,
 | |
| 							dev_uuid, false);
 | |
| 		}
 | |
| 
 | |
| 		if (!device->bdev &&
 | |
| 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 | |
| 			/*
 | |
| 			 * this happens when a device that was properly setup
 | |
| 			 * in the device info lists suddenly goes bad.
 | |
| 			 * device->bdev is NULL, and so we have to set
 | |
| 			 * device->missing to one here
 | |
| 			 */
 | |
| 			device->fs_devices->missing_devices++;
 | |
| 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 | |
| 		}
 | |
| 
 | |
| 		/* Move the device to its own fs_devices */
 | |
| 		if (device->fs_devices != fs_devices) {
 | |
| 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
 | |
| 							&device->dev_state));
 | |
| 
 | |
| 			list_move(&device->dev_list, &fs_devices->devices);
 | |
| 			device->fs_devices->num_devices--;
 | |
| 			fs_devices->num_devices++;
 | |
| 
 | |
| 			device->fs_devices->missing_devices--;
 | |
| 			fs_devices->missing_devices++;
 | |
| 
 | |
| 			device->fs_devices = fs_devices;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (device->fs_devices != fs_info->fs_devices) {
 | |
| 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
 | |
| 		if (device->generation !=
 | |
| 		    btrfs_device_generation(leaf, dev_item))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	fill_device_from_item(leaf, dev_item, device);
 | |
| 	if (device->bdev) {
 | |
| 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
 | |
| 
 | |
| 		if (device->total_bytes > max_total_bytes) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"device total_bytes should be at most %llu but found %llu",
 | |
| 				  max_total_bytes, device->total_bytes);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 | |
| 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 | |
| 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
 | |
| 		device->fs_devices->total_rw_bytes += device->total_bytes;
 | |
| 		atomic64_add(device->total_bytes - device->bytes_used,
 | |
| 				&fs_info->free_chunk_space);
 | |
| 	}
 | |
| 	ret = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->tree_root;
 | |
| 	struct btrfs_super_block *super_copy = fs_info->super_copy;
 | |
| 	struct extent_buffer *sb;
 | |
| 	struct btrfs_disk_key *disk_key;
 | |
| 	struct btrfs_chunk *chunk;
 | |
| 	u8 *array_ptr;
 | |
| 	unsigned long sb_array_offset;
 | |
| 	int ret = 0;
 | |
| 	u32 num_stripes;
 | |
| 	u32 array_size;
 | |
| 	u32 len = 0;
 | |
| 	u32 cur_offset;
 | |
| 	u64 type;
 | |
| 	struct btrfs_key key;
 | |
| 
 | |
| 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
 | |
| 	/*
 | |
| 	 * This will create extent buffer of nodesize, superblock size is
 | |
| 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
 | |
| 	 * overallocate but we can keep it as-is, only the first page is used.
 | |
| 	 */
 | |
| 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
 | |
| 					  root->root_key.objectid, 0);
 | |
| 	if (IS_ERR(sb))
 | |
| 		return PTR_ERR(sb);
 | |
| 	set_extent_buffer_uptodate(sb);
 | |
| 	/*
 | |
| 	 * The sb extent buffer is artificial and just used to read the system array.
 | |
| 	 * set_extent_buffer_uptodate() call does not properly mark all it's
 | |
| 	 * pages up-to-date when the page is larger: extent does not cover the
 | |
| 	 * whole page and consequently check_page_uptodate does not find all
 | |
| 	 * the page's extents up-to-date (the hole beyond sb),
 | |
| 	 * write_extent_buffer then triggers a WARN_ON.
 | |
| 	 *
 | |
| 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
 | |
| 	 * but sb spans only this function. Add an explicit SetPageUptodate call
 | |
| 	 * to silence the warning eg. on PowerPC 64.
 | |
| 	 */
 | |
| 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
 | |
| 		SetPageUptodate(sb->pages[0]);
 | |
| 
 | |
| 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
 | |
| 	array_size = btrfs_super_sys_array_size(super_copy);
 | |
| 
 | |
| 	array_ptr = super_copy->sys_chunk_array;
 | |
| 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
 | |
| 	cur_offset = 0;
 | |
| 
 | |
| 	while (cur_offset < array_size) {
 | |
| 		disk_key = (struct btrfs_disk_key *)array_ptr;
 | |
| 		len = sizeof(*disk_key);
 | |
| 		if (cur_offset + len > array_size)
 | |
| 			goto out_short_read;
 | |
| 
 | |
| 		btrfs_disk_key_to_cpu(&key, disk_key);
 | |
| 
 | |
| 		array_ptr += len;
 | |
| 		sb_array_offset += len;
 | |
| 		cur_offset += len;
 | |
| 
 | |
| 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			    "unexpected item type %u in sys_array at offset %u",
 | |
| 				  (u32)key.type, cur_offset);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		chunk = (struct btrfs_chunk *)sb_array_offset;
 | |
| 		/*
 | |
| 		 * At least one btrfs_chunk with one stripe must be present,
 | |
| 		 * exact stripe count check comes afterwards
 | |
| 		 */
 | |
| 		len = btrfs_chunk_item_size(1);
 | |
| 		if (cur_offset + len > array_size)
 | |
| 			goto out_short_read;
 | |
| 
 | |
| 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
 | |
| 		if (!num_stripes) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"invalid number of stripes %u in sys_array at offset %u",
 | |
| 				  num_stripes, cur_offset);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		type = btrfs_chunk_type(sb, chunk);
 | |
| 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"invalid chunk type %llu in sys_array at offset %u",
 | |
| 				  type, cur_offset);
 | |
| 			ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		len = btrfs_chunk_item_size(num_stripes);
 | |
| 		if (cur_offset + len > array_size)
 | |
| 			goto out_short_read;
 | |
| 
 | |
| 		ret = read_one_chunk(&key, sb, chunk);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		array_ptr += len;
 | |
| 		sb_array_offset += len;
 | |
| 		cur_offset += len;
 | |
| 	}
 | |
| 	clear_extent_buffer_uptodate(sb);
 | |
| 	free_extent_buffer_stale(sb);
 | |
| 	return ret;
 | |
| 
 | |
| out_short_read:
 | |
| 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
 | |
| 			len, cur_offset);
 | |
| 	clear_extent_buffer_uptodate(sb);
 | |
| 	free_extent_buffer_stale(sb);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if all chunks in the fs are OK for read-write degraded mount
 | |
|  *
 | |
|  * If the @failing_dev is specified, it's accounted as missing.
 | |
|  *
 | |
|  * Return true if all chunks meet the minimal RW mount requirements.
 | |
|  * Return false if any chunk doesn't meet the minimal RW mount requirements.
 | |
|  */
 | |
| bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
 | |
| 					struct btrfs_device *failing_dev)
 | |
| {
 | |
| 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
 | |
| 	struct extent_map *em;
 | |
| 	u64 next_start = 0;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	read_lock(&map_tree->lock);
 | |
| 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
 | |
| 	read_unlock(&map_tree->lock);
 | |
| 	/* No chunk at all? Return false anyway */
 | |
| 	if (!em) {
 | |
| 		ret = false;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	while (em) {
 | |
| 		struct map_lookup *map;
 | |
| 		int missing = 0;
 | |
| 		int max_tolerated;
 | |
| 		int i;
 | |
| 
 | |
| 		map = em->map_lookup;
 | |
| 		max_tolerated =
 | |
| 			btrfs_get_num_tolerated_disk_barrier_failures(
 | |
| 					map->type);
 | |
| 		for (i = 0; i < map->num_stripes; i++) {
 | |
| 			struct btrfs_device *dev = map->stripes[i].dev;
 | |
| 
 | |
| 			if (!dev || !dev->bdev ||
 | |
| 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
 | |
| 			    dev->last_flush_error)
 | |
| 				missing++;
 | |
| 			else if (failing_dev && failing_dev == dev)
 | |
| 				missing++;
 | |
| 		}
 | |
| 		if (missing > max_tolerated) {
 | |
| 			if (!failing_dev)
 | |
| 				btrfs_warn(fs_info,
 | |
| 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
 | |
| 				   em->start, missing, max_tolerated);
 | |
| 			free_extent_map(em);
 | |
| 			ret = false;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		next_start = extent_map_end(em);
 | |
| 		free_extent_map(em);
 | |
| 
 | |
| 		read_lock(&map_tree->lock);
 | |
| 		em = lookup_extent_mapping(map_tree, next_start,
 | |
| 					   (u64)(-1) - next_start);
 | |
| 		read_unlock(&map_tree->lock);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void readahead_tree_node_children(struct extent_buffer *node)
 | |
| {
 | |
| 	int i;
 | |
| 	const int nr_items = btrfs_header_nritems(node);
 | |
| 
 | |
| 	for (i = 0; i < nr_items; i++)
 | |
| 		btrfs_readahead_node_child(node, i);
 | |
| }
 | |
| 
 | |
| int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_root *root = fs_info->chunk_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int ret;
 | |
| 	int slot;
 | |
| 	u64 total_dev = 0;
 | |
| 	u64 last_ra_node = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * uuid_mutex is needed only if we are mounting a sprout FS
 | |
| 	 * otherwise we don't need it.
 | |
| 	 */
 | |
| 	mutex_lock(&uuid_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible for mount and umount to race in such a way that
 | |
| 	 * we execute this code path, but open_fs_devices failed to clear
 | |
| 	 * total_rw_bytes. We certainly want it cleared before reading the
 | |
| 	 * device items, so clear it here.
 | |
| 	 */
 | |
| 	fs_info->fs_devices->total_rw_bytes = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read all device items, and then all the chunk items. All
 | |
| 	 * device items are found before any chunk item (their object id
 | |
| 	 * is smaller than the lowest possible object id for a chunk
 | |
| 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
 | |
| 	 */
 | |
| 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
 | |
| 	key.offset = 0;
 | |
| 	key.type = 0;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto error;
 | |
| 	while (1) {
 | |
| 		struct extent_buffer *node;
 | |
| 
 | |
| 		leaf = path->nodes[0];
 | |
| 		slot = path->slots[0];
 | |
| 		if (slot >= btrfs_header_nritems(leaf)) {
 | |
| 			ret = btrfs_next_leaf(root, path);
 | |
| 			if (ret == 0)
 | |
| 				continue;
 | |
| 			if (ret < 0)
 | |
| 				goto error;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The nodes on level 1 are not locked but we don't need to do
 | |
| 		 * that during mount time as nothing else can access the tree
 | |
| 		 */
 | |
| 		node = path->nodes[1];
 | |
| 		if (node) {
 | |
| 			if (last_ra_node != node->start) {
 | |
| 				readahead_tree_node_children(node);
 | |
| 				last_ra_node = node->start;
 | |
| 			}
 | |
| 		}
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 | |
| 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
 | |
| 			struct btrfs_dev_item *dev_item;
 | |
| 			dev_item = btrfs_item_ptr(leaf, slot,
 | |
| 						  struct btrfs_dev_item);
 | |
| 			ret = read_one_dev(leaf, dev_item);
 | |
| 			if (ret)
 | |
| 				goto error;
 | |
| 			total_dev++;
 | |
| 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
 | |
| 			struct btrfs_chunk *chunk;
 | |
| 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
 | |
| 			mutex_lock(&fs_info->chunk_mutex);
 | |
| 			ret = read_one_chunk(&found_key, leaf, chunk);
 | |
| 			mutex_unlock(&fs_info->chunk_mutex);
 | |
| 			if (ret)
 | |
| 				goto error;
 | |
| 		}
 | |
| 		path->slots[0]++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After loading chunk tree, we've got all device information,
 | |
| 	 * do another round of validation checks.
 | |
| 	 */
 | |
| 	if (total_dev != fs_info->fs_devices->total_devices) {
 | |
| 		btrfs_err(fs_info,
 | |
| 	   "super_num_devices %llu mismatch with num_devices %llu found here",
 | |
| 			  btrfs_super_num_devices(fs_info->super_copy),
 | |
| 			  total_dev);
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	if (btrfs_super_total_bytes(fs_info->super_copy) <
 | |
| 	    fs_info->fs_devices->total_rw_bytes) {
 | |
| 		btrfs_err(fs_info,
 | |
| 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
 | |
| 			  btrfs_super_total_bytes(fs_info->super_copy),
 | |
| 			  fs_info->fs_devices->total_rw_bytes);
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	mutex_unlock(&uuid_mutex);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	fs_devices->fs_info = fs_info;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list)
 | |
| 		device->fs_info = fs_info;
 | |
| 
 | |
| 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
 | |
| 		list_for_each_entry(device, &seed_devs->devices, dev_list)
 | |
| 			device->fs_info = fs_info;
 | |
| 
 | |
| 		seed_devs->fs_info = fs_info;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| }
 | |
| 
 | |
| static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
 | |
| 				 const struct btrfs_dev_stats_item *ptr,
 | |
| 				 int index)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	read_extent_buffer(eb, &val,
 | |
| 			   offsetof(struct btrfs_dev_stats_item, values) +
 | |
| 			    ((unsigned long)ptr) + (index * sizeof(u64)),
 | |
| 			   sizeof(val));
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
 | |
| 				      struct btrfs_dev_stats_item *ptr,
 | |
| 				      int index, u64 val)
 | |
| {
 | |
| 	write_extent_buffer(eb, &val,
 | |
| 			    offsetof(struct btrfs_dev_stats_item, values) +
 | |
| 			     ((unsigned long)ptr) + (index * sizeof(u64)),
 | |
| 			    sizeof(val));
 | |
| }
 | |
| 
 | |
| static int btrfs_device_init_dev_stats(struct btrfs_device *device,
 | |
| 				       struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_dev_stats_item *ptr;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_key key;
 | |
| 	int item_size;
 | |
| 	int i, ret, slot;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
 | |
| 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
 | |
| 	if (ret) {
 | |
| 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
 | |
| 			btrfs_dev_stat_set(device, i, 0);
 | |
| 		device->dev_stats_valid = 1;
 | |
| 		btrfs_release_path(path);
 | |
| 		return ret < 0 ? ret : 0;
 | |
| 	}
 | |
| 	slot = path->slots[0];
 | |
| 	eb = path->nodes[0];
 | |
| 	item_size = btrfs_item_size_nr(eb, slot);
 | |
| 
 | |
| 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
 | |
| 		if (item_size >= (1 + i) * sizeof(__le64))
 | |
| 			btrfs_dev_stat_set(device, i,
 | |
| 					   btrfs_dev_stats_value(eb, ptr, i));
 | |
| 		else
 | |
| 			btrfs_dev_stat_set(device, i, 0);
 | |
| 	}
 | |
| 
 | |
| 	device->dev_stats_valid = 1;
 | |
| 	btrfs_dev_stat_print_on_load(device);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 | |
| 	struct btrfs_device *device;
 | |
| 	struct btrfs_path *path = NULL;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		ret = btrfs_device_init_dev_stats(device, path);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
 | |
| 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
 | |
| 			ret = btrfs_device_init_dev_stats(device, path);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int update_dev_stat_item(struct btrfs_trans_handle *trans,
 | |
| 				struct btrfs_device *device)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_root *dev_root = fs_info->dev_root;
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *eb;
 | |
| 	struct btrfs_dev_stats_item *ptr;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 
 | |
| 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
 | |
| 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
 | |
| 	key.offset = device->devid;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_warn_in_rcu(fs_info,
 | |
| 			"error %d while searching for dev_stats item for device %s",
 | |
| 			      ret, rcu_str_deref(device->name));
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 0 &&
 | |
| 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
 | |
| 		/* need to delete old one and insert a new one */
 | |
| 		ret = btrfs_del_item(trans, dev_root, path);
 | |
| 		if (ret != 0) {
 | |
| 			btrfs_warn_in_rcu(fs_info,
 | |
| 				"delete too small dev_stats item for device %s failed %d",
 | |
| 				      rcu_str_deref(device->name), ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == 1) {
 | |
| 		/* need to insert a new item */
 | |
| 		btrfs_release_path(path);
 | |
| 		ret = btrfs_insert_empty_item(trans, dev_root, path,
 | |
| 					      &key, sizeof(*ptr));
 | |
| 		if (ret < 0) {
 | |
| 			btrfs_warn_in_rcu(fs_info,
 | |
| 				"insert dev_stats item for device %s failed %d",
 | |
| 				rcu_str_deref(device->name), ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eb = path->nodes[0];
 | |
| 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
 | |
| 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
 | |
| 		btrfs_set_dev_stats_value(eb, ptr, i,
 | |
| 					  btrfs_dev_stat_read(device, i));
 | |
| 	btrfs_mark_buffer_dirty(eb);
 | |
| 
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from commit_transaction. Writes all changed device stats to disk.
 | |
|  */
 | |
| int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	int stats_cnt;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
 | |
| 		if (!device->dev_stats_valid || stats_cnt == 0)
 | |
| 			continue;
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * There is a LOAD-LOAD control dependency between the value of
 | |
| 		 * dev_stats_ccnt and updating the on-disk values which requires
 | |
| 		 * reading the in-memory counters. Such control dependencies
 | |
| 		 * require explicit read memory barriers.
 | |
| 		 *
 | |
| 		 * This memory barriers pairs with smp_mb__before_atomic in
 | |
| 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
 | |
| 		 * barrier implied by atomic_xchg in
 | |
| 		 * btrfs_dev_stats_read_and_reset
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		ret = update_dev_stat_item(trans, device);
 | |
| 		if (!ret)
 | |
| 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
 | |
| {
 | |
| 	btrfs_dev_stat_inc(dev, index);
 | |
| 	btrfs_dev_stat_print_on_error(dev);
 | |
| }
 | |
| 
 | |
| static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
 | |
| {
 | |
| 	if (!dev->dev_stats_valid)
 | |
| 		return;
 | |
| 	btrfs_err_rl_in_rcu(dev->fs_info,
 | |
| 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
 | |
| 			   rcu_str_deref(dev->name),
 | |
| 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
 | |
| 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
 | |
| 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
 | |
| 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
 | |
| 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
 | |
| }
 | |
| 
 | |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
 | |
| 		if (btrfs_dev_stat_read(dev, i) != 0)
 | |
| 			break;
 | |
| 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
 | |
| 		return; /* all values == 0, suppress message */
 | |
| 
 | |
| 	btrfs_info_in_rcu(dev->fs_info,
 | |
| 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
 | |
| 	       rcu_str_deref(dev->name),
 | |
| 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
 | |
| 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
 | |
| 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
 | |
| 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
 | |
| 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
 | |
| }
 | |
| 
 | |
| int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
 | |
| 			struct btrfs_ioctl_get_dev_stats *stats)
 | |
| {
 | |
| 	struct btrfs_device *dev;
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	if (!dev) {
 | |
| 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
 | |
| 		return -ENODEV;
 | |
| 	} else if (!dev->dev_stats_valid) {
 | |
| 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
 | |
| 		return -ENODEV;
 | |
| 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
 | |
| 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
 | |
| 			if (stats->nr_items > i)
 | |
| 				stats->values[i] =
 | |
| 					btrfs_dev_stat_read_and_reset(dev, i);
 | |
| 			else
 | |
| 				btrfs_dev_stat_set(dev, i, 0);
 | |
| 		}
 | |
| 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
 | |
| 			   current->comm, task_pid_nr(current));
 | |
| 	} else {
 | |
| 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
 | |
| 			if (stats->nr_items > i)
 | |
| 				stats->values[i] = btrfs_dev_stat_read(dev, i);
 | |
| 	}
 | |
| 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
 | |
| 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the size and bytes used for each device where it changed.  This is
 | |
|  * delayed since we would otherwise get errors while writing out the
 | |
|  * superblocks.
 | |
|  *
 | |
|  * Must be invoked during transaction commit.
 | |
|  */
 | |
| void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
 | |
| {
 | |
| 	struct btrfs_device *curr, *next;
 | |
| 
 | |
| 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
 | |
| 
 | |
| 	if (list_empty(&trans->dev_update_list))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't need the device_list_mutex here.  This list is owned by the
 | |
| 	 * transaction and the transaction must complete before the device is
 | |
| 	 * released.
 | |
| 	 */
 | |
| 	mutex_lock(&trans->fs_info->chunk_mutex);
 | |
| 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
 | |
| 				 post_commit_list) {
 | |
| 		list_del_init(&curr->post_commit_list);
 | |
| 		curr->commit_total_bytes = curr->disk_total_bytes;
 | |
| 		curr->commit_bytes_used = curr->bytes_used;
 | |
| 	}
 | |
| 	mutex_unlock(&trans->fs_info->chunk_mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 | |
|  */
 | |
| int btrfs_bg_type_to_factor(u64 flags)
 | |
| {
 | |
| 	const int index = btrfs_bg_flags_to_raid_index(flags);
 | |
| 
 | |
| 	return btrfs_raid_array[index].ncopies;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
 | |
| 				 u64 chunk_offset, u64 devid,
 | |
| 				 u64 physical_offset, u64 physical_len)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
 | |
| 	struct extent_map *em;
 | |
| 	struct map_lookup *map;
 | |
| 	struct btrfs_device *dev;
 | |
| 	u64 stripe_len;
 | |
| 	bool found = false;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 
 | |
| 	if (!em) {
 | |
| 		btrfs_err(fs_info,
 | |
| "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
 | |
| 			  physical_offset, devid);
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	map = em->map_lookup;
 | |
| 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
 | |
| 	if (physical_len != stripe_len) {
 | |
| 		btrfs_err(fs_info,
 | |
| "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
 | |
| 			  physical_offset, devid, em->start, physical_len,
 | |
| 			  stripe_len);
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		if (map->stripes[i].dev->devid == devid &&
 | |
| 		    map->stripes[i].physical == physical_offset) {
 | |
| 			found = true;
 | |
| 			if (map->verified_stripes >= map->num_stripes) {
 | |
| 				btrfs_err(fs_info,
 | |
| 				"too many dev extents for chunk %llu found",
 | |
| 					  em->start);
 | |
| 				ret = -EUCLEAN;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			map->verified_stripes++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		btrfs_err(fs_info,
 | |
| 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
 | |
| 			physical_offset, devid);
 | |
| 		ret = -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure no dev extent is beyond device bondary */
 | |
| 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
 | |
| 	if (!dev) {
 | |
| 		btrfs_err(fs_info, "failed to find devid %llu", devid);
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (physical_offset + physical_len > dev->disk_total_bytes) {
 | |
| 		btrfs_err(fs_info,
 | |
| "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
 | |
| 			  devid, physical_offset, physical_len,
 | |
| 			  dev->disk_total_bytes);
 | |
| 		ret = -EUCLEAN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (dev->zone_info) {
 | |
| 		u64 zone_size = dev->zone_info->zone_size;
 | |
| 
 | |
| 		if (!IS_ALIGNED(physical_offset, zone_size) ||
 | |
| 		    !IS_ALIGNED(physical_len, zone_size)) {
 | |
| 			btrfs_err(fs_info,
 | |
| "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
 | |
| 				  devid, physical_offset, physical_len);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	free_extent_map(em);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
 | |
| 	struct extent_map *em;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	read_lock(&em_tree->lock);
 | |
| 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
 | |
| 		em = rb_entry(node, struct extent_map, rb_node);
 | |
| 		if (em->map_lookup->num_stripes !=
 | |
| 		    em->map_lookup->verified_stripes) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"chunk %llu has missing dev extent, have %d expect %d",
 | |
| 				  em->start, em->map_lookup->verified_stripes,
 | |
| 				  em->map_lookup->num_stripes);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	read_unlock(&em_tree->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that all dev extents are mapped to correct chunk, otherwise
 | |
|  * later chunk allocation/free would cause unexpected behavior.
 | |
|  *
 | |
|  * NOTE: This will iterate through the whole device tree, which should be of
 | |
|  * the same size level as the chunk tree.  This slightly increases mount time.
 | |
|  */
 | |
| int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct btrfs_key key;
 | |
| 	u64 prev_devid = 0;
 | |
| 	u64 prev_dev_ext_end = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have a dev_root because we mounted with ignorebadroots and
 | |
| 	 * failed to load the root, so we want to skip the verification in this
 | |
| 	 * case for sure.
 | |
| 	 *
 | |
| 	 * However if the dev root is fine, but the tree itself is corrupted
 | |
| 	 * we'd still fail to mount.  This verification is only to make sure
 | |
| 	 * writes can happen safely, so instead just bypass this check
 | |
| 	 * completely in the case of IGNOREBADROOTS.
 | |
| 	 */
 | |
| 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
 | |
| 		return 0;
 | |
| 
 | |
| 	key.objectid = 1;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	path->reada = READA_FORWARD;
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 		ret = btrfs_next_item(root, path);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		/* No dev extents at all? Not good */
 | |
| 		if (ret > 0) {
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	while (1) {
 | |
| 		struct extent_buffer *leaf = path->nodes[0];
 | |
| 		struct btrfs_dev_extent *dext;
 | |
| 		int slot = path->slots[0];
 | |
| 		u64 chunk_offset;
 | |
| 		u64 physical_offset;
 | |
| 		u64 physical_len;
 | |
| 		u64 devid;
 | |
| 
 | |
| 		btrfs_item_key_to_cpu(leaf, &key, slot);
 | |
| 		if (key.type != BTRFS_DEV_EXTENT_KEY)
 | |
| 			break;
 | |
| 		devid = key.objectid;
 | |
| 		physical_offset = key.offset;
 | |
| 
 | |
| 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
 | |
| 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
 | |
| 		physical_len = btrfs_dev_extent_length(leaf, dext);
 | |
| 
 | |
| 		/* Check if this dev extent overlaps with the previous one */
 | |
| 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
 | |
| 			btrfs_err(fs_info,
 | |
| "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
 | |
| 				  devid, physical_offset, prev_dev_ext_end);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
 | |
| 					    physical_offset, physical_len);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		prev_devid = devid;
 | |
| 		prev_dev_ext_end = physical_offset + physical_len;
 | |
| 
 | |
| 		ret = btrfs_next_item(root, path);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (ret > 0) {
 | |
| 			ret = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Ensure all chunks have corresponding dev extents */
 | |
| 	ret = verify_chunk_dev_extent_mapping(fs_info);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the given block group or device is pinned by any inode being
 | |
|  * used as a swapfile.
 | |
|  */
 | |
| bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
 | |
| {
 | |
| 	struct btrfs_swapfile_pin *sp;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	spin_lock(&fs_info->swapfile_pins_lock);
 | |
| 	node = fs_info->swapfile_pins.rb_node;
 | |
| 	while (node) {
 | |
| 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
 | |
| 		if (ptr < sp->ptr)
 | |
| 			node = node->rb_left;
 | |
| 		else if (ptr > sp->ptr)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->swapfile_pins_lock);
 | |
| 	return node != NULL;
 | |
| }
 | |
| 
 | |
| static int relocating_repair_kthread(void *data)
 | |
| {
 | |
| 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	u64 target;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	target = cache->start;
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
 | |
| 		btrfs_info(fs_info,
 | |
| 			   "zoned: skip relocating block group %llu to repair: EBUSY",
 | |
| 			   target);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&fs_info->delete_unused_bgs_mutex);
 | |
| 
 | |
| 	/* Ensure block group still exists */
 | |
| 	cache = btrfs_lookup_block_group(fs_info, target);
 | |
| 	if (!cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!cache->relocating_repair)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	btrfs_info(fs_info,
 | |
| 		   "zoned: relocating block group %llu to repair IO failure",
 | |
| 		   target);
 | |
| 	ret = btrfs_relocate_chunk(fs_info, target);
 | |
| 
 | |
| out:
 | |
| 	if (cache)
 | |
| 		btrfs_put_block_group(cache);
 | |
| 	mutex_unlock(&fs_info->delete_unused_bgs_mutex);
 | |
| 	btrfs_exclop_finish(fs_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
 | |
| {
 | |
| 	struct btrfs_block_group *cache;
 | |
| 
 | |
| 	/* Do not attempt to repair in degraded state */
 | |
| 	if (btrfs_test_opt(fs_info, DEGRADED))
 | |
| 		return 0;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, logical);
 | |
| 	if (!cache)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&cache->lock);
 | |
| 	if (cache->relocating_repair) {
 | |
| 		spin_unlock(&cache->lock);
 | |
| 		btrfs_put_block_group(cache);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	cache->relocating_repair = 1;
 | |
| 	spin_unlock(&cache->lock);
 | |
| 
 | |
| 	kthread_run(relocating_repair_kthread, cache,
 | |
| 		    "btrfs-relocating-repair");
 | |
| 
 | |
| 	return 0;
 | |
| }
 |