mirror of
				git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
				synced 2025-10-31 16:54:21 +00:00 
			
		
		
		
	 894d1b3db4
			
		
	
	
		894d1b3db4
		
	
	
	
	
		
			
			In preparation to nest mutex::wait_lock under rq::lock we need to remove wakeups from under it. Do this by utilizing wake_qs to defer the wakeup until after the lock is dropped. [Heavily changed after55f036ca7e("locking: WW mutex cleanup") and08295b3b5b("locking: Implement an algorithm choice for Wound-Wait mutexes")] [jstultz: rebased to mainline, added extra wake_up_q & init to avoid hangs, similar to Connor's rework of this patch] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Metin Kaya <metin.kaya@arm.com> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Tested-by: Metin Kaya <metin.kaya@arm.com> Link: https://lore.kernel.org/r/20241009235352.1614323-2-jstultz@google.com
		
			
				
	
	
		
			1720 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1720 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* kernel/rwsem.c: R/W semaphores, public implementation
 | |
|  *
 | |
|  * Written by David Howells (dhowells@redhat.com).
 | |
|  * Derived from asm-i386/semaphore.h
 | |
|  *
 | |
|  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
 | |
|  * and Michel Lespinasse <walken@google.com>
 | |
|  *
 | |
|  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
 | |
|  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
 | |
|  *
 | |
|  * Rwsem count bit fields re-definition and rwsem rearchitecture by
 | |
|  * Waiman Long <longman@redhat.com> and
 | |
|  * Peter Zijlstra <peterz@infradead.org>.
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/rt.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/sched/debug.h>
 | |
| #include <linux/sched/wake_q.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <trace/events/lock.h>
 | |
| 
 | |
| #ifndef CONFIG_PREEMPT_RT
 | |
| #include "lock_events.h"
 | |
| 
 | |
| /*
 | |
|  * The least significant 2 bits of the owner value has the following
 | |
|  * meanings when set.
 | |
|  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
 | |
|  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
 | |
|  *
 | |
|  * When the rwsem is reader-owned and a spinning writer has timed out,
 | |
|  * the nonspinnable bit will be set to disable optimistic spinning.
 | |
| 
 | |
|  * When a writer acquires a rwsem, it puts its task_struct pointer
 | |
|  * into the owner field. It is cleared after an unlock.
 | |
|  *
 | |
|  * When a reader acquires a rwsem, it will also puts its task_struct
 | |
|  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
 | |
|  * On unlock, the owner field will largely be left untouched. So
 | |
|  * for a free or reader-owned rwsem, the owner value may contain
 | |
|  * information about the last reader that acquires the rwsem.
 | |
|  *
 | |
|  * That information may be helpful in debugging cases where the system
 | |
|  * seems to hang on a reader owned rwsem especially if only one reader
 | |
|  * is involved. Ideally we would like to track all the readers that own
 | |
|  * a rwsem, but the overhead is simply too big.
 | |
|  *
 | |
|  * A fast path reader optimistic lock stealing is supported when the rwsem
 | |
|  * is previously owned by a writer and the following conditions are met:
 | |
|  *  - rwsem is not currently writer owned
 | |
|  *  - the handoff isn't set.
 | |
|  */
 | |
| #define RWSEM_READER_OWNED	(1UL << 0)
 | |
| #define RWSEM_NONSPINNABLE	(1UL << 1)
 | |
| #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RWSEMS
 | |
| # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
 | |
| 	if (!debug_locks_silent &&				\
 | |
| 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
 | |
| 		#c, atomic_long_read(&(sem)->count),		\
 | |
| 		(unsigned long) sem->magic,			\
 | |
| 		atomic_long_read(&(sem)->owner), (long)current,	\
 | |
| 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
 | |
| 			debug_locks_off();			\
 | |
| 	} while (0)
 | |
| #else
 | |
| # define DEBUG_RWSEMS_WARN_ON(c, sem)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On 64-bit architectures, the bit definitions of the count are:
 | |
|  *
 | |
|  * Bit  0    - writer locked bit
 | |
|  * Bit  1    - waiters present bit
 | |
|  * Bit  2    - lock handoff bit
 | |
|  * Bits 3-7  - reserved
 | |
|  * Bits 8-62 - 55-bit reader count
 | |
|  * Bit  63   - read fail bit
 | |
|  *
 | |
|  * On 32-bit architectures, the bit definitions of the count are:
 | |
|  *
 | |
|  * Bit  0    - writer locked bit
 | |
|  * Bit  1    - waiters present bit
 | |
|  * Bit  2    - lock handoff bit
 | |
|  * Bits 3-7  - reserved
 | |
|  * Bits 8-30 - 23-bit reader count
 | |
|  * Bit  31   - read fail bit
 | |
|  *
 | |
|  * It is not likely that the most significant bit (read fail bit) will ever
 | |
|  * be set. This guard bit is still checked anyway in the down_read() fastpath
 | |
|  * just in case we need to use up more of the reader bits for other purpose
 | |
|  * in the future.
 | |
|  *
 | |
|  * atomic_long_fetch_add() is used to obtain reader lock, whereas
 | |
|  * atomic_long_cmpxchg() will be used to obtain writer lock.
 | |
|  *
 | |
|  * There are three places where the lock handoff bit may be set or cleared.
 | |
|  * 1) rwsem_mark_wake() for readers		-- set, clear
 | |
|  * 2) rwsem_try_write_lock() for writers	-- set, clear
 | |
|  * 3) rwsem_del_waiter()			-- clear
 | |
|  *
 | |
|  * For all the above cases, wait_lock will be held. A writer must also
 | |
|  * be the first one in the wait_list to be eligible for setting the handoff
 | |
|  * bit. So concurrent setting/clearing of handoff bit is not possible.
 | |
|  */
 | |
| #define RWSEM_WRITER_LOCKED	(1UL << 0)
 | |
| #define RWSEM_FLAG_WAITERS	(1UL << 1)
 | |
| #define RWSEM_FLAG_HANDOFF	(1UL << 2)
 | |
| #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
 | |
| 
 | |
| #define RWSEM_READER_SHIFT	8
 | |
| #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
 | |
| #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
 | |
| #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
 | |
| #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
 | |
| #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
 | |
| 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
 | |
| 
 | |
| /*
 | |
|  * All writes to owner are protected by WRITE_ONCE() to make sure that
 | |
|  * store tearing can't happen as optimistic spinners may read and use
 | |
|  * the owner value concurrently without lock. Read from owner, however,
 | |
|  * may not need READ_ONCE() as long as the pointer value is only used
 | |
|  * for comparison and isn't being dereferenced.
 | |
|  *
 | |
|  * Both rwsem_{set,clear}_owner() functions should be in the same
 | |
|  * preempt disable section as the atomic op that changes sem->count.
 | |
|  */
 | |
| static inline void rwsem_set_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	lockdep_assert_preemption_disabled();
 | |
| 	atomic_long_set(&sem->owner, (long)current);
 | |
| }
 | |
| 
 | |
| static inline void rwsem_clear_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	lockdep_assert_preemption_disabled();
 | |
| 	atomic_long_set(&sem->owner, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test the flags in the owner field.
 | |
|  */
 | |
| static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
 | |
| {
 | |
| 	return atomic_long_read(&sem->owner) & flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The task_struct pointer of the last owning reader will be left in
 | |
|  * the owner field.
 | |
|  *
 | |
|  * Note that the owner value just indicates the task has owned the rwsem
 | |
|  * previously, it may not be the real owner or one of the real owners
 | |
|  * anymore when that field is examined, so take it with a grain of salt.
 | |
|  *
 | |
|  * The reader non-spinnable bit is preserved.
 | |
|  */
 | |
| static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 | |
| 					    struct task_struct *owner)
 | |
| {
 | |
| 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
 | |
| 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
 | |
| 
 | |
| 	atomic_long_set(&sem->owner, val);
 | |
| }
 | |
| 
 | |
| static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
 | |
| {
 | |
| 	__rwsem_set_reader_owned(sem, current);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RWSEMS
 | |
| /*
 | |
|  * Return just the real task structure pointer of the owner
 | |
|  */
 | |
| static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return (struct task_struct *)
 | |
| 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the rwsem is owned by a reader.
 | |
|  */
 | |
| static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check the count to see if it is write-locked.
 | |
| 	 */
 | |
| 	long count = atomic_long_read(&sem->count);
 | |
| 
 | |
| 	if (count & RWSEM_WRITER_MASK)
 | |
| 		return false;
 | |
| 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
 | |
|  * is a task pointer in owner of a reader-owned rwsem, it will be the
 | |
|  * real owner or one of the real owners. The only exception is when the
 | |
|  * unlock is done by up_read_non_owner().
 | |
|  */
 | |
| static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 | |
| {
 | |
| 	unsigned long val = atomic_long_read(&sem->owner);
 | |
| 
 | |
| 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
 | |
| 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
 | |
| 					    val & RWSEM_OWNER_FLAGS_MASK))
 | |
| 			return;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
 | |
|  * remains set. Otherwise, the operation will be aborted.
 | |
|  */
 | |
| static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	unsigned long owner = atomic_long_read(&sem->owner);
 | |
| 
 | |
| 	do {
 | |
| 		if (!(owner & RWSEM_READER_OWNED))
 | |
| 			break;
 | |
| 		if (owner & RWSEM_NONSPINNABLE)
 | |
| 			break;
 | |
| 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
 | |
| 					  owner | RWSEM_NONSPINNABLE));
 | |
| }
 | |
| 
 | |
| static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
 | |
| {
 | |
| 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(*cntp < 0))
 | |
| 		rwsem_set_nonspinnable(sem);
 | |
| 
 | |
| 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
 | |
| 		rwsem_set_reader_owned(sem);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long tmp = RWSEM_UNLOCKED_VALUE;
 | |
| 
 | |
| 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
 | |
| 		rwsem_set_owner(sem);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the real task structure pointer of the owner and the embedded
 | |
|  * flags in the owner. pflags must be non-NULL.
 | |
|  */
 | |
| static inline struct task_struct *
 | |
| rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
 | |
| {
 | |
| 	unsigned long owner = atomic_long_read(&sem->owner);
 | |
| 
 | |
| 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
 | |
| 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guide to the rw_semaphore's count field.
 | |
|  *
 | |
|  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
 | |
|  * by a writer.
 | |
|  *
 | |
|  * The lock is owned by readers when
 | |
|  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
 | |
|  * (2) some of the reader bits are set in count, and
 | |
|  * (3) the owner field has RWSEM_READ_OWNED bit set.
 | |
|  *
 | |
|  * Having some reader bits set is not enough to guarantee a readers owned
 | |
|  * lock as the readers may be in the process of backing out from the count
 | |
|  * and a writer has just released the lock. So another writer may steal
 | |
|  * the lock immediately after that.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Initialize an rwsem:
 | |
|  */
 | |
| void __init_rwsem(struct rw_semaphore *sem, const char *name,
 | |
| 		  struct lock_class_key *key)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| 	/*
 | |
| 	 * Make sure we are not reinitializing a held semaphore:
 | |
| 	 */
 | |
| 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 | |
| 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_RWSEMS
 | |
| 	sem->magic = sem;
 | |
| #endif
 | |
| 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
 | |
| 	raw_spin_lock_init(&sem->wait_lock);
 | |
| 	INIT_LIST_HEAD(&sem->wait_list);
 | |
| 	atomic_long_set(&sem->owner, 0L);
 | |
| #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 | |
| 	osq_lock_init(&sem->osq);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(__init_rwsem);
 | |
| 
 | |
| enum rwsem_waiter_type {
 | |
| 	RWSEM_WAITING_FOR_WRITE,
 | |
| 	RWSEM_WAITING_FOR_READ
 | |
| };
 | |
| 
 | |
| struct rwsem_waiter {
 | |
| 	struct list_head list;
 | |
| 	struct task_struct *task;
 | |
| 	enum rwsem_waiter_type type;
 | |
| 	unsigned long timeout;
 | |
| 	bool handoff_set;
 | |
| };
 | |
| #define rwsem_first_waiter(sem) \
 | |
| 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
 | |
| 
 | |
| enum rwsem_wake_type {
 | |
| 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
 | |
| 	RWSEM_WAKE_READERS,	/* Wake readers only */
 | |
| 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The typical HZ value is either 250 or 1000. So set the minimum waiting
 | |
|  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
 | |
|  * queue before initiating the handoff protocol.
 | |
|  */
 | |
| #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
 | |
| 
 | |
| /*
 | |
|  * Magic number to batch-wakeup waiting readers, even when writers are
 | |
|  * also present in the queue. This both limits the amount of work the
 | |
|  * waking thread must do and also prevents any potential counter overflow,
 | |
|  * however unlikely.
 | |
|  */
 | |
| #define MAX_READERS_WAKEUP	0x100
 | |
| 
 | |
| static inline void
 | |
| rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
 | |
| {
 | |
| 	lockdep_assert_held(&sem->wait_lock);
 | |
| 	list_add_tail(&waiter->list, &sem->wait_list);
 | |
| 	/* caller will set RWSEM_FLAG_WAITERS */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a waiter from the wait_list and clear flags.
 | |
|  *
 | |
|  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
 | |
|  * this function. Modify with care.
 | |
|  *
 | |
|  * Return: true if wait_list isn't empty and false otherwise
 | |
|  */
 | |
| static inline bool
 | |
| rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
 | |
| {
 | |
| 	lockdep_assert_held(&sem->wait_lock);
 | |
| 	list_del(&waiter->list);
 | |
| 	if (likely(!list_empty(&sem->wait_list)))
 | |
| 		return true;
 | |
| 
 | |
| 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handle the lock release when processes blocked on it that can now run
 | |
|  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
 | |
|  *   have been set.
 | |
|  * - there must be someone on the queue
 | |
|  * - the wait_lock must be held by the caller
 | |
|  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
 | |
|  *   to actually wakeup the blocked task(s) and drop the reference count,
 | |
|  *   preferably when the wait_lock is released
 | |
|  * - woken process blocks are discarded from the list after having task zeroed
 | |
|  * - writers are only marked woken if downgrading is false
 | |
|  *
 | |
|  * Implies rwsem_del_waiter() for all woken readers.
 | |
|  */
 | |
| static void rwsem_mark_wake(struct rw_semaphore *sem,
 | |
| 			    enum rwsem_wake_type wake_type,
 | |
| 			    struct wake_q_head *wake_q)
 | |
| {
 | |
| 	struct rwsem_waiter *waiter, *tmp;
 | |
| 	long oldcount, woken = 0, adjustment = 0;
 | |
| 	struct list_head wlist;
 | |
| 
 | |
| 	lockdep_assert_held(&sem->wait_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take a peek at the queue head waiter such that we can determine
 | |
| 	 * the wakeup(s) to perform.
 | |
| 	 */
 | |
| 	waiter = rwsem_first_waiter(sem);
 | |
| 
 | |
| 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
 | |
| 		if (wake_type == RWSEM_WAKE_ANY) {
 | |
| 			/*
 | |
| 			 * Mark writer at the front of the queue for wakeup.
 | |
| 			 * Until the task is actually later awoken later by
 | |
| 			 * the caller, other writers are able to steal it.
 | |
| 			 * Readers, on the other hand, will block as they
 | |
| 			 * will notice the queued writer.
 | |
| 			 */
 | |
| 			wake_q_add(wake_q, waiter->task);
 | |
| 			lockevent_inc(rwsem_wake_writer);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No reader wakeup if there are too many of them already.
 | |
| 	 */
 | |
| 	if (unlikely(atomic_long_read(&sem->count) < 0))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writers might steal the lock before we grant it to the next reader.
 | |
| 	 * We prefer to do the first reader grant before counting readers
 | |
| 	 * so we can bail out early if a writer stole the lock.
 | |
| 	 */
 | |
| 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
 | |
| 		struct task_struct *owner;
 | |
| 
 | |
| 		adjustment = RWSEM_READER_BIAS;
 | |
| 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
 | |
| 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
 | |
| 			/*
 | |
| 			 * When we've been waiting "too" long (for writers
 | |
| 			 * to give up the lock), request a HANDOFF to
 | |
| 			 * force the issue.
 | |
| 			 */
 | |
| 			if (time_after(jiffies, waiter->timeout)) {
 | |
| 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
 | |
| 					adjustment -= RWSEM_FLAG_HANDOFF;
 | |
| 					lockevent_inc(rwsem_rlock_handoff);
 | |
| 				}
 | |
| 				waiter->handoff_set = true;
 | |
| 			}
 | |
| 
 | |
| 			atomic_long_add(-adjustment, &sem->count);
 | |
| 			return;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Set it to reader-owned to give spinners an early
 | |
| 		 * indication that readers now have the lock.
 | |
| 		 * The reader nonspinnable bit seen at slowpath entry of
 | |
| 		 * the reader is copied over.
 | |
| 		 */
 | |
| 		owner = waiter->task;
 | |
| 		__rwsem_set_reader_owned(sem, owner);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
 | |
| 	 * queue. We know that the woken will be at least 1 as we accounted
 | |
| 	 * for above. Note we increment the 'active part' of the count by the
 | |
| 	 * number of readers before waking any processes up.
 | |
| 	 *
 | |
| 	 * This is an adaptation of the phase-fair R/W locks where at the
 | |
| 	 * reader phase (first waiter is a reader), all readers are eligible
 | |
| 	 * to acquire the lock at the same time irrespective of their order
 | |
| 	 * in the queue. The writers acquire the lock according to their
 | |
| 	 * order in the queue.
 | |
| 	 *
 | |
| 	 * We have to do wakeup in 2 passes to prevent the possibility that
 | |
| 	 * the reader count may be decremented before it is incremented. It
 | |
| 	 * is because the to-be-woken waiter may not have slept yet. So it
 | |
| 	 * may see waiter->task got cleared, finish its critical section and
 | |
| 	 * do an unlock before the reader count increment.
 | |
| 	 *
 | |
| 	 * 1) Collect the read-waiters in a separate list, count them and
 | |
| 	 *    fully increment the reader count in rwsem.
 | |
| 	 * 2) For each waiters in the new list, clear waiter->task and
 | |
| 	 *    put them into wake_q to be woken up later.
 | |
| 	 */
 | |
| 	INIT_LIST_HEAD(&wlist);
 | |
| 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
 | |
| 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
 | |
| 			continue;
 | |
| 
 | |
| 		woken++;
 | |
| 		list_move_tail(&waiter->list, &wlist);
 | |
| 
 | |
| 		/*
 | |
| 		 * Limit # of readers that can be woken up per wakeup call.
 | |
| 		 */
 | |
| 		if (unlikely(woken >= MAX_READERS_WAKEUP))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
 | |
| 	lockevent_cond_inc(rwsem_wake_reader, woken);
 | |
| 
 | |
| 	oldcount = atomic_long_read(&sem->count);
 | |
| 	if (list_empty(&sem->wait_list)) {
 | |
| 		/*
 | |
| 		 * Combined with list_move_tail() above, this implies
 | |
| 		 * rwsem_del_waiter().
 | |
| 		 */
 | |
| 		adjustment -= RWSEM_FLAG_WAITERS;
 | |
| 		if (oldcount & RWSEM_FLAG_HANDOFF)
 | |
| 			adjustment -= RWSEM_FLAG_HANDOFF;
 | |
| 	} else if (woken) {
 | |
| 		/*
 | |
| 		 * When we've woken a reader, we no longer need to force
 | |
| 		 * writers to give up the lock and we can clear HANDOFF.
 | |
| 		 */
 | |
| 		if (oldcount & RWSEM_FLAG_HANDOFF)
 | |
| 			adjustment -= RWSEM_FLAG_HANDOFF;
 | |
| 	}
 | |
| 
 | |
| 	if (adjustment)
 | |
| 		atomic_long_add(adjustment, &sem->count);
 | |
| 
 | |
| 	/* 2nd pass */
 | |
| 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
 | |
| 		struct task_struct *tsk;
 | |
| 
 | |
| 		tsk = waiter->task;
 | |
| 		get_task_struct(tsk);
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure calling get_task_struct() before setting the reader
 | |
| 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
 | |
| 		 * race with do_exit() by always holding a reference count
 | |
| 		 * to the task to wakeup.
 | |
| 		 */
 | |
| 		smp_store_release(&waiter->task, NULL);
 | |
| 		/*
 | |
| 		 * Ensure issuing the wakeup (either by us or someone else)
 | |
| 		 * after setting the reader waiter to nil.
 | |
| 		 */
 | |
| 		wake_q_add_safe(wake_q, tsk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a waiter and try to wake up other waiters in the wait queue
 | |
|  * This function is called from the out_nolock path of both the reader and
 | |
|  * writer slowpaths with wait_lock held. It releases the wait_lock and
 | |
|  * optionally wake up waiters before it returns.
 | |
|  */
 | |
| static inline void
 | |
| rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
 | |
| 		      struct wake_q_head *wake_q)
 | |
| 		      __releases(&sem->wait_lock)
 | |
| {
 | |
| 	bool first = rwsem_first_waiter(sem) == waiter;
 | |
| 
 | |
| 	wake_q_init(wake_q);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the wait_list isn't empty and the waiter to be deleted is
 | |
| 	 * the first waiter, we wake up the remaining waiters as they may
 | |
| 	 * be eligible to acquire or spin on the lock.
 | |
| 	 */
 | |
| 	if (rwsem_del_waiter(sem, waiter) && first)
 | |
| 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
 | |
| 	raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 	if (!wake_q_empty(wake_q))
 | |
| 		wake_up_q(wake_q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function must be called with the sem->wait_lock held to prevent
 | |
|  * race conditions between checking the rwsem wait list and setting the
 | |
|  * sem->count accordingly.
 | |
|  *
 | |
|  * Implies rwsem_del_waiter() on success.
 | |
|  */
 | |
| static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
 | |
| 					struct rwsem_waiter *waiter)
 | |
| {
 | |
| 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
 | |
| 	long count, new;
 | |
| 
 | |
| 	lockdep_assert_held(&sem->wait_lock);
 | |
| 
 | |
| 	count = atomic_long_read(&sem->count);
 | |
| 	do {
 | |
| 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
 | |
| 
 | |
| 		if (has_handoff) {
 | |
| 			/*
 | |
| 			 * Honor handoff bit and yield only when the first
 | |
| 			 * waiter is the one that set it. Otherwisee, we
 | |
| 			 * still try to acquire the rwsem.
 | |
| 			 */
 | |
| 			if (first->handoff_set && (waiter != first))
 | |
| 				return false;
 | |
| 		}
 | |
| 
 | |
| 		new = count;
 | |
| 
 | |
| 		if (count & RWSEM_LOCK_MASK) {
 | |
| 			/*
 | |
| 			 * A waiter (first or not) can set the handoff bit
 | |
| 			 * if it is an RT task or wait in the wait queue
 | |
| 			 * for too long.
 | |
| 			 */
 | |
| 			if (has_handoff || (!rt_or_dl_task(waiter->task) &&
 | |
| 					    !time_after(jiffies, waiter->timeout)))
 | |
| 				return false;
 | |
| 
 | |
| 			new |= RWSEM_FLAG_HANDOFF;
 | |
| 		} else {
 | |
| 			new |= RWSEM_WRITER_LOCKED;
 | |
| 			new &= ~RWSEM_FLAG_HANDOFF;
 | |
| 
 | |
| 			if (list_is_singular(&sem->wait_list))
 | |
| 				new &= ~RWSEM_FLAG_WAITERS;
 | |
| 		}
 | |
| 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
 | |
| 
 | |
| 	/*
 | |
| 	 * We have either acquired the lock with handoff bit cleared or set
 | |
| 	 * the handoff bit. Only the first waiter can have its handoff_set
 | |
| 	 * set here to enable optimistic spinning in slowpath loop.
 | |
| 	 */
 | |
| 	if (new & RWSEM_FLAG_HANDOFF) {
 | |
| 		first->handoff_set = true;
 | |
| 		lockevent_inc(rwsem_wlock_handoff);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
 | |
| 	 * success.
 | |
| 	 */
 | |
| 	list_del(&waiter->list);
 | |
| 	rwsem_set_owner(sem);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The rwsem_spin_on_owner() function returns the following 4 values
 | |
|  * depending on the lock owner state.
 | |
|  *   OWNER_NULL  : owner is currently NULL
 | |
|  *   OWNER_WRITER: when owner changes and is a writer
 | |
|  *   OWNER_READER: when owner changes and the new owner may be a reader.
 | |
|  *   OWNER_NONSPINNABLE:
 | |
|  *		   when optimistic spinning has to stop because either the
 | |
|  *		   owner stops running, is unknown, or its timeslice has
 | |
|  *		   been used up.
 | |
|  */
 | |
| enum owner_state {
 | |
| 	OWNER_NULL		= 1 << 0,
 | |
| 	OWNER_WRITER		= 1 << 1,
 | |
| 	OWNER_READER		= 1 << 2,
 | |
| 	OWNER_NONSPINNABLE	= 1 << 3,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
 | |
| /*
 | |
|  * Try to acquire write lock before the writer has been put on wait queue.
 | |
|  */
 | |
| static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long count = atomic_long_read(&sem->count);
 | |
| 
 | |
| 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
 | |
| 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
 | |
| 					count | RWSEM_WRITER_LOCKED)) {
 | |
| 			rwsem_set_owner(sem);
 | |
| 			lockevent_inc(rwsem_opt_lock);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	struct task_struct *owner;
 | |
| 	unsigned long flags;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	if (need_resched()) {
 | |
| 		lockevent_inc(rwsem_opt_fail);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable preemption is equal to the RCU read-side crital section,
 | |
| 	 * thus the task_strcut structure won't go away.
 | |
| 	 */
 | |
| 	owner = rwsem_owner_flags(sem, &flags);
 | |
| 	/*
 | |
| 	 * Don't check the read-owner as the entry may be stale.
 | |
| 	 */
 | |
| 	if ((flags & RWSEM_NONSPINNABLE) ||
 | |
| 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
 | |
| 		ret = false;
 | |
| 
 | |
| 	lockevent_cond_inc(rwsem_opt_fail, !ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
 | |
| 
 | |
| static inline enum owner_state
 | |
| rwsem_owner_state(struct task_struct *owner, unsigned long flags)
 | |
| {
 | |
| 	if (flags & RWSEM_NONSPINNABLE)
 | |
| 		return OWNER_NONSPINNABLE;
 | |
| 
 | |
| 	if (flags & RWSEM_READER_OWNED)
 | |
| 		return OWNER_READER;
 | |
| 
 | |
| 	return owner ? OWNER_WRITER : OWNER_NULL;
 | |
| }
 | |
| 
 | |
| static noinline enum owner_state
 | |
| rwsem_spin_on_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	struct task_struct *new, *owner;
 | |
| 	unsigned long flags, new_flags;
 | |
| 	enum owner_state state;
 | |
| 
 | |
| 	lockdep_assert_preemption_disabled();
 | |
| 
 | |
| 	owner = rwsem_owner_flags(sem, &flags);
 | |
| 	state = rwsem_owner_state(owner, flags);
 | |
| 	if (state != OWNER_WRITER)
 | |
| 		return state;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * When a waiting writer set the handoff flag, it may spin
 | |
| 		 * on the owner as well. Once that writer acquires the lock,
 | |
| 		 * we can spin on it. So we don't need to quit even when the
 | |
| 		 * handoff bit is set.
 | |
| 		 */
 | |
| 		new = rwsem_owner_flags(sem, &new_flags);
 | |
| 		if ((new != owner) || (new_flags != flags)) {
 | |
| 			state = rwsem_owner_state(new, new_flags);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure we emit the owner->on_cpu, dereference _after_
 | |
| 		 * checking sem->owner still matches owner, if that fails,
 | |
| 		 * owner might point to free()d memory, if it still matches,
 | |
| 		 * our spinning context already disabled preemption which is
 | |
| 		 * equal to RCU read-side crital section ensures the memory
 | |
| 		 * stays valid.
 | |
| 		 */
 | |
| 		barrier();
 | |
| 
 | |
| 		if (need_resched() || !owner_on_cpu(owner)) {
 | |
| 			state = OWNER_NONSPINNABLE;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 
 | |
| 	return state;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate reader-owned rwsem spinning threshold for writer
 | |
|  *
 | |
|  * The more readers own the rwsem, the longer it will take for them to
 | |
|  * wind down and free the rwsem. So the empirical formula used to
 | |
|  * determine the actual spinning time limit here is:
 | |
|  *
 | |
|  *   Spinning threshold = (10 + nr_readers/2)us
 | |
|  *
 | |
|  * The limit is capped to a maximum of 25us (30 readers). This is just
 | |
|  * a heuristic and is subjected to change in the future.
 | |
|  */
 | |
| static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long count = atomic_long_read(&sem->count);
 | |
| 	int readers = count >> RWSEM_READER_SHIFT;
 | |
| 	u64 delta;
 | |
| 
 | |
| 	if (readers > 30)
 | |
| 		readers = 30;
 | |
| 	delta = (20 + readers) * NSEC_PER_USEC / 2;
 | |
| 
 | |
| 	return sched_clock() + delta;
 | |
| }
 | |
| 
 | |
| static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 | |
| {
 | |
| 	bool taken = false;
 | |
| 	int prev_owner_state = OWNER_NULL;
 | |
| 	int loop = 0;
 | |
| 	u64 rspin_threshold = 0;
 | |
| 
 | |
| 	/* sem->wait_lock should not be held when doing optimistic spinning */
 | |
| 	if (!osq_lock(&sem->osq))
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimistically spin on the owner field and attempt to acquire the
 | |
| 	 * lock whenever the owner changes. Spinning will be stopped when:
 | |
| 	 *  1) the owning writer isn't running; or
 | |
| 	 *  2) readers own the lock and spinning time has exceeded limit.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		enum owner_state owner_state;
 | |
| 
 | |
| 		owner_state = rwsem_spin_on_owner(sem);
 | |
| 		if (!(owner_state & OWNER_SPINNABLE))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to acquire the lock
 | |
| 		 */
 | |
| 		taken = rwsem_try_write_lock_unqueued(sem);
 | |
| 
 | |
| 		if (taken)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Time-based reader-owned rwsem optimistic spinning
 | |
| 		 */
 | |
| 		if (owner_state == OWNER_READER) {
 | |
| 			/*
 | |
| 			 * Re-initialize rspin_threshold every time when
 | |
| 			 * the owner state changes from non-reader to reader.
 | |
| 			 * This allows a writer to steal the lock in between
 | |
| 			 * 2 reader phases and have the threshold reset at
 | |
| 			 * the beginning of the 2nd reader phase.
 | |
| 			 */
 | |
| 			if (prev_owner_state != OWNER_READER) {
 | |
| 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
 | |
| 					break;
 | |
| 				rspin_threshold = rwsem_rspin_threshold(sem);
 | |
| 				loop = 0;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Check time threshold once every 16 iterations to
 | |
| 			 * avoid calling sched_clock() too frequently so
 | |
| 			 * as to reduce the average latency between the times
 | |
| 			 * when the lock becomes free and when the spinner
 | |
| 			 * is ready to do a trylock.
 | |
| 			 */
 | |
| 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
 | |
| 				rwsem_set_nonspinnable(sem);
 | |
| 				lockevent_inc(rwsem_opt_nospin);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * An RT task cannot do optimistic spinning if it cannot
 | |
| 		 * be sure the lock holder is running or live-lock may
 | |
| 		 * happen if the current task and the lock holder happen
 | |
| 		 * to run in the same CPU. However, aborting optimistic
 | |
| 		 * spinning while a NULL owner is detected may miss some
 | |
| 		 * opportunity where spinning can continue without causing
 | |
| 		 * problem.
 | |
| 		 *
 | |
| 		 * There are 2 possible cases where an RT task may be able
 | |
| 		 * to continue spinning.
 | |
| 		 *
 | |
| 		 * 1) The lock owner is in the process of releasing the
 | |
| 		 *    lock, sem->owner is cleared but the lock has not
 | |
| 		 *    been released yet.
 | |
| 		 * 2) The lock was free and owner cleared, but another
 | |
| 		 *    task just comes in and acquire the lock before
 | |
| 		 *    we try to get it. The new owner may be a spinnable
 | |
| 		 *    writer.
 | |
| 		 *
 | |
| 		 * To take advantage of two scenarios listed above, the RT
 | |
| 		 * task is made to retry one more time to see if it can
 | |
| 		 * acquire the lock or continue spinning on the new owning
 | |
| 		 * writer. Of course, if the time lag is long enough or the
 | |
| 		 * new owner is not a writer or spinnable, the RT task will
 | |
| 		 * quit spinning.
 | |
| 		 *
 | |
| 		 * If the owner is a writer, the need_resched() check is
 | |
| 		 * done inside rwsem_spin_on_owner(). If the owner is not
 | |
| 		 * a writer, need_resched() check needs to be done here.
 | |
| 		 */
 | |
| 		if (owner_state != OWNER_WRITER) {
 | |
| 			if (need_resched())
 | |
| 				break;
 | |
| 			if (rt_or_dl_task(current) &&
 | |
| 			   (prev_owner_state != OWNER_WRITER))
 | |
| 				break;
 | |
| 		}
 | |
| 		prev_owner_state = owner_state;
 | |
| 
 | |
| 		/*
 | |
| 		 * The cpu_relax() call is a compiler barrier which forces
 | |
| 		 * everything in this loop to be re-loaded. We don't need
 | |
| 		 * memory barriers as we'll eventually observe the right
 | |
| 		 * values at the cost of a few extra spins.
 | |
| 		 */
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 	osq_unlock(&sem->osq);
 | |
| done:
 | |
| 	lockevent_cond_inc(rwsem_opt_fail, !taken);
 | |
| 	return taken;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
 | |
|  * only be called when the reader count reaches 0.
 | |
|  */
 | |
| static inline void clear_nonspinnable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
 | |
| 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
 | |
| 
 | |
| static inline enum owner_state
 | |
| rwsem_spin_on_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return OWNER_NONSPINNABLE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Prepare to wake up waiter(s) in the wait queue by putting them into the
 | |
|  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
 | |
|  * reader-owned, wake up read lock waiters in queue front or wake up any
 | |
|  * front waiter otherwise.
 | |
| 
 | |
|  * This is being called from both reader and writer slow paths.
 | |
|  */
 | |
| static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
 | |
| 					  struct wake_q_head *wake_q)
 | |
| {
 | |
| 	enum rwsem_wake_type wake_type;
 | |
| 
 | |
| 	if (count & RWSEM_WRITER_MASK)
 | |
| 		return;
 | |
| 
 | |
| 	if (count & RWSEM_READER_MASK) {
 | |
| 		wake_type = RWSEM_WAKE_READERS;
 | |
| 	} else {
 | |
| 		wake_type = RWSEM_WAKE_ANY;
 | |
| 		clear_nonspinnable(sem);
 | |
| 	}
 | |
| 	rwsem_mark_wake(sem, wake_type, wake_q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for the read lock to be granted
 | |
|  */
 | |
| static struct rw_semaphore __sched *
 | |
| rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
 | |
| {
 | |
| 	long adjustment = -RWSEM_READER_BIAS;
 | |
| 	long rcnt = (count >> RWSEM_READER_SHIFT);
 | |
| 	struct rwsem_waiter waiter;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	/*
 | |
| 	 * To prevent a constant stream of readers from starving a sleeping
 | |
| 	 * writer, don't attempt optimistic lock stealing if the lock is
 | |
| 	 * very likely owned by readers.
 | |
| 	 */
 | |
| 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
 | |
| 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
 | |
| 		goto queue;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reader optimistic lock stealing.
 | |
| 	 */
 | |
| 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
 | |
| 		rwsem_set_reader_owned(sem);
 | |
| 		lockevent_inc(rwsem_rlock_steal);
 | |
| 
 | |
| 		/*
 | |
| 		 * Wake up other readers in the wait queue if it is
 | |
| 		 * the first reader.
 | |
| 		 */
 | |
| 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
 | |
| 			raw_spin_lock_irq(&sem->wait_lock);
 | |
| 			if (!list_empty(&sem->wait_list))
 | |
| 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
 | |
| 						&wake_q);
 | |
| 			raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 			wake_up_q(&wake_q);
 | |
| 		}
 | |
| 		return sem;
 | |
| 	}
 | |
| 
 | |
| queue:
 | |
| 	waiter.task = current;
 | |
| 	waiter.type = RWSEM_WAITING_FOR_READ;
 | |
| 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
 | |
| 	waiter.handoff_set = false;
 | |
| 
 | |
| 	raw_spin_lock_irq(&sem->wait_lock);
 | |
| 	if (list_empty(&sem->wait_list)) {
 | |
| 		/*
 | |
| 		 * In case the wait queue is empty and the lock isn't owned
 | |
| 		 * by a writer, this reader can exit the slowpath and return
 | |
| 		 * immediately as its RWSEM_READER_BIAS has already been set
 | |
| 		 * in the count.
 | |
| 		 */
 | |
| 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
 | |
| 			/* Provide lock ACQUIRE */
 | |
| 			smp_acquire__after_ctrl_dep();
 | |
| 			raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 			rwsem_set_reader_owned(sem);
 | |
| 			lockevent_inc(rwsem_rlock_fast);
 | |
| 			return sem;
 | |
| 		}
 | |
| 		adjustment += RWSEM_FLAG_WAITERS;
 | |
| 	}
 | |
| 	rwsem_add_waiter(sem, &waiter);
 | |
| 
 | |
| 	/* we're now waiting on the lock, but no longer actively locking */
 | |
| 	count = atomic_long_add_return(adjustment, &sem->count);
 | |
| 
 | |
| 	rwsem_cond_wake_waiter(sem, count, &wake_q);
 | |
| 	raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 
 | |
| 	if (!wake_q_empty(&wake_q))
 | |
| 		wake_up_q(&wake_q);
 | |
| 
 | |
| 	trace_contention_begin(sem, LCB_F_READ);
 | |
| 
 | |
| 	/* wait to be given the lock */
 | |
| 	for (;;) {
 | |
| 		set_current_state(state);
 | |
| 		if (!smp_load_acquire(&waiter.task)) {
 | |
| 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
 | |
| 			break;
 | |
| 		}
 | |
| 		if (signal_pending_state(state, current)) {
 | |
| 			raw_spin_lock_irq(&sem->wait_lock);
 | |
| 			if (waiter.task)
 | |
| 				goto out_nolock;
 | |
| 			raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
 | |
| 			break;
 | |
| 		}
 | |
| 		schedule_preempt_disabled();
 | |
| 		lockevent_inc(rwsem_sleep_reader);
 | |
| 	}
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	lockevent_inc(rwsem_rlock);
 | |
| 	trace_contention_end(sem, 0);
 | |
| 	return sem;
 | |
| 
 | |
| out_nolock:
 | |
| 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	lockevent_inc(rwsem_rlock_fail);
 | |
| 	trace_contention_end(sem, -EINTR);
 | |
| 	return ERR_PTR(-EINTR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait until we successfully acquire the write lock
 | |
|  */
 | |
| static struct rw_semaphore __sched *
 | |
| rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
 | |
| {
 | |
| 	struct rwsem_waiter waiter;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	/* do optimistic spinning and steal lock if possible */
 | |
| 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
 | |
| 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
 | |
| 		return sem;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimistic spinning failed, proceed to the slowpath
 | |
| 	 * and block until we can acquire the sem.
 | |
| 	 */
 | |
| 	waiter.task = current;
 | |
| 	waiter.type = RWSEM_WAITING_FOR_WRITE;
 | |
| 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
 | |
| 	waiter.handoff_set = false;
 | |
| 
 | |
| 	raw_spin_lock_irq(&sem->wait_lock);
 | |
| 	rwsem_add_waiter(sem, &waiter);
 | |
| 
 | |
| 	/* we're now waiting on the lock */
 | |
| 	if (rwsem_first_waiter(sem) != &waiter) {
 | |
| 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
 | |
| 				       &wake_q);
 | |
| 		if (!wake_q_empty(&wake_q)) {
 | |
| 			/*
 | |
| 			 * We want to minimize wait_lock hold time especially
 | |
| 			 * when a large number of readers are to be woken up.
 | |
| 			 */
 | |
| 			raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 			wake_up_q(&wake_q);
 | |
| 			raw_spin_lock_irq(&sem->wait_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
 | |
| 	}
 | |
| 
 | |
| 	/* wait until we successfully acquire the lock */
 | |
| 	set_current_state(state);
 | |
| 	trace_contention_begin(sem, LCB_F_WRITE);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (rwsem_try_write_lock(sem, &waiter)) {
 | |
| 			/* rwsem_try_write_lock() implies ACQUIRE on success */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 
 | |
| 		if (signal_pending_state(state, current))
 | |
| 			goto out_nolock;
 | |
| 
 | |
| 		/*
 | |
| 		 * After setting the handoff bit and failing to acquire
 | |
| 		 * the lock, attempt to spin on owner to accelerate lock
 | |
| 		 * transfer. If the previous owner is a on-cpu writer and it
 | |
| 		 * has just released the lock, OWNER_NULL will be returned.
 | |
| 		 * In this case, we attempt to acquire the lock again
 | |
| 		 * without sleeping.
 | |
| 		 */
 | |
| 		if (waiter.handoff_set) {
 | |
| 			enum owner_state owner_state;
 | |
| 
 | |
| 			owner_state = rwsem_spin_on_owner(sem);
 | |
| 			if (owner_state == OWNER_NULL)
 | |
| 				goto trylock_again;
 | |
| 		}
 | |
| 
 | |
| 		schedule_preempt_disabled();
 | |
| 		lockevent_inc(rwsem_sleep_writer);
 | |
| 		set_current_state(state);
 | |
| trylock_again:
 | |
| 		raw_spin_lock_irq(&sem->wait_lock);
 | |
| 	}
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	raw_spin_unlock_irq(&sem->wait_lock);
 | |
| 	lockevent_inc(rwsem_wlock);
 | |
| 	trace_contention_end(sem, 0);
 | |
| 	return sem;
 | |
| 
 | |
| out_nolock:
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 	raw_spin_lock_irq(&sem->wait_lock);
 | |
| 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
 | |
| 	lockevent_inc(rwsem_wlock_fail);
 | |
| 	trace_contention_end(sem, -EINTR);
 | |
| 	return ERR_PTR(-EINTR);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handle waking up a waiter on the semaphore
 | |
|  * - up_read/up_write has decremented the active part of count if we come here
 | |
|  */
 | |
| static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
 | |
| 
 | |
| 	if (!list_empty(&sem->wait_list))
 | |
| 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
 | |
| 	wake_up_q(&wake_q);
 | |
| 
 | |
| 	return sem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * downgrade a write lock into a read lock
 | |
|  * - caller incremented waiting part of count and discovered it still negative
 | |
|  * - just wake up any readers at the front of the queue
 | |
|  */
 | |
| static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	DEFINE_WAKE_Q(wake_q);
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
 | |
| 
 | |
| 	if (!list_empty(&sem->wait_list))
 | |
| 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
 | |
| 	wake_up_q(&wake_q);
 | |
| 
 | |
| 	return sem;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lock for reading
 | |
|  */
 | |
| static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	long count;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (!rwsem_read_trylock(sem, &count)) {
 | |
| 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
 | |
| 			ret = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
 | |
| 	}
 | |
| out:
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __always_inline void __down_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static __always_inline int __down_read_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return __down_read_common(sem, TASK_KILLABLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_read_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	long tmp;
 | |
| 
 | |
| 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	tmp = atomic_long_read(&sem->count);
 | |
| 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
 | |
| 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
 | |
| 						    tmp + RWSEM_READER_BIAS)) {
 | |
| 			rwsem_set_reader_owned(sem);
 | |
| 			ret = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lock for writing
 | |
|  */
 | |
| static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	if (unlikely(!rwsem_write_trylock(sem))) {
 | |
| 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
 | |
| 			ret = -EINTR;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __always_inline void __down_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static __always_inline int __down_write_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return __down_write_common(sem, TASK_KILLABLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_write_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
 | |
| 	ret = rwsem_write_trylock(sem);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unlock after reading
 | |
|  */
 | |
| static inline void __up_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long tmp;
 | |
| 
 | |
| 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
 | |
| 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	rwsem_clear_reader_owned(sem);
 | |
| 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
 | |
| 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
 | |
| 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
 | |
| 		      RWSEM_FLAG_WAITERS)) {
 | |
| 		clear_nonspinnable(sem);
 | |
| 		rwsem_wake(sem);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unlock after writing
 | |
|  */
 | |
| static inline void __up_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long tmp;
 | |
| 
 | |
| 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
 | |
| 	/*
 | |
| 	 * sem->owner may differ from current if the ownership is transferred
 | |
| 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
 | |
| 	 */
 | |
| 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
 | |
| 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	rwsem_clear_owner(sem);
 | |
| 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
 | |
| 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
 | |
| 		rwsem_wake(sem);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * downgrade write lock to read lock
 | |
|  */
 | |
| static inline void __downgrade_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	long tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * When downgrading from exclusive to shared ownership,
 | |
| 	 * anything inside the write-locked region cannot leak
 | |
| 	 * into the read side. In contrast, anything in the
 | |
| 	 * read-locked region is ok to be re-ordered into the
 | |
| 	 * write side. As such, rely on RELEASE semantics.
 | |
| 	 */
 | |
| 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
 | |
| 	preempt_disable();
 | |
| 	tmp = atomic_long_fetch_add_release(
 | |
| 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
 | |
| 	rwsem_set_reader_owned(sem);
 | |
| 	if (tmp & RWSEM_FLAG_WAITERS)
 | |
| 		rwsem_downgrade_wake(sem);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_PREEMPT_RT */
 | |
| 
 | |
| #define RT_MUTEX_BUILD_MUTEX
 | |
| #include "rtmutex.c"
 | |
| 
 | |
| #define rwbase_set_and_save_current_state(state)	\
 | |
| 	set_current_state(state)
 | |
| 
 | |
| #define rwbase_restore_current_state()			\
 | |
| 	__set_current_state(TASK_RUNNING)
 | |
| 
 | |
| #define rwbase_rtmutex_lock_state(rtm, state)		\
 | |
| 	__rt_mutex_lock(rtm, state)
 | |
| 
 | |
| #define rwbase_rtmutex_slowlock_locked(rtm, state, wq)	\
 | |
| 	__rt_mutex_slowlock_locked(rtm, NULL, state, wq)
 | |
| 
 | |
| #define rwbase_rtmutex_unlock(rtm)			\
 | |
| 	__rt_mutex_unlock(rtm)
 | |
| 
 | |
| #define rwbase_rtmutex_trylock(rtm)			\
 | |
| 	__rt_mutex_trylock(rtm)
 | |
| 
 | |
| #define rwbase_signal_pending_state(state, current)	\
 | |
| 	signal_pending_state(state, current)
 | |
| 
 | |
| #define rwbase_pre_schedule()				\
 | |
| 	rt_mutex_pre_schedule()
 | |
| 
 | |
| #define rwbase_schedule()				\
 | |
| 	rt_mutex_schedule()
 | |
| 
 | |
| #define rwbase_post_schedule()				\
 | |
| 	rt_mutex_post_schedule()
 | |
| 
 | |
| #include "rwbase_rt.c"
 | |
| 
 | |
| void __init_rwsem(struct rw_semaphore *sem, const char *name,
 | |
| 		  struct lock_class_key *key)
 | |
| {
 | |
| 	init_rwbase_rt(&(sem)->rwbase);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
 | |
| 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
 | |
| #endif
 | |
| }
 | |
| EXPORT_SYMBOL(__init_rwsem);
 | |
| 
 | |
| static inline void __down_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_read_interruptible(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_read_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_read_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return rwbase_read_trylock(&sem->rwbase);
 | |
| }
 | |
| 
 | |
| static inline void __up_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
 | |
| }
 | |
| 
 | |
| static inline void __sched __down_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| 
 | |
| static inline int __sched __down_write_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
 | |
| }
 | |
| 
 | |
| static inline int __down_write_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	return rwbase_write_trylock(&sem->rwbase);
 | |
| }
 | |
| 
 | |
| static inline void __up_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwbase_write_unlock(&sem->rwbase);
 | |
| }
 | |
| 
 | |
| static inline void __downgrade_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwbase_write_downgrade(&sem->rwbase);
 | |
| }
 | |
| 
 | |
| /* Debug stubs for the common API */
 | |
| #define DEBUG_RWSEMS_WARN_ON(c, sem)
 | |
| 
 | |
| static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
 | |
| 					    struct task_struct *owner)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
 | |
| {
 | |
| 	int count = atomic_read(&sem->rwbase.readers);
 | |
| 
 | |
| 	return count < 0 && count != READER_BIAS;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PREEMPT_RT */
 | |
| 
 | |
| /*
 | |
|  * lock for reading
 | |
|  */
 | |
| void __sched down_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
 | |
| 
 | |
| 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
 | |
| }
 | |
| EXPORT_SYMBOL(down_read);
 | |
| 
 | |
| int __sched down_read_interruptible(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
 | |
| 
 | |
| 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
 | |
| 		rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_interruptible);
 | |
| 
 | |
| int __sched down_read_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
 | |
| 
 | |
| 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
 | |
| 		rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_killable);
 | |
| 
 | |
| /*
 | |
|  * trylock for reading -- returns 1 if successful, 0 if contention
 | |
|  */
 | |
| int down_read_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	int ret = __down_read_trylock(sem);
 | |
| 
 | |
| 	if (ret == 1)
 | |
| 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_trylock);
 | |
| 
 | |
| /*
 | |
|  * lock for writing
 | |
|  */
 | |
| void __sched down_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
 | |
| 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
 | |
| }
 | |
| EXPORT_SYMBOL(down_write);
 | |
| 
 | |
| /*
 | |
|  * lock for writing
 | |
|  */
 | |
| int __sched down_write_killable(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
 | |
| 
 | |
| 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
 | |
| 				  __down_write_killable)) {
 | |
| 		rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(down_write_killable);
 | |
| 
 | |
| /*
 | |
|  * trylock for writing -- returns 1 if successful, 0 if contention
 | |
|  */
 | |
| int down_write_trylock(struct rw_semaphore *sem)
 | |
| {
 | |
| 	int ret = __down_write_trylock(sem);
 | |
| 
 | |
| 	if (ret == 1)
 | |
| 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(down_write_trylock);
 | |
| 
 | |
| /*
 | |
|  * release a read lock
 | |
|  */
 | |
| void up_read(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 	__up_read(sem);
 | |
| }
 | |
| EXPORT_SYMBOL(up_read);
 | |
| 
 | |
| /*
 | |
|  * release a write lock
 | |
|  */
 | |
| void up_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 	__up_write(sem);
 | |
| }
 | |
| EXPORT_SYMBOL(up_write);
 | |
| 
 | |
| /*
 | |
|  * downgrade write lock to read lock
 | |
|  */
 | |
| void downgrade_write(struct rw_semaphore *sem)
 | |
| {
 | |
| 	lock_downgrade(&sem->dep_map, _RET_IP_);
 | |
| 	__downgrade_write(sem);
 | |
| }
 | |
| EXPORT_SYMBOL(downgrade_write);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC
 | |
| 
 | |
| void down_read_nested(struct rw_semaphore *sem, int subclass)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
 | |
| 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_nested);
 | |
| 
 | |
| int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
 | |
| 
 | |
| 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
 | |
| 		rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_killable_nested);
 | |
| 
 | |
| void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
 | |
| 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
 | |
| }
 | |
| EXPORT_SYMBOL(_down_write_nest_lock);
 | |
| 
 | |
| void down_read_non_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	__down_read(sem);
 | |
| 	/*
 | |
| 	 * The owner value for a reader-owned lock is mostly for debugging
 | |
| 	 * purpose only and is not critical to the correct functioning of
 | |
| 	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
 | |
| 	 * context here.
 | |
| 	 */
 | |
| 	__rwsem_set_reader_owned(sem, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(down_read_non_owner);
 | |
| 
 | |
| void down_write_nested(struct rw_semaphore *sem, int subclass)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
 | |
| 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
 | |
| }
 | |
| EXPORT_SYMBOL(down_write_nested);
 | |
| 
 | |
| int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
 | |
| 
 | |
| 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
 | |
| 				  __down_write_killable)) {
 | |
| 		rwsem_release(&sem->dep_map, _RET_IP_);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(down_write_killable_nested);
 | |
| 
 | |
| void up_read_non_owner(struct rw_semaphore *sem)
 | |
| {
 | |
| 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
 | |
| 	__up_read(sem);
 | |
| }
 | |
| EXPORT_SYMBOL(up_read_non_owner);
 | |
| 
 | |
| #endif
 |